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Transfer Adaptation Learning for Target Recognition
in SAR Images: A Survey

Xinpeng Yang”, Lianmeng Jiao

Abstract—Synthetic aperture radar (SAR) target recognition is
a fundamental task in SAR image interpretation, which has made
tremendous progress with the advancement of artificial intelligence
technology. However, SAR imaging is sensitive to the operating
conditions of platforms, resulting in large distribution discrepancy
for the data collected on different platforms. Moreover, SAR target
images are difficult to annotate due to the blurry textures, resulting
in insufficient labeled data to train a model. Therefore, subject
to the data distribution discrepancy and insufficient labeled data,
SAR target recognition becomes a highly challenging task. Transfer
adaptive learning (TAL) is a learning paradigm aimed at complet-
ing target tasks by transferring knowledge from relevant source
domains, which is a promising technique for solving the afore-
mentioned problems in SAR target recognition. However, there is
currently no comprehensive survey about the application of trans-
fer adaptation learning in SAR target recognition. To this end, we
comprehensively summarized the development of transfer adaptive
learning in SAR target recognition, and provided systematic guid-
ance for future research. In this article, we first summarized the
electromagnetic features and visual features of SAR images used
for target recognition, which can be potentially used for knowledge
transfer. Then, we systematically reviewed the related literature
according to the homogeneity of the transfer domains, the modality
of the data in the source domain, and the category of the TAL
methods. The available datasets that can be used to validate the
TAL methods for SAR target recognition were also summarized
for the researcher’s convenience. We also conducted comparative
experiments on these data to demonstrate the performance of TAL
methods. Finally, we analyzed the main challenges of the current
methods and pointed out several directions worth studying in the
future.

Index Terms—Synthetic aperture radar (SAR),

recognition, transfer adaptation learning (TAL).

target

1. INTRODUCTION

N RECENT years, with the development of machine learning
I algorithms, the visual understanding of synthetic aperture
radar (SAR) images has made tremendous progress [1], [2],
[3]. Target recognition, which is a fundamental problem and
holds a pivotal position in the visual understanding of SAR
images, aims to recognize the fine-grained categories or type
information of the target accurately [4], [S]. As shown in Fig. 1,
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Fig. 1. Difference between optical target recognition and SAR target
recognition.

the SAR images always contain the speckle noise compared with
the optical images due to electromagnetic wave imaging [6]. It
is noteworthy that, given the reliance of SAR sensors on elec-
tromagnetic wave imaging, they remain unaffected by climatic
variations and lighting conditions. Their extensive detection
range and ability to penetrate vegetation further reinforce their
advantages compared to optical target recognition [7], [8]. As
a cutting-edge image interpretation method, SAR target recog-
nition finds crucial applications in both military and civilian
domains, ranging from disaster reporting and prevention to
traffic management, urban planning, military intelligence gath-
ering, etc., [9], [10]. SAR imaging is notably sensitive to the
working conditions of platforms and the states of the target,
including factors such as depression angle, polarization mode,
wave band, and target azimuth [11], [12], [13]. Variations in
these parameters significantly affect aspects of SAR images
such as brightness, texture, scatter distribution, and noise levels.
Therefore, in the task of SAR target recognition, if the training
data and test data are collected from different platforms or
under different working conditions, there will be significant
differences in the data distributions between the training data
and test data. This leads to the violation of the assumption made
in traditional machine learning, which is that the samples in the
training and test sample spaces are independent and identically
distributed (L.I.D.) [14], [15]. For example, the images needed
to be identified are collected after the working mode of radar
has changed or from other platforms [16]. Traditional machine
learning algorithms perform badly under these test conditions,
as their generalization is poor.

One solution is to obtain and annotate data with the same
distribution as the test data, and then retrain the model with
supervised learning. However, it is time consuming and resource
consuming. Whenever new test data are collected from other
platforms or working conditions, the entire process needs to be
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repeated, leading to unacceptable time and resource consump-
tion. Meanwhile, annotating the SAR target images is extremely
difficult for several reasons.

1) SAR imaging relies on a distinct mechanism that involves
active emission and reception of electromagnetic waves,
which encompasses intricate physical processes such as
electromagnetic scattering, interference, and diffraction.
Consequently, SAR images exhibit different textures com-
pared to optical natural images, deviating from human
visual perception.

2) SARimagingis prone to various factors, including speckle
noise, geometric deformation, and structural loss, lead-
ing to diverse visual representations of the same target
type [7].

3) Moreover, SAR images of certain target models display
a high degree of visual similarity, making them nearly
indistinguishable to the human eye, even for experts with
specialized knowledge in annotation.

A range of machine learning techniques aimed at improving
the performance of SAR target recognition models but applied
to different scenarios have also been employed, including met-
alearning techniques [17], [18], knowledge distillation [19],
semisupervised learning [20], and unsupervised learning [21],
etc. Specifically, metalearning techniques aim to uncover the
inherent patterns and rules within the data itself, addressing
the challenge of SAR target recognition with small sample
sizes [17], [18]. On the other hand, knowledge distillation fo-
cuses on transferring the knowledge of larger, more complex
models (teacher models) to smaller, more efficient models (stu-
dent models), thereby enhancing the performance of SAR target
recognition models with limited resources [19]. Semisuper-
vised and unsupervised learning techniques aim to tackle SAR
target recognition problems in various scenarios with varying
degrees of labeled data availability. They rely on unlabeled or
partially labeled data to learn meaningful representations and
patterns, which can then be leveraged for recognition tasks [20],
[21].

An effective way to solve the mentioned problem is to extract
knowledge from other relevant data and apply it to SAR target
recognition, which is called transfer learning or domain adap-
tation learning, and we use a general name transfer adaptation
learning (TAL) for unifying them [22]. Transfer adaptation learn-
ing strives to acquire pertinent knowledge from source domain
data that is associated with the target domain yet exhibits distinct
distributions. The ultimate goal is to develop a model that excels
at performing target domain tasks. A crucial aspect to note is
that the target domain faces difficulties in directly crafting an
effective model owing to the scarcity of annotated data, and so
on. In contrast, obtaining annotated data in the source domain is
comparatively easier, thereby bolstering the target domain task
with pertinent knowledge. TAL imitates the learning ability of
humans to draw analogies and to apply knowledge learned from
other data. Due to these characteristics of TAL, it has widespread
applications in natural language processing (NLP), computer
vision (CV), speech signal recognition, fault diagnosis, and
beyond [22]. In CV, TAL can be used for detection, recognition,
and segmentation tasks under various cross-imaging conditions,
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Fig. 2. Data types that can provide knowledge for SAR target recognition.

across different weather or lighting conditions, which are cru-
cial for applications in autonomous driving, surveillance, and
security [23]. TAL can also be applied to detection, recognition,
and segmentation across different imaging modalities, such as
pedestrian reidentification from optical to infrared, and medical
image analysis from CT to MRI [24], [25], which are the key
tasks in tracking, surveillance, and medical image analysis.
TAL technology also has been widely utilized in the field of
remote sensing [26], [27], [28], [29], including SAR target
recognition [30], [31], [32], [33]. First, it leverages pretraining
on extensive data closely related to the target domain, enabling
the model to acquire and refine general features specific to SAR
targets. Second, it minimizes the distribution discrepancy met-
rics between source and target domain SAR data by employing
distribution alignment techniques. Third, it employs adversarial
learning methods and other strategies to create shared feature
spaces, thereby blurring the distinction between source and
target domains. In the subsequent sections, we will delve deeper
into the current TAL methodology tailored specifically for SAR
target recognition.

To our knowledge, research on SAR target recognition based
on TAL began in 2018 [34]. With the development of artificial
intelligence technology, this research field is currently receiving
increasing attention [35]. Up to now, there have been some
surveys on the TAL [22], [36], [37], SAR target recognition [35],
[38], [39], [40], or TAL in other fields [41]. As we can see
the details of these surveys in Table I, they are not concerned
on the SAR target recognition based on TAL. As far as we
know, our paper is the first survey specialized for the SAR
target recognition based on TAL. Over 70 excellent methods
were systematically reviewed in our paper. We hope it can be a
valuable tool and guidance to researchers interested in this field,
assisting them in mastering the development direction.

For the SAR target recognition task, there are various types of
data that can be taken as source domains to provide transferable
knowledge, and each of them has its own characteristics, such
as SAR images [30], simulated SAR images [31], optical im-
ages [32], and AIS [33], which can be seen in Fig. 2. Therefore,
even the general methods have specific settings for different
types of data, much less the methods that are designed for the
special type of data. Hence, one can see that the literature catego-
rization only based on the categories of methods is not suitable
for SAR target recognition based on TAL. At the same time, the
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TABLE I
SUMMARY OF RELATED SURVEYS

Year  Author Title

Content

Surveys on TAL

2022  Zhang et al. [22] Transfer Adaptation Learning: A Decade
Survey

2022 Zhao et al. [36] A Review of Single-Source Deep
Unsupervised Visual Domain Adaptation

2023 Bao et al. [37] A Survey of Heterogeneous Transfer learning

A systematic review of generic transfer learning technology.

An overview of recent developments in deep unsupervised
visual domain adaptation for natural optial images.

A comprehensive review of generic transfer learning
technology for heterogeneous domains.

Surveys on SAR target recognition

2016

2018

El-Darymli et al. [38]  Automatic Target Recognition in Synthetic
Aperture Radar Imagery: A State-of-the-Art
Review

A Review of the Autoencoder and Its Variants:
A Comparative Perspective from Target
Recognition in Synthetic-Aperture Radar

Dong et al. [40]

A comprehensive review of SAR target recognition from
traditional methods to artificial intelligence methods.

An overview of autoencoders applied to terrain classification,
object detection, target recognition, and so on, in radar and
hyperspectral images.

Images

2023 Li et al. [35]
Deep-Learning Era

2023  Jiang et al. [39]
Learning in Radar Automatic Target

Recognition: A Review

A Comprehensive Survey on SAR ATR in

Radar Target Characterization and Deep

Overview of the traditional and deep learning algorithms for
SAR automatic target recognition.

A study on the radar target characteristic and deep learning
methods used for radar target recognition.

Surveys on TAL in other fields
2024  Ma et al. [41]
sensing

Transfer learning in environmental remote

A review on the transfer learning methods for environmental
remote sensing research.

acquisition principles of both SAR images and simulated SAR
images are the same as those of the target domain, indicating
that they are homogeneous data. Conversely, the acquisition
principles of optical images and AIS data are significantly
different from those of the target domain, indicating that they
are heterogeneous data. Therefore, in our article, we first divide
the literature into two top categories (homogeneous TAL and
heterogeneous TAL) based on whether the modal of source data
is the same as the target data, then divide the literature into four
middle categories (from SAR to SAR, from simulated-SAR to
SAR, from optical to SAR, from AIS to SAR) based on the types
of data in the source domain, and finally divide them into bottom
categories (pretraining, distribution-alignment, shared-feature-
space) according to the categories of TAL methods. The detailed
category information can be seen in Table II. Apart from this,
the knowledge transferred and datasets used in these methods
are also presented in columns 3 and 4 of this table. We believe
that the multilevel literature categorization enables the readers to
quickly and clearly find the relevant content they are interested
in.

Contributions: Our article contributes to TAL in SAR target
recognition by reviewing almost all relevant literature, analyzing
the transferable features of SAR images, providing a detailed lit-
erature categorization, representing detailed information about
available datasets, and offering suggestions and recommenda-
tions for future research. The key contributions are as follows.

1) We investigated the effective electromagnetic and visual

features for SAR target recognition and analyzed their
potential applications for TAL in SAR target recognition,
aiming to provide researchers with a comprehensive un-
derstanding of what kinds of knowledge can be transferred
for SAR target recognition.

2) We have studied over 70 methods that apply TAL to

SAR target recognition, and categorized these papers

systematically from top to bottom based on the homo-
geneity of the transfer domains, the modality of the data in
the source domain, and the category of the TAL methods.
Therefore, this article fills the gap in the current literature,
which lacks a survey on the application of TAL in SAR
target recognition.

3) We have investigated the datasets used in the reviewed
literature, which could provide transferable knowledge
for SAR target recognition. The detailed information and
properties of these datasets are summarized. The exper-
iments are also conducted on them to demonstrate the
superiority of the TAL methods tailored specifically for
SAR target recognition.

4) We have thoroughly analyzed the performance limita-
tions of current methods and outlined potential direc-
tions for improvement. In addition, we have delved into
unexplored scenarios in TAL for SAR target recogni-
tion, offering insights into promising future research
directions.

Organization: The rest of this article is organized as follows.
Section II introduces the preliminary knowledge of TAL and
the categories of TAL methodology. Section III discusses trans-
ferable features of SAR images. Section IV reviews the ho-
mogeneous TAL methodologies, including transferring knowl-
edge from SAR to SAR, from simulated-SAR to SAR. Sec-
tion V reviews the heterogeneous TAL methodologies, in-
cluding transferring knowledge from optical to SAR, from
AIS to SAR, and from AIS and optical to SAR. Section VI
gives the information of available data providing knowledge
for SAR target recognition. Section VII provides comparative
experiments to demonstrate the performance of TAL methods.
Section VIII presents the discussions for existing methods and
the recommendation for future work. Finally, Section IX draws
the conclusions.
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TABLE II

SUMMARY OF REVIEWED LITERATURE

Homogeneous TAL

References Algorithms Transferred Knowledge Datasets

From SAR to SAR

2017 Huang et al. [30] Pretraining Model Weights SAR Scene [30] = MSTAR [42]
2018 Zhang et al. [43] Pretraining Model Weights MSTAR [42] = OpenSARShip [44]
2018 Shang et al. [45] Pretraining Model Weights MSTAR [42]

2019 Zhang et al. [46] Pretraining Model Weights SAR Scene [46] = MSTAR [42]
2019 Zhai et al. [47] Pretraining Model Weights MSTAR [42]

2020 Zhai et al. [48] Pretraining Model Weights MSTAR [42]

2022 Zhang et al. [49] Pretraining Model Weights GPED [49] < MTDD [50]

2022 Wang et al. [51] Pretraining Model Weights MSTAR [42]

2022 Zhu et al. [52] Pretraining Model Weights MSTAR [42]

2022 Liu et al. [53] Pretraining Model Weights Stylied-MSTAR [53] = MSTAR [42]
2022 Liu et al. [54] Pretraining Model Weights+ASC MSTAR [42]

2023 Pei et al. [55] Pretraining Model Weights MSTAR [42] = OpenSARShip [44]

2020 Huang et al. [56]

Distribution-Alignment

Deep Feature

SAR Scene [56], MSTAR [42] = OpenSARShip [44]

2021 Zhao et al. [57] Distribution-Alignment Deep Feature MSTAR [42]

2022 Zhang et al. [58] Distribution-Alignment Deep Feature MSTAR [42]

2022 Chen et al. [59] Distribution-Alignment Deep Feature MSTAR [42]

2022 Zhang et al. [60] Distribution-Alignment Deep Feature+SR MSTAR [42], OpenSARShip [44]
2020 Sun et al. [61] Shared-Feature-Space Deep Feature MSTAR [42]

2022 Zhao et al. [14] Shared-Feature-Space Deep Feature SAR Ship [14]

2022 Zhao et al. [15] Shared-Feature-Space Deep Feature FUSAR [62] < OpenSARShip [44]
2022 Zhao et al. [16] Shared-Feature-Space Deep Feature FUSAR [62] < OpenSARShip [44]
2022 Zhang et al. [63] Shared-Feature-Space Deep Feature MSTAR [42]

2022 Gao et al. [64] Shared-Feature-Space Support Tensor MSTAR [42]

From Simulated-SAR to SAR

2017 Malmgren et al. [31]
2018 Liu et al. [66]

2019 Ma et al. [67]

2021 Inkawhich et al. [68]
2020 Liang et al. [70]
2023 Zhang et al. [71]
2023 Kim et al. [72]

Pretraining
Pretraining
Pretraining
Pretraining
Pretraining
Pretraining
Pretraining

Model Weights
Model Weights
Model Weights
Model Weights
Model Weights
Model Weights
Model Weights

SARSIM [65] = MSTAR [42]

Airplanes Simulation [66] = SAR Airplanes [66]
Vehicle GAN [67] = MSTAR [42]

SAMPLE [69] => MSTAR [42]

Vehicle Simulation [70] = MSTAR [42]
SARSIM [65], SAMPLE [69] = MSTAR [42]
SAMPLE [69] = MSTAR [42]

2021 Sun et al. [73]
2021 Tai et al. [74]
2022 Tai et al. [75]
2022 He et al. [76]
2023 Sun et al. [77]
2023 Lv et al. [78]
2023 Zhang et al. [79]
2024 Han et al. [9]

Distribution-Alignment
Distribution-Alignment
Distribution-Alignment
Distribution-Alignment
Distribution-Alignment
Distribution-Alignment
Distribution-Alignment
Distribution-Alignment

Deep Feature
Deep Feature
Deep Feature
Deep Feature
Deep Feature
Deep Feature
Deep Feature+ASC+SIFT
Deep Feature

Vehicle Simulation [73] = MSTAR [42]
Vehicle Simulation [74] = MSTAR [42]
Vehicle Simulation [75] = MSTAR [42]
Vehicle Simulation [76] = MSTAR [42]
SAMPLE [69] = MSTAR [42]
Vehicle Simulation [78] = MSTAR [42]
SAMPLE [69] = MSTAR [42]
SAMPLE [69] = MSTAR [42]

2019 Zhang et al. [80]
2019 Wang et al. [81]
2021 Lv et al. [82]
2022 Du et al. [83]
2022 Chen et al. [12]
2024 Shi et al. [84]

Shared-Feature-Space
Shared-Feature-Space
Shared-Feature-Space
Shared-Feature-Space
Shared-Feature-Space
Shared-Feature-Space

Deep Feature
Deep Feature
Deep Feature
Deep Feature
Deep Feature
Deep Feature+ASC

Bandl Simulation [80] = Band2 Simulation [80]
Vehicle Simulation [81] = MSTAR [42]

Vehicle Simulation [82] = MSTAR [42]

Vehicle Simulation [83] = MSTAR [42]
SAMPLE [69] = MSTAR [42]

SAMPLE [69] = MSTAR [42]

Heterogenous TAL

From Optical to SAR
2018 Mufti et al. [34]
2018 Wang et al. [86]
2019 Lu et al. [87]
2019 Zhong et al. [88]
2020 Ying et al. [89]
2020 Taufique et al. [90]
2021 Praneetha et al. [93]
2021 Relekar et al. [94]
2021 Huang et al. [95]
2022 Tienin et al. [97]
2022 Wang et al. [100]
2022 Lang et al. [101]
2022 Tai et al. [104]
2022 Tai et al. [106]
2023 Gao et al. [108]

Pretraining
Pretraining
Pretraining
Pretraining
Pretraining
Pretraining
Pretraining
Pretraining
Pretraining
Pretraining
Pretraining
Pretraining
Pretraining
Pretraining
Pretraining

Model Weights
Model Weights
Model Weights
Model Weights
Model Weights
Model Weights
Model Weights
Model Weights
Model Weights
Model Weights
Model Weights
Model Weights
Model Weights
Model Weights
Model Weights

ImageNet [85] = MSTAR [42]

ImageNet [85] = SAR Ship [86]

ImageNet [85] = SAR Ship [87]

ImageNet [85] = MSTAR [42]

ImageNet [85] = MSTAR [42]

Optical Ship [91] = SAR ship [92]

ImageNet [85] = MSTAR [42]

ImageNet [85] = OpenSARShip [44]

ImageNet [85] = RESISC [96] = MSTAR [42]
ImageNet [85] = Airbus [98]+SAR ship [99]
ImageNet [85] = MSTAR [42]

Optical Ship [102] = SAR Ship [103], FUSAR [62]
Optical Ship [91]= SAR Ship [105]

Optical Vehicle [107] = MSTAR [42]

FGSCR [109] = FUSAR [62]

2019 Mohammad et al. [32]
2022 Jahan et al. [110]
2022 Zhao et al. [112]

Distribution-Alignment
Distribution-Alignment
Distribution-Alignment

Deep Feature
Deep Feature
Deep Feature

Optical Ship [91] = SAR Ship [92], [1053]
Optical Vehicle [111] = SAR Vehicle [111]
Optical Ship [112] = FUSAR [62]

2022 Song et al. [113]

Shared-Feature-Space

Deep Feature

HRSC2016 [114] = HRSID [115]

From AIS to SAR

2018 Lang et al. [33] Pretraining Model Weights AIS [33] = SAR Ship [103]
2022 Yan et al. [116] Pretraining Model Weights AIS [116] = HR-SAR [116], FUSAR [62]
2019 Xu et al. [117] Distribution-Alignment NGFs AIS [33] = SAR Ship [103]
2021 Xu et al. [118] Distribution-Alignment NGFs AIS [33] = SAR Ship [103]
2022 Yang et al. [119] Distribution-Alignment Deep Feature AIS [33] = SAR Ship [103]

From Optical and AIS to SAR

2022 Lang et al. [102]

Shared-Feature-Space

Support Vector

AIS [33]+Optical Ship [102] = FUSAR [62]
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II. PRELIMINARIES

A. Notations and Problem Definition

1) Notations: A summary of notations used in this article is
given as follows to simplify understanding for readers.

Dg: Source Domain

Dr: Target Domain

ds: Feature size of samples in source domain
dr: Feature size of samples in target domain
ns: Number of samples in source domain

np: Number of samples in target domain

nrr: Number of labeled samples in target domain
nry: Number of unlabeled samples in target domain
zg € Ros: Instance in source domain

Xs: Feature space of instance in source domain
Ys: Label of instance in source domain

Ys: Label space of instance in source domain
rp € RiT: Instance in target domain

xrr € RYT:  Labeled instance in target domain

rpy € R4T:  Unlabeled instance in target domain

Xrp: Feature space of instance in target domain
yr: Label of labeled instance in target domain
Vr: Label space of instance in target domain

2) Problem Definition: According to the definition in the
previous work [37], [120], [121], the domain consists of feature
space X and marginal probability distribution P(x), where
x € X and follows P(x). The task 7 based on the domain con-
sists of the label space ) and conditional probability distribution
P(y|z), where y € Y and follows P(y|z). Therefore, the data
in source domain are denoted as Dg = {(z%,y%)};5, where
zg € Xg, and ys € Vs. Different from the source domain, the
data in target domain consists of two parts, Dy = D, | Dru,
which are respectively denoted as Dry = {(x%,, yb )} 5F
and Dy = {.%‘ZTU}:L:TlU, where z7p,, xry € X, and yr € Vr.
Under normal conditions, 0 < nrp, < nry < ng.

Due to the discrepancy between source domain Dg and
target domain D7, which is caused by different work condi-
tions, platforms, depression angles, polarization mode, wave
band, azimuth, and so on, in SAR field, the marginal proba-
bility distribution and the conditional probability distribution
of source and target domain are different, Ps(x) # Pr(x) and
Ps(y|z) # Pr(y|z). That is also the root reason why the meth-
ods designed for the source domain cannot generalize well on the
target domain. TAL aims to solve this problem by transferring
knowledge from the task 7g on the source domain Dg to the
task 77 on the target domain Dp. Specifically, given the data of
source domain Dg = {(x%,y%)} 15, the task Tg, and the data
of target domain Dy = {(@k,, yb ) }TE U{ahy }I2V, that is
to say, given the marginal probability distributions Pg(z) and
Pr(z), and the conditional probability distribution Ps(y|z) and
Prr(y|x), the goal of TAL is learning the objective conditional
probability distribution Py (y|x). There are some special cir-
cumstances: when ny, > 0, itis always tagged with semisuper-
vised learning; when npy, = 0, it is tagged with unsupervised
learning.
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B. Categories of TAL Methodology

Regardless of the modality of data used as the source domain
for knowledge transfer, the literature reviewed in this article can
be divided into three categories based on the techniques used,
namely: Pretraining, distribution alignment, and shared feature
space. In this section, we introduce the general forms of these
methods, and the methods designed specifically based on the
data characteristics will be reviewed in detail in the following
sections.

1) Pretraining: Datasets with large volumes contain rich and
diverse data, which can provide the general knowledge for target
recognition or other visualization task. Pretraining the model on
these datasets enables the model to extract general features, and
then the model can be customized for the downstream task by
fine-tuning operation, which refer to the task of training a model
in specific application scenarios, such as target recognition,
detection, or segmentation [34]. The paradigm of pretraining
and fine-tuning can be seen in Fig. 3. This method is simple
to implement but relies on the dataset with a large amount of
labeled data.

2) Distribution Alignment: Due to the difference between
imaging environments, platforms, lighting conditions, and so on,
the source training data and the target test data show different
probability distributions, which can be seen in Fig. 4. The
manifestation of distribution differences in image data is that
the targets in images have different appearances [56]. Distribu-
tion alignment methods decrease the distribution differences by
minimizing the distribution discrepancy metrics of the features
from source and target, such as MMD [56], LMMD [122],
KLD [110], and the paradigm of the distribution alignment can
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be seenin Fig. 5. This method is effective but relies on predefined
distribution discrepancy metrics.

3) Shared Feature Space: Different from the pretraining
methods relying on sufficient data and the distribution align-
ment methods relying on the distribution discrepancy metrics,
building a feature space where the features come from different
domains cannot be discriminated against is also an effective
paradigm, which is called the shared feature space method. The
diagram of the commonly used method to build shared feature
space, adversarial learning, which endeavors to confuse the
feature representations of data from distinct domains through
a competitive game between feature extractors and domain
discriminators, can be seen in Fig. 6. The shared feature space
method confuses the features from source and target domains so
that the classifier can perform well regardless of the domains.

III. TRANSFERABLE FEATURES OF SAR IMAGES

Relatively speaking, the deep visual features of SAR images
have been extensively studied in TAL for SAR target recognition,
as outlined in the reviewed methods. However, the special prop-
erty features of SAR images, such as electromagnetic scattering
features and traditional features, have not been fully utilized
in the TAL for SAR target recognition [54], [79]. During the
review process, it was found that some work had fused these
features with deep features in SAR recognition tasks for TAL
to improve performance [60], [79], [84], [117]. This indicates
that this approach is able to improve the effectiveness of TAL
by introducing additional information. Consequently, they are
highly valuable considerations for future endeavors and can be
effectively utilized in TAL for SAR target recognition, thereby
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improving both model performance and generalization capa-
bilities. Therefore, they are the potential sources of knowledge
transfer in SAR target recognition. In this section, we discuss the
traditional features that may be useful for knowledge transfer in
SAR target recognition, such as the electromagnetic scattering
features extracted based on the attribute scattering center (ASC)
model [123], the visual features such as SAR-SIFT [124], his-
togram of oriented gradient (HOG) [125], wavelet transforma-
tion (WT) [126], sparse representation (SR) [127], Naive geo-
metric features (NGFs) [128]. Electromagnetic features stem di-
rectly from the principles of SAR imaging. They predominantly
capture intrinsic physical attributes related to the target’s surface
material composition, such as scattering patterns, reflectivity,
and polarization characteristics. These features are inherently
linked to the electromagnetic interactions between the radar
wave and the target, providing insights into the target’s material
composition and geometric shape. In contrast, visual features
are extracted directly from the SAR images. They encompass
attributes related to the image’s texture, pixel statistics, pixel
variation trends, target size, and other transformations of the
image data. Visual features capture the visual appearance and
spatial relationships of objects within the SAR image. Both
categories of features possess their unique value in SAR target
recognition, offering complementary information that can be
integrated to optimize the performance of recognition models. In
contrast, the deep features suffered the question about network
structure modifications, optimization tricks, loss function de-
signing, and so on, bringing challenges for further performance
improvements. Therefore, the traditional features should not be
abandoned [129].

A. Attribute Scattering Center

The ASC model was first proposed by Gerry et al. [123],
which extended the physical optical theory and geometrical
theory of diffraction [130]. It denotes that, under high-frequency
conditions, the electromagnetic scattering is approximate to the
superposition of a series of individual electromagnetic scattering
centers [5]. ASC model can be described by a set of functions
of operation frequency and aspect angle of radar, which is
formulated as

E(f,¢;0) =Y Ei(f,¢;6) (1)
i=1
where E(f, ¢; ©) denotes the total electromagnetic scattering,
f, @ denotes the operation frequency and aspect angle of radar,
© denotes the physical parameters, and E;(f, ¢; ©;) denotes
the ¢th electromagnetic scattering center. In details, the :th
electromagnetic scattering center can be described as follows:

E,(f.6:0,) = A, - (;J{) 1

(—j47rf
- exp

¢
-sine <27;“sz sin (¢ - ‘57)>
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TABLE III
DETAILED INFORMATION OF GEOMETRIC SCATTERING TYPES

Geometric Scattering Type « o L ¢

Trihedral 1
. Top Hat 0.5
Localized Sphere 0 >0 0 0
Corner Diffraction -1
Dihedral 1
. Cylinder 0.5
Distributed Edge Broadside 0 0 >0 #0

Edge Diffraction -0.5

where ¢ denotes the speed of electromagnetic wave, f. denotes
the radar central frequency, ©; = [A;, x;, i, i, Li, i, 7:] is the
physical parameters of the ¢th electromagnetic scattering center,
in which A; represents the amplitude of it, (x;, y;) represents the
geometrical location, «v; denotes the frequency dependence, L;
denotes the length, ¢; denotes the azimuth, and ; denotes the
azimuth dependence. The ASC model contains intrinsic prop-
erty information of the radar target, including electromagnetic
diffraction resulting from sharp or protruding parts of the target.
This diffraction reflects the physical structure of the target and
facilitates target recognition, and the information of the most
common scattering structures can be seen in Table III. Based on
the ASC model and optimization algorithms, the parameters rep-
resenting the property information of the radar target can be esti-
mated. Then, electromagnetic features can be obtained through
feature extraction methods based on the estimated parameters,
and widely utilized in SAR target recognition [5], [131], [132],
[133]. Some researchers have also applied the information di-
rectly related to the radar target itself, obtained based on the
ASC model, to the TAL task of SAR target recognition. They use
feature extraction methods to obtain electromagnetic scattering
features and fuse them with the visual features of SAR images to
enhance the generalization of the model [54], [79], or integrate
this information as prior knowledge into the training process of
the model to improve its recognition performance [84]. It can be
seen that, by integrating SAR target electromagnetic scattering
knowledge with the recognition model, the generalization of the
model can be effectively improved. Therefore, how to transfer
electromagnetic scattering knowledge based on the ASC model
is a question worth exploring.

B. SAR-SIFT

SAR-SIFT is one of the most common keypoints detection
and scale-invariant feature extraction algorithms that are used
for the SAR image interpretation [124]. SAR SIFT can avoid
the influence of speckle noise to a considerable extent, extract-
ing scale-invariant, rotation-invariant, and translation-invariant
features. It obtains keypoints and descriptors that encapsulate
gradient information from surrounding pixels, with the ultimate
goal of reflecting edge information through gradient compu-
tation. SAR-SIFT is also used to build features for SAR tar-
get detection [134] and recognition [135], [136]. Therefore,
the SAR-SIFT features are promising for TAL in SAR target
recognition.

13583

C. SAR-HOG

The HOG feature was first proposed for person detection,
which is not sensitive to local geometric transformations, such
as translations or rotations [125]. Considering that SAR im-
ages are sensitive to the depression angle and the azimuths
of targets, Song et al. [137] proposed SAR-HOG, which pays
more attention to the stable SAR image pixels that are reflected
by strong backscatter returns from structures exhibiting aspect
insensitivity. After that, the HOG feature is widely used for
SAR image interpretation [138], [139], including SAR target
recognition [129], [140], [141]. Therefore HOG features have
the potential to be fused with deep features for TAL to improve
the SAR target recognition performance.

D. Wavelet Transformation

WT is developed based on the Fourier transformation. Fourier
transformation is invariant for translation, but variant for defor-
mation of the high frequency parts [126]. Generally speaking,
image features ought to exhibit invariance to geometric transfor-
mations, encompassing translation, rotation, scale transforma-
tion, and minor deformations, while also possessing robustness
against perturbations. The WT features possess these properties
but are sensitive to translation. Therefore, some researchers have
improved it and applied it to SAR target recognition [142]
or combined deep feature [126], [143], [144]. WT features
have shown good performance in SAR target recognition tasks
and can be further fused with deep features. It is also worth
considerable for TAL in this field.

E. Sparse Representation

SR is widely used for face recognition [145], image denois-
ing [146], and SAR target recognition [103], [147], [148]. The
basic idea of the SR classification is to represent the test sample
with a linear combination of training samples. The category of
the test sample can be determined by the sparse reconstruction
error [148]. The SR has good anti-noise performance, and is
widely used for SAR target recognition [149], [150], [151] or
combined deep features [60]. SR is complementary with deep
features in SAR target recognition to some extent, and it should
be considered in TAL for SAR target recognition [60].

F. Naive Geometric Features

NGFs are used for ship classification in SAR images [128],
[152], which represent the geometric properties of the ships,
such as length, width, perimeter, and area ratio. The detailed
information about NGFs can be seen in Table IV. For SAR
target images, these features can be obtained by calculating the
minimum bounding boxes surrounding the target [33], [116].
The experiments [128], [152] in SAR images show that the NGFs
are effective features for ship fine-grained recognition. It can be
seen that these features are common in some different types of
data. Therefore, they are also worth considering for TAL in SAR
target recognition [128], [152].

In this section, we discussed the traditional features used in the
reviewed literature and presented several potential features that
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TABLE IV
NAIVE GEOMETRIC FEATURES

Features |  Description | Definition
Nil length L
A width w
f3 naive perimeter 2x (L+W)
fa naive area LxW
fs aspect ratio (a) L/W
fe aspect ratio (b) W/L
fr shape complex | (L + W)2/(L x W)
fs / W2/(L? + W?)
fo / (L=W)/(L+W)
f10 / L/(L+W)
S / W/(L+ W)

could be applied in TAL for SAR target recognition. However,
the manners of utilizing these features remain worth exploring
in this field. The features that can be used in TAL for SAR target
recognition are not limited to these, and we should explore more
potential features in the future and consider how to utilize them
effectively.

IV. HOMOGENEOUS TRANSFER ADAPTATION LEARNING

SAR and simulated-SAR images are two kinds of homoge-
neous data that can provide knowledge for SAR target recog-
nition. Without a doubt, the source domain SAR images and
target domain SAR images are absolutely homogeneous, with
only existing discrepancies between operation conditions or
platforms. Differently, simulated-SAR images are obtained by
a simulation system based on electromagnetic theory and target
modeling, which is similar to the process of SAR imaging [31].
Therefore, we refer to the methods using homogeneous data in
both the source and target domains as homogeneous TAL. The
simulated-SAR images can be more easily obtained than SAR
images, but SAR images are more in line with real scenarios.
Therefore, how to transfer knowledge from these data to SAR
target recognition has become a hot topic.

A. From SAR to SAR

Transferring knowledge from SAR images to SAR images
can be the most direct method in homogeneous TAL for SAR
target recognition. There are two kinds of SAR images, scene
images and target images. The quantity of the SAR scene
images is always larger than the SAR target images. How-
ever, annotating scenes or target images is time-consuming and
source-consuming. How to transfer the imaging modal knowl-
edge (information of SAR images, regardless of contents) from
SAR scene images or target related knowledge from SAR target
images is a question worth of exploring, and many kinds of
methods are proposed to solve this [14], [15], [16], [30], [43],
[45], [46], [47], [48], [49], [51], [52], [53], [54], [55], [56], [571,
[58], [59], [61], [63], [64], [153].

1) Pretraining Method: Pretraining and fine-tuning is a com-
monly used learning paradigm in this field. Based on the ability
of the pretrained model to extract common features, the model
can be easily adapted to downstream tasks, such as SAR target
recognition [30], [43], [45], [46], [47], [48], [49], [51], [52],
[53], [54], [55], [153].
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The performance of directly utilizing the pretrained model
is often unsatisfactory. Therefore, many technologies are com-
bined to improve the performance of the SAR target recognition
model. Considering that there is no well-annotated SAR target
data can be used, Huang et al. [30] proposed to transfer knowl-
edge from unlabeled SAR scene data with large volumes. A con-
volutional network was pretrained on the image reconstruction
task to extract general features, and then fine-tuned on the SAR
target recognition task. Zhang et al. [153] pretrained a generative
adversarial network (GAN) on unlabeled SAR scene images as
the initial model for the SAR target recognition task. Inspired
by this, Zhang et al. [46] pretrained a combination of GAN and
reconstruction network on the unlabeled SAR images to improve
performance. Compared with pretraining on the unlabeled SAR
scene images, pretraining on the SAR target images can be more
direct for the recognition task. Zhang et al. [43] pretrained the
network on the SAR vehicle images and then fine-tuned it on
the SAR ship images, which transferred knowledge across tasks.
Zhang et al. [49] considered that the number of ships in the
SAR ship detection dataset is much larger than the SAR ship
recognition dataset. They pretrained the network on the SAR
ship detection dataset to extract the general features of ships
and then fine-tuned it on the ship recognition dataset to achieve
ship target recognition.

To improve the performance of pretraining methods, some
researchers adapted data augmentation to enrich the diversity of
data. Zhai et al. [47] employed geometric image transformation
to generate new SAR vehicle images to enlarge the volume of
the pretraining dataset. Liu et al. [53] adapted style transfer tech-
nology to extend MSTAR [42], then pretrained and fine-tuned
the network for ship recognition. Pei et al. [55] combined the
geometric transformation augmentation and contrastive learning
to enable the model to extract discriminative features and then
fine-tuned it for ship recognition.

Some well-designed modules are plugged into the network to
improve the performance. Shang et al. [45] added an information
recorder module and improved the generalization of the network
with a hinge loss function. Zhai et al. [48] designed a multilevel
feature fusion attention module to improve the discriminative
of features. Wang et al. [51] pretrained a Siamese network to
iteratively predict pseudolabel for unlabeled target images, and
fine-tuned the network based on them.

To utilize the SAR imaging modality characteristics, Liu
et al. [54] proposed a complex convolutional network with elec-
tromagnetic properties transfer. It calculated new convolutional
kernels based on modified ASC model, so that obtained better
discriminative features through pretraining.

Varieties of pretraining methods have been proven to be
effective in the homogeneous TAL for SAR target recognition,
but there are some questions worth considering:

1) The volume of the SAR dataset used for pretraining is
too small compared with the common dataset in computer
vision, for example, ImageNet [85].

2) These methods ignored the essential discrepancy between
probability distributions of the source domain and target
domain.

2) Distribution Alignment Method: Tt is assumed that the

training and test data come from the same distribution in
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traditional machine learning. However, the data distribution
discrepancy caused by imaging conditions of SAR platforms has
broken this assumption, resulting in poor generalization of the
model trained in the source domain. Therefore, aligning distribu-
tions is a kind of effective method to improve the generalization
of the network for SAR target recognition [56], [57], [58], [59].

Huang et al. [56] first and comprehensively explored the
difference between networks, source tasks, network layers, and
TAL methods for SAR target recognition. The multikernel max-
imum mean discrepancy (MK-MMD) was adopted to measure
the discrepancy between the marginal distributions of source
and target data, and transitive TAL was proposed to deliver
knowledge across multisource (optical image — SAR scene
image — SAR target image). The MK-MMD and whole loss
function can be formulated as

MMD(zs,27) = [Es [¢ (v5)] — Er[¢ (21)ll,  (3a)

L
L=_Lo(rrr,yre) +1 Y, aMMDy(zg,27)  (3b)
1=kt 1

where ¢ denotes one of the functions in the unit of reproducing
kernel Hilbert space (RKHS) H, E[-] denotes the mathematical
expectation, A denotes a tradeoff parameter, and «; denotes the
weights of MMD loss for layer [. Their experiments proved
that the images containing the targets of similar categories are
more suitable for transferring knowledge, the shallow layers are
easier to transfer, and the distribution alignment method is more
effective than pretraining methods. Considering that directly
performing distribution alignment will cause the domain special
knowledge to be lost. Zhang et al. [58] designed a shared subnet-
work and special subnetwork to deal with the domain common
and private properties, and then performed MK-MMD to align
the distributions. The unlabeled target domain data contain
important information too, and the most direct method to make
use of it is the pseudolabel strategy (training model based on the
unlabeled data with predicted label). Chen et al. [59] performed
weak image augmentation for pseudolabel predicting and strong
image augmentation for performance improvement. They also
aligned the distributions with MK-MMD, and decreased the
negative impact of the incorrect pseudolabel by top-k loss [154].
However, the discrepancy between different categories is not
explored in these method designs. Zhao et al. [S7] predicted the
pseudolabel and calculated class confusion loss [155] to align the
conditional distributions for each category, which is formulated
as

foo= ;2| @

i=1j#i |y Ci
k=1

where ¢ denotes the number of class, C';; denotes the weighted
class correlation between class ¢ and class j. In addition, Zhang
et al. [60] conducted a preliminary exploration of online do-
main adaptation. They achieved good performance by align-
ing the distribution of target data with maximum a posteriori
estimation, using the combination of deep features with SR
features.
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Although distribution alignment methods have achieved good
performance, there are still some details that lack exploration.

1) The metrics used to measure discrepancy between prob-
ability distributions often overlook the conditional distri-
bution and covariance. Incorporating marginal and con-
ditional probability distributions, as well as covariance,
could lead to a more accurate alignment.

2) The currentdistribution alignment methods fail to leverage
properties specific to SAR targets, such as electromagnetic
scattering characteristics. By utilizing these properties, the
alignment process and performance could be potentially
enhanced.

3) Shared Feature Space Method: The shared feature space
methods are mainly concentrated on building a feature space,
where the features come from different domains that cannot be
discriminated against or where the target characteristics have a
general representation regardless of domains. Many interesting
methods have emerged to achieve this [14], [15], [16], [61], [63],
[64].

The adversarial learning strategy is always used to build the
shared feature space. Zhao et al. [14] confused the features of
data from different platforms by adversarial learning to decrease
the domain gap. Considering that learning from the hard samples
is key to improving performance, Zhao et al. [16] proposed a dy-
namic hard sample selection method to increase the importance
of hard samples in the adversarial learning process. To utilize
the information from unlabeled target data, Zhao et al. [15]
combined the pseudolabel strategy and adversarial learning, and
they corrected the pseudolabel with a class confusion matrix.
The whole loss function can be formulated as

Ly = Es [log(F (x5))] + Er [log(1 — Ff (x7))] (5a)
L=Lc(xs,ys) +Lc(xr,yrp) + ALaayv (5b)

where F}, and F3 represent the domain discriminator and yrp
denotes the pseudolabel for target samples. In addition, Zhang
et al. [63] utilized adversarial learning to confuse the distribu-
tions of support set and query set in metalearning task, therefore
improved the network’s adaptability across different SAR target
recognition tasks.

Different from building a shared feature space with adversar-
ial learning, Gao et al. [64] proposed a method based on the
support tensor machine. This method mapped SAR images into
a shared feature space using a shared core tensor, thus confusing
the two domains and decreasing the domain gap. However,
considering that the properties of the target were not taken into
account when building the shared feature space, Sun et al. [61]
perceived that angular rotation is a common domain difference.
They proposed an attribute-guided transfer learning method,
which constructed a shared feature space where the original
features could be transformed into features of any other azimuth,
thereby decreasing the domain gap, which can be formulated as

Ly = Ty — 61 (x1)]| + T2 — 61 (Mga1) |5
Mgxy =21 + R (x1)

(6a)
(6b)
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where Z denotes the original image, J denotes the reconstruct
block, M, denotes the feature transformation, and -y denotes the
normalized angle difference.

The shared feature space methods have achieved good per-
formance, but there are still some directions that need to be
explored: 1) How to increase or maintain discrimination be-
tween different categories is not considered in these meth-
ods. 2) How to build a shared feature space according to the
properties of SAR images and targets needs to be considered
further.

B. From Simulated-SAR to SAR

Despite the fact that many effective methods have been pro-
posed for TAL from SAR to SAR, the insufficient data problem
is still significant in this field. To further improve the data-driven
methods for SAR target recognition, transferring knowledge
from the simulated SAR data is an alternative idea. With the
auto-CAD models and electromagnetic scattering mechanism,
a simulated SAR target image dataset with a large volume can
be obtained using software [65], [156], [157]. However, as the
simulated data are essentially produced from the ideal model,
there are differences in detail from electromagnetic scattering
in real radar systems. How to transfer knowledge from the
simulated data is also an issue worth of research [9], [12], [31],
[66], [67], [68], [701, [711, [721, [73], [741, [75], [ 761, [771, [78],
[79], [80], [81], [82], [83], [84].

1) Pretraining Method: The category of the target is exactly
known in the simulation process, and it is easy to obtain a large
amount of annotated simulated SAR target data. Pretraining
methods are the most direct to utilize these simulation data [31],
[66], [67], [68], [70], [71], [72].

Some methods directly pretrained the model on the simulated
data to obtain the optimal initialization weights [31], [67], [68],
[70]. Ma et al. [67] produced the simulated data by LSGANs
instead of the simulation software, and they specialized the
network for recognition tasks by fine-tuning it on the real SAR
data. Inkawhich et al. [68] also discussed the influence of data
augmentation, model construction, loss function choices, and
ensembling techniques in pretraining model training.

Considered that there is still a domain gap between simulated
data and real data due to the difference between simulation and
real radar environments. Some methods processed the simulated
data further [66], [71], [72]. They generalized intermediate data
with more similarity to the real SAR data from simulated SAR
data using CycleGAN or conditional-GAN, thus decreasing the
discrepancy between simulated data and real data. They all
followed the learning paradigms of pretraining on the simulated
SAR data and fine-tuning on the real SAR data.

Whether one chooses to directly pretrain or to further process
the simulated SAR data, there are some questions that need to
be further considered: 1) The discrepancy between probability
distributions needs to be taken into account. 2) The electromag-
netic scattering knowledge, which is crucial for simulated SAR
data, requires discussion.

2) Distribution Alignment Method: Due to the fact that
simulation data are obtained in an ideal environment, there
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Fig. 7. Paradigm of metric learning across domains.

is an unavoidable distribution discrepancy between simulated
and real SAR data. Some distribution alignment methods are
proposed to solve this problem [9], [73], [74], [75], [76], [77],
[78], [79].

In these methods, MMD is still the most popular metric to
measure the discrepancy between data distributions [73], [76],
[77]. Especially, in addition to decreasing the domain gap by
minimizing the MMD, Sun et al. [73] ensembled a multiscale
subclassifier and obtained the final output using a voting strategy.
Furthermore, Sun et al. [77] performed pseudolabel generation
and denoising, and fine-tuning of the classified network. Han
etal. [9] presented evidential learning to estimate the confidence
degree of the model, dynamic weighting to avoid the impact
of inferior knowledge, and implemented knowledge distillation
from simulation to real SAR target recognition by minimizing
KLD.

To further align the conditional distributions for each category,
Lv et al. [78] proposed to minimize the LMMD [122] combined
image reconstruction task. The trained network could extract
discriminative features from both simulated and real SAR im-
ages, thus improving the performance further. The LMMD and
total loss can be formulated as

LMMD (x5, 27) = Ec || Ese [¢ (zs)] — Ere [¢ (z7)]| (7a)

L=CLc(zs,ys) + Lc (xrr,yrr) + LMMD(zg, 27).
(7b)

The intra- and interclass metric learning is a method to
implicitly align the conditional probability distributions, which
minimizes the distance between samples in the same class and
maximizes the distance between samples in different classes
regardless of the domains [74], [75], which can be seen in Fig. 7.
Tai et al. utilized the d-SNE loss [158] to achieve cross-domain
intra- and interclass metric learning. At the same time, Tai
et al. [74], [75] considered that the samples of partial azimuths
cannot comprehensively provide discriminative information of
targets. They proposed to extract angle invariant properties
by learning feature translation between samples with different
azimuths [74] and conducting synthetic samples with different
azimuths by condition GAN [75]. The d-SNE and whole loss
can be formulated as

> exp (—d (:vs, x%))

1 nrt yk#yl

57 _ 1 1 S T - 8

e = | S Gy |
vE=vh

L=Lgsne+rc(xs,ys)+ BLc(xrL,yrL)-
(8b)
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Considering that the electromagnetic scattering features of
SAR images are beneficial for SAR target recognition. Zhang
et al. [79] proposed to obtain scattering points with the ASC
model and SAR-SIFT algorithm, and extract scattering topolog-
ical electromagnetic scattering features with two graph neural
networks. More important, CORAL [159] was utilized to mea-
sure the distribution discrepancy with the second-order statistics,
which is formulated as

1
Lcorar(zs,z7) = 2 ICs — Crll% (9a)
S

T _
ng — 1 (z5s) . Cr = np — 1

Cg = (m%xT) . (9b)

The distribution alignment methods minimize the distribution
discrepancy metrics to decrease the domain gap, with metrics
playing a crucial role. 1) The predefined metrics may not
be suitable for the scene of TAL from simulated SAR data
to real SAR data. 2) The special properties of SAR images
or radar targets, such as scattering features, are not explored
enough.

3) Shared Feature Space Method: The core of shared feature
space methods for TAL from simulated SAR data to real SAR
data lies in creating a feature space, where simulation and real
SAR images become indistinguishable based on their features.
In this space, targets with similar attributes are represented by
similar feature vectors [12], [80], [81], [82], [83], [84].

The idea of adversarial learning remains a classic one to
build shared feature space for this scene [12], [80], [81], [82],
[83]. Zhang et al. [80] proposed to decrease the gap between
simulation images of different bands using adversarial learning
to achieve SAR target recognition across frequency bands. Wang
et al. [81] utilized the simulated SAR data to make up for
the insufficient data problem in metalearning for SAR target
recognition, and they confused simulated data and real data uti-
lizing adversarial learning. Du et al. [83] successfully transferred
knowledge from simulated to real SAR data using adversarial
learning, while also incorporating image reconstruction to pre-
serve crucial information and enhance performance.

To further decrease the domain gap between simulated SAR
data and real SAR data, some methods take a step by dis-
tribution alignment or GAN [12], [82], [84]. Lv et al. [82]
combined minimizing the MK-MMD and adversarial learning
losses to transfer knowledge from simulated SAR vehicle image
to real SAR vehicle image. Shi et al. [84] proposed a pseu-
dolabel refinement strategy based on the ASC model. They also
employed contrastive learning (learning the representation by
maximizing the similarity between similar samples and mini-
mizing the similarity between dissimilar samples) to compact
intraclass prototypes and separate interclass prototypes, further
narrowing the domain gap. Chen et al. [12] used CycleGAN to
generate intermediate domain data bridging simulated and real
data. Subsequently, they performed adversarial learning between
the intermediate and real SAR domains, significantly reducing
the complexity of the learning process and greatly enhancing
performance.

The shared feature space methods aim to confuse the domains
and thereby reduce the domain discrepancy. However, there are
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some questions needed to consider further: 1) How can we
effectively perform adversarial learning while simultaneously
maintaining discriminative information. 2) The common elec-
tromagnetic scattering properties or target characteristics shared
between simulation and real data have not received sufficient
attention.

V. HETEROGENEOUS TRANSFER ADAPTATION LEARNING

Currently, there are two kinds of heterogeneous data that
can provide transferable knowledge for SAR target recognition:
optical images and AIS data. Optical imaging relies on receiving
reflected light by optical sensors, which is passive imaging com-
pared to SAR. Obviously, the optical images typically contain
clearer textures and less noise, but are susceptible to lighting
conditions [32]. AIS, designed specifically for vessels, is a
real-time network that combines transmitters and receivers to
transport dynamic, static, and voyage-related text information,
such as speed, GPS location, widths, heights, and categories of
ships [160], [161], [162], [163]. Substantially, these data are
highly heterogeneous compared to SAR data, due to the signifi-
cantly different mechanisms for obtaining data. Optical images
and AIS can provide abundant target information, and how to
transfer the knowledge from them to SAR target recognition
tasks is becoming a key research question.

A. From Optical to SAR

Optical images can be divided into two categories: natural
optical images and remote sensing optical images. Typically,
natural optical images possess a considerable data volume,
thereby offering ample supervised information. The remote
sensing optical images always contain the targets of the same
category in SAR images, which has a stronger correlation with
target recognition. Due to the fact that optical images are more
in line with the human visual system, it is easier to obtain
annotations [32] compared with SAR images, which contain
relatively blurry texture and speckle noise. Therefore, how to
transfer the rich knowledge provided by optical images to SAR
target recognition task to avoid annotating the SAR images, has
attracted the interest of many researchers [32], [34], [86], [87],
[88], [891], [90], [93], [94], [95], [97], [100], [101], [104], [106],
[108], [110], [112], [113].

1) Pretraining Method: Compared to SAR images, optical
images have a larger data volume and more diversity [37].
Pretraining on these data and then specializing the model for
other downstream tasks in different domains, leveraging its
ability to extract generalized features, is an efficient and effective
approach [34], [86], [87], [88], [89], [90], [93], [94], [95], [97],
[100], [101], [104], [106], [108].

Among these methods, pretrained on the ImageNet dataset or
other natural optical image dataset, is the most common [34],
[86], [93], [97]. However, Ying et al. [89] conducted pretraining
experiments on both the MSTAR and ImageNet datasets. Their
results demonstrated that pretraining the model on SAR images
containing the same target led to better performance. Neverthe-
less, the performance obtained through pretraining on optical
images was also noteworthy. To further improve the recognition
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performance, many pretraining methods combined with other
technology are proposed [87], [88], [94], [100]. Lu et al. [87]
utilized several data augmentation methods in the fine-tuning
stage to improve the volume of the SAR images. Considering
the pretrained model is easily over-fitting due to the scarce
SAR image data in fine-tuning, Zhong et al. [88] proposed the
method combined with the model compression technology to
conduct better fine-tuning and accelerate the model’s inference
speed. The different resolutions of images bring difficulties to
the ship recognition in SAR images, Relekar et al. [94] proposed
a module integrated into the pretrained model to extract scale-
variant features to improve the robustness of features. Wang
et al. [100] believed that merely duplicating the single channel
of SAR images three times to utilize a pretrained model that
had been trained on optical images with three channels was ob-
viously not reasonable. Instead, the subaperture decomposition
algorithm [164] was employed to generate pseudocolor SAR
images, allowing for better utilization of the general knowledge
from optical images encoded in the pretrained model.

Although these methods have gained good performance on
SAR target recognition, the targets in natural optical and SAR
images exhibit a significant difference, which may harm the
performance of the pretrained model. Several methods were
proposed to perform pretraining on the optical land cover im-
ages [95] and the remote sensing optical ship images [90],
[101]. These methods demonstrated that pretraining the model
on remote sensing optical images leads to better performance.
Moreover, the pretrained model has learned to effectively extract
target features from remote sensing optical images, thereby
enhancing SAR target recognition capabilities.

Different from the general pretrained method, Tai et al. [104]
calculated network-layer-level and feature-channel-level trans-
fer weights by attention mechanism to utilize the pretrained
model more reasonably, thus achieving better performance on
few-shot SAR target recognition. After that, Tai et al. [106]
improved this work [104] by adding a push-attention mecha-
nism and adjusting the learning rate according to the quality of
SAR samples to conduct a better optimization strategy in the
fine-tuning stage.

The difference between the imaging mechanisms of optical
and SAR sensors indeed posed a significant challenge that con-
strains the improvement of models. Gao et al. [108] addressed
this issue by introducing the SAR ship recognition method,
leveraging a cross-modality GAN framework. They integrated
the GAN with the attention mechanism CBAM [165] to generate
robust pseudo-SAR images from optical remote sensing ship
images. This strategy expanded the SAR image dataset, thereby
enhancing the training process of the model.

Although pretraining is an effective technology used for TAL
in SAR target recognition, there are still some directions worth
studying. 1) The discrepancy between pretraining data and target
SAR data, including data probability and modal discrepancy, is
not fully considered. 2) The electromagnetic scattering features
of SAR images are beneficial for target recognition, but they are
often ignored in the pretraining methods.

2) Distribution Alignment Method: Due to the difference
between the optical images and SAR images, there is a
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significant probability distribution discrepancy between them.
The distribution alignment is a kind of effective method to solve
this, and it is also commonly used in the field of TAL from optical
to SAR [32], [110], [112].

Considering the long-tailed distributions of SAR image data,
Chowdhury et al. [110] proposed to improve the performance
of the method combined with knowledge distillation and class
balancing. The target recognition knowledge learned from the
electronic optical images was transferred to SAR target recogni-
tion by minimizing the KLD. However, the commonly used dis-
crepancy measures, KLD and JSD, suffered the gradients vanish
problem. They are not suitable for deep learning methods, which
are based on first-order gradient optimization [32]. Mohammad
et al. [32] used the Wasserstein distance (WD) to measure the
distribution discrepancy between optical remote sensing images
and SAR images. To reduce the computation burden, they ap-
proximated the WD with sliced WD (SWD) [166], which is the
sum of multiple WD of 1-D distributions. It can be formulated
by

SWD (Ps,Pr) = W (Rps (57), Rpy (57))dy (10)

Sd*l
where W denotes the WD, S? ! denotes the d-dimensional
sphere, R p, (+; ) denotes the 1-D slice of the distribution along
the direction ~. Therefore, as the feature distributions of remote
sensing optical images and SAR images get closer, the classifier
trained on the label remote sensing optical images and partially
labeled SAR images can get better generalization.

The subdomain (subclass) distribution alignment is the same
important, and the irrelevant information between the two do-
mains will cause negative transfer learning. Zhao et al. [112]
proposed a deep subdomain adaptation SAR ship recognition
method. It measured the distribution discrepancy between op-
tical remote sensing ship images and SAR ship images using
LMMD, and integrated the CBAM to heuristically focus the
network on the “what” and “where” for knowledge transfer
learning, which is formulated as

L="Lc(xs,ys) + LMMD(zg, zT). (11)
Distribution-alignment methods can obtain high performance,
but there are still some questions worth studying:

1) The predefined distribution metrics may not be suitable
for TAL from optical image to SAR image.

2) Not all the features can be used to transfer, and how to
decouple transferable features is a question worth consid-
ering.

3) The discrepancy between the two modalities, optical im-
age and SAR image, is not considered in these methods.

3) Shared Feature Space Method: The difference between

shared-feature-space methods for homogeneous data and het-
erogeneous data lies in the fact that the latter aims to create a
feature space, where features from different modalities cannot
be distinguished.

Optical and SAR are two different modalities. If we directly

transfer knowledge from optical images to SAR images can-
not achieve satisfactory target recognition performance. Song
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Fig. 8. Framework of cross-modality transfer learning.

et al. [113] proposed a two-stage cross-modality transfer learn-
ing ship recognition method. It first generated intermediate
modality data from optical ship images using the GAN, then
built a shared feature space to blend the intermediate domain
and target domain through the adversarial learning method and
aligned the distribution with LMMD, which can be seen in Fig. 8.

This method first combined shared-feature-space learning
with GAN-based generation and distribution alignment. It is a
novel integrated framework, which holds enlightening signifi-
cance for subsequent SAR target recognition work.

B. From AIS to SAR

AIS contains abundant information specific to ships. Com-
pared to optical images, AIS data are easier to obtain and have a
larger volume. The length and width of the ship are common and
transferable information in the AIS data[33],[116],[117],[118],
[119]. How to design methods to utilize the naive geometric
information from AIS to the SAR target recognition is a new
topic recently.

1) Pretraining Method: Due to the real-time of AIS and its
mandatory installation on ships of a certain tonnage, there is a
large amount of available AIS data. Therefore, the pretraining
technology is also used in TAL from AIS to SAR.

Yan et al. [116] pretrained the multiple ensemble classifier on
the NGFs, calculated by the length and width in AIS data [33].
They extracted the lengths and widths of ships in SAR images
with the minimum bounding box algorithm to construct SAR
NGFs. Then, they utilized the pretrained classifier directly on
SAR NGFs to obtain the categories of ships in SAR images.

There are still discrepancies between the NGFs from AIS
data and SAR images, and directly using the pretrained model
for SAR ship recognition is not reasonable. Lang et al. [33]
proposed to perform model parameter regularization to further
optimize the model, which is formulated as

1 nroo .
L= 3 |wr — Twgl| +A; (yg (walT + bT) - 1) (12)

where wp, by denote the weights and bias of the target SVM,
wg denote the weights and bias of the source SVM. They first
trained a source SVM on the AIS NGFs. Then they froze it and
trained the target SVM on SAR NGFs with L2-Regularization
between the parameters of target SVM and source SVM. The
target SVM can perform better on SAR ship recognition than
directly using the pretrained model.

Although pretraining methods can achieve good performance,
there are still some directions to be considered, such as the
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accuracy of NGFs, which is crucial but challenging to achieve
in SAR images due to their blurry texture.

2) Distribution Alignment Method: Since NGFs can be di-
rectly obtained from AIS and through image processing al-
gorithms from SAR images, there also exists a distribution
discrepancy between the two types of NGFs. Some researchers
have conducted early attempts to apply distribution alignment
technology to achieve TAL from AIS data to SAR images.

Xu et al. [117] first proposed a framework, ARTL, which can
be formulated as

L=Lc (xs,ys) +oR (}—) + ARy (x57xT)
+ YR (x5, 27) + tRs (z5)

where o, A, v, denote the weights of regularization terms.
By minimizing R4(xg,xr) between marginal distributions
and conditional distributions, manifold consistency alignment
Rm(xg,z7) and source discriminative information preser-
vation Rg(xg), ARTL performed well in the semisuper-
vised learning tasks for SAR ship recognition. After that,
Xuetal. [118] proposed a method that combined metric learning,
distribution alignment, and manifold regularization. It extended
the method into semisupervised learning and unsupervised
learning scenes for TAL from AIS to SAR images. The former
methods achieved TAL with certain restrictions on using homo-
geneous features, which may hinder further improvement [119].
Yang et al. [119] first proposed semisupervised heterogeneous
domain adaptation using a dynamic joint correlation alignment
network. The whole loss function of it can be formulated as

L=Lc(rs,ys)+ Lc (v, yr)
+a((1 —p) Leorar (zs, x7)

(13)

+ pLleorar ((zs,Ys) s (1, y7))) - (14)

It transformed the AIS NGFs and SAR image into the same
feature space to eliminate heterogeneity. In addition, it not only
performed marginal and conditional distribution alignment, but
also conducted pseudolabel refinement.

Distribution-alignment methods have also obtained satisfac-
tory performance for TAL from AIS data to SAR images, but
some directions still need to be explored: 1) The other features of
SAR images besides NGFs were not utilized. 2) These methods
did not consider the modality discrepancy between AIS and
images.

C. From AIS and Optical to SAR

All previous references addressed the TAL from a single
heterogeneous source domain, such as optical images or AIS
data. Optical images and AIS data are totally different, providing
texture visual features and NGFs, respectively. They are com-
plementary to some extent. Therefore, developing a multisource
heterogeneous transfer learning framework is a very valuable
issue to be solved.

Lang et al. [102] proposed a multisource heterogeneous trans-
fer learning method for SAR ship recognition. It first supple-
mented the feature vector with the same dimension zero vector of
other domains. Then the multisource domains and target domain
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TABLE V
DETAILED INFORMATION OF THE COMMON DATASETS

Dataset Resolution(m) Chips Categories
SAR Dataset
MSTAR [42] 0.3x0.3 5172(SOC), 1151(EOC1), BMP-2, BRDM-2, BTR-60, BTR-70, T-62, T-72, 2S1,

1212(EOC2) 7ZSU-234, ZIL-131, D7

OpenSARShip [44] 3 x 22,20 x 22 11346 Cargo, Tanker, Passenger, Law Enforcement, Anti-pollution
equipment, Port Tender, Tug, Search and Rescue vessel, Pilot
Vessel, High speed craft, Pleasure Craft, Diving ops, Dredging
or underwater ops, Towing, Fishing, Wing in ground, other
type

FUSAR [62] 1.124 x (1.7 ~ 1.754) 5243 Cargo, Dive vessel, Dredger, Fishing, High speed craft, Law
enforce, Passenger, Port tender, Reserved, Tanker, Wing in
ground, SAR, Tug, Unspecified, Other

HR-SAR [103] 2x1.5 450 Cargo, Bulk Carrier, Container, Tanker

MR-SAR [128] 15 x 15 712 Bulk, Container, Oil Tanker

Simulation SAR Dataset

SAMPLE [69] 0.3 x 0.3 2690 2S1, BMP2, BTR70, M1, M2, M35, M548, M60, T72,
ZSU234

Optical Dataset

FGSCR [109] - 9320 Aircraft Carrier, Cruiser, Destroyer, Assault Ship, Lading
Ship, Transport Dock, Support Ship, Combat Ship, Frigate,
Civil Vessel

HRSC2016 [114] - 1061 Aircraft Carrier, Warcraft, Merchant Ship

AIS Dataset

AIS-3 [33] - 1500 Bulk Carriers, Containers, Tankers

feature vectors were transformed into a common feature space
to eliminate heterogeneity and excavate complementary across
multisource domains, thus achieving knowledge transferring
from multisource to SAR target recognition.

TAL from heterogeneous multisource domains to SAR image
domain for target recognition is a completely new research field.
Many directions need to be further considered:

1) How to excavate the complementary and eliminate redun-

dancy of multisource data.

2) How to overcome unbalanced amounts of multisource

data.

3) How to eliminate the heterogeneity between multisource

domains and between source domains and target domain.

VI. AVAILABLE DATA

As analyzed in the previous sections, homogeneous and het-
erogeneous TALs aim to address distinct issues in specialized
scenarios. For homogeneous TAL, the SAR datasets or the
simulated SAR datasets are taken as the source domain. For het-
erogeneous transfer learning, the source domain may encompass
the AIS dataset, optical image dataset, or multisource of AIS
and optical image datasets. With the development of artificial
intelligence in the remote sensing field, there are already many
high-quality SAR image and optical image datasets available for
target recognition. It is worth mentioning that there are relatively
few high-quality available datasets for simulated SAR data and
AIS. Many of the datasets used in previously reviewed literature
are self-built datasets. In this section, we focus on the publicly
available datasets commonly used in the reviewed literature, and
introduce their configurations and usage scenarios. The detailed
information on these common datasets can be seen in Table V.
The unfilled cells in the second column (Resolution) of Table V
indicate that the image resolution in this dataset is within a large
range.

A. SAR Image Datasets

In this section, we focus on introducing the commonly used
dataset, MSTAR [42], OpenSARShip [44], FUSAR [62], HR-
SAR [103], MR-SAR [128], which can be used as source domain
or target domain.

1) Vehicle Datasets: MSTAR [42] is the most commonly
used vehicle target recognition dataset, which is collected by
the Sandia National Laboratory and the U.S. Defense Advanced
Research Projects Agency and the U.S. Air Force Research
Laboratory. The images in MSTAR are obtained by a 10-GHz
X-Band SAR satellite under different depression angles, with
aspect views covering 0-360. The images have a resolution of
0.3 m x 0.3 m and a size of nearly 128 pixels x 128 pixels. It
provides 190-300 images for the target in each depression angle.
MSTAR can be extended into subdatasets under the standard op-
erating condition (SOC) and various extent operating conditions
(EOCs). SOC denotes the training images and test images are
obtained at different depression angles with slight differences,
such as 17° for training images and 15° for test images. EOCs
denote that the training and test images are obtained at different
depression angles with large differences, such as 17° for training
images and 30° and 45° for test images, or at different noise
levels, 1%, 5%, 10%, and 15% for test images.

2) Ship Datasets: The number of ship datasets is relatively
larger than that of the vehicle dataset. The reviewed literature
used many publicly available ship datasets [44], [62], [103],
[128] and self-built ship datasets. OpenSARShip [44] is col-
lected by Shanghai Jiao Tong University. The images in it are
all obtained from a C-band Sentinel-1 satellite with polarization
of VH and VV. It provides 11 346 ship chips from 41 SAR sea
scene images, which contain 17 types of ships. FUSAR [62] is
collected by Fudan University. The images in it are all obtained
from China’s first civil C-band Gaofen-3 satellite with polariza-
tions of HH, HV, VH, and VV. It provides 5243 ship chips from
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126 SAR images across a variety of scenarios, which include 15
primary ship categories and 98 subcategories. HR-SAR [103]
is collected by the National University of Defense Technology,
and the images in it are all obtained from TerraSAR-X with
polarizations of HH, VH, and VV. It provides 450 ship chips from
six scenes, encompassing three types of ships. MR-SAR [128]
is collected by the Beijing University of Chemical Technology.
The images in it are all obtained from eight scenes captured
by Radarsat-2 with VV polarization, containing four types of
ships and providing 712 chips for all types. In addition, some
researchers collected the data from the private SAR images or
extracted data from the ship detection datasets, HRSID [115],
SSDD [167], SAR Ship dataset [99], LS-SSDD [168].

3) Other SAR Datasets: In addition to the target image de-
scribed earlier, some public and self-built SAR scene classifica-
tion datasets [169] are also used as the source domain for SAR
characteristic knowledge transferring.

B. Simulated SAR Image Datasets

As the development of the computer simulated technology,
some simulation tools are opened source, CASPatch [156],
RaySAR [157], SARSIM [65]. Utilizing the electromagnetic
imaging mechanism of the radar system along with the models
of the target and its surrounding terrain, simulated SAR images
could be generated through these tools. Therefore, the simulated
SAR dataset is easier to obtain compared to the real SAR
dataset. Nevertheless, there are relatively few publicly available
datasets [69]. Many of the datasets used in these reviewed
papers are self-built [170]. SAMPLE [69] is a commonly used
simulated SAR vehicle dataset, which contains 1345 pairs of
simulated and real SAR images. The real SAR vehicle images
within it originate from the MSTAR. The simulation SAR
vehicle images are derived by carefully crafting CAD mod-
els under configurations and sensor setting parameters aligned
with the MSTAR. Notably, the vehicle categories represented
in these simulation SAR images are identical to those in the
MSTAR.

C. Optical Image Datasets

Due to the different imaging modes, optical images and SAR
images are two completely heterogeneous data. Heterogeneous
TAL methods leverage natural optical image datasets [171]
to extract general discriminative features and employ remote
sensing optical ship datasets [109], [172] to learn specific
ship characteristics. The remote sensing optical ship images
in these datasets are primarily sourced from Google Earth or
various optical object detection datasets, including DOTA [173],
HRSC2016 [114], and NWPUVHR-10 [174]. In addition, some
datasets come from the competition data provided by IEEE [105]
and Kaggle [91], [98].

D. AIS Datasets

AIS is first designed for collision prevention, which ex-
changes static, dynamic, and voyage information between ships
or between ship and the station. Given that AIS inherently
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includes information on the ship’s category, downloading AIS
data from public websites' is generally more convenient than
manually annotating SAR images. Consequently, the majority
of AIS data utilized in the reviewed literature originates from
this.

Based on the available datasets mentioned, it is evident that
there is a vast array of data that can be harnessed to verify
the effectiveness of TAL methods for SAR target recognition.
While some methods rely on self-built datasets, there are also
standardized datasets that serve as valuable validation tools.
For tank vehicle targets, the MSTAR and SAMPLE datasets
are commonly utilized, while OpenSARShip, FUSAR, SAR
Ship [103], and AIS-3 datasets focus on ship targets. Commonly
employed configurations include: Validating the Homogeneous
TAL method, such as MSTAR(17°) — MSTAR(15°), Open-
SARShip < FUSAR, or SAMPLE — MSTAR. Testing the
Heterogeneous TAL method, for instance, FGSCR — Open-
SARShip or FUSAR, AIS-3— OpenSARShip, FUSAR, or SAR
Ship [103].

VII. EXPERIMENTS

In previous sections, we conducted a thorough analysis of
diverse TAL algorithms tailored specifically for SAR target
recognition tasks, along with the datasets utilized to validate
the efficacy of these algorithms. In this section, we delve into
the performance analysis of these TAL algorithms, and offer
an intuitive evaluation and comparison of them with exper-
iments. Specifically, we benchmarked them against general
visual TAL methods designed for general target recognition,
including DAN [175], DANN [176], DeepCoral [159], and
DSAN [122], which are commonly employed in comparative
experiments in the reviewed papers. The experiment was struc-
tured into two distinct groups to verify the algorithms for SAR
land vehicle targets and SAR ocean ship targets, as these are
currently the most common targets in SAR target recognition
research.

A. Performance Evaluation Indexes

We evaluate the performance of SAR target recognition al-
gorithms through average accuracy. Accuracy represents the
percentage of correctly predicted samples among all samples,
while average accuracy represents the average accuracy of all
categories. Average accuracy can be formulated as

. TP,
Precision; = TP 1 FP, (15a)
1 C
Average Accuracy = — E Precision; (15b)
C -

where the Precision; represents the precision of class i, ¢ rep-
resents the number of classes, T'P;, F'P; represent the number
of the samples correctly predicted as class ¢ and the number
of the samples incorrectly predicted as class ¢, and T'P; + F'P;
represents the number of all samples as class i.

"Marine Traffic website: http://www.marinetraffic.com/


http://www.marinetraffic.com/

13592

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

TABLE VI

COMPARISON OF TAL METHODS FOR SAR VEHICLE TARGETS RECOGNITION

References Algorithms Backbone datasets Accuracy
2017 Huang et al. [30] pretraining Self-built SAR Scene=MSTAR SOC 99.05%
2018 Shang et al. [45] pretraining Self-built Augmented MSTAR=- MSTAR SOC 99.71%
2023 Pei et al. [55] Pretraining ResNet50 Augmented MSTAR=> MSTAR SOC 99.88%
2022 Wang et al. [100] Pretraining A-ConvNet ImageNet = MSTAR SOC 99.13%
2021 Huang et al. [95] Pretraining Resnet18 ImageNet = RESISC = MSTAR SOC  99.46%
2022 Wang et al. [100] Pretraining ResNeXt50 ImageNet = MSTAR SOC 99.88%
2022 Chen et al. [59] Distribution Alignment  Resnet18 MSTAR SOC (20-shot) 99.96%
2021 Inkawhich et al. [68]  Pretraining ResNet18 Augmented SAMPLE = MSTAR 84.63%
2023 Kim et al. [72] Pretraining VGGI16 SAMPLE = GAN = MSTAR 95.12%
2016 Sun et al. [159] Distribution Alignment  Resnet50 SAMPLE =- MSTAR 77.74%
2021 Zhu et al. [122] Distribution Alignment  Resnet50 SAMPLE = MSTAR 87.95%
2023 Sun et al. [77] Distribution Alignment  A-ConvNets SAMPLE = MSTAR 94.94%
2023 Zhang et al. [79] Distribution Alignment  proposed SAMPLE = MSTAR 98.18%
2024 Han et al. [9] Distribution Alignment  Resnet18 SAMPLE = MSTAR 96.08%
2015 Long et al. [175] Shared Feature Space Resnet50 SAMPLE = MSTAR 83.75%
2015 Ajakan et al. [176] Shared Feature Space Resnet50 SAMPLE = MSTAR 83.52%
2022 Chen et al. [12] Shared Feature Space Resnet18 SAMPLE = MSTAR 97.81%
2024 Shi et al. [84] Shared Feature Space Resnet50 SAMPLE = MSTAR 98.46%

B. Comparison of TAL Methods for SAR Vehicle Targets
Recognition

The experimental results of TAL method for SAR land vehicle
targets are presented in Table VI. In this table, MSTAR SOC
denotes the data under SOCs of the MSTAR dataset, while
MSTAR represents the MSTAR data corresponding to the SAM-
PLE simulation dataset. Column 3 indicates backbone of the
models used in these algorithms, with “self-built” indicating the
backbone is specially designed. Column 5 displays the average
accuracy of the algorithms.

From the upper part of Table VI, a comparative analysis of
the experimental results under SOCs using MSTAR SOC data
reveals that numerous pretraining techniques enhance model
performance. This improvement is achieved either by acquiring
pertinent knowledge from related domains or from augmented
existing data. Notably, Huang et al. [30] enhanced the SAR target
recognition models’ performance by 0.75% compared with no
pretraining (98.30%) by leveraging relevant knowledge derived
from scene SAR images. Shang et al. [45] and Pei et al. [55]
further optimized the model’s performance through the utiliza-
tion of augmented MSTAR data. Moreover, researchers have
explored extracting relevant knowledge from general optical
image datasets, which has significantly improved the model’s
recognition capabilities [95], [100]. It is worth noting that the
transitive TAL of knowledge from general optical natural images
to SAR scene images and then to SAR target images improved
performance by 1.44% compared to directly transferring knowl-
edge from general optical natural images to SAR target images
(98.02%) [95]. Remarkably, Chen et al. [59] achieved near-
perfect performance of 100% using methods tailored specifically
for SAR vehicle targets, even under limited annotated sample
conditions.

From the remaining part of Table VI, it becomes evident that
numerous researchers aim to harness knowledge from simulated
data to enhance the ability of their models in distinguishing
real targets. Kim et al. [72] employed GANs to generate in-
termediate domain data from SAMPLE simulation data for
pretraining, resulting in a remarkable 10.49% improvement over
directly utilizing augmented SAMPLE simulation data [68].

Furthermore, the tailored TAL algorithms [77], [79] and [9]
developed for SAR vehicle targets achieved superior perfor-
mance, outperforming the general DSAN [122] by 6.99%,
10.23%, and 8.13%, respectively. Similarly, the shared feature
space TAL algorithms [12] and [84] designed specifically for
SAR targets demonstrated a significant boost in performance,
surpassing the general adversarial TAL algorithm (DAN) by
14.06% and 14.71%, respectively. This underscores the ef-
fectiveness of these tailored algorithms in SAR vehicle target
recognition tasks. In addition, algorithms [79] and [84], which
utilized the electromagnetic scattering knowledge of SAR vehi-
cles in their algorithm, achieved best performance in distribu-
tion alignment algorithms and shared feature space algorithms.
It indicates that the models achieve better generalization by
introducing electromagnetic scattering and traditional visual

features.

After conducting numerous comparative experiments on SAR
vehicle target recognition tasks, it has become evident that
TAL algorithms specifically designed for SAR vehicle targets
outperform general TAL methods. Furthermore, the generaliza-
tion capability of the model can be significantly enhanced by
incorporating electromagnetic scattering features or traditional
visual features. However, it is worth noting that models trained
using simulation data, like SAMPLE, exhibit lower general-
ization performance compared to those trained with real SAR
datasets, such as MSTAR and SAR Scene datasets. This finding
underscores the fact that the domain disparity between real SAR
images is smaller than the disparity between simulated and
real SAR images. Nevertheless, the accessibility of real data
remains unparalleled compared to simulation data, making both
scenarios worth of investigation.

C. Comparison of TAL Methods for SAR Ship Targets
Recognition

We validated the TAL algorithm for SAR ship recognition
from optical images to SAR images and from AIS to SAR
images using optical ship data, AIS data, and SAR ship data. The
validation results of all algorithms can be seen from Table VII.
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TABLE VII
COMPARISON OF TAL METHODS FOR SAR SHIP TARGETS RECOGNITION

References Algorithms Backbone  datasets Accuracy
2022 Lang et al. [101] Pretraining Self-built ~ Optical Ship = SAR Ship 87.67%
2016 Sun et al. [159] Distribution Alignment  Resnet50 Optical Ship = SAR Ship 74.67%
2021 Zhu et al. [122] Distribution Alignment  Resnet50 Optical Ship = SAR Ship 84.00%
2022 Zhao et al. [112] Distribution Alignment  Resnet50 Optical Ship = SAR Ship 88.89%
2015 Ajakan et al. [176]  Shared Feature Space Resnet50 Optical Ship = SAR Ship 76.67%
2015 Long et al. [175] Shared Feature Space Resnet50 Optical Ship = SAR Ship 72.00%
2018 Lang et al. [33] Pretraining SVM AIS = SAR Ship 91.92%
2019 Xu et al. [117] Distribution Alignment ~SVM AIS = SAR Ship 78.13%
2021 Xu et al. [118] Distribution Alignment  1-NN AIS = SAR Ship 75.33%
2022 Yang et al. [119] Distribution Alignment  Self-built ~ AIS = SAR Ship 83.18%
2022 Lang et al. [102] Shared Feature Space SVM AIS+Optical Ship = SAR Ship  85.60%

From the upper part of Table VII, we can observe that the
algorithm [112], specifically designed for SAR ship targets,
outperforms the pretraining-based algorithm [101] by 1.22%.
Furthermore, the algorithm [112] surpasses the recognition ca-
pabilities of the general TAL algorithm DSAN [122], which
relies on distribution alignment, by a margin of 4.89%. In ad-
dition, it significantly outperforms the recognition performance
of another general TAL algorithm, DAN [176], which is based
on a shared feature space, by a significant 12.22%.

The lower part of the table reveals that certain methods
designed specifically for transferring pertinent knowledge from
AIS data to SAR images are highly effective for SAR ship target
recognition. Notably, algorithm [119] achieved a performance of
83.18% solely by relying on the NGFs of ships provided by AIS.
Remarkably, algorithm [102] enhances recognition performance
by 2.42% by combining these NGFs from AIS with visual
features derived from optical ship images.

After conducting comprehensive comparative experiments
on SAR ship target recognition tasks, it becomes evident that
the TAL algorithm tailored specifically for SAR ship targets
outperforms general TAL methods. It is crucial to emphasize
that the knowledge pertaining to ship targets, derived from both
optical images and AIS data, can significantly boost the model’s
generalization capabilities. Furthermore, when these two data
types are combined, they jointly provide pertinent knowledge,
thereby further enhancing the model’s generalization. This un-
derscores the potential of multisource data to offer complemen-
tary information, ultimately elevating the performance of the
model.

VIII. DISCUSSION AND RECOMMENDATIONS

Existing TAL methods have succeeded in promising perfor-
mance in SAR target recognition. There is still space for perfor-
mance improvement, due to the gap between the performance
of these methods and the performance upper bound. In addition,
in most reviewed literature, it is supposed that there is unlabeled
data (unsupervised) or partial data with annotations (semisu-
pervised) in the target domain. However, some real scenarios
in SAR target recognition do not match these settings. In this
section, we provide some possible future directions for TAL in
SAR target recognition.

A. Challenge for Current Methods

TAL methods, whether homogeneous or heterogeneous, can
be categorized into three main methods: pretraining, distribution
alignment, and shared-feature-space approaches. These methods
have different applicable scenarios and characteristics. However,
they remain confronted with several challenges, such as insuffi-
cient data, difficulty in distribution discrepancy metric selection,
feature discrimination maintenance, radar target characteristics
utilization, and modality gap.

1) How to Overcome Insufficient Data: Pretraining methods
necessitate an ample supply of relevant data to enable the model
to acquire the ability to extract generalized features. The volumes
of optical image data and AIS are relatively adequate due to
the ease of data acquisition. However, there are almost no
SAR images sufficient for pretraining. Generally speaking, the
size and diversity of most datasets suitable for TAL in SAR
target recognition are relatively limited, making it challenging
to train a pretraining model with good generalization. As a
result, there is an urgent need for well-organized, large-scale,
and diverse benchmark datasets in the context of pretraining
methods for SAR target recognition. In addition, generating
more data utilizing generative artificial intelligence such as
GAN [177] and diffusion models [178], or computer simulation
techniques [65], [156], [157] are also possible to overcome the
impact of insufficient data.

2) How to Select Distribution Discrepancy Metric: For dis-
tribution alignment methods, the most important issue is how to
construct an appropriate metric of distribution discrepancy. First,
the distribution alignment method excels in scenarios where the
distribution differences are relatively small, such as TAL from
simulated SAR toreal SAR. However, in cross-modal TAL tasks,
like from optical to SAR images, the predefined distribution
alignment methods fall short in terms of performance. Further-
more, classification problems often encounter issues with un-
balanced categories, whereas the distribution alignment method
tends to overlook this aspect, disproportionately focusing on
the transfer of categories with a larger sample size. Predefined
metrics such as MMD, LMMD, KLD, SWD, and CORAL are
commonly used in these methods. These metrics measure the
distribution differences between the source and target domains
from different perspectives. However, considering only marginal
distribution, conditional distribution, or covariance alone is not
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comprehensive. Therefore, the challenge lies in selecting or de-
signing comprehensive and suitable metrics for diverse scenarios
within TAL for SAR target recognition, which remains a difficult
and unexplored problem. Therefore, customized distribution dis-
crepancy metrics tailored to specific scenarios, while taking into
account imbalances in categories and long-tailed distributions,
have the potential to overcome this challenge in the future.

3) How to Maintain Feature Discrimination: For shared-
feature-space methods, most of them mapped the samples of
source and target domains into domain-indivisible shared feature
space with adversarial learning. However, it cannot guarantee
the samples are mapped into property position in the shared
feature space [179]. That is to say, it may reduce or damage
the classification ability of the model, causing negative transfer.
Therefore, it is worth studying how to map samples to the
domain-indivisible shared feature spaces while maintaining or
enhancing the discrimination of features. Integrating metric
learning [180] and contrastive learning [181] to construct a
shared feature space while preserving distinguishing features
between classes can be a solution to address the scarcity of
discrimination in the future.

4) How to Utilize Radar Target Characteristics and Tradi-
tional Features: Compared to other types of data, SAR im-
ages possess rich electromagnetic scatter characteristics that
encompass the inherent properties of the radar targets them-
selves. However, there is insufficient utilization of SAR radar
target electromagnetic characteristic information in knowledge
transfer. In addition, traditional features exhibit strong stabil-
ity and interpretability, making them nonnegligible. Therefore,
considering the knowledge transfer of physical electromagnetic
features and traditional features alongside visual features may
further enhance the performance of recognition models. Alter-
natively, integrating these rich knowledge as prior information
into TAL models may also be a good way to improve model
generalization in the future.

5) How to Narrow the Modal Gap: In particular, the het-
erogeneous TAL is a problem involving cross-modality target
recognition [37]. There is significant heterogeneity between
SAR images and optical images or AIS, which was not consid-
ered in the method design. Overcoming these modal differences
is a crucial step toward achieving effective heterogeneous TAL.
How to separate modal-specific features and modal-invariant
features through feature decoupling is worth considering, aiming
to solve the heterogeneity in the process of knowledge transfer.
Some advanced learning paradigms, methods, or models, such
as contrastive learning [182], transformer [183], cross-modality
translation [184], can be applied to overcome the heterogeneity
in the future for TAL in SAR target recognition.

B. Future Directions

TAL is a hot topic with new technology coming out in an
unending flow. Because of their relevance to some realistic
scenarios of SAR target recognition, some meaningful points
of TAL within the community deserve attention. Furthermore,
the development of TAL in SAR target recognition could be
accelerated by the application of advanced artificial intelligence
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Fig. 9. Difference between closed set, partial, open set, and universal domain
adaptation.

technologies, particularly the foundation model. Therefore, five
points are summarized in this section to quickly understand the
possible future directions of TAL in SAR target recognition.

1) Partial, Open-set, and Universal Domain Adaptation:
The methods reviewed in this article primarily assume that the
feature space of the source domain differs from that of the
target domain, while the label space remains the same. This
setup is usually referred to as the closed domain adaptation task
(Xs # Xr,Ys = Vr). However, this assumption poses signif-
icant limitations for realistic applications [185]. The methods
have indeed addressed the issue of data shift between different
domains, but they overlook the label shift (label spaces of the
two domains not completely overlap) that also exists between
these domains. This oversight is particularly problematic as the
label shift is more in line with the realistic scenarios encountered
in SAR target recognition. In real-world scenarios of TAL in
SAR target recognition, various label space relationships can
occur. These include cases where the target domain label space
is a subset of the source domain label space (Vr € Vg), where
the source domain label space is a subset of the target domain
label space ()s € Vr), where there is an intersection between
the two label spaces (Vs N Y # 0), or where the target domain
label space is completely unknown () = 7). All these scenarios
need to be taken into account when developing effective TAL
methods for SAR target recognition, and the difference between
these scenarios can be seen in Fig. 9.

Partial domain adaptation learning is designed to tackle the
issue of transferring overlapping categories from the source
domain to the target domain while avoiding the influence of
redundant categories during knowledge transfer [186]. This
approach ensures that only relevant information is transferred,
thus enhancing the performance of target domain tasks. By
focusing on the scenario of Yr € Vg, partial domain adaptation
learning aims to enhance the performance of target domain tasks
by effectively filtering out irrelevant categories from the source
domain.

Open-set domain adaptation learning is designed to address
the issue of knowledge transfer from the source domain while
distinguishing unknown categories in the target domain [187].
The key advantage of it is the ability to handle scenarios where
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the label spaces of the source and target domains are not fully
aligned, Vs € Yr or Vs N Y # ), allowing for more general-
izable models.

Universal domain adaptation learning is designed to solve
the problem of correctly classifying known categories and dis-
tinguishing the unknown categories with the knowledge from the
source domain [188]. Unlike open-set domain adaptation, which
requires an intersection in the label space of the two domains,
universal domain adaptation does not have this constraint. Con-
sequently, the label space of the target domain remains unknown,
Vr="1.

The difficulty level of these four questions gradually rises,
reflecting different scenarios encountered in SAR target recog-
nition tasks. Here is a breakdown of each scenario:

1) Closed domain adaptation: The target categories (target
domain) to be identified are the same as the known cate-
gories (source domain).

2) Partial domain adaptation: The known categories contain
and exceed the categories of the targets to be identified.

3) Open-set domain adaptation: The categories of the targets
to be identified contain and exceed the known categories.

4) Universal domain adaptation: The relationship between
the known categories and target categories is unknown.

These scenarios represent realistic challenges encountered in
SAR target recognition tasks and are therefore worth of in-depth
research to develop generalizable recognition systems.

2) Domain Generalization: When the operation conditions
of radar, such as depression angle, polarization mode, wave
band, etc., or the azimuth of the target suddenly change, or in
some other situations, the data of the target domain are unavail-
able. That is to say, the distribution of data in the target domain
is unseen. How to generalize the model to an invisible target do-
main under the condition of only source domain data (or multiple
source domain data) available is a worthwhile research question,
which may occur in real scenarios in the field of SAR target
recognition. With the advancement of TAL technology, some
researchers have proposed domain generalization techniques.
These techniques aim at learning a model that can generalize
to an unseen target domain, given one or more related source
domain data [189], [190]. These techniques hold the potential
to address the challenges mentioned above in the field of SAR
target recognition [191], [192], [193].

3) Source-Free Domain Adaptation: Most of the reviewed
methods need to revisit the data of the source domain during the
knowledge transfer. However, due to the limitation of informa-
tion security or communication bandwidth, the data of the source
domain may not be allowed to be accessed [194], [195]. In this
scenario, only the model trained on the data of the source domain
is available, which is more in line with the information security
requirements of SAR target recognition tasks. Source-free do-
main adaptation was introduced to overcome it relying only on
a well-trained source model [196], [197]. This technology has
the potential to be applied to the SAR target recognition tasks.

4) Test-Time Adaptation: When the platform undergoes con-
tinuous adjustments or the target undergoes continuous azimuth
changes, the distribution of the data in the target domain also
changes continuously. Every time the general method is built, we
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need to revisit the source domain data, which takes a lot of com-
putational resources and slows down the learning efficiency of
the method. In addition, the data of the source domain may not be
visited due to information security [194], [195]. Some research
indicated that generalizing the model to arbitrary distribution
without the data of the target domain (domain generalization) is
quite difficult [198], [199], [200]. Therefore, exploring how to
maintain source domain knowledge while continuously learning
from the target domain for model adjustment, without the need
to revisit source domain data, is a worthwhile problem [60].
This is called test-time adaptation. Different from the source-
free domain adaptation, test-time adaptation aims to perform
adaptation in one small data batch during testing. Test-time
adaptation alternates between training and testing during the
testing process [201]. This technology is expected to solve the
computational resource consumption problem caused by source
domain data revisiting for TAL in SAR target recognition.

5) Foundation Models: In the past few years, there has been
a flourishing era of foundation models. Foundation models typi-
cally use massive amounts of data for supervised or unsupervised
learning, aiming to obtain general knowledge [41]. These neural
networks always consist of billions or even hundreds of billions
of parameters. With the increase of model parameters and data
volume, the intelligence of foundation models has shown the
emergence phenomenon [202]. The foundation model lever-
ages the general knowledge acquired from massive data. By
utilizing techniques such as transfer learning and incremental
learning (learning new knowledge while preserving learned
knowledge) [203], the model can be quickly adapted to various
downstream tasks. These tasks are involved in domains like NLP
and computer vision. In this way, a novel learning paradigm is
established [204], [205], [206], [207], [208], [209].

Inspired by the development of the language foundation mod-
els and vision foundation models, some researchers adapt the
state-of-the-art foundation models to the downstream tasks for
remote sensing [210], [211], [212], [213], [214]. There are also
some researchers dedicated to building and utilizing specialized
remote sensing foundation models [215], [216], [217], [218],
[219], [220].

What has milestone significance is the emergence of RingMo
remote sensing foundation model [218]. Remote sensing data,
which covers a wide range of tens of thousands of square
kilometers and contains complex scene content, differs signifi-
cantly from natural images used for building general foundation
models. The RingMo remote sensing foundation model can be
easily customized for downstream tasks [219], [220], indicating
that the foundation model can also demonstrate extraordinary
capabilities in the remote sensing field.

In the reviewed literature, the source domain is already given,
which limits certain scenarios of SAR target recognition. In
addition, the correlation between the source domain and the
target domain greatly influences the difficulty of knowledge
transfer. Nevertheless, the foundation model acquires knowl-
edge from a wide and diverse range of data, and can effectively
transfer general and robust target knowledge to downstream
tasks based on the transfer learning paradigm. This promises
to enable excellent performance in SAR target recognition.
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IX. CONCLUSION

This survey offers a comprehensive overview of the latest
advancements in TAL for target recognition in SAR images. Its
primary aim is to consolidate knowledge and provide researchers
with tools to quickly grasp the development of this field. We
categorize the reviewed methods into homogeneous TAL and
heterogeneous TAL, based on the relationship between the data
types in the source and target domains. We further refine this
categorization based on the specific data types used in the source
domain and the underlying technologies. The reviewed studies
suggested that TAL techniques hold tremendous potential in
SAR target recognition tasks. Moreover, we examined the trans-
ferable traditional features of SAR images, which are notable for
accurate target recognition based on TAL. In addition, we also
reviewed the available datasets for validating the TAL method,
and comparative experiments were conducted on these datasets
to assess its performance. Finally, we proposed suggestions
for enhancing current methods and discussed potential future
research directions. Although TAL has demonstrated promising
results in the field of SAR target recognition, there are still
notable limitations to its application. 1) TAL relies on partially
annotated data for pretraining or unlabeled data for distribution
alignment and establishing a shared feature space. However, in
SAR target recognition, the sample size of SAR data is often
limited, hindering the full effectiveness of TAL. Furthermore,
the presence of noise interference and incomplete target con-
tours in SAR images can impact feature extraction, leading
to suboptimal TAL performance. 2) TAL typically employs
deep models and intricate algorithms, necessitating substantial
computing resources and time. The long training and infer-
ence times associated with TAL methods may constrain their
application in real-time SAR target recognition tasks, where
speed and accuracy are crucial. 3) TAL is often built upon
deep neural networks or other machine learning models, whose
decision-making processes are often complex. In SAR target
recognition, the reliability of model decisions is paramount,
as incorrect identifications can have significant consequences.
Therefore, ensuring the trustworthiness of TAL models is an
area that requires further attention. We anticipate that future
research will address these limitations of TAL methods for SAR
target recognition, enabling more robust and efficient SAR target
recognition systems. We also believe that the field of SAR target
recognition leveraging TAL will continue to be an active and
exciting area of research.
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