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RBFNet: A Region-Aware and Boundary-Enhanced
Fusion Network for Road Extraction From
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Abstract—Most existing road extraction methods prioritize re-
gion accuracy at the expense of ignoring road boundaries and
connectivity quality. The occluding objects such as buildings, trees,
and vehicles in remote sensing data usually cause discontinuous
mask outputs, and consequently affect road extraction accuracy.
In this article, a road extraction fusion network perceiving region
and boundary features is proposed. The combination of a location-
aware transformer and convolutional neural network is responsi-
ble for focusing regional semantic information through adaptive
weight filtering. Combining spatial and channel information, the
graph convolutional network is improved by constructing an in-
tegrated adjacency matrix to consider the relationships between
nodes at different scales, which allows for better capture of multi-
scale contexts. Boundary details are used to complement regional
features, thereby enhancing the connectivity of masks. Comprehen-
sive quantitative and qualitative experiments demonstrate that our
method significantly outperforms state-of-the-art methods on two
public benchmarks, which can improve road extraction by han-
dling interruptions related to shadows and occlusions, producing
high-resolution masks.

Index Terms—Boundary enhancement, integrated GCN, para-
meter filtering, region-aware, road extraction.

I. INTRODUCTION

ROAD coverage, structure, pavement conditions, and the
surrounding environment have a significant impact on the

convenience, smoothness, and safety of traffic-related activities.
Accurate and comprehensive road mask information is essential
for various applications such as road planning, traffic capacity
analysis, functional zoning, map navigation, providing services
that are crucial in these domains. Satellite remote sensing im-
ages provide a relatively inexpensive, objective, and repeatedly
covered way for obtaining surface information over large areas,
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making them a primary data source for road network extraction.
However, the factors such as shapes, widths, lane numbers,
intersection types, as well as occlusions from trees, buildings,
and cloud shadows may obstruct roads in images with a certain
resolution, resulting in blurred and discontinuous boundaries,
which pose challenges in accurately extracting road masks from
remote sensing images.

Recently, significant progress has been made by convolu-
tional neural network (CNN)-based variants [1], [2], [3] in
the application of road extraction. Design concepts such as
multiscale fusion [4], [5], [6], attention [7], [8], lightweight [9],
[10], few-shot [11], and transfer learning [12] have improved
their ability to handle the diversity and complexity of roads.
Simultaneously, optimizing CNNs to enhance the generalization
ability is another important trend. The NLinkNet proposed by
Wang et al. [13] used nonlocal blocks that can capture the
relationships between global features as a way to improve net-
work generalization. Zhang et al. [14] introduced a ResUnet,
which combines the strengths of U-Net and residual connec-
tion, simplifying the parameter count and enhancing accuracy.
However, the disadvantage of these variants lies in limited local
receptive field caused by the fixed-size convolutional kernels,
which makes them more sensitive to the road occlusions caused
by other objects or complex backgrounds. Consequently, the
above framework restricts the effective capture of road structures
at different scales and resolutions, and hinders the modeling of
long-range dependencies across different regions.

Unlike CNNs, transformer [15], [16], [17] captures global re-
lationships among sequences with its self-attention mechanism,
enabling better understanding of the overall road topologies,
which also exhibits a certain robustness to scale variations. Luo
et al. [18] proposed a bidirectional transformer that enhances the
extraction of global and local information, capturing contextual
road information across features of various scales. Similarly,
Tao et al. [19] proposed a Seg-Road model, which leverages
the long-distance dependencies of transformers to improve road
connectivity and alleviate road mask fragmentation. Another
example is RoadFormer, proposed by Jiang et al. [16], which
focuses on semantically relevant features in a sparse global
manner, effectively enhancing the quality and robustness of
road feature representation. Currently, the trend is to combine
CNNs and transformers to further enhance the performance of
such applications, capitalizing on CNNs’ efficiency in spatial

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0009-0007-5204-4418
https://orcid.org/0009-0001-6390-3835
https://orcid.org/0009-0004-1398-3154
https://orcid.org/0000-0001-5777-4144
mailto:liweiming_xd@sdtbu.edu.cn
mailto:lt399124289@163.com
mailto:lt399124289@163.com
mailto:fanshuaishuai@sdtbu.edu.cn
mailto:jiangyh@whu.edu.penalty -@M cn
mailto:jiangyh@whu.edu.penalty -@M cn
https://github.com/ENDYC/RBFNet


LI et al.: RBFNET: A REGION-AWARE AND BOUNDARY-ENHANCED FUSION NETWORK FOR ROAD EXTRACTION FROM HIGH-RESOLUTION 16609

feature extraction and transformers’ ability to handle global
context dependencies. However, the aforementioned methods
still struggle to effectively address road occlusions by objects
such as buildings, trees, etc., as well as poor connectivity in road
inspection due to different geomorphological backgrounds.

Graph neural networks (GNNs) [20], [21] leverage topo-
logical relationships between nodes to aggregate features of
neighbors, and can effectively distinguish roads from other
features in road extraction tasks. Yan et al. [22] introduced a
regularized GNN to process preconstructed road maps derived
from accessible road centerline data. Zhou et al. [23] developed
a SGCN with an adjacency matrix constructed via the Sobel
gradient operator, capturing global contexts in both channels
and spatial features. In addition, Cui et al. [24] proposed a
GDCNet combining GCN and CNN frameworks to generate
complementary spatial-spectral features at the superpixel and
pixel levels, respectively, thereby effectively handling incom-
plete and discontinuous roads. Although the aforementioned
methods have demonstrated promising performance in road
extraction applications, there are still some unresolved issues:

1) Insufficient capability to extract road details. Extracting
details such as road boundaries, signs, intersections, and
other fine-grained information is crucial at a determined
spatial resolution, which often require focused processing
to ensure accurate mask outputs.

2) Limited ability to handle mask connectivity. Roads in
remote sensing images are often occluded by buildings,
trees, and other objects, making it difficult to extract con-
tinuous features and resulting in fragmented road masks.

3) Room for improvement in road extraction accuracy. The
complexity of the background terrain increases the dif-
ficulty of extracting road features within a region, while
how to make comprehensive use of multiple features to
improve the accuracy and robustness of mask extraction
is the difficulty of method design.

The motivation in this work is to enhance extraction accuracy
by incorporating boundary details alongside region features, and
improve mask connectivity with extending the feature represen-
tation dimensions. To address all the above problems concur-
rently, we propose a fusion network for road extraction from
high-resolution remote sensing data, named RBFNet, which
simultaneously focuses on local regions and road boundaries.
The proposed RBFNet enhances the perception capability of
the region-aware branch for road regions by leveraging the
boundary-enhanced branch, which provides additional image
details and edge features. While the region-aware branch deliv-
ers low-dimensional features to the boundary-enhanced branch
to supplement the context information, thus helping it to better
analyze the environment around the road boundaries. The main
contributions of this article are summarized as follows:

1) We propose a region-aware and boundary-enhanced fu-
sion network for road extraction application from high-
resolution remote sensing data. Stacking transformers
with weight-adaptive filtering is employed in region-aware
branch to extract global semantic information, and an
integrated GCN variant is adopted in boundary-enhanced
branch to collect edge relationships. Under the premise

of ensuring that global information and collecting details,
extraction performance and road connectivity are further
improved.

2) A region awareness module (RAM) composed of a multi-
scale feature extraction module (MFEM) and a location-
aware Transformer (LaFormer) based on positioning in-
formation is proposed to effectively extract road re-
gional features through multiscale information capture
and global semantic modeling, taking into account both
the details and topologies. LaFormer is a parallel struc-
ture that utilizes dynamic parameter filtering and bias to
simultaneously focus on global and local information.

3) A boundary enhancement module (BEM) is introduced
to extract details from multiple directions and gener-
ate edge features, thereby enhancing the perception of
road boundaries. An integrated spatial-channel perception
GCN (ISCP-GCN) is proposed for boundary-enhanced
branch to consider the relationship between nodes at
different scales by constructing an integrated adjacency
matrix, which captures multiscale contexts with the fea-
tures of two-branch fusion as input, further enhancing the
feature representation of road boundaries.

The rest sections of this article are organized as follows.
Section II introduces our RBFNet and the design details of
each module, while Section III reports extensive experimental
analyses. Finally, Section IV summarizes the research results,
shortcomings, and future work prospects.

II. METHOD

A. Architecture

To refine road boundary and enhance segmentation accuracy,
and considering the strengths of CNNs, transformers, and GCNs,
we propose a dual-branch fusion network for road extraction,
namely RBFNet, as illustrated in Fig. 1. RBFNet takes high-
resolution remote sensing images X ∈ R3×H×W with height
H and width W as input, and outputs well-defined road masks
Y ∈ R3×H×W . The architecture consists of two branches, one
dedicated to region awareness and the other focused on boundary
details. The region-aware branch comprises multiple cascaded
RAMs, which is composed of a MFEM with a downsampling
operation and LaFormer in series to model global semantic
information. Furthermore, the boundary-enhanced branch con-
sists of BEM, MFEM, and ISCP-GCN, where BEM strengthens
road boundaries and feeds it into MFEM to supplement the
fine-grained details. ISCP-GCN constructs an integrated adja-
cency matrix by integrating spatial and channel information,
expanding the information propagation between nodes to reduce
overfitting, which allows the model to learn more general and
robust feature representations. The fusion of these two branches
enables RBFNet to collect road region representations more
comprehensively while retaining more detailed and global se-
mantic information, thereby enhancing the extraction accuracy
and mask connectivity. The decoding part corresponds to the
encoding part, and the last layer of the decoding part uses a
sigmoid activation function to obtain the prediction masks.
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Fig. 1. Overall architecture of the proposed RBFNet.

Fig. 2. Internal structure of RAM and MFEM. (a) RAM. (b) MFEM.

B. Region Awareness Module

The region-aware branch is designed to gather multiscale
information and model the global semantics of roads, and the
feature encoding part consists of multiple concatenated RAMs.
Ulteriorly, RAM consists of MFEMs, downsampling operations,
and LaFormers, and the structure is shown in Fig. 2. MFEM
first applies two 3× 3 convolutions for feature extraction, and
then employs three parallel convolutions using 3× 3, 5× 5,
and 7× 7 filters, aiming to increase the diversity of semantic
features.

Most traditional transformers and their variants treat the
importance of all information equally when extracting global
semantic information [17], [19], [25]. In contrast, LaFormer con-
sists of layer normalization (LN), location-aware self-attention
(LSA), and multilayer perceptron (MLP), as illustrated in
Fig. 3(a), and it focuses more on the regions of interest through
dynamic parameter filtering and bias, thereby better capturing
local details while maintaining global information. Fig. 3(b)
shows that LSA in LaFormer is composed of a local informa-
tion supplement unit and a location-aware attention in parallel.
The first part supplements local information by convolutions to
address the issue of insufficient detail information processing
in transformers. Meanwhile, the latter captures positional infor-
mation using variable parameters (V P ), allowing LaFormer to
prioritize regions with road distribution, and then utilizes bias

Fig. 3. Internal structure of LaFormer and LSA. (a) LaFormer. (b) LSA.

parameters to reduce the influence of features resembling roads
on the outputs.

LaFormer performs a linear transformation on the output
F S ∈ Rri−1C×H

ri
×W

ri with i ∈ (1, 2, . . . , i) of MFEM to ob-
tain sequence X ′ ∈ Rc×(h×w) (c = ri−1C, h = H

ri , w = W
ri ),

and then the components of Query (Q ∈ Rc×(h×w)), Key
(K ∈ Rc×(h×w)), and V alue (V ∈ Rc×(h×w)) in LSA can be
formalized as

⎧⎪⎨
⎪⎩
Q = X ′ ·WQ

K = X ′ ·WK

V = X ′ ·W V

(1)
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where WQ ∈ Rc×c,WK ∈ Rc×c, and W V ∈ Rc×c represent
learnable weights, respectively. c denotes the channel dimen-
sion, and h, w are the height and width of features.

To ensure that the features extracted by RBFNet contain more
details, in the local information supplement unit, Q, K, and
V are concatenated along the channel dimension to obtain the
feature F t ∈ R3c×h×w

F t = concat(Q,K,V ) (2)

where concat(∗) is the channel concatenation operation.
Furthermore, local detail extraction and dimension adjust-

ment are carried out on F t after a 3× 3 convolution operation
Conv3×3(∗) and a 1× 1 convolution Conv1×1(∗) successively.
The output y1 ∈ Rc×h×w of this part can be calculated as

y1 = Conv1×1(σ(Conv3×3(F t))) (3)

where σ(∗) represents the activation function.
The attention An ∈ Rc×c of the output from the location-

aware attention can be represented as

An = softmax
(
QKT/

√
d · V P +W α

)
V (4)

whereW α ∈ Rc×c denotes the bias parameters for adjusting the
weight distribution, and V P ∈ Rc×c represents the VPs used
to effectively capture location information, which is adaptively
generated based on the road positions in each patch, allocating
greater weights to these key regions. Both of the above are
obtained through network learning.

Assuming W s ∈ Rc×c represents the weight parameter ma-
trix for the learned road region features, we perform a filtering
operation on it by using the adaptive threshold ks to obtain wti ,
which can be expressed as

wti =

{
0, if ws < ks
ws, otherwise

(5)

where ws ⊂W s, wti ⊂W ti , and W ti ∈ Rc×c is the filtered
parameter matrix.

Afterward, V P undergoes self-updating using W ti to
achieve adaptive weight allocation, thereby allowing the
RBFNet to pay more attention to road regions and enhancing
it sensitivity to road features

V P = W ti � V P (6)

where symbol � denotes the dot product operation.
However, we have observed that some patches may contain

features that are similar to road features but not relevant. To
prevent the proposed RBFNet from overly emphasizing these
irrelevant features, the matrix W α is employed to fine-tune
the weight distribution. Similar to the generation of V P , W α

is learned based on the features extracted by MFEM in the
boundary-enhanced branch, specifically targeting the road dis-
tribution in each patch.

Similarly, we define the weight parameter matrix from the
learned road boundary features as W b ∈ Rc×c, and each ele-
ment wb is filtered based on the adaptively learned threshold kb

Algorithm 1: Feature Extraction Process of LSA in
LaFormer.

Input: The features F S ∈ Rc×h×w, adaptive parameters
threshold ks, kb, boundary features FB ∈ Rc×h×w.

Output: results y ∈ Rc×h×w are the output of LSA
1: F S is converted to X ′ by linear layers
2: X ′ is converted to Q, K, and V through the matrices

WQ,WK , and W V

3: Concat Q, K, and V together in dimensions to get F t

4: y1 = Conv1×1(σ(Conv3×3(F t)))
5: for each feather patch do

6: W s = S(F S), W ti
ks←W s

7: Multiply W ti by the adaptive matrix V P

8: W b = S(FB), W tj
kb←W b

9: Multiply W tj by ε as W α

10: An = softmax(QKT/
√
d · V P +W α)V

11: end for
12: y2 = Conv1×1(project(An))
13: y = y1 × y2

to obtain the filtered matrix W tj ∈ Rc×c. That is

wtj =

{
wb, if wb < kb
0, otherwise

(7)

where wtj ⊂W tj .
Then, W α is obtained via multiplying W tj by a small scalar

ε, allowing for slight adjustments to the attention regions, which
flexibility is crucial for adapting to different road scenarios and
environmental changes, ensuring that our model performs well
under various conditions.

After mapping An, we pass it through a 1× 1 convolution
to obtain the final output y2 ∈ Rc×h×w of the location-aware
attention

y2 = Conv1×1(project(An)) (8)

where project(∗) represents the mapping operation.
The feature y ∈ Rc×h×w of LSA is obtained by fusing the

two above outputs, and the pseudocode procedure of LaFormer
is presented in Algorithm 1

y = y1 × y2 (9)

C. Boundary Enhancement Module

The boundary-enhanced branch is designed to strengthen the
road boundary and acquire global contextual information, so as
to supplement the lost details in the region feature extraction pro-
cess, and improve the segmentation accuracy and road connec-
tivity. The BEM is utilized to generate edge features and perceive
road boundaries, thereby reducing confusion between roads and
the surrounding backgrounds, which helps to improve the accu-
racy of road boundary recognition, and its structure is shown in
Fig. 4.
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Fig. 4. Structure of BEM.

Fig. 5. Boundary features generated by operators at different angles and the
outputs from different stages of BEM. (a) is the original image, (b) is the result of
horizontal filtering, (c) is the result of vertical filtering, (d) is the fused output in
the horizontal and vertical directions, (e) is the output with our method, (f)–(h)
are the outputs of BEM at each stage.

Most traditional edge detection methods, such as Roberts [26],
Wallis [27], morphological operators [28], and wavelet [29], pri-
marily filter images by convolutional templates to extract edge
information. However, these algorithms have limitations in con-
sidering the directional features of object boundaries, leading to
some loss of details. The Sobel operator [30] extracts edge infor-
mation in images using first-order gradients in the horizontal and
vertical directions. However, for the application of road network
extraction, the edge details extracted from these two directions
alone are insufficient, as seen in the results in Fig. 5(b)–(d). To
address this, we draw inspiration from the Sobel operator and
design BEM for edge detection, which is designed with a span
of 45◦ and incorporates four directional operators, then fused to
capture more detailed features from different orientations. The
specific kernel parameters for the filtering operators are given
as

K0◦ =

⎡
⎢⎣ 1 2 1

0 0 0

−1 −2 −1

⎤
⎥⎦ K45◦ =

⎡
⎢⎣2 1 0

1 0 −1
0 −1 −2

⎤
⎥⎦

K90◦ =

⎡
⎢⎣1 0 −1
2 0 −2
1 0 −1

⎤
⎥⎦ K135◦ =

⎡
⎢⎣0 −1 −2
1 0 −1
2 1 0

⎤
⎥⎦ (10)

where K0◦ ,K45◦ ,K90◦, and K135◦ represent edge filting op-
erators with angles of 0◦, 45◦, 90◦, and 135◦, respectively.

By applying these operators at different angles to the input
image Xi, the gradient GB can be expressed as

GB =
∑
j

Xi �Kj , j = 0◦, 45◦, 90◦, 135◦. (11)

After smoothing features and dimensional adjustments with a
1× 1 convolution,GB ∈ R1×h×w is fused withXi ∈ Rc×h×w,
and finally normalized with the function sigmoid(∗) to obtain
edge enhancement feature XBEM ∈ Rc×h×w, that is

XBEM = sigmoid(Xi � Conv1×1(GB)). (12)

To verify the effectiveness of BEM in segmenting edges of
low-dimensional features, we visualize the outputs of BEM at
each stage, as exhibited in Fig. 5(f)–(h). Observation of the
visualization results reveals that BEM can effectively segment
low-dimensional road features from the background. Comparing
the third stage to the second stage, the road features become more
prominent, indicating that as BEM progressively extracts and
enhances features, it can effectively focus on the road regions,
further improving the accuracy of RBFNet in detecting road
boundaries.

D. Integrated Spatial-Channel Perception GCN

GCN is adopted to process high-dimensional features in the
boundary-enhanced branch, better capturing the global relation-
ships among pixels, thus improving the understanding of the
semantic structure of the entire image. However, the traditional
GCNs only consider the information propagation between nodes
and their neighbors, which cannot effectively process multiscale
information [31], [32]. This limited local perception capability
leads to decreased extraction performance, especially for large-
scale road remote sensing images [33]. To address the aforemen-
tioned issues, ISCP-GCN is constructed by integrating spatial
and channel dimensions to enhance feature representation, thus
improving the model’s awareness of global contexts in images
and reducing overfitting. Furthermore, edge detail features are
fused into the constructed adjacency matrix to enhance the rep-
resentation of road boundaries. The construction of the channel
feature matrix allows the network to learn the correlations and
interactions between channels, which helps strengthen the focus
on specific channels in road extraction tasks and improves the
network’s perception of key information. The construction of the
spatial feature matrices enable the model to learn the relative
positions of spatial pixels, thereby better understanding the
semantic structure and contextual relationships of road regions.

The spatial and channel features XS ∈ RN ′×C ′ , XC ∈
RN ′×C ′ are obtained by depth separable convolutions and
flattening operations for the high-dimensional feature X∗ ∈
RC ′×H ′×W ′

generated by MFEM in boundary-enhanced branch,
where N ′ denotes the number of nodes, with its value
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Fig. 6. Construction process of the integrated adjacency matrix.

being the product of H ′ and W ′ (C ′ = ri−3C, H ′ = H
ri−2 , and

W ′ = W
ri−2

)
.

XS = Flatten(ConvDw(X
∗)) (13)

XC = Flatten(ConvPw(X
∗)) (14)

where ConvDw(∗) and ConvPw(∗) represent the depthwise
and pointwise convolution operations, respectively. Flatten(∗)
denotes the flattening operation.

To construct the integrated adjacency matrixA ∈ RN ′×N ′ for
ISCP-GCN to better aggregate node features, XS and XC are
treated as undirected graph G = (V ,E), V is the set of nodes,
and E is the set of edges. The construction process is shown
in Fig. 6, the spatial matrices X∗

S ∈ RN ′×C ′ , X ′
S ∈ RC ′×N ′ ,

and the channel matrix X ′
C ∈ RC ′×C ′ are obtained through the

linear processing Linear(∗), global average pooling (GAP), and
global max pooling (GMP) operations, which can be formalized
as

X∗
S = Conv1×1(PoolGM (XS)) (15)

X ′
S = Linear(PoolGM (XS)) (16)

X ′
C = Linear(PoolGA(XC)) (17)

where PoolGM (∗) and PoolGA(∗) represent global max and
average pooling operations, severally.

The calculation of similarity and weights between different
channels helps the model to better understand the relationships
and dependencies between multiple channels, and improve the
model’s perception of channel features. Therefore, the channel
feature matrix AC ∈ RN ′×N ′ can be further calculated as

AC = X∗
C · TransP (X ′

C) ·X∗T
C (18)

where X∗
C ∈ RN ′×C ′ = Conv1×1(XC), X

∗T
C ∈ RC ′×N ′ is the

transpose matrix of X∗
C , and TransP (∗) represents the transpo-

sition product operation.
Similarly, the spatial feature matrixAS ∈ RN ′×N ′ is obtained

by calculating the similarity and weights of different spatial
positions to enhance the model’s understanding and perception
of the dependencies between various regions in the images, that

is

AS = Conv1×1(X ′
S)

T · Conv1×1(X ′
S)�X ′

S ·X∗
S . (19)

The final integrated adjacency matrix Ã ∈ RN ′×N ′ can be
represented as

Ã = AS +AC + I. (20)

Then, the graph convolution operations are performed by
utilizing Ã, which is formulized as

H l+1 = σ

(
D̃
− 1

2 ÃD̃
− 1

2H lW l

)
(21)

where D̃ ∈ RN ′×N ′ is a diagonal matrix and its elements d̃ii on
the diagonal represent the degrees of the corresponding nodes,
such that d̃ii =

∑
j ãij , ãij ⊂ Ã. H l ∈ RN ′×C ′ is the output of

the previous layer l, and W l ∈ RC ′×C ′ is the trainable weight
parameters for the lth layer.

E. Loss Function

RBFNet employs Dice as the loss function, which calculates
the similarity between the predicted results and the actual labels.
Specifically, the Dice coefficient computes the ratio of the over-
lap between two sets to their total size. The relationship between
Dice loss LDice and Dice coefficient CfDice is as follows:

LDice = 1− CfDice (22)

CfDice =
2× TP

TP + FN + TP + FP
(23)

where TP represents the number of correctly classified pixels,
FP is the number of misclassified positive sample pixels, TN
and FN are the number of correctly and misclassified classified
background pixels, respectively.

III. EXPERIMENTAL ANALYSIS

To demonstrate the effectiveness of our RBFNet, performance
comparison tests on two publicly available datasets are con-
ducted with various state-of-the-art methods, and some ablation
experiments are further performed to compare the contributions
and applicability of each proposed functional module to the over-
all performance. Mean precision (mP), mean recall (mR), mean
intersection over union (mIoU), road intersection over union
(Road IoU), and mean F1-score (mF1) are used as evaluation
metrics. The specific computation formulas can be found in [34],
and the recorded values of each metric in the experiments are
the average values obtained after multiple trials.

The experimental evaluations in this article are performed on
the following two publicly available datasets, namely, Deep-
Globe Road Extraction (DGRE) [35] and Massachusetts Roads
(MR) datasets [36], which contain samples of different land
cover categories, including urban, rural, and tropical rainforest
areas, etc. All the samples are randomly split into training,
validation, and testing sets, and the configuration parameters
are listed in Table I.

All methods are implemented using PyTorch 1.10.1 and tested
on an NVIDIA RTX3060ti GPU with a consistent software
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TABLE I
PARAMETERS OF TWO DATASETS USED IN THIS ARTICLE

environment. During the training process, LeakyReLU is used
as the activation function, and Adam algorithm is optimizer,
COS is employed for adjusting the learning rate. It is worth
emphasizing that the runtime environments of all methods are
consistent, and the internal parameters of the comparative meth-
ods are default and consistent with their original papers. The
number of stages in the encoding and decoding parts of the
region-aware branch of RBFNet is set to 4. In addition, we
fine tune the parameters through multiple experiments based on
existing theories and experiences, setting the learning rate from
1e−6 to 1e−4, training batch size to 8, ε to −0.01, iterating
200 epochs, and most networks converged within 125 epochs of
training.

A. Comparison Experiments

Fifteen state-of-the-art methods recently applied to road
extraction tasks, including NLinkNet [13], DLinkNet [37], Re-
sunet [14], DeepLabV3+ [38], CoANet [39], PSPNet [40], Seg-
Road [19], DSMSA-Net [41], RoadFormer [16], Segformer-
b4 [42], SwinUnet [43], DGCN [44], TGDAUNet [45], GD-
CNet [24], and SGCN [23], are compared with the proposed
RBFNet on the aforementioned datasets to validate their effec-
tiveness. The experimental results on the testing set are detailed
in Table II, the best results are highlighted in bold, while the
suboptimal values are underlined. The corresponding visual
results are shown in Figs. 7, 8, 9, and 10.

RBFNet outperforms the second-best method (i.e., SGCN) by
0.86% and 1.86% in terms of mF1 and mIoU on the MR dataset,
respectively. Similarly, our main evaluation metrics, mF1 and
mIoU, are respectively 0.77% and 1.04% higher than the subop-
timal SGCN on the DGRE dataset, which further demonstrates
that RBFNet exhibits robustness and generalization capabilities
across different datasets. The above performance advantages can
be attributed to the ability of region-aware branch to collect
multiscale information and conduct global modeling, and the
ability of boundary-enhanced branch to enhance edge informa-
tion and obtain global context information, thereby improving
segmentation accuracy and road connectivity.

Fig. 7 depicts the performance of the above methods outlined
in Table II on the MR dataset, and four representative sample
instances are selected for comparison and explanation. PSPNet
performs poorly on this dataset, identifying only the rough
outline of fewer roads. CoANet and DSMSA-Net exhibit more
missed and incorrect detections, as observed from Fig. 7(b),
owing to their failure to adequately address features similar
to roads. In addition, DeepLabV3+, Segformer, and SwinUnet
face challenges in maintaining good connectivity and exhibit

a higher number of missing regions. Although NLinkNet, Re-
sunet, and Seg-Road perform better overall, they are less effec-
tive at extracting complex roads and small objects, as highlighted
boxes in Fig. 7. In contrast, our proposed RBFNet demonstrates
excellent performance on this dataset, which is attributed to
the important consideration of global semantic information for
road segmentation within our model. Furthermore, as shown in
Fig. 7(a), the results of the four GCN-based methods compared
with our RBFNet indicate that RBFNet demonstrates superior
road connectivity with little difference in evaluation metrics,
because ISP-GCN enables the model to better understand the
topology of the road network.

The magnified view exhibited in Fig. 8 also confirms the
above conclusions, it is evident that our RBFNet maintains
better road connectivity when dealing with road features. Among
other comparison networks, NLinkNet exhibits slightly better
extraction performance than the transformer-based approaches,
indicating that it leverages the collection and fusion of local
information at different scales to enhance overall performance
as a variant architecture of CNNs. However, as seen in the in-
stance of Fig. 8(c), NLinkNet has some limitations in extracting
road features in complex environments, due to its insufficient
ability to perceive global information and contextual topology.
Seg-Road performs best among transformer-based approaches,
as it effectively understands long-range road features and en-
sures road connectivity to a certain extent, thereby addressing
the issue of fragmented roads. However, it faces difficulties in
extracting fine-grained road features, as evident from Fig. 8(d).
SGCN stands out as the best-performing model in GCN-based
networks, utilizing different features to collect global context
information and capturing road feature relationships using graph
structures, thereby improving road extraction accuracy. How-
ever, as depicted in Fig. 8(b), this model evidently ignores the
treatment of similar features.

Sample instances are selected from rural, urban, city, and high
vegetation coverage images to further validate the algorithm’s
performance. The visual comparison results of all the mentioned
comparison methods on the DGRE dataset are presented in
Fig. 9, while Resunet, PSPNet, and SwinUnet exhibit the poorest
extraction performance among them. Fig. 9(b) shows that most
models experience missed and incorrect regions. Although our
model also had some false positives, it demonstrates better
overall performance compared to others. The case shown in
Fig. 9(c) shows that the masks extracted by RBFNet, SGCN,
and TGDAUNet are relatively complete, especially in terms
of fine-grained road features. However, there are some errors
detected by TGDAUNet, while RBFNet achieves a higher level
of completeness in feature extraction than SGCN. The same
trend in Fig. 9(a) further visually supports the aforementioned
observations. The underwhelming performance of Resunet on
the DGRE dataset indicates that the model is affected differently
by different data samples. However, our model performs opti-
mally on both datasets, which indicates its decent generalization
ability to some extent.

Similarly, Fig. 10 is a highlighted magnification of Fig. 9,
from which it clearly shows that our RBFNet surpasses others
in terms of segmentation accuracy. This is attributed to the
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TABLE II
PERFORMANCE METRICS OF VARIOUS METHODS ON THE MR AND DGRE DATASETS

TABLE III
ABLATION RESULTS ON THE MR DATASET UNDER DIFFERENT MODULE COMBINATIONS

TABLE IV
ABLATION RESULTS ON THE DGRE DATASET UNDER DIFFERENT MODULE COMBINATIONS

utilization of CNN to extract multiscale features, combined with
transformer’s detail information extraction module and location
information attention mechanism, so as to more effectively pro-
cess local details while maintaining global information integrity.
The incorporation of GCN further enhances the model’s ability
to perceive road features, endowing it with powerful modeling
capabilities. In Fig. 10(b), the segmentation effect of most
models is not ideal due to occlusions caused by buildings and
shadows. However, our model still exhibits good segmentation
performance, indicating its ability to capture road topology more
effectively. In addition, Fig. 10(c) illustrates that our RBFNet
collects more detailed information compared to other models
in situations such as curves and intersections, thus improving
the segmentation accuracy. The instance shown in Fig. 10(d)
also demonstrates the superiority of our RBFNet in complex
environments.

B. Ablation Experiments

1) Single Module Ablation Experiment: The ablation exper-
iments are organized on the two datasets to test the contribution

of multiple functional modules, including BEM, LaFormer, the
auxiliary part (the pipeline of this component is depicted with
the green range in Fig. 1), and ISP-GCN. Tables III and IV and
Fig. 11 record the test results for different module combinations.
In case (I), the removal of BEM reduces the ability of the
model to extract the boundaries of the sample instances for both
datasets, as can be seen from the gap in the table relative to case
(V). The main evaluation metrics, mF1 and mIoU, decreased
by 1.44%, 1.29%, and 0.69%, 0.91%, respectively, compared
to case (V). Case (II) displays a decrease in mF1 and mIoU by
2.32%, 1.91%, and 2.34%, 2.05%, respectively, compared to
case (V), due to the excisions of the auxiliary part, leading to a
weakening of detail extraction.

In the absence of LaFormer, case (III) is significantly detri-
mental to make model to perform global modeling and handle
long-range dependencies, and has a decrease in mF1 and mIoU
by 3.74%, 3.58%, and 2.95%, 3.82%, respectively, compared
to case (V). Case (IV), after ISCP-GCN is removed, leads
to the model’s inability to collect sufficient global contextual
information, resulting in a reduction of mF1 and mIoU by 3.05%,
2.62%, and 2.92%, 2.52%, respectively, compared to case (V).
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Fig. 7. Visual comparison results of various methods on the MR dataset.

Furthermore, Fig. 11 visually reflects the impact of each
module on our model. Obviously, removing LaFormer would
have the most significant impact on the RBFNet. By modeling
global semantic information, LaFormer helps models better
understand the overall structure and semantic information of
images. As a result, when LaFormer is removed, the model’s
ability to understand global information decreases, resulting in
a significant drop in performance. In contrast, removing the
auxiliary part or BEM has relatively little effect on the model
because their effects can be partially compensated by other
parts. This does not mean that their role is not important, but
indicates that the model has some robustness and can adapt to
these changes to a certain extent. The above results show that
each module in the proposed RBFNet contributes positively to
the improvement of performance.

Figs. 12 and 13 display the qualitative test results of the
sample instances corresponding to Tables III and IV, respec-
tively. The completeness is highlighted with yellow, while the
correctness is highlighted with pink. The BEM is beneficial to
extract edge information from the images, thereby enhancing the
recognition of fine-grained features. However, when the BEM is
removed, RBFNet struggles to accurately judge the features of
small objects during the feature extraction process, consequently
affecting the extraction accuracy. Fig. 12 and Table III validate
the aforementioned observations. The design motivation behind
LaFormer is to enhance the network’s focus on regions of interest
by introducing dynamic and bias parameters, thus increasing
its sensitivity to road regions. Therefore, removing LaFormer
would decrease the network’s attention to regions of interest, re-
sulting in a significant decline in extraction effect. From Fig. 13,
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Fig. 8. Comparison of magnified highlighted regions on the MR dataset.

we can observe that extensive missing occurs once LaFormer is
removed. Further examination of Fig. 12 reveals the presence
of some false detections in the visualization results, which is
primarily because the absence of LaFormer leads to a decrease
in the model’s ability to resist interference from similar features.
In the boundary-enhanced branch, the auxiliary part processes
low-dimensional edge features to compensate for the lack of
detailed information, which plays an active role in improving
extraction. Removing it weakens the network’s ability to handle
fine-grained details, thereby affecting the accurate capture of
road edges and details. The difficulty of detecting small roads in
Fig. 12 confirms the functionality of the auxiliary part. In addi-
tion, the removal of the auxiliary part prevents the transmission
of edge information to LaFormer, which results in the inability

to exclude the interference of similar features, resulting in some
localized error detection cases.

The ISCP-GCN is significant for enhancing the capture of
multiscale information and considering the relationships be-
tween nodes. Removing ISCP-GCN results in limited local per-
ception, leading to a decline in detection performance, especially
when dealing with large-scale road networks. The road connec-
tivity degradation in Fig. 13 validates the above description. In
conclusion, the experimental results affirm the beneficial impact
of the aforementioned key modules on the overall performance
of RBFNet. Their organic combination enables the network
to comprehensively understand road images and enhances the
extraction performance of small objects, regions of interest,
edges, and multiscale information.
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Fig. 9. Visual comparison results of various methods on the DRGE dataset.

2) Multimodule Ablation Experiment: To investigate the
effectiveness of combining any two modules, ablation exper-
iments are still conducted on the both datasets, which are
recorded in Tables V and VI. From case (I), it is evident that
after removing the auxiliary part and ISCP-GCN, the model’s
ability to extract boundary detail information is significantly
decreased. Compared to case (VII), mF1 and mIoU are dropped
by 3.59%, 2.78%, and 5.28%, 4.08%, respectively. The removal
of LaFormer and ISCP-GCN significantly weakens the RBFNet
to eliminate the interference of similar features owing to feebly
capturing global context information and multiscale features,
thus significantly reducing the performance. In terms of mF1
and mIoU, there are 6.3%, 6.48% and 6.77%, 6.29% decreases
compared with case (VII), respectively. When both LaFormer
and the auxiliary part are removed, the global modeling

capability is weakened, along with its ability to extract local
boundary information, leading to mF1 and mIoU in case (III)
decreasing by 4.67%, 4.53%, and 6%, 4.25%, respectively,
compared to case (VII). Similarly, cases (IV)–(VI) are mainly
the removal of BEM combined with several other modules, all
of which reduce the boundary detail enhancement ability of the
whole model and the semantic sensitivity to varying degrees.

The above phenomenon shows that the combination of differ-
ent modules can significantly improve the performance of the
model. Each module plays a different role in obtaining global
context information, extracting multiscale features, enhancing
boundary detail processing, and improving road boundary per-
ception. When any two modules are removed, the performance
of the model decreases to varying degrees, further verifying the
indispensability of each module in the overall model. Figs. 14
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Fig. 10. Comparison of magnified highlighted regions on the DGRE dataset.

TABLE V
ABLATION RESULTS ON THE MR DATASET UNDER ANY TWO MODULES COMBINATIONS
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TABLE VI
ABLATION RESULTS ON THE DGRE DATASET UNDER ANY TWO MODULES COMBINATIONS

Fig. 11. Ablation experimental results of different modules on the two
datasets. (a) MR. (b) DGRE.

Fig. 12. Visualization results of ablation experiments on the MR dataset for
different modules.

Fig. 13. Visualization results of ablation experiments on the DGRE dataset
for different modules.

Fig. 14. Visualization results of ablation experiments on the MR dataset for
any two modules.

Fig. 15. Visualization results of ablation experiments on the DGRE dataset
for any two modules.

and 15 show the qualitative test results of sample instances cor-
responding to Tables V and VI, respectively, with completeness
highlighted in yellow and correctness highlighted in pink. From
Fig. 15(b), it can be seen that the combination of BEM and
ISCP-GCN plays a crucial role in handling boundary texture
details, and the combination of BEM and the auxiliary part is
vital for enhancing road boundary perception and ensuring road
continuity. Fig. 15(a) exhibits the reduced boundary continuity
caused by the above two modules removal. The combination of
LaFormer and ISCP-GCN is critical to improving the model’s
ability to process multiscale features and eliminate interference
from similar features, which is particularly highlighted in the
result of case (II) in Tables V and VI and Fig. 14(c). In summary,
each module plays a unique role in capturing and processing spe-
cific information, and their collaborative operation significantly
improves the model’s performance in complex scenarios.
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TABLE VII
PERFORMANCE ANALYSIS OF VARIOUS TRANSFORMER VARIANTS ON THE TWO DATASETS

Fig. 16. Comprehensive performance comparison of various transformer vari-
ants on the two datasets. (a) MR. (b) DGRE.

C. LaFormer Analysis

Comparison tests are organized to analyze the performance
differences between LaFormer and other transformer variants
(such as MaxVit [46], Edter [47], Restormer [48], and DAT [49]),
and the results are recorded in Table VII, the correspond-
ing visual results are shown in Fig. 16. DAT combines high-
dimensional with low-dimensional features to effectively in-
tegrate global and local information, which can enhance the
model’s performance and generalization ability. However, the
collection of local information by the model is relatively limited,
failing to provide sufficient detailed information for road seg-
mentation tasks. LaFormer demonstrates excellent performance
in road extraction, achieving the best performance on both
datasets. As observed from Table VII, LaFormer outperforms the
second-best model (i.e., DAT) by 0.54% and 1.62% in the term
of mIoU and Road IoU on the MR dataset. This indicates that the
design of LaFormer considers the specific characteristics of road
extraction tasks, allowing the model to better handle road struc-
tures under different scenarios and environmental conditions.
Other models, on the other hand, fail to fully consider the inte-
gration of global and local information such as LaFormer, result-
ing in a more comprehensive understanding of road structures.
Similarly, on the DGRE dataset, mIoU of LaFormer is 1.06%
higher than DAT, while Road IoU is 2.19% higher, indicating
that the local detail feature enhancement and location adaptive
mechanism enable LaFormer to achieve significant improve-
ment. The learning strategy of the model is adjusted adaptively,
so that RBFNet can maintain high performance in different
scenarios. Fig. 16 also shows that LaFormer offers greater
performance and versatility compared to other transformer
variants.

Fig. 17. Comprehensive performance comparison of various GCN and trans-
former variants on the two datasets. (a) MR. (b) DGRE.

D. ISCP-GCN Analysis

To analyze the performance advantages and contributions of
ISCP-GCN in road extraction tasks, comparative analyses are
conducted with other four GCNs and four transformer variants,
including D-GCN [50], MC-GCN [51], RG-GCN [52], BNS-
GCN [53], ViT [54], swin transformer [55], deformable trans-
former [56], and MASFormer [57]. The experimental results
are presented in Table VIII and Fig. 17. ISCP-GCN achieves the
best results on the MR dataset, outperforming the second-best
model (i.e., BNS-GCN) by 0.9% on mIoU. This is attributed to
its ability to generate graph topologies using different features,
resulting in more informative feature representations and ex-
cellent analytical capabilities for different-scale road structure
patterns, Fig. 17 also fully demonstrates the above situation.
The second-best method, BNS-GCN, divides the entire graph
by minimizing the number of boundary nodes to reduce com-
munication and memory costs. However, the random sampling
of boundary nodes may lead to the loss of important information,
thus affecting the accuracy of road detection. Similarly, on the
DGRE dataset, ISCP-GCN achieves an mIoU 1.35% higher than
BNS-GCN, which indicates that integrating boundary features
helps improve the perception of road structures. ISCP-GCN
comprehensively synthesizes different types of attention matri-
ces, avoiding excessive reliance on specific information from a
particular aspect, and can learn more general and robust feature
representations.

Both quantitative and qualitative results show that the GCN-
based methods outperform the transformer variants in overall
performance due to differences in mechanism and scenario
application solution requirements. One of the best performing
transformer variant is MASFormer, which has a mixed attention
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TABLE VIII
PERFORMANCE ANALYSIS OF VARIOUS GCN AND TRANSFORMER VARIANTS ON THE TWO DATASETS

span and can achieve full focus on long-range dependencies
and sparse focus on short-range dependencies. Although it can
compensate for a certain degree of local information loss, its
performance is still not comparable to other GCNs. The reason
ISP-GCN performs well in road extraction tasks can be attributed
to its ability to handle detailed textures. The structure of GCN
allows it to efficiently capture spatial relationships between
pixels and interactions between channels by constructing ad-
jacency matrices, which compels the model to focus more on
the details and textures of the road boundaries. In contrast,
although transformer variants have certain advantages in global
modeling, they often result in blurred boundaries and an inability
to capture detail and texture effectively, which is detrimental to
tasks requiring precise road extraction.

IV. CONCLUSION

This article proposes a dual-branch fusion model RBFNet for
road extraction task in high-resolution remote sensing images.
The region-aware branch is based on LaFormer and pays more
attention to the regions of interest, thus increasing sensitivity.
The boundary-enhanced branch is employed to extract edge
details, enhance the model’s ability to capture fine-grained fea-
tures, and supplement the multiscale global semantic features.
The introduction of ISP-GCN enables the model to better capture
multiscale contextual information and topological structures,
and effectively improve the connectivity of road masks. Ex-
tensive comparison and ablation experiments demonstrate that
RBFNet achieves an average mIoU of 79.54% and an mF1 of
87.45% on the MR dataset, while for the DGRE dataset, the
average mIoU and mF1 are 81.70% and 89.13%, respectively.
RBFNet performs exceptionally well in extracting road masks
from high-resolution remote sensing images, particularly in
capturing coverage and small roads. However, the computational
complexity of RBFNet is high, which will affect its performance
in real-time applications. Meanwhile, the model’s quantification
and understanding of uncertainty are not thorough enough,
which may lead to performance degradation or instability when
encountering invisible complex scenes. Future work will focus
on addressing the aforementioned potential limitations. Inte-
grated uncertainty modeling techniques are considered to solve
the forecast uncertainty, while improving the robustness and
reliability of the model under complex scenarios.
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