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A Spatially Downscaled TROPOMI SIF Product at
0.005° Resolution With Bias Correction
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Abstract—Solar-induced chlorophyll fluorescence (SIF) pro-
vides a valuable tool for gross primary production (GPP) moni-
toring. However, the spatial resolution of satellite SIF products is
lower than the kilometer level, which hinders their potential for
carbon cycle study at regional scales. This work reconstructed a
0.005° SIF in China during 2019 and 2020 from the 5-km level
TROPOMI SIF by a proposed downscaling strategy that corrected
the predicted bias when statistics-based machine learning models,
such as random forest (RF), were used. Our bias-corrected down-
scaled SIF (named BCSIF) had an improved capacity of preserving
the information of the original TROPOMI SIF than the directly
predicted SIF from RF. The BCSIF showed better consistencies
with the tower-based SIF than the 0.05° TROPOMI SIF with an
averaged R2 increased from 0.590 to 0.798 at two sites since it has a
more comparable spatial scale with spectral observations. For the
spatial–temporal correlations with FLUXCOM GPP at different
biomes in China, BCSIF outperformed the original SIF with the
averaged R2 increased from 0.472 to 0.877 due to its reduced noise,
also outperformed the near-infrared radiation reflected by vegeta-
tion (NIRvP), especially for the savanna type with the R2 increased
from 0.828 to 0.889. For the temporal correlations with FLUXCOM
GPP, BCSIF gives comparable R2 values as NIRvP in more than
half of China (around 65% pixels), not including the needleleaf
forest region in the southern Tibetan Plateau and savanna region
in Yunnan province where BCSIF greatly outperformed, as well
as some alpine meadows regions in Inner Mongolia and Tibetan
Plateau where NIRvP outperformed.

Index Terms—Bias correction, gross primary production (GPP),
random forest (RF), solar-induced chlorophyll fluorescence (SIF),
spatial downscaling.
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I. INTRODUCTION

SOLAR-INDUCED chlorophyll fluorescence (SIF) is a long-
wave signal emitted by plant chlorophyll molecules during

the photosynthesis process under natural sunlight [1]. Compared
with vegetation indices (VIs), SIF has unique physiological
information that can better track the dynamics in gross primary
production (GPP) under environmental stress [2], [3], [4]. Over
the past decades, numerous satellite sensors have the poten-
tial for retrieving SIF datasets, including SCIAMACHY [5],
GOSAT/-2 [6], GOME-2 [7], OCO-2/3 [8], TROPOMI [9], [10],
Tansat [11], TECIS-1 [12], etc. With the successful SIF retrieval
from satellite sensors, SIF provides an innovative insight for
monitoring spatial and temporal patterns of plant-based terres-
trial carbon fixation (i.e., GPP) using remote sensing data.

The satellite SIF datasets have the problems of low spa-
tial resolutions or discontinuous spatial patterns. Thereinto,
TROPOMI on Sentinel-5P has relatively good spatial con-
tinuities and resolutions, which provides SIF retrievals at a
spatial continuous sampling of 3.5–14 km across track and
7.5 km along track (5.5 km since 2018) with daily global
coverage. Nevertheless, since TROPOMI SIF still has the spa-
tial resolution lower than the kilometer level, it cannot accu-
rately capture the real variations in photosynthetic capacity
at finer scales, particularly in heterogeneous landscapes. The
spatial mismatch between satellite TROPOMI SIF and tower-
based GPP will limit the understanding of the relationship
between SIF and GPP through robust ground validation, which
impedes the full capability of it for monitoring region-scale
GPP. To improve the finer scale application of TROPOMI
SIF in complex heterogeneous landscapes or regional scales,
efforts need to be made to obtain SIF at a higher spatial
resolution.

To address the problems of low spatial resolution, several
studies develop gap-filling or downscaling methods to recon-
struct satellite SIF. These methods are mostly based on the
concept of light use efficiency (LUE) and can be divided into two
ways: semiempirical function [13], [14] and machine-learning
(ML) methods [15], [16], [17], [18], [19], [20]. The results
of the former depend on the robustness of the semiempirical
model, while ML [e.g., random forest (RF), artificial neural
network (ANN), or eXtreme gradient boosting (XGBoost)] has
a superior ability to learn the nonlinear and complex statistical
relationships due to its better flexibility in fitting. Therefore, RF
has the outstanding performance in handling regression tasks
and reducing the risk of overfitting; thus, it has been widely
used in downscaling SIF [15], [16].
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To derive sufficient samples for model training, most ML-
based methods constructed a universal model at relatively large
spatial scales, such as the globe [17], [18], [21], [22], different
continents [19], or different land cover types [23], rather than
adopting multiple local models. However, the ML models, such
as RF, ANN, and XGBoost, are statistics-based, and thus, they
tend to learn the relationship (between SIF and driving variables)
that occurs more frequently in most samples. Besides, at large
spatial scales, a universal model can represent the relation-
ship for most samples when appropriate driving variables are
used, but not performing well for a few samples, because this
relationship may change in some cases (e.g., certain areas or
plant types and environmental stresses). Therefore, the strategy
relying solely on ML will inevitably introduce some biases in
SIF prediction.

Using spatial downscaling methods, several downscaled SIF
products were generated. Most of the downscaled SIF products
had a kilometer-level resolution, e.g., 0.05° downscaled SIF
from GOME-2 SIF. A few of them had more fined resolution
but were limited to regional scales, e.g., 0.005° downscaled SIF
from TROPOMI in North America [19] or reconstructed OCO-2
SIF in Henan province, China [20]. Generating a downscaled SIF
product with 100-m resolution on a national or continental scale
is crucial. Additionally, whether the data-driven reconstructed
SIF carried the physiological information of original SIF signals
or just canopy optical and structural characters, and how its
performance for tracking GPP at large scales needed to be further
illustrated. Thus, it is important to generate 0.005° SIF product
in a large region and provide proofs for its capability of GPP
monitoring.

In this study, we generated a 16-day 0.005° downscaled SIF
product [named bias-corrected downscaled SIF (BCSIF)] in
China during 2019 and 2020 from the TROPOMI SIF, MODIS,
and fifth ECMWF reanalysis (ERA5) data using an improved
downscaling strategy with the prediction bias corrected and
further evaluated the potential of downscaled SIF for monitoring
GLASS GPP by assessing the correlation of SIF-GPP compared
with the near-infrared radiation reflected by vegetation (NIRvP).
The main contributions of this article were as follows:

1) develop an improved spatial downscaling method correct-
ing the prediction bias when using the RF model;

2) obtain a 0.005° downscaled SIF product over China;
3) evaluate the advantages of the downscaled SIF for moni-

toring GPP over the original SIF and the NIRvP.

II. MATERIALS

A. TROPOMI SIF Datasets

We derived the original TROPOMI SIF from the ungridded
743–758 nm L2B SIF datasets at a daily scale from 2019 to
2020 published by Guanter et al. [9].1 The day-length corrected
SIF based on the cosine of the solar zenith angle [cos(SZA)]
[24] provided in the L2B datasets was adopted in this study.
We aggregated the ungridded SIF to 0.05°, 16-day resolutions
with data screening for the downscaling model development

1[Online]. Available: https://s5p-troposif.noveltis.fr/data-access/

and validation of the downscaled SIF. Each SIF grid cell was
the average of those footprints, which covered the center of
this grid. In order to reduce the uncertainties in individual SIF
retrieved soundings due to clouds and noises, data screening was
implemented, including two aspects: First, based on the thresh-
olds settings in previous studies [10], [25] and the suggestions
by Guanter et al. [9], SIF soundings with the cloud fraction
less than 0.2 and 0.8 were aggregated to obtain TROPOMI SIF
values under clear-sky and all-sky conditions (hereafter named
TROSIF and TROSIFas, respectively); second, only if the SIF
grids contained more than three SIF soundings were averaged,
given that the uncertainty in SIF retrieval can be reduced by a
factor

√
n (n is the number of soundings in each grid) [8].

B. Explanatory Variables Datasets

The explanatory variables related to vegetation characters
were acquired from the MCD43A4 v006 reflectance product
[26]. We collected the BRDF-corrected seven-band reflectance
at 500 m, daily resolutions. To ensure the quality of reflectance
data, only the pixel values with quality assurance 0 and 1 (i.e., full
BRDF inversion and magnitude BRDF inversion, respectively)
were retained. The VIs map, i.e., the normalized difference water
index (NDWI), was also calculated. The 500 m daily reflectance
was aggregated to 0.05°, 16-day and 0.005°, 16-day scales for
model development and SIF prediction, respectively.

The explanatory variables related to environmental condi-
tions, including vapor pressure deficit (VPD), air temperature
(Ta), soil moisture (SM), photosynthetically active radiation
(PAR) under all-sky conditions, and PAR under clear-sky condi-
tions, were derived or calculated from the ERA5 datasets at 0.1°
hourly resolutions. Thereinto, VPD was calculated utilizing Ta
and the dewpoint temperature (DTa) according to the formula
introduced by Allen et al. [27]. The 0.1° hourly meteorological
variables were resampled to 0.05°, 16-day and 0.005°, 16-day
scales using the nearest neighbor interpolation method for model
development and SIF prediction, respectively.

C. Satellite Auxiliary Datasets

To evaluate the potential of downscaled SIF product for
GPP monitoring, we collected two GPP products (i.e., GLASS
GPP and FLUXCOM GPP) for spatial comparison and cor-
relation analysis, respectively. The FLUXCOM GPP product
(RS_V006) (abbreviated as FLUXGPP hereafter) was based on a
data-driven approach using multiple ML methods to upscale car-
bon flux measurements from eddy covariance towers by remote
sensing and meteorological data [28], [29]. This dataset was at an
eight-day temporal resolution and a 0.0833° spatial resolution,
and was resampled to 0.05°, 16-day scale for comparison in
this study. The GLASS GPP product (abbreviated as GLASGPP
hereafter) has a higher spatial resolution at 500 m. This dataset
was retrieved using a collection of eight LUE models based on
radiation and environmental components [30]. We aggregated
the original data to 0.005°, 16-day resolution.

To evaluate the performance of BCSIF for different biomes,
the land cover product with 500 m resolution was obtained
from MCD12Q1 v006. The primary land cover scheme based

https://s5p-troposif.noveltis.fr/data-access/
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TABLE I
DETAILS OF THE FLUX TOWER SITES

on the International Geosphere–Biosphere Program consists of
17 land cover classes [31]. Based on the strategy in [24], we di-
vided the 17 landcover types into 7 classes, including evergreen
and deciduous needleleaf forest (NF), evergreen broadleaf forest
(EBF), deciduous broadleaf forests (DBFs) and mixed forests,
closed and open shrublands (SHR), woody savannas and savan-
nas (SAV), croplands and cropland/natural vegetation mosaic
(CRO), and grasslands (GRA). The unvegetated types, such as
“permanent wetland,” “water,” “urban and built-up,” “barren or
sparsely vegetated,” and “snow and ice,” were excluded in this
study.

To investigate the potential of BCSIF for GPP monitoring,
we compared it with the performance of NIRvP [32]. NIRvP
denotes the radiation reflected by the vegetation at the near-
infrared band. Several studies have reported that NIRvP has a
capability for GPP estimation on certain ecosystems, including
grassland, crops, wetland, and savanna [33], [34]. The good
relationship between the satellite-based NIRvP and GPP has
also been studied [35], [36]. In this study, we calculated the
NIRvP using the collected MODIS reflectance and PAR data, as
shown in the following equation:

NIRvP = PAR × NIRv = PAR × NDVI ×RNIR (1)

where NIRvP is the combination of PAR and near-infrared
reflectance of vegetation (NIRv). NIRv is calculated by the
normalized difference vegetation index multiplied by the near-
infrared band reflectance (RNIR).

D. Tower-Based Datasets

We used tower-based datasets at two sites to validate the
downscaled SIF. The details of these sites were shown in Table I.
The sites were components of the ChinaSpec [37], including
DaMan (DM) site predominated by single-cropping maize in
Gansu province at northwest China and Arou (AR) site predom-
inated by the alpine meadow in Qinghai province at northwest
China. More details about the site conditions, measurement
system, and data process can be found in [37].

The SIF at 760 nm was retrieved based on the three-band
Fraunhofer line depth [38] and the singular value decomposition
method [39]. To compare with the 740 nm satellite SIF, we con-
verted the 760 nm tower-based SIF into 740 nm by multiplying
a wavelength scaling coefficient of 1.5 [40]. To be consistent
with the TROPOMI SIF, the tower-based SIF was averaged into
16-day scale if there were more than 8-day valid values in a
16-day period.

Fig. 1. Flowchart of the process of SIF downscaling.

III. METHODOLOGY

A. Selection of Explanatory Variables

Similar to the concept of LUE model for GPP, SIF can be
defined as follows [41]:

SIF = PAR× fPAR × ε× ΦSIF (2)

where fPAR is the fraction of PAR absorbed by vegetation, ε is
the fraction of SIF photons escaping from the photosystem level
to the canopy level, and ΦSIF is the fluorescence quantum yield.
According to the linear correlation between PAR and cos(SZA)
under clear-sky conditions [24], [42], we utilized cos(SZA) to
express the information in clear-sky incoming PAR. The effects
of ε and fPAR on SIF variations were mainly dominated by
the leaf optical, canopy structural, and geometric information,
which could be denoted by the MODIS reflectance [13], [14],
[15], [16], [17], [18], [19], [20], [21], [22], [23]. The effects
of ΦSIF on SIF changes were mostly governed by the environ-
mental conditions related to sunlight, temperature, and water
[43]. Based on the accuracy evaluation of different explanatory
variables in our previous study [44] and related data-driven SIF
downscaling pieces of literature, we selected nine explanatory
variables to drive the downscaling model in total, including the
first four bands of MODIS reflectance, cos(SZA), Ta, VPD, SM,
and NDWI.

B. Improved Downscaling Approach

The improved downscaling procedure was divided into three
parts: RF model development, SIF prediction by RF, and pre-
diction bias correction (see Fig. 1). The subscript “LR” or “HR”
denoted as the data was at a low/high resolution as 0.05° or
0.005°, respectively. The SIF data (i.e., BCSIF and TROSIF)
with the subscript “as” or not denoted it were under all-sky or
clear-sky conditions, respectively.
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Fig. 2. Schematic representation of the calculation of the prediction bias. (a) βHR (0.05°). (b) βHR (0.005°). (c) Weights (0.005°). (d) β′
HR (0.005°).

1) RF Model Development: For the model development, we
used a strategy of threefold cross validation, i.e., each of the three
individual experiments selected 30% of the whole samples for
testing and the remaining 70% for training. All the samples were
normalized by the average and standard deviation of training
samples. We established the RF model (F) for each 16-day period
over China using the training samples derived from the low-
resolution original TROPOMI SIF under clear-sky conditions
and the corresponding explanatory variables, as shown in the
following equation:

TROSIF = F (cos(SZA)LR, TaLR,VPDLR, . . .) . (3)

For the processing of RF model, the setting of the number of
trees (ntrees) and minimum leaf size (mleaf, i.e., the minimum
number of samples required in each training subset for splitting
the decision tree at each node) was determined according to
multiple experiments with testing samples. With the value of
ntrees increasing, both the model accuracy and computing time
increased, reaching saturation at 100 trees. Additionally, the
model accuracy markedly decreased with the value of mleaf
larger than 5. The setting of mleaf as 5 produced comparable ac-
curacy to that of 2 while taking less computing time. Therefore,
in the RF model, we set the values of ntrees and mleaf as 100
and 5, respectively.

2) SIF Prediction by RF: For SIF prediction, the established
model F was applied to obtain the high-resolution SIF predic-
tions by RF (named PSIFHR) under clear-sky conditions using
explanatory variables at 0.005° resolution, as (4). The explana-
tory variables were also normalized by the same mean value and
standard deviation as training samples over each 16-day period

PSIFHR = F (cos(SZA)HR, TaHR,VPDHR, . . .) . (4)

However, the SIF predicted solely by the RF model would
inevitably contain biases in a few samples due to the reasons
mentioned before that one statistics-based universal model can-
not well represent the relationship (between SIF and driven
variables) for some cases in China. Therefore, in this study, the
SIF predicted by RF was postprocessed using a bias correction
method.

3) Prediction Bias Correction: The idea of bias correction in
this article is to constrain the ML-based SIF predictions by the
value of local original SIF. We first calculated the low-resolution
SIF predictions by the developed RF model (named PSIFLR)
using explanatory variables at 0.05° resolutions, as shown in the

following equation:

PSIFLR = F (cos(SZA)LR, TaLR,VPDLR, . . .) . (5)

Then, we calculated the difference between the TROSIF and
PSIFLR as the 0.05° low-resolution prediction bias (named
βLR), as shown in the following equation:

βLR = TROSIF − PSIFLR. (6)

To be consistent with the spatial resolution of PSIFHR, the
bias βLR was processed as follows, which was illustrated by
the schematic representation in Fig. 2. First, we resampled
βLR to the 0.005° high resolution using the nearest neighbor
interpolation method (namely βHR). But large differences be-
tween adjacent pixels in the original 0.05° TROSIF would be
propagated to the low-resolution βLR, and eventually resulted
in some artificial abrupt transitions in the high-resolution βHR

that seemed as unnatural “large square” patterns [see Fig. 2(b)].
To minimize the effects of this issue, we filtered the βHR image
using a running window with a 2-D Gaussian function (namely
weights) to calculate the filtered high-resolution bias (namely
β

′
HR), as shown in (7). Specifically, each β

′
HR pixel [the central

pixel in Fig. 2(d)] is calculated as a spatially weighted average
of the adjacent βHR pixels with the Gaussian running window
in Fig. 2(c).

The standard deviation (σ) of the Gaussian function was set as
5, according to the optimal validation accuracy of BCSIF predic-
tions from multiple experiments. With the value of σ increasing,
the consistency between reaggregated BCSIF and TROSIF im-
proved, reaching saturation at σ as 5 (see Fig. 10). Accordingly,
the size of running window (w) was set as 29 × 29 because
the values of Gaussian function out of the range [−3σ,3σ]
were close to zero. Through this process, the artificial abrupt
transitions in βHR could be smoothed, which is more reasonable
in accordance with the actual distribution of high-resolution bias
map

β
′
HR =

n=29×29∑

i

Weights × βHR. (7)

Thus, the downscaled BCSIF product was generated by
adding the resampled and filtered bias obtained at a coarse
resolution to the PSIFHR directly predicted by the RF model,
as follows:

BCSIF = PSIFHR + β′
HR. (8)
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Fig. 3. Scatter diagrams between the 0.05° TROSIF and predicted SIF by RF model for the testing samples of three cross-validation experiments in 2019.
(a) First experiment. (b) Second experiment. (c) Third experiment.

C. All-Sky Downscaled SIF Generation

Based on the whole improved downscaling approach, the
0.005°, 16-day BCSIF at clear-sky scale in China over the peri-
ods 2019 and 2020 was reconstructed by using nine explanatory
variables at 0.005°, 16-day resolution. The spatial gaps of the
original TROSIF or the high-resolution explanatory variables
for predicting PSIFHR would result in no BCSIF in some pixels.
If there is no TROSIF, PSIFHR will be preserved as BCSIF. If the
explanatory variables were absent, the value of BCSIF would be
the same as TROSIF.

Finally, to convert BCSIF from clear-sky conditions to all-sky
conditions (hereafter named BCSIFas), we multiplied BCSIF to
a temporal upscaling factor (i.e., the ratio of PAR under all-sky
conditions to PAR under clear-sky conditions from ERA5) [45],
as (9). Thus, the final 0.005° BCSIFas product at all-sky scale
in China during 2019 and 2020 was obtained

BCSIFas =
BCSIF
PARcs

× PARas (9)

where PARas and PARcs are PAR under all-sky and clear-sky
conditions, which were derived from the ERA5 data.

D. Validation Approaches

The BCSIF was validated in three ways. First, to validate the
downscaled SIF for preserving information of the original SIF
and to evaluate the effects of bias correction, we compared the
consistency of BCSIF and PSIFHR with the original TROPOMI
SIF values under clear-sky conditions (i.e., TROSIF). On the one
hand, we analyzed the correlations between TROSIF with the
reaggregated BCSIF and PSIFHR at 0.05° scales. On the other
hand, we compared the spatial patterns of 0.05° TROSIF with
the 0.005° BCSIF and 0.005° PSIFHR.

Second, we assessed the reliability of BCSIF using the con-
tinuous tower-based SIF retrievals and analyzed its advantages
over the low-resolution original SIF by comparing the time series
and linear correlations between tower-based SIF with the 0.05°
TROSIFas, the 0.05° reaggregated BCSIFas, and the 0.005°
BCSIFas at two sites under all-sky conditions.

Third, we explored the potential of BCSIF for GPP monitoring
and its performance compared with the original SIF and the
NIRvP. Considering that the data-driven GPP (e.g., FLUXCOM

GPP) can avoid the uncertainties in the estimation of LUE,
we used the FLUXCOM GPP as a reference for analyzing the
correlations of SIF and NIRvP with GPP. Since GLASS has
a higher spatial resolution, it was used to assess the spatial
details of the 0.005° downscaled SIF. Specifically, we compared
the spatial patterns of the annual maps of 0.05° TROSIFas and
0.005° BCSIFas with 0.005° GLAGPP under all-sky conditions
in 2019. Then, we further evaluated both the correlations with
FLUXGPP at different biomes and the spatial distributions of
temporal correlations at pixel level among TROSIFas, BCSIFas,
and NIRvP at 0.05° scales.

IV. RESULTS

A. Performance of the RF Model

The performance of the RF model for 0.05° SIF predicting
was shown in Fig. 3. It displayed the scatterplots between SIF
directly predicted by the RF and the original TROSIF for testing
samples of three cross-validation experiments in 2019.

In general, the RF model produced a relatively satisfactory
accuracy: the averaged coefficient of determination (R2) of three
experiments was around 0.887, and the averaged root-mean-
square error (RMSE) was 0.0716 mW/m2/nm/sr. The predicted
SIF was consistent with TROSIF: the scatters were distributed
closely to the 1:1 line (the dashed lines). Note that the SIF
predictions from RF had a slight underestimated bias at the
high-value level probably because some changes in SIF cannot
be fully expressed by the model of driving variables.

B. Validation of Downscaled SIF With TROPOMI SIF

To evaluate the capability of downscaled SIF for preserv-
ing key information in the original SIF, we reaggregated the
high-resolution BCSIF and PSIFHR to 0.05°, namely BCSIF
and PSIFHR, and quantitatively assessed the consistency be-
tween them with TROSIF, as shown in Fig. 4. Through the
bias correction, BCSIF had better correlations with TROSIF
than PSIF: the scatters were closer to the 1:1 line with the
R2 improved from 0.853 to 0.882 and the RMSE decreased
from 0.0898 to 0.0810 mW/m2/nm/sr. Particularly, with bias
correction, some scatters for the PSIF, which were obviously off
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Fig. 4. Scatter diagrams between TROSIF and two reaggregated downscaled
SIF. (a) PSIFHR. (b) BCSIF at the 0.05° scale in 2019.

the linear trend (see light yellow dots in the figure), were greatly
more concentrated.

We further compared the capability of PSIFHR and BCSIF
for preserving spatial variations in the original SIF, as shown
in Fig. 5. Overall, the spatial patterns of two downscaled SIF
(PSIFHR and BCSIF) in China were similar to that of TROSIF.
Specifically, in August 2019, the relatively high SIF values were
exhibited in the cropland and forests’ areas (e.g., the north China
plain, the Xiaoxing’an Mountains, and Changbaishan Mountain
in the northeast of China), whereas the relatively low values were
distributed in grass and barren or sparsely vegetated areas (e.g.,
Tibet, Qinghai Province, Xinjiang Autonomous Region, and part
areas of Neimeng Autonomous Region in China). Compared
with PSIFHR, BCSIF was more consistent with the TROSIF
in some regions. Particularly, in parts of the cropland or DBF
types of the northeastern China (gray square and blue ellipse
regions in Fig. 5) and parts of the grassland in Qinghai Province
(the blue circle region in Fig. 5), the PSIFHR underestimated
the TROSIF with significant positive values of bias (referring
to the bias maps in Fig. 11), while BCSIF corrected this bias.
Moreover, the 0.005° downscaled SIF exhibited finer spatial
details in regional scales, such as the identification of Nenjiang
river basin in the enlarged maps, whereas the 0.05° TROSIF
showed obvious patchy structures.

C. Validation of Downscaled SIF With Tower-Based SIF

The tower-based SIF retrievals were also used to validate
the reliability of downscaled SIF products. We investigated
the consistency between the tower-based SIF with the all-sky
original TROPOMI SIF at 0.05° resolution (i.e., TROSIFas),
the reaggregated all-sky BCSIF at 0.05° resolution (named as
BCSIFas), and the all-sky BCSIF at 0.005° resolution (i.e.,
BCSIFas) at two sites (see Fig. 6).

All the correlations between 0.005° BCSIFas and tower-based
SIF at two sites were high with the R2 larger than 0.68 and all the
RMSE values were less than 0.15 mW/m2/nm/sr, particularly,
the R2 at DM site was 0.911, which verified the reliability
of the 0.005° downscaled BCSIFas. The 0.005° BCSIFas was
obviously more consistent with tower-based SIF than the two
0.05° low-resolution products, with the averaged R2 improved
from 0.590/0.689 (TROSIFas/BCSIFas) to 0.798, and the cor-
responding averaged RMSE decreased from 0.201/0.234 to

0.141 mW/m2/nm/sr for two sites. It indicated that the spatial
downscaling could improve the ability of satellite SIF for track-
ing tower-based SIF due to its more comparable spatial footprint
with spectral observations. In addition, although at the same
0.05° scale, the BCSIFas tracked the tower-based SIF better than
the TROSIFas probably because the noises in the original SIF
had been reduced through the reconstruction by the data-driven
model.

D. Comparison of Downscaled SIF With GPP Products

To investigate the potential of BCSIF for monitoring GPP,
we compared the spatial patterns of the annual maps of 0.05°
TROSIFas and the downscaled 0.005° BCSIFas with high-
resolution GLAGPP in 2019, as shown in Fig. 7. In gen-
eral, TROSIFas and BCSIFas had a similar spatial pattern
over China, which was also consistent with the distribution
of GLAGPP. However, for the regional scale, compared with
BCSIF, the original low-resolution TROSIF could not accurately
capture the spatial variations in 0.005° GLAGPP. Specifically, in
the enlarged maps in Fig. 7, the low-resolution TROSIF ex-
hibited an obvious patch effect and lost many spatial details
of GPP near the boundaries among CRO, DBF, and GRA,
especially in the white ellipse region where the highly productive
GRA structures had disappeared in the TROSIF, whereas the
0.005° BCSIF could resolve the spatial problems in TROSIF
and captured the spatial distributions of different biomes.

Furthermore, to compare the potential of all-sky TROSIF,
BCSIF, and NIRvP for monitoring GPP, we analyzed the corre-
lations between them with FLUXGPP both at different biomes
and at the pixel level, as shown in Figs. 8 and 9, respectively. The
R2 of both linear and nonlinear (a hyperbolic function based on
[46]) regressions was calculated, abbreviated as R2

L and R2
NL.

Only the higher R2 for each correlation was displayed in the
figure. Due to the low percentage of pixels for SHR (0.09%),
NF (0.98%), and EBF (3.74%) in China, we ignored the SHR
and merged NF and EBF types into DBF as one forest type in
the analysis.

In Fig. 8, all the correlations between BCSIF and FLUXGPP
for four biomes were high with linear or nonlinear R2, respec-
tively, larger than 0.842, which implied that BCSIF had potential
for monitoring GPP. Note that for forest, SAV, and CRO types,
the R2 for nonlinear regression was higher than that for linear
regression, but for GRA types, the R2 for linear regression was
higher. In addition, when using BCSIF instead of TROSIF, the
R2 values were greatly improved with the averaged R2 of four
biomes, which increased from 0.472 to 0.877, probably because
the downscaled SIF retained the key information of the original
SIF while greatly reducing the noises. Moreover, compared with
NIRvP, the scatters of BCSIF were obviously more concentrated.
BCSIF produced higher correlations for four biomes: the aver-
aged R2 increased from 0.848 to 0.877, especially for the SAV
type.

We further evaluated the spatial distributions of pixel-level
temporal correlations between three products with FLUXGPP
at 0.05° scales in 2019, as shown in Fig. 9. In general, the R2 of
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Fig. 5. Spatial patterns of (a) TROSIF, (b) PSIFHR, and (c) BCSIF in August 2019. Enlarged maps show three SIF products in the gray square region.

Fig. 6. Comparison between the time series of the tower-based SIF with the
0.005° BCSIF, the 0.05° reaggregated BCSIF, and the 0.05° TROSIF under
all-sky conditions for (a) DM and (b) AR sites. All regressions in the right panel
achieved the significance level of 0.05.

BCSIF distributed similarly as that of the TROSIF [see Fig. 9(a)
and (b)], but BCSIF showed higher R2 values than TROSIF
in most parts of China (around 83% pixels) [see Fig. 9(d)]
due to reduced noises. The R2 of BCSIF was higher than 0.4
for most pixels but relatively low in some alpine meadows of
Inner Mongolia and Tibetan Plateau (blue ellipses in the figure).
While in these regions, NIRvP performed better [see (Fig. 9(c)],
resulting in negative values in the difference map of Fig. 9(e).

While for NF type in southern Tibetan Plateau and SAV type of
Yunnan province, the R2 of NIRvP was low and BCSIF greatly
outperformed NIRvP (gray rectangles in the figure), causing
positive values in the difference map of Fig. 9(e). Except for
these typical regions that were marked, the R2 of BCSIF was
comparable with that of NIRvP in more than half of China
(around 65% of pixels exhibited the differences of R2 lower
than ± 0.05), such as central, eastern, and northeast China [see
Fig. 9(e)]. A similar phenomenon for these typical regions was
found for the differences of R2 between TROSIF and NIRvP
[see blue ellipses and gray rectangles in Fig. 9(f)].

V. DISCUSSION

A. Necessity of Bias Correction for ML-Based Downscaling
Approaches

In this study, we have established a downscaling strategy to
correct the bias in SIF predictions based on RF. The reason for
this predicted bias is that statistics-based ML models, such as RF,
tend to learn the relationship (between SIF and driven variables)
that occurs more frequently in most samples, and the relationship
may change in some cases that cannot be well represented by
one universal model in China. Therefore, once a universal model
based on statistical ML is used for SIF downscaling at large
spatial scales, the bias will inevitably exist. This bias has also
been mentioned in other downscaling studies [16], [47].

To verify whether there is bias using other ML models, we
took XGBoost and ANN models as examples. Similar to Figs. 3
and 4, we have also validated the accuracies of model testing
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Fig. 7. Spatial patterns of annual mean of (a) all-sky TROSIF, (b) all-sky BCSIF, (c) GLAGPP, and (d) landcover in 2019. Enlarged maps show data in northeastern
China.

Fig. 8. Correlations between the 16-day all-sky TROSIF, BCSIF, and NIRvP with the FLUXGPP at 0.05° scales for different biomes in 2019. R2
L and R2

NL

values denote the averaged coefficients of determinations of the linear and hyperbolic nonlinear regressions.

and investigated the performance of SIF predicting before and
after the bias correction. We have found that both XGBoost and
ANN models produce comparable accuracies with the RF model
for testing samples (see Fig. 12). In addition, similar biases, as
shown in Fig. 4(a), exist in the SIF predictions by XGBoost

and ANN, which caused that some scatters (light yellow dots
in the figure) were obviously off the linear trend (see Fig. 13).
Through the bias correction for XGBoost and ANN, the scatters
are more concentrated with higher R2 and lower RMSE values.
This result illustrates the necessity of bias correction when
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Fig. 9. Spatial distribution of the temporal correlations among the 16-day all-sky TROSIF, BCSIF, and NIRvP with the FLUXGPP, and the differences of
corresponding correlations between them at 0.05° scales in 2019. All regressions achieved the significance level of 0.05. (a) R2 (TROSIFas vs. FLUXGPP). (b) R2

(BCSIFas vs. FLUXGPP). (c) R2 (NIRvP vs. FLUXGPP). (d) R2 (BCSIFas vs. FLUXGPP)-R2 (TROSIFas vs. FLUXGPP). (e) R2 (BCSIFas vs. FLUXGPP)-R2

(NIRvP vs. FLUXGPP). (f) R2 (TROSIFas vs. FLUXGPP)-R2 (NIRvP vs. FLUXGPP).

using other statistics-based ML models and further strength-
ens the effectiveness of our downscaling strategy with bias
correction.

B. Prospects of Downscaled SIF for GPP Monitoring

The emitted SIF signal contains photosynthetic physiolog-
ical information about the plant, while NIRvP represents the
vegetation reflected radiation at the near-infrared band, which is
mainly governed by leaf biochemical optical parameters, canopy
structure, and incident and observed geometries. Several studies
[48], [49] demonstrated that SIF can better track the variation
of photosynthesis than NIRvP, especially under conditions of
drought or temperature stresses. According to Fig. 9, compared
with TROSIF, BCSIF has a similar spatial pattern in temporal
correlations with FLUXGPP, and the typical regions where SIF
obviously outperformed or underperformed NIRvP for R2 also
distribute similarly. Thus, it can be inferred that our downscaled
SIF still preserves the physiological information of original
TROPOMI SIF, which can play an important role in monitoring
vegetation GPP.

In China, both the BCSIF and NIRvP have high temporal
consistencies with FLUXGPP [see Fig. 9(b) and (c)], which
indicates that both two products have good potential for GPP
monitoring. For the spatial–temporal correlations of different
biomes, BCSIF is superior to NIRvP, and the advantage is more
noticeable for other types than the forest type, which agrees with

the results in [2]. But for temporal correlations, BCSIF shows
relatively low R2 values in some alpine meadows of Inner Mon-
golia and Tibetan Plateau, which may be due to the low satellite
SIF values and little seasonal dynamic fluctuation caused by
sparse grassland coverage in these regions. On the contrary, in
the savanna region of Yunnan province, BCSIF has obviously
higher R2 values than NIRvP, which is probably caused by the
physiological information in downscaled SIF. Specifically, the
reason may be that the less precipitation in winter-to-spring
transition of Yunnan due to the monsoon climate results in
a suppression of photosynthesis. This dynamic pattern of the
plant’s physiological response to stress can be tracked by SIF
but has little influence on the reflectance-based NIRvP. Similarly,
the different dynamic responses between SIF/GPP and VI or
APAR to the stress have also been reported for evergreen forests
in Colorado, USA, by the research [3].

Moreover, compared with the original TROPOMI SIF,
BCSIF has significant advantages in spatial details and reducing
noises, which provides a better product for the monitoring of
vegetation photosynthesis or physiological state in China. The
finer SIF products with more spatial details at 0.005° resolution
can better capture the spatial variations in GPP. There are also
several studies emphasizing the importance of fine-resolution
SIF in crop yield prediction [50], [51]. On the other hand,
BCSIF largely eliminates the noises in TROSIF, which can be
concluded from Figs. 6, 8, and 9. From this perspective, BCSIF
has the same benefits as the enhanced SIF products that combine
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NIRvP and satellite SIF physiological information generated by
Liu et al. [2].

C. Limitations

First, although the data sources have passed the quality control
before modeling, the uncertainties in them will introduce errors
in the downscaled SIF. On the one hand, the original TROPOMI
SIF retrievals still have errors from the sensors, retrieval mod-
els, and cloud contamination, which will be involved in the
downscaling modeling and validation process, even though we
have reduced the errors by averaging three soundings and by
refining cloudy fractions. Besides, the uncertainties come from
the errors inherent in explanatory variables, such as MODIS
reflectance and ERA5 meteorological parameters, as well as the
interpolation process of those variables.

Second, the uncertainties involved in the resampling of the
bias map will also cause errors in the downscaled SIF. This study
used the nearest neighbor interpolation and Gaussian filter of the
coarse-resolution bias to calculate the high-resolution bias. We
assumed that the 0.05° coarse bias is evenly distributed to each
0.005° grid within it and ignored the different weights in the
bias of different 0.005° grids. This strategy is acceptable because
most of the pixel’s differences inside the 0.05° coarse-resolution
grid are already represented by the SIF predicted by ML, and
the remaining bias is not governed by the driving variables (e.g.,
vegetation reflectance, PAR, or Ta) used in SIF. Besides, within
the scope of existing knowledge, it is difficult to give the law
and influencing factors of the bias in the present results. For
instance, we did not find an apparent relationship between the
spatial pattern of bias in Fig. 11 with that of SIF in Fig. 5
and the landcover map in Fig. 7. Although this strategy will
introduce some errors and does not produce a completely
accurate bias map, it is effective in constraining the 0.005°
ML-based SIF predictions to be closer to the original
SIF.

Third, more robust and accurate deep learning networks or
coupling model-driven and data-driven algorithms need to be
presented for the reconstruction of SIF data in future work. In
addition, how different ways of using methods work should be
quantitatively evaluated further.

Finally, the validation methods of downscaled SIF should be
more adequate and diversified in the future. Since the “truth”
of the downscaled SIF at the space scale is absent, this kind of
downscaling work is needed. A wider range of SIF observation
by aerial or unmanned aerial vehicle platforms is more ideal for
the authenticity verification of SIF predictions.

VI. CONCLUSION

In this study, we presented an improved SIF downscaling strat-
egy, which corrected the prediction bias when using RF model,
and then generated a 0.005° downscaled SIF product in China
(named BCSIF). Compared with the SIF directly predicted by
RF, BCSIF was more consistent with the original TROSIF.
The validation showed that our 0.005° BCSIF had a better
consistency with tower-based SIF than the 0.05° TROPOMI
SIF with an averaged R2 increased from 0.590 to 0.798 at two

sites due to the reduced noises and the more comparable spatial
scale between them. In China, the BCSIF had high consistencies
with FLUXGPP both for biome-specific spatial–temporal cor-
relations and pixel-level temporal correlations, which verified
its good potential for GPP monitoring. For the spatial–temporal
correlations with FLUXGPP in different biomes, BCSIF outper-
formed TROSIF for linear/nonlinear R2 due to its lower noises,
and also outperformed NIRvP, especially for the SAV type.
For temporal correlation, the performance between BCSIF and
NIRvP was comparable in more than half of China. The regions
where SIF obviously outperformed or underperformed NIRvP
in temporal correlations distributed similarly between BCSIF
and TROSIF (i.e., the savanna region in Yunnan province and
some alpine meadows in Inner Mongolia or Tibetan Plateau,
respectively). It implied that BCSIF preserved the physiological
information in the original SIF that might not contained in the
NIRvP.

Our downscaled BCSIF has advantages in spatial details,
reducing noises, and preserving physiological information of
the original TROPOMI SIF, which provided data support for
fine-scale ecosystem monitoring.

Data Availability: BCSIF products at 0.005°, 16-day resolu-
tions in China during 2019 and 2020 are now available for free.2

APPENDIX

Fig. 10. Scatter diagrams between TROSIF and the reaggregated downscaled
BCSIF at the 0.05° scale in January 2019 among different settings of standard
deviation of the Gaussian function. (a) σ = 1. (b) σ = 3. (c) σ = 5. (d) σ = 7.
(e) σ = 9. (f) σ = 11.

2[Online]. Available: https://doi.org/10.5281/zenodo.10371968

https://doi.org/10.5281/zenodo.10371968
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Fig. 11. Spatial patterns of the (a) 0.05° low-resolution prediction biasβLR, (b) 0.005° high-resolution prediction biasβHR, and (c) filtered 0.005° high-resolution
bias β′

HR in August 2019.

Fig. 12. Scatter diagrams between the 0.05° TROSIF and predicted SIF by
(a) XGBoost model and (b) ANN model for the testing samples in 2019.

Fig. 13. Scatter diagrams between TROSIF with PSIF and BCSIF based
on XGBoost and ANN models at the 0.05° scale in 2019. (a) PSIFHR
based on XGBoost model. (b) BCSIF based on XGBoost model. (c) PSIFHR
based on ANN model. (d) BCSIF based on ANN model.
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