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Few-Shot Remote Sensing Scene Classification via
Subspace Based on Multiscale Feature Learning

Anyong Qin

Abstract—Because of the challenges associated with the difficulty
of accurately labeling the remote sensing (RS) scene images and
the need to identify new scene classes, few-shot learning has shown
significant advantages in addressing the remote sensing scene clas-
sification (RSSC) tasks, leading to a growing interest. However,
due to the scale variations of targets and irrelevant complex back-
ground in scene images, the current few-shot methods exist the
following problems: the problem of the extraction capability of
feature extractor in the few-shot mechanism; the problem of the
separability of few-shot RS scene images classifier. To solve the
above problems, an approach, called few-shot RSSC via subspace
based on multiscale feature learning is introduced in this work. We
first design a multiscale feature learning technique to address scale
variations of the targets in the scene images. Concretely, different
branches are utilized to learn scene features at various scales. The
self-attention mechanism is embedded in each branch to incorpo-
rate the understanding of the global information in the different
scale features. After that, a multiscale feature fusion operation,
incorporating channel attention, will be devised to effectively merge
the different scale features, so as to obtain a more precise feature
representation of RS scene images. Furthermore, the subspace is
utilized to capture the shared characteristics of each category, to
reduce the impact of the complex irrelevant backgrounds in the
scene images. The results of our experiments conducted on the
public available RS scene datasets demonstrate the strong com-
petitiveness of our approach.

Index Terms—Attention mechanism, few-shot learning,
multiscale, remote sensing scene classification (RSSC), subspace
classifier.

I. INTRODUCTION

EMOTE sensing scene classification (RSSC) has aroused
R growing interest as a crucial technology for accurately
interpreting the remote sensing (RS) images. The goal of RSSC
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is to assign a distinct category label to each RS image according
to its content, enabling differentiation of various scenes [1]. It
has wide applications in diverse fields such as urban planning [2],
disaster detection [3], geospatial object detection [4], land cover
classification [5], etc., [6], [7], [8].

Recently, machine learning, which has been extensively ex-
plored by many researchers, has become the popular approach
for solving RS tasks [9], [10], [11]. In the fields of RSSC,
deep learning techniques utilizing convolutional neural net-
works (CNNs) to extract image features have demonstrated
promising outcomes. Penatti et al. [12] were the pioneer to
employ the CNNs for the RSSC tasks in 2015. Subsequently,
a succession of the CNN-based methodologies have appeared,
and all exhibiting better classification performance [7], [13].
While the deep learning techniques have indicated competitive
results for RSSC tasks, these techniques still demand a sub-
stantial amount of annotated scenes for model training [14],
[15]. If the quantity of labeled scene images is insufficient,
overfitting may arise, leading to a decrease in classification
performance [16]. Currently, due to the rapid advancements
in RS technology, acquiring a vast quantity of scene images
is no longer difficult. However, labeling these scene images is
highly challenging, needing substantial financial investment and
expertise in the corresponding field. Therefore, traditional deep
learning frameworks exhibit significant limitations due to the
lack of annotated scene images.

Generative adversarial networks (GANs) generate additional
scene images to alleviate the problem of insufficient annotated
RS scene images, but the authenticity of generated RS scene
images is low and the GAN models are complex [17], [18].
Furthermore, both deep learning methods and GANs face a
common problem: they can only classify categories seen during
the training process and cannot identify new unknown cate-
gories [19]. However, the real world is open and the new scene
categories will continue to appear, thus classifying the scene
images of these new categories is a problem that the above
methods cannot solve [1], [20]. So the insufficient labeled scene
images and the need to identify new scene categories both pose
new challenges for the RSSC. A method that can classify the new
category samples with limited number of labeled scene images
carry significant importance for the RSSC task [1], [20].

Under this background, few-shot learning (FSL) techniques
receive the attention of researchers, and have a wide range of
applications in many fields such as image classification [21],
[22], detection [23], and segmentation [24], [25], [26], [27].
FSL classification, just needing a small quantity of annotated
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(c) Intersection

Fig. 1. Schematic diagram of the target objects scale variations and category-
unrelated objects. In each image, the portion marked with a yellow box is the
target object, and the unboxed portion are the category-unrelated objects. (a)
Basketball Court. (b) Ground Track Field. (c) Intersection.

data, enable models to acquire prior knowledge from base class
data to categorize new class data [19], [28], [29]. Currently,
FSL techniques have indicated superior capability in the fields
of natural image classification. However, since RS scene images
are often acquired from the air by remote sensing sensors (e.g.,
satellites, aircrafts, or other drones), it makes the scene images be
taken at a longer distance and with a larger range of viewpoints.
As a result, compared with the natural images captured from
a horizontal perspective and closer distance, the target objects
in remote sensing scene images of the same category show
large-scale variations, as shown in Fig. 1. Moreover, the large
range of viewpoints makes remote sensing scene images to
contain many irrelevant and complex backgrounds in addition
to the target objects. As shown in Fig. 1(a), the images with
the category “Basketball Court” contain other irrelevant objects,
such as vegetation, roads, and houses. Fig. 1(b) and (c) also
contain other ground objects in addition to ground track field
and intersection. These characteristics make it more difficult to
improve the extraction capability of feature extractor in few-shot
mechanism and the separability of few-shot RS scene images
classifier.

The few-shot feature learning methods for natural images face
the challenge of large-scale variations of target objects when
processing remote sensing scene images. The scale variation
leads to the fact that existing feature extraction methods in few-
shot framework cannot effectively capture the key information
of objects at different scales [30]. While these easily neglected
objects may be the key areas directly related to the class of the RS
images, which can result in failure to obtain critical information
of the target objects, further affecting the accuracy of the RS
scene image feature representation [31], [32], [33]. Therefore,
a feature extractor that can adapt to multiscale target objects in
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scene images is crucial for the few-shot remote sensing scene
classification (FSRSSC) task.

Aiming at the extraction capability problem of the feature
extractor in the FSRSSC framework, this study proposes a
multiscale feature learning approach to promote feature extrac-
tion network. The proposed feature learning method not only
captures the detailed and global information of the RS scene
images under different receptive fields, but also considers the
important influence of the global information in the scene images
on feature learning. By incorporating the self-attention mecha-
nisms into the branches of different scales, and understanding
the global information in the scene images at different scales,
the important features of the RS scene images will be enhanced.
Furthermore, a feature fusion module based on channel attention
is employed to highlight the semantic features of key channels
in a complementary manner at both global and local levels,
achieving effective fusion of information at different scales
and obtaining more discriminative representations of the scene
images.

In addition, the irrelevant and complex background in remote
sensing scene images poses a challenge for the separability of
few-shot RS scene images classifiers. The existing prototype
networks (ProtoNet) [34] and its various variants that compute
class prototypes by averaging the support features of each class
have received widespread attention. Subsequently, according to
the distance between the query samples and each class prototype,
ProtoNet can achieve the ability to classify all query samples.
However, the above methods fail to consider the adverse effects
of the irrelevant complex background presented in RS scene
images [35], [36], [37], [38]. As a result, the information of
these irrelevant background is finally preserved by the prototype
classifiers, diminishing the representation capability of the class
prototype.

Compared to the ProtoNet that directly averages the feature
representations, the subspace-based approach approximates the
class representation as a set of linearly independent basis vectors,
i.e., feature subspace. This subspace is abstracted from the
feature space by singular value decomposition (SVD) [39]. The
feature vectors obtained by SVD can better fit the subspace
of the scene images. The most important category information
extracted by our proposed multiscale feature learning from
the scene images will be extracted into the leading eigenvec-
tors, while other unrelated background information will be dis-
carded [40], [41]. The leading eigenvectors with the category
information can form a more accurate subspace. Therefore,
our few-shot classifier takes advantage of class subspace as
metric benchmark, and can capture the common representation
of each scene category, thus mitigating the effect of irrelevant
and complex backgrounds.

In summary, to solve the extraction capability problem of fea-
ture extractor and the separability problem of few-shot classifier
for the FSRSSC task, this work proposes an FSRSSC approach
via subspace based on multiscale feature learning. The primary
contributions of the work are summarized as follows:

1) To handle the problem of scale variations for the scene

images, different scale feature extraction branches based
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on self-attention mechanisms are proposed to emphasize
the crucial features in the whole RS scene image.

2) To enhance the semantic information of important chan-
nels within each scale feature, the proposed multiscale
feature fusion module based on channel attention can
combine the global and local features, to improve feature
accuracy in the FSRSSC task.

3) To mitigate the adverse impact of irrelevant complex
background in RS scene images on classification accuracy,
a few-shot classifier utilizing subspace as the metric is
proposed to fully learn the common representation for
each scene class.

II. RELATED WORK

RSSC is to use a learning algorithm to determine the class
of scene image. This section will delve into the advancements
made by researchers in the areas of RSSC and FSL.

A. Remote Sensing Scene Classification

Early on, RSSC relied heavily on manually designed features
for classification. Some representative handcrafted features in-
clude color histograms, texture descriptors, generalized search
trees (GIST) features, histogram of oriented gradient (HOG) fea-
tures, and scale invariant feature transform (SIFT) features [42].
Approaches based on the handcrafted features offer stability,
strong interpretability, and effectiveness in handling small-scale
data. However, the handcrafted features suffer from subjectivity
as they are often designed for specific tasks and datasets, that
makes the generalization to other datasets and tasks challenging.
Furthermore, the classification performance of methods based
on handcrafted features tends to degrade when dealing with
large-scale datasets and complex scene datasets. Therefore, due
to these drawbacks, approaches based on handcrafted features
are no longer meeting current RSSC tasks.

Deep learning techniques, especially the CNNs, have been
widely applied in RSSC task, yielding favorable results. Com-
pared to traditional classification approaches, CNNs can offer
end-to-end processing and have the ability to learn high-level
semantic features, which are unattainable by handcrafted fea-
tures. Penatti et al. [12] first proposed using CNNs for RSSC
task, demonstrating that pretrained CNNs can recognize natural
objects and generalize well to scene images. Chaib et al. [43]
introduced a feature refinement approach using conspicuity
relation analysis, which enhances the classification effect by
correcting the original features. Liu et al. [44] presented a
multiscale CNN framework for addressing varying target scales
in RS scene images. Lu et al. [45] designed a feature aggre-
gation network that integrates image-related information using
semantic label, enhancing the classification performance. Wang
etal.[32] proposed a global-local dual-path network structure to
learn multiscale feature representations of RS scene images, im-
proving classification accuracy by capturing more representative
features. Sun et al. [46] introduced a gated bidirectional network
for RS scene, which eliminates interference and aggregates
information from different CNN layers. He et al. [47] designed a
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skip-connected covariance network with fewer parameters, en-
abling better feature representation through feature combination
and higher order information extraction from feature maps.
Despite the satisfactory classification results obtained using
these CNN-based RSSC approaches, they typically require large
amounts of labeled scene images for training, leading to poor
performance when the labeled scene images per category are
only a few (such as one or five). The insufficient labeled scene
images can result in incomplete extraction of critical features
from small target, which are often overlooked but directly related
to the semantic class of scene images. Moreover, the existence of
target objects scale variations in the scene images further affects
the accuracy of extracting important features. In addition, all
these approaches lack the ability to recognize new RS scene
categories, which is unavoidable in real-world applications.

B. Few-Shot Learning

The goal of FSL differs from that of supervised learning, such
as CNNs. In FSL, the aim is not to train a model to recognize data
within the training set and then generalize to the test set. Instead,
the goal is to enable the model to learn for itself and acquire
prior knowledge, which can then be used to classify new data
categories with only a small number of labeled data [19]. The
idea of FSL is particularly useful in addressing the limitations
of deep learning techniques in RSSC task [1], [35], [36], [37].

Measure-based FSL approaches first extract image features
using a predesigned feature extractor and then calculate the
distance between query and support images using a distance
metric. The distance metric can be nonparametric, such as
Euclidean distance or cosine distance, or parametric and learn-
able [48]. Matching networks (MatchingNet) use separate fea-
ture encoders for the query and support sets, mapping each to a
corresponding vector representation. The distance between the
query image and each support image representation is then cal-
culated for classification [49]. Prototypical networks (ProtoNet)
improve the MatchingNet by comparing query images with a
class prototype instead of individual support images, which is
computed based on the support set information [34].

However, RS scene images often contain complex back-
ground information (such as many category-unrelated objects).
Prototype classifiers may retain excess irrelevant information
from the scene images, then leading to poor classification per-
formance due to the adverse effects of the complex background
information.

III. METHODOLOGY

This study proposes a novel FSRSSC approach based on
subspace and multiscale feature learning (MSFL), as shown in
Fig. 2. We propose different scale feature extraction branches
based on self-attention mechanisms to address the challenge of
large-scale variations in RS scene images. To obtain more pre-
cise representations for the RS scene images, we further propose
a multiscale feature fusion module based on channel attention,
which can join the local and global feature representation of the
scene images. In addition, for the FSRSSC, we also construct
a few-shot classifier that makes use of feature subspace as
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Fig. 2.

Architecture of the multiscale feature learning-based network for FSRSSC via subspace. S (5 x 5: 5-way 5-shot) and Q (5 x 15: 5-way 15-query images),

respectively, denote the support set and query set per task. Conv4 denotes the feature extractor including four convolutional blocks. The MSFL represents the
proposed network of multiscale feature learning. The MSFF-CA represents the multiscale feature fusion scheme based on channel attention.

benchmark to alleviate adverse the impact of unrelated complex
backgrounds in RS images.

A. Problem Definition

In this study, according to the same category divisions as
in [35], [36], and [50], we partition each RS scene dataset D
into three sets, including testing set Diey, training set Dy,
and validation set Dy, . The scene categories in Diyin, Dy,
and D,y form the class sets Clyin, Cyar, and Cieg, respectively.
Specifically, Ciin, Cval, and Cleg are distinct and nonoverlap-
Piﬂg, that iS7 Ctrain N cVval = ®7 C’train N Ctest - @, C(val N Ctesl =
(), Cirain U Cya1 U Ciest = Cioar. In this work, the episode-based
strategy is adopted to train, validate, and test. Hence, it is
necessary to generate a sequence of tasks. The tasks constructed
from training set, validation set, and test set are called training
tasks, validation tasks, and test tasks, respectively. Taking the
construction of a training task as an example, firstly, N distinct
categories are randomly selected from the set Ci.,y,. Then,
we select K + M scene images per category, with K images
designated for support set and remaining M scene images
for query set. It is important to note that for each task, the
remote sensing scene images in the query set will not appear
in the support set. This task setup is referred to as an N-way
K -shot task. Specifically, each task consists of a support set

S={(z1,1,911), (T1,2,912), -, (TN K, Yy~ Kx)}, and query
set @ ={q1,92,...,9n=m}, Where x;; represents the jth
scene image being from the ith class, y; ; € {0,1,2,..., N —
1} denotes label of support image z; ;, and ¢; denotes the [th
query image. Validation tasks and test tasks are built in the same
way.

B. Method Overview

This work proposes a FSRSSC network that utilizes multi-
scale feature learning and subspace. Our framework is displayed
in Fig. 2.

Our feature learning method retains the first four convolu-
tion blocks (Conv4) of the Conv5, and then replaces the fifth
convolution block in Conv5 with multiscale feature learning.
First, Conv4 is employed to perform the initial feature ex-
traction of the RS scene images. Second, four different scale
feature learning branches based on self-attention mechanisms
are designed. Specifically, each branch performs convolution
operations with convolution kernels of different sizes, and in-
corporates the self-attention mechanism to merge global infor-
mation into the features with different scales, aiming to enhance
feature representations of important regions in RS scene im-
ages. Subsequently, a channel attention-based multiscale feature
fusion scheme is devised to effectively integrate information
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Fig. 3.  Self-attention module.

from different scales, resulting in accurate feature embedding
for each scene image. Finally, a subspace classifier is used for
the few-shot scene image classification.

C. Multiscale Feature Learning

The proposed multiscale feature learning takes the feature
map obtained from Conv4 as its input, as illustrated in Fig. 2.
Conv4 is comprised of four convolution blocks, each of which
consists of 3 x 3 convolution, anormalized,aReLLU,anda?2 x 2
max pooling layer. About 32, 64, 128, and 256 are the output
channels of the four convolution blocks, respectively [35]. The
input RS scene image is denoted by the symbol z;; € RE*H*W |
where C represents the number of the RS image channels and
the size of RS scene images represents as /I x WW. Through the
four convolution blocks (Conv4), a feature map can be obtained

F = gy(zisp) (D

where '€ ROHXW' g represents the Conv4, ¢ are the
parameters of the network, and z; represents the input image.

Based on the feature map F' mentioned above, we employ
the proposed multiscale feature learning (MSFL) method to
acquire a precise representation of the RS scene image. This
method mainly consists of different scale feature extraction
branches based on self-attention mechanisms, as well as a chan-
nel attention-based multiscale feature fusion module (MSFF-
CA). The following is a detailed introduction to the proposed
multiscale feature learning method.

1) Scale Branch Based on Self-Attention Mechanism: Each
branch continues to convolve the feature map with convolutional
kernels of different sizes, ensuring that each branch can capture
the information from different scales. In addition, a self-attention
module is embedded within each branch, aiming to catch the
relationships among various regions within the RS scene images
by incorporating an understanding of the global information into
each scale feature. So, the important regional information from
each scale feature could be emphasized.

Specifically, each branch comprises a convolutional, a nor-
malized, and a ReLU layer. For target objects of different scales

in the scene images, we also use commonly used convolution
kernels (3 x 3,5 x 5,and 7 x 7) to capture the key feature infor-
mation. Althougha9 x 9 convolution kernel can provide a larger
receptive field, stacking multiple smaller convolution kernels
can achieve similar effects with fewer parameters and compu-
tation. In addition, the main function of the 1 x 1 convolution
kernel is to achieve interaction and information integration be-
tween different channels. Moreover, in our experiments, the size
of feature map obtained by the Conv4 (3 x 3) is 256 x 8 x 8,
that is not suitable for 9 x 9 convolution kernel. So, we set four
scale branches and adopt 1 x 1 Conv, 3 x 3 Conv, 5 x 5 Conv,
and 7 x 7 Conv, respectively.

As shown in Fig. 2, in order to effectively fuse multiscale
features, the number of output channels for each scale branch is
setas C' /4. The intermediate feature maps obtained by the above
convolution in each branch are represented as F.1, Feo, Fe3, and
F,y (both € R(C/H*H W) Subsequently, the self-attention
module used in each branch is shown in Fig. 3. Here, to introduce
the self-attention mechanism, the input to this module is denoted
as F, € RCinxH'>xW'

First, the feature map F. will be separately converted into two
distinct feature spaces U and V', which is achieved by the point-
wise convolution, i.e., 1 x 1 convolution, with input channels
Cin = C'/4 and output channels C;,, /7 (r = 8 is a scale factor,
which is used to reduce the number of channels [51].). Then, U
and V" are reshaped along the spatial dimensions to obtain U and
V. Then the relationships between positions in the space can be
obtained

R=UTV 2)

where R € RI'WH'W' R, denotes correlation between the
ith pixel position and the jth pixel position in the feature
space, the ith row of U7 € RIT'W'*(Cin/7) denotes values of
all channels at the ith pixel position in the space; the jth column
of V e R(Cin/m)<H'W" denotes values of all channels at the jth
pixel position in the space.

The attention map can be calculated according to the formulas

A = Softmax(R) 3)
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exp(R;;)

SV exp(Rij)
where Softmax(-) represents rowwise normalization, A;; rep-
resents the attention weight of the jth pixel position on the ith
pixel position, Zf:/‘{vl A =1

In the same way, the feature map F, is also converted into
the feature spaces W by the pointwise convolution, i.e., 1 x 1
convolution, with input channels Cj, and output channels CLE
Then, W is reshaped along the spatial dimensions to obtain W.
After that self-attention feature map can be computed via

Aij = (4)

F,= reshape(WAT) ®)

where reshape(-) denotes dimension transformation, reshape(-):
RO < HW' o {Cin < H>XW' the jth column of W € RCm*H'W!
denotes values of all channels at the ¢th pixel position in the
space.

Finally, the output of the self-attention module is represented
as

Fs:’YFa'i_Fc 6)

where F, € RCn*H W'~ represents the learnable scale fac-
tor, F, represents the self-attention feature map, and its input is
represented as F.

In the four different scale feature learning branches, the
self-attention module maintains a consistent structure, but the
parameters are not shared. Through the above operations, four
feature maps with different scale information are obtained, de-
noted as Fiq, Fyo, Fss3, and Fyy (both € RCinxH'xW"y ‘Then,
we concat Fy, Fyo, Fi3, and Fy4 along channel dimension to
gain multiscale representation F,,, F}, € RC*H W',

2) Feature Fusion Based on Channel Attention: To prevent
the information loss during the extraction of different scale
features and enhance the semantic information of important
channels in each scale feature map, we adopt a channel attention-
based multiscale feature fusion module to effectively combine
the feature maps F' and Fj,, as shown in Fig. 4. Here, F
represents the output of Conv4, and F,,, represents the result
of concatenating different scale feature maps.

The feature fusion module first adds F' and F,, by the ele-
mentwise. Then, we design two branches from the perspectives
of global information and local information. One branch first
obtains global information through global average pooling, and
then uses pointwise convolution to dynamically learn the chan-
nel attention of global features. The other branch directly uses
pointwise convolution to dynamically learn the channel attention
of local features. The processes of these two branches can be
represented by the following formulas:

G = BN(Convy(ReLU (BN (Convi (GAP(F + F,,))))))
)
L = BN(Convy(ReLU (BN (Convy(F + F,,))))) ®)
where G represents the channel attention weights for global
features, L represents the channel attention weights for local

features, GAP(-) stands for the global average pooling opera-
tion, Convy () and Convy(-) represents pointwise convolution
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Fig. 4. Multiscale feature fusion module based on channel attention.

with different output channel numbers. Convy(-) reduces the
number of channels and then Convs(+) restore it to the original
size. The pointwise convolution in the two branches is the same,
but they do not share parameters.

Based on the channel attention weights for global features and
local features, the output of the multiscale feature fusion is

Fou = F ® Sigmoid(G ® L) + F,, ® (1 — Sigmoid(G' @ L))
©)
where Fi, also represents the output of the multiscale fea-
ture learning method, F' represents the output of Conv4, F;,
represents the result of concatenating different scale feature
maps, ® represents elementwise multiplication, & represents
elementwise addition. Since G and L have different dimensions,
the broadcast operation on G is required when performing ®.
The multiscale feature fusion based on channel attention
combines global and local information for adaptive feature
fusion, which can enhance the understanding of semantic scenes
and thus learn more significant image features. In order to
shrink the dimension of the feature map, a max pooling layer
is employed following the multiscale feature learning method.
Then, the pooled features are flattened into vectors form as the
embedded features corresponding to the RS image, which can

be represented by
7 = Flatten(MaxPool (Foy)) (10)

where Flatten(-) denotes flattening the feature map into a vector
and MaxPool(-) represents a 2 x 2 max pooling operation.
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D. Subspace Classifier

In order to improve the separability of classifier for the
FSRSSC task, our few-shot classifier that takes advantage of
the high-order information within the representation space is
proposed to capture the commonality feature of each class,
reducing the adverse effects of irrelevant complex backgrounds.
Given an N-way K-shot task for RS scene image classification,
the feature representations for the support RS images and query
RS images can be obtained through formulas

Z3W = B(weq:0.9) (1n

Z" = E(qi; 0,9) (12)

where F(-) represents the above feature extraction network,
mainly consisting of the Conv4 and multiscale feature learning,
with network parameters denoted as ¢ and v, Z.} represents
the feature embedding of the ¢-support scene image (. ;) from
the c-class, Z;"™ represents the feature embedding of the I-query
scene image (q;).

Subsequently, by leveraging feature representations learned
from the support scene images for each category within a given
task, the corresponding subspace can be obtained, enabling
the construction of the subspace classifier. For instance, let us
consider the cth class, we will give the procedure for obtaining
its subspace in detail.

First, we compute the prototype of the cth class according to
(13). Each category in a task corresponds to a prototype

1 K
pe = 227
i=1

where the number of the cth class support images is expressed
as K. According to the feature embedding and prototype rep-
resentation of the cth class, we reconstruct the feature space as
shown

13)

Xo= |20 —ne 228 = per o 2% — | (%)
where Z'} represents the feature embedding of the i-support
scene image (z,;) from the c-class and p. represents the proto-
type of the cth class.

Then, the matrix 5. that possesses orthogonal basis charac-
teristics (i.e., B.BL = I) can be obtained through SVD on X..
We truncate the matrix B, to acquire the feature subspace P,
of the cth class. After that, the feature subspaces of all classes
within the given task are computed in the same way. We can
finally classify the query scene images based on their projected
distance to each class subspace.

Like support scene images, we also need to use the obtained
the cth class prototype (i) to construct the feature space of
each query scene image (¢;), that is Z" — p. (Z™ is the
feature embedding of query scene image ¢;). So, the projection
vector of Z — pi. on feature subspace of the cth class is
M (2" - p.), where M, = P.P!. Then, according to the
vector triangle rule, the vector perpendicular to the correspond-
ing subspace can be expressed as (Z" — o) — M (2" —
pe) = (I — Mc)(Z™ — pe), where I represents unit matrix.
Finally, the projected distance of the query scene image ¢; to
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feature subspace of the cth class is calculated by

de(q) = (T = M)(Z™ = pe)ll2

where ||.||2 represents L2 Norm.

According to (15), we calculate projected distances between
query scene image g; to all class subspaces. Then, the probability
that query scene image ¢; belongs to the cth class is computed
by the softmax function, as shown in

exp(—dc(q1))
o exp(—de (@)

where ¢ represents the set of classes within a task. Finally, the
query scene image can be assigned to the corresponding class
with maximum predicted probability.

5)

16)

p(y - C‘Ql) = Z

E. Loss Function

In this work, to compute the classification loss more accu-
rately for the FSRSSC task, the cross-entropy loss function
is adopted. All subsequent experiments are based on this loss
function, and the formula is expressed as

1
L= “NM Z log(pe,q)

q

A7)

where N represents the number of classes and M represents the
number of query samples per class in a task, and the classification
probability that the gth query image belongs to its true category
(©) 18 pe.q-

IV. EXPERIMENTAL RESULTS

For three RS benchmark datasets, we perform some necessary
experiments to demonstrate the effectiveness of the proposed
approach. Initially, we present an overview of the three RS
benchmark datasets, as well as the details of experimental
implementation. Subsequently, we compare with the existing
approaches and analyze the experimental results. Finally, we
perform ablation studies to substantiate the contribution of the
core components in our method.

A. Dataset Description

In our study, we employ the NWPU-RESISC45 [42], UC
Merced (UCM) [52], and AID [53] datasets to assess the ef-
fectiveness of our method. In order to make a fair comparison
with other approaches, the data partitioning scheme used in [35],
[36], and [50] is still adopted. Table I shows the details of three
RS scene datasets used for the FSRSSC task. Specifically, we
utilize the scene images from the training categories for model
training, scene images from the validation categories for model
selection, and scene images from testing categories to measure
the classification performance of the proposed approach.

The NWPU-RESISC45 [42] dataset that was provided by
Northwestern Polytechnical University (NWPU) consists of 45
scene classes with a total of 31 500 images. Each class includes
700 RGB images with 256 x 256 pixels. The spatial resolution
of most of the images ranges from 0.2 to 30 m per pixel. As
shown in Table I, we adopt 25 categories, 10 categories, and 10
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TABLE I
THREE RS SCENE DATASETS USED FOR THE FSRSSC TASK

Datasets Training classes Validation classes Testing classes
Railway, Ship, Baseball diamond, . . .
. N Terrace, Thermal power station, Parking lot, Intersection,
Stadium, Chaparral, Rectangular farmland, . i . .
K Industrial area, Medium residential,
Mountain, Palace, Meadow, Wetland, Railway station, Runwa Airport, Forest,
NWPU-RESISC45 Lake, Island, Beach, Mobile home park, Y ’ Y, Arrport, o
Airplane, Desert, Sparse residential Overpass, Snowberg. Circular farmland,
P ’ Tennis court, River, Ground track feld,

Sea ice, Roundabout, Bridge, Church,
Harbor, Cloud, Freeway, Golf course

Commercial area, Storage tank Dense residential, Basketball court

Parking lot, Agricultural,
Baseball diamond, Harbor,

. River, Tennis court
Intersection, Storage tanks, ’ ’

ucM Overpass, Chaparral, Freeway, Buildings, Airplane, Forest, Runway Golf course, sparse residential,
. . . . . Mobile home park, Beach
Dense residential, Medium residential
AID - >4 ’ & e, ? Baseball Field, Meadow, River, : ’

Playground, Railway Station, Resort,
Farmland, Mountain, Storage Tank

Medium Residential, Forest,

School Sparse Residential

categories for training, validation, and testing, respectively [35],
[36].

The UC Merced (UCM) [52] dataset, created by the UC
Merced Computer Vision Laboratory, consists of 21 scene
classes with a total of 2100 images. Each class includes 100
RGB images with 256 x 256 pixels and a spatial resolution of
0.3 m per pixel. As shown in Table I, the number of categories
for the training, validation, and testing are 10, 5, and 6, respec-
tively [35], [36].

The AID [53] dataset was created by Huazhong University of
Science and Technology and Wuhan University. The dataset has
30 scene classes with a total of 10 000 RGB images. Each class
contains 220~420 images with 600 x 600 pixels. The spatial
resolution varies from 0.5 to 8 m. As shown in Table I, the
training set includes 16 classes, the validation set includes 7
classes, and the testing set includes the remaining 7 classes [50].

B. Implementation Details

This section conducted experiments on the NWPU-
RESISC45, UCM, and AID datasets, and each task was set
as 5-way 1-shot and 5-way 5-shot, respectively. For the 1-shot
classification task, one RS scene image per class is selected to
constitute support set. However, an additional scene image is
generated through image flipping for classifier construction in
the experiments. For the 5-shot classification task, five support
RS images per class are selected. In each task setting, a query set
consisting of 15 different RS scene images is randomly chosen
for each class, ensuring they are not included in the support set.
The performance of our method is assessed by computing the
average classification accuracy across 600 randomly generated
test tasks, accompanied by a 95% confidence interval.

All experiments were implemented using CUDA 11.4 in
the PyTorch framework [54]. All RS scene images are resized
to a standard dimension of 128x 128 pixels for input. Adam
optimizer [55] is employed for model parameter optimization,
initially with a learning rate of 0.001. At five-shot, the learning
rate decays every 50 epochs with a decay factor of 0.1, and at
one-shot, the learning rate decays every 100 epochs with a decay
factor of 0.5. The scale factor  used to reduce the number of
channels in the self-attention module is set to 8 [51].

TABLE II
FEW-SHOT CLASSIFICATION ACCURACY (%) WITH 95% CONFIDENCE
INTERVAL OF VARIOUS APPROACHES

NWPU-RESISC45

Approach 1-shot 5-shot

MAML* [56] 48.40+0.82 62.90+0.69
MetaSGD* [57] 60.63+0.90 75.75+0.65
LLSR* [63] 51.43 72.90

ProtoNet* [34] 40.33+0.18 63.82+0.56
MatchingNet* [49] 37.61 47.10

RelationNet* [48] 66.43+0.73 78.35+0.51
DeepEMD* [58] 64.39+0.84 78.01+£0.56
FRN [59] 64.98+0.42 81.65+0.25
MCL-Katz [60] 63.30 80.78

GLIML [61] 66.86+0.68 78.91+£0.45
DLA-MatchNet* [35] 68.80+0.70 81.63+0.46
RS-MetaNet* [64] 64.07+£0.90 79.62+0.65
SPNet* [36] 67.84+0.87 83.94+0.50
SCL-MLNet* [37] 62.21£1.12 80.86+0.76
SPFESR* [62] 65.97+1.22 80.72+0.79
MPCLNet* [65] 55.94+0.04 76.24+0.12
HProtoNet* [66] 66.41+0.87 82.71+£0.41
MSoPNet* [67] 67.05+0.80 82.02+0.46
Ours 69.48+0.85 84.00+0.46

C. Experimental Results and Discussions

In order to validate the effectiveness of our proposed ap-
proach, we select several FSL approaches for comparison.
The comparison approaches include: the approaches for few-
shot natural image classification such as MAML [56], Meta-
SGD [57], ProtoNet [34], MatchingNet [49], RelationNet [48],
DeepEMD [58], FRN [59], MCL-Katz [60], GLIML [61],
SPFSR [62], and the approaches for FSRSSC task such as
LLSR [63], RS-MetaNet [64], DLA-MatchNet [35], SPNet [36],
SCL-MLNet [37], MPCLNet [65], HProtoNet [66], and MSoP-
Net [67]. Next, detailed descriptions of experimental results for
three RS datasets are provided, including 1-shot and 5-shot tasks.
Note that, for MAML, Meta-SGD, LLSR, ProtoNet, Match-
ingNet, RelationNet, DeepEMD, DLA-MatchNet, RS-MetaNet,
we refer to the experimental results in [50]; for FRN, MCL-Katz,
GLIML, and SPFSR, their results were obtained by ourselves;
for SPNet, SCL-MLNet, MPCLNet, HProtoNet, and MSoPNet,
we reported the results as their original publications. In Tables IT
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TABLE III
FEW-SHOT CLASSIFICATION ACCURACY (%) WITH 95% CONFIDENCE
INTERVAL OF VARIOUS APPROACHES
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TABLE V
ALGORITHMIC EFFICIENCY OF VARIOUS APPROACHES UNDER FIVE-WAY
SCENARIO COUNTED ON THE NWPU-RESISC45 DATASET

UCM

Approach 1-shot 5-shot

MAML* [56] 48.86+0.74 60.78+0.62
MetaSGD* [57] 50.52+2.61 60.82+2.00
LLSR* [63] 39.47 57.40

ProtoNet* [34] 52.27+0.20 69.86+0.15
MatchingNet* [49] 34.70 52.71

RelationNet* [48] 48.08+1.67 61.88+0.50
DeepEMD* [58] 58.47+0.76 70.42+0.58
FRN [59] 50.89+0.37 68.34+0.30
MCL-Katz [60] 50.73 68.95

GLIML [61] 56.41+0.62 70.40+0.41
DLA-MatchNet* [35] 53.76+0.62 63.01+0.51
RS-MetaNet* [64] 49.68+0.71 67.53+0.59
SPNet* [36] 57.64+0.73 73.52+0.51
SCL-MLNet* [37] 51.37+0.79 68.09+0.92
SPFSR* [62] 55.40%1.11 71.38+0.77
MPCLNet* [65] 56.46+0.21 76.57+0.07
HProtoNet* [66] 57.51+0.95 75.08+0.29
MSoPNet* [67] 54.27+0.60 69.77+0.38
Ours 59.05+0.84 76.34+0.51

TABLE IV

FEW-SHOT CLASSIFICATION ACCURACY (%) WITH 95% CONFIDENCE
INTERVAL OF VARIOUS APPROACHES

AID

Approach 1-shot 5-shot

MAML* [56] 43.20+0.77 60.37+0.75
MetaSGD* [57] 45.01+0.98 62.58+0.80
LLSR* [63] 45.18 61.76

ProtoNet* [34] 54.32+0.86 67.80+0.64
MatchingNet* [49] 33.87 50.40

RelationNet* [48] 54.62+0.80 68.80+0.66
DeepEMD* [58] 61.04+0.77 74.51+0.55
FRN [59] 62.29+0.37 79.33+0.24
MCL-Katz [60] 55.28 75.66

GLIML [61] 61.28+0.61 79.56+0.41
DLA-MatchNet* [35] 61.99+0.94 75.03+£0.67
RS-MetaNet* [64] 58.51+0.84 73.76+0.69
SCL-MLNet* [37] 59.46+0.96 76.31+0.68
SPFESR* [62] 60.01+1.09 75.40+0.76
MPCLNet* [65] 60.61+0.43 76.78+0.08
HProtoNet* [66] 59.78+0.58 75.87+0.35
Ours 61.62+0.75 81.32+0.45

—IV, the methods that refer to the results of other experiments are
marked with *. The results of unmarked methods were obtained
by ourselves. The best and second-best results are highlighted
in bold and underline, respectively.

The comparison results of the NWPU-RESISC45 dataset are
shown in Table II. Our approach attains an overall accuracy of
69.48% (1-shot) and 84.00% (5-shot), respectively. These results
demonstrate that the classification performance of our proposed
method surpasses that of all other comparison methods.

Table III records the experimental results of different methods
on UCM dataset. Our approach stands out with the highest
performance in the 1-shot settings. In the 5-shot scenario, our
approach achieves a classification accuracy of 76.34% and the
MPCLNet [65] achieves the highest performance (76.57%).
Because MPCLNet [65] can not only learn the multiscale and
rotation-invariant information of scene images at the same time,

Approach Params 1-shot S-shot
pp (M) [Time FLOPs Memory | Time FLOPs Memory
(ms) (G) (G) |[(ms) (G) (G)
FRN 098 | 47 2400 435 | 56 2965 435
GLIML | 12.63 | 63 28205 624 | 76 35257 655
MCL-Katz| 098 | 31 2259 726 | 39 2824 8.10
SPFSR | 1032 | 542 104 537 | 608 130  6.19
MPCLNet*| 4501 | - - - - - -
MSoPNet* | 2.10 | - - - - - -
Ours 185 | 47 2691 595 | 41 3363 646

but also use three different loss functions to fully capture the
diverse land covers within remote sensing scenes, compact
intraclass samples, and separate interclass samples, respectively.

The performance evaluations of distinct approaches on the
AID dataset are presented in Table IV. However, given that
no AID dataset experiments were reported in [36] and [67],
so the two methods is excluded from the current analysis.
In the 5-shot scenario, our approach achieves a classification
accuracy of 81.32%, which outperforms all other comparison
methods. For the 1-shot scenario, although our method does not
achieve the best classification performance, it still achieves a
classification accuracy of 61.62%. We analyzed the reasons for
this result as follows. In the experiments of proposed method, we
uniformly resized the scene images to 128 x 128 as inputs. Since
the image size of the NWPU-RESISC45 and UCM datasets are
all 256256 pixels, while the image size of the AID dataset is
600x 600 pixels, the operation of resize caused more feature loss
to the images in AID dataset. As a result, the feature extraction
ability of the proposed multiscale feature extraction network
on the AID dataset is negatively affected. In addition, under
1-shot scenario, there is only one labeled image per category.
If the feature extraction for the image is inaccurate, it will
affect the representativeness of the class metric, leading to lower
classification results.

In addition, we compared the algorithmic efficiency of our
method with some comparative methods reproduced by our-
selves, such as FRN, MCL-Katz, GLIML and SPFSR. The pa-
rameter counts of MPCLNet and MSoPNet are directly adopted
from corresponding work. For other inaccessible models, we
cannot analyze their efficiency, and these methods basically use
resnet-12 as backbone, with parameter counts more than 12 M.
As can be seen from Table V , parameter count (Params) and
floating-point operations (FLOPs) of our method are only higher
than FRN and MCL-Katz, and our inference time (Time) is
only higher than MCL-Katz. Overall, our method can achieve
better classification results and has higher efficiency. In addition,
since SVD cannot be completed with only one sample in the
1-shot case, additional scene images are obtained by flipping,
that causes the inference time of our method in the 1-shot case
to be longer than that of 5-shot case.

Finally, to provide a comprehensive assessment, we select
several failure cases to discuss and analyze, as shown in Fig. 5.
We can find that the misclassified RS scene images present the
following common features: scene images of different categories
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(e) Airport

(d) Basketball court

Fig.5. Some failure cases of our proposed method. (a) Tennis court. (b) River.
(c) Airport. (d) Basketball court. (e) Airport. (f) Airport.

show high similarities from background to target objects, such as
Fig. 5(a) and (d) as well as Fig. 5(b) and (e), while target objects
in scene images of the same category show great differences,
such as Fig. 5(c) and (f). Especially in the 1-shot case, the above
characteristics increase the difficulty of classifying such scene
images. Fortunately, there are many strategies available, such as
contrastive learning loss [65], which can alleviate these problems
to a certain extent. However, this is not the focus of this work, so
we only consider the general cross-entropy loss function without
adding additional loss.

In summary, for three public RS scene datasets, our pro-
posed method demonstrates relatively good overall classification
performance, especially in the case of 5-shot scenario. Based
on the result analyses, it is evident that our approach is more
suitable and effective for the task of FSRSSC. Specifically, the
multiscale feature learning-based feature extraction technique
effectively handles the large-scale variations of target objects
in RS images, learning more accurate feature representations of
the RS scene images. Then few-shot scene images classification
performance can be further improved by the subspace classifier,
by capturing the shared characteristics of each class effectively
and minimizing the impact of irrelevant complex backgrounds
in the RS scenes.

D. Ablation Study

Next, we will respectively investigate the effectiveness of
multiscale feature learning, the effectiveness of different parts
within the multiscale feature learning method, the effective-
ness of self-attention mechanism position, the effectiveness of
proposed subspace, as well as effectiveness of multiscale feature
learning for different few-shot classifiers.

1) Effectiveness of Multiscale Feature Learning: Because
this work replaces the last convolutional block in Conv5 with our
multiscale feature learning module, we conducted an experiment
to assess the performance of the proposed feature extractor
technique compared to Conv5. Except for the difference in
feature extraction, all other aspects remain unchanged. Table VI
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shows the experimental results of three RS scene datasets under
1-shot and 5-shot sets.

As can be seen from Table VI, across three RS scene datasets,
compared to using Conv5 for feature extraction, the proposed
multiscale feature extraction method can significantly improve
the classification accuracy for the 1-shot and 5-shot sets. Specifi-
cally, for NWPU-RESISC45 dataset, the classification accuracy
of our multiscale learning method for the 1-shot and 5-shot tasks
are 69.48% and 84.00%, respectively, which are higher by 6.51%
and 2.68% compared with Conv5. These experimental results
provide strong evidence for the efficacy of our multiscale fea-
ture extraction method. Because the designed multiscale feature
learning module can adapt well to the scale variations of target
objects in the scene images, emphasizing key regions and chan-
nels information at different scales to obtain more representative
multiscale scene image features, thereby enhancing the feature
representation.

In addition, we conduct a comprehensive analysis of the
effectiveness of our multiscale feature learning via the confusion
matrix. We calculate the confusion matrices when using the
proposed feature extraction network and ConvS5, respectively.
These confusion matrices clearly record the classification sit-
uation of scene images within each category. Figs. 6 and 7
illustrate the confusion matrices in the case of 1-shot and 5-
shot for NWPU-RESISC45 dataset, respectively. Each figure
presents two confusion matrices corresponding to different fea-
ture extraction network settings. From the confusion matrices,
compared to Conv5, the classification accuracies on ground
track field, intersection, and basketball court are significantly
improved when using our proposed feature extraction network
in 1-shot and 5-shot scenarios. In particular, for 1-shot, the
classification accuracies of our method on ground track field,
intersection, and basketball court are 78.20%, 73.22%, and
51.74%, respectively, making increases of 15.54%, 14.11%, and
10.41% over Conv5. For 5-shot, the classification accuracies of
our method on the above three categories are 90.50%, 86.62%,
and 72.20%, representing improvements of 9.63%, 6.42%, and
9.73% over Conv5. Upon analyzing all test images, it becomes
evident that the scale variations of target objects are more
pronounced in RS images belonging to these three categories
compared to other classes. This observation further supports
the effectiveness of our proposed multiscale feature learning
approach.

Finally, we further explore the classification performance and
method efficiency of ConvS5s with different convolutional kernel
sizes (1 x 1,3 x 3,5 x 5,7 x 7) and our multiscale feature ex-
traction network on the NWPU-RESISC45 dataset. We calculate
the number of parameters (Params), memory usage (Memory),
floating point numbers (FLOPs), and inference time (Time).
From Table VII, for the Conv5, as the convolutional kernel
size increases, the Params, FLOPs, and memory usage gradually
increase, and the inference time remains essentially unchanged.
Compared with 1 x 1 and 3 x 3 convolution kernels, 5 x 5
and 7 x 7 convolution kernels will achieve better classification
performance. Moreover, when the convolution kernel becomes
7 x 7, the number of parameters will become larger (5.33 M).
For example, the parameter count of a Conv5s (9 x 9) will be
larger than that of ResNet12 (12 M). Therefore, when designing
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TABLE VI
ABLATION STUDY OF THE EFFECTIVENESS OF OUR MULTISCALE FEATURE LEARNING

Feature NWPU-RESISC45 UCM AID
Extraction 1-shot S-shot 1-shot 5-shot 1-shot 5-shot
Conv5 62.97+0.85  81.32+0.53 | 56.99+0.76  74.40+0.50 | 57.96x0.77  78.59+0.52
Multiscale (Ours) | 69.48+0.85  84.00+0.46 | 59.05+0.75 76.34+0.51 | 61.62+0.75  81.32+0.45

Bold values represent the best results in a set of ablation experiments.
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Fig. 6. Confusion matrices under different feature extraction schemes in the case of 1-shot. Left: Confusion matrix under the Conv5 network; Right: Confusion
matrix under our proposed feature extraction network.
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matrix under our proposed feature extraction network.
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Feature extractor | T2LmMS I-shot S-shot
M) Ace Time FLOPs Memory Ace Time FLOPs Memory
(ms) G) (G) (ms) (G) G)
Conv5 (1 x 1) 0.11 57.47+0.82 38 2.79 5.82 74.82+0.61 33 349 6.35
Conv5 (3 x 3) 0.98 62.97+0.85 38 22.59 5.85 81.32+0.52 32 28.24 6.38
Conv5 (5 x 5) 2.72 62.77+£0.87 38 62.19 6.06 82.86+0.49 33 77.73 6.39
Conv5 (7 X 7) 5.33 64.52+0.87 39 121.58 7.23 82.33+0.49 34 151.97 7.56
Multiscale (Ours) 1.85 69.48+0.85 47 26.91 5.95 84.00+0.46 41 33.63 6.46
Bold values represent the best results in a set of ablation experiments.
TABLE VIII
ABLATION STUDY OF DIFFERENT PARTS IN THE MULTISCALE FEATURE LEARNING METHOD
Different Parts NWPU-RESISC45 UCM AID
Multiscale Self- Channel
Branchs attention | Attention 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
v X X 65.21+0.86  82.93+0.50 | 57.35+0.78  75.43+0.48 | 59.08+0.79  79.02+0.48
v X v 66.82+0.85  83.81+0.49 | 57.34+0.72  75.57+0.48 | 58.77+0.74  79.75+0.51
v v X 66.70£0.87  83.37+0.49 | 57.54+0.75  75.51+0.49 | 59.82+0.81  79.04+0.48
v v v 69.48+0.85  84.00+0.46 | 59.05+0.75 76.34+0.51 | 61.62+0.75  81.32+0.45

Bold values represent the best results in a set of ablation experiments.

CNN, it does not stack large convolution kernels, so Conv5s
(9 x 9) is not be adopted in our work.

The Params of our proposed multiscale feature extraction
network is between the Params of Conv5 (3 x 3) and the Params
of Conv5 (5 x 5). The memory usage of our method does not
differ much from Conv5 (3 x 3) and Conv5 (5 x 5), and the
FLOPs is higher than that of Conv5 (3 x 3) but much lower than
that of Conv5 (5 x 5). Although inference time of our multiscale
method is a little higher than that of all Conv3, our classification
accuracy is significantly higher than theirs.

2) Effectiveness of Different Parts in the Multiscale Feature
Learning: The proposed multiscale feature learning method
consists of four different scale feature learning branches
based on self-attention mechanisms, also including a channel
attention-based multiscale feature fusion module. In this part,
different experiments are conducted on the various parts of this
feature learning method, to study their impacts on the few-shot
scene image classification accuracy, respectively. The different
experimental settings are as follows: the first one represents
the only use of four scale feature learning branches without
incorporating the self-attention mechanisms, and replacing the
channel attention-based multiscale feature fusion with a simple
addition; the second one represents the use of four different scale
feature learning branches without utilizing self-attention mech-
anisms, and finally adopting the channel attention-based feature
fusion method; the third one represents that the feature extractor
network includes the four scale branches based on self-attention
mechanisms, but only adopts the addition-based multiscale fea-
ture fusion; the fourth one includes the four scale feature learn-
ing branches based on the self-attention mechanisms, also and
the channel attention-based feature fusion method. Table VIII
presents the results of these ablation experiments.

Through analyzing the results of whether to include the self-
attention mechanisms and channel attention in Table VIII, it is
found that after the multiscale learning branches, respectively,
adding the self-attention mechanisms and channel attention both

can improve the few-shot scene images classification perfor-
mance to a certain extent, which suggests that the different
scale feature learning branches combined with the self-attention
mechanisms can adapt to the large-scale variations in the scene
images, and then focus on the key regional features under the
corresponding scale. By enhancing the semantic information
of important channels in each scale feature map, the channel
attention-based feature fusion can also improve the representa-
tion capability of the scene images. Furthermore, by comparing
the results of both incorporating the self-attention mechanisms
and the channel attention, it is evident that the multiscale
branches based on self-attention mechanisms and the channel
attention-based multiscale feature fusion module complement
each other, leading to further improve the feature representation
scene images.

3) Effectiveness the Self-Attention Mechanism Position: The
proposed multiscale feature learning module incorporates self-
attention mechanisms into each branch to integrate an under-
standing of global information under different scales, thereby
emphasizing the important areas features at each scale. In or-
der to validate the effectiveness of this approach, two sets of
experiments are conducted in this part regarding the position of
self-attention mechanism. In one set of experiments, the self-
attention mechanism is placed after concatenating each scale
feature. That means each branch only performs the convolution
operations, and the learned features from each branch are simply
concatenated, finally self-attention mechanism is applied to
the concatenated feature vectors. In this case, the position of
self-attention mechanism is marked as “after concatenating.”
In another set of experiments, the self-attention mechanism
is added to feature learning branches at four different scales
separately, which is the structure used in this work. In this
case, the position of the self-attention mechanism is marked as
“after convolution.’. Apart from the above differences, all other
settings in the two sets of experiments remain the same. Table IX
records the classification results of the two sets of experiments.
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TABLE IX
ABLATION STUDY OF THE LOCATION OF SELF-ATTENTION MECHANISM

Self-attention NWPU-RESISC45 UCM AID
Mechanism After 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Concatenating 66.29+0.85  83.17+£0.48 | 57.73£0.77  75.98+0.50 | 58.70+£0.76  79.50+0.49
Convolution (Ours) | 69.48+0.85  84.00+0.46 | 59.05+0.75 76.34+0.51 | 61.62+0.75  81.32+0.45

Bold values represent the best results in a set of ablation experiments.

TABLE X
FEW-SHOT CLASSIFICATION ACCURACY WITH DIFFERENT COMBINATIONS OF FEATURE EXTRACTORS AND CLASSIFIERS

Feature Few-Shot NWPU-RESISC45 UCM AID
Extractor Classifier 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot
Convs Prototype 60.46+0.88  78.73+0.56 | 53.18+0.81  72.58+0.52 | 52.22+0.73  68.02+0.60
Subspace (Ours) | 62.97+0.85  81.32+0.53 | 56.99+0.76  74.40+0.50 | 57.96+0.77  78.59+0.52
Multiscale (Ours) Prototype 62.98+0.84  81.54+0.51 | 55.79+0.74  75.53+0.50 | 54.19+0.77  67.73+0.56
Subspace (Ours) | 69.48+0.85 84.00+0.46 | 59.05+0.75  76.34+0.51 | 61.62+0.75  81.32+0.45

Bold values represent the best results in a set of ablation experiments.

From Table IX, it can be observed that, compared to applying
self-attention after concatenating features from each scale, the
proposed multiscale feature learning module embedded the self-
attention mechanism in each branch separately, can yield better
classification performance on the three scene image datasets.
Specifically, the classification accuracy is improved by 1.32%
to 3.19% in the one-shot scenario and by 0.36% to 1.82% in
the five-shot scenario. Applying the self-attention mechanism to
each scale feature is able to better integrate the global informa-
tion at the corresponding scale without introducing other scale
features. Finally, a more accurate scene image feature at that
scale is obtained by focusing on the important areas. Conversely,
merely concatenating the feature vectors from each scale leads
to offsetting each other, and then applying the self-attention
mechanism to the overall concatenating features will fail to focus
on the important areas in the scene image.

4) Effectiveness of Multiscale Feature Learning Method for
Different Few-Shot Classifiers: In the FSRSSC task, the final
classifier will be constructed based on the features extracted
from the support set RS scene images. More accurate feature
representations are beneficial for obtaining a few-shot scene
image classifier with better classification performance. Next,
we verify whether the proposed multiscale feature extraction
method has a positive effect on the construction of different
few-shot classifiers, further demonstrating the effectiveness and
wide applicability of the proposed multiscale feature learning
method in this work. We conducted a series of experiments on
the NWPU-RESISC45, UCM, as well as the AID datasets by
combination of our multiscale feature extractors with different
few-shot classifiers (such as prototype and our subspace classi-
fiers). Table X presents the experimental results.

When using the prototype classifier [34], besides the 5-shot
scenario of the AID dataset, our proposed multiscale feature
learning method can achieve higher classification accuracy than
when using Conv5 as the feature extractor. When using the sub-
space classifier, for all 1-shot and 5-shot scenarios, our proposed
multiscale feature learning approach can achieve better classi-
fication performance on three datasets compared with Conv5.
These experimental results indicate: (a) under the prototype and

subspace classifiers, adopting the proposed multiscale feature
learning method can enhance the classification performance of
the RS images, demonstrating that our multiscale feature learn-
ing method can effectively deal with the scale variations problem
of RS scene images; (b) the proposed multiscale feature learning
method has a positive effect on constructing the few-shot scene
images classifiers, showing broad applicability.

5) Effectiveness of Our Classifier: Except for the feature
Extractor method, another key step of the FSRSSC task is
selecting a suitable metric benchmark to build a high-quality
classifier. Because of irrelevant complex background in the RS
scene images, the classifier for FSRSSC task needs to decrease
the impact of irrelevant background as effectively as possible.
Hence, for the Conv5 and the proposed multiscale feature ex-
traction method, we continue to explore the impact of proposed
classifiers on RS image classification performance.

From Table X, regardless of using Conv5 or the proposed
multiscale feature learning method, it can be observed that
compared to the prototype classifier, the subspace classifier
can significantly enhance the classification performance of the
remote sensing datasets. Specifically, for the Conv5, compared
to the prototype classifier, the subspace classifier improves the
classification accuracy by 2.51% to 5.74% in 1-shot scenarios
and by 2.59% to 10.57% in 5-shot scenarios. For our multiscale
feature learning method, compared to the prototype classifier,
the subspace classifier improves the classification accuracy by
3.26% to 7.43% in 1-shot scenarios and by 0.81% to 14.23% in
5-shot scenarios.

In addition to the above experimental data, we make a more
intuitive comparison of the classification ability of the prototype
and subspace classifiers. We ensure the feature extraction net-
work to be consistent and use the proposed multiscale feature
extraction network. Then, we classify the remote sensing scene
images with the prototype classifier and subspace classifier, re-
spectively. Fig. 8 presents the scene images that can be correctly
classified by the subspace classifier but misclassified by the
prototype classifier. We find that these scene images both have
complex backgrounds. For example, the scene images with the
category “Basketball Court” all contain roads, trees, houses,
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Fig. 8. Images correctly classified by our subspace classifier but wrongly
classified by prototype classifier.

and cars; the scene images with the category “Intersection”
all appear trees, houses, and cars; and the scene images with
the category “Ground Track Field” all have roads, trees, and
houses. These objects, unrelated to the category semantics, lead
to the complex background of remote sensing scene images and
pose greater challenges to the FSRSSC task. The widely used
prototype classifier has no ability to classify these scene images
with complex backgrounds, whereas our subspace classifier can
correctly classify them, thus improving the overall classification
accuracy. It indicates that our subspace classifier can acquire
more accurate commonality features of each class in few-shot
scenarios, to reduce the adverse impact of irrelevant complex
backgrounds in remote sensing images.

V. CONCLUSION

This work proposes a multiscale feature learning-based
FSRSSC approach via a subspace classifier. For the RS scene
images, our method initially tackles the feature extraction issue
under the few-shot framework by focusing on two aspects:
addressing the challenge of scale variations in the scene images
and then obtaining more discriminative representations of the
scene images. Specifically, for the large-scale variations in the
scene images, we design four different scale feature extraction
branches based on self-attention mechanisms to learn the scene
image features at different scales. Corresponding global infor-
mation in each scale will be incorporated into the respective
scale features to emphasize the important regions of the scene
images. In addition, a channel attention-based multiscale fea-
ture fusion module is used to effectively integrate important
information from different scales. By emphasizing the semantic
information of key channels, more accurate scene image feature
representations can be obtained. On the basis of performance

13305

gains brought by the above multiscale feature learning method,
the subspace classifier is further used to learn commonality
features of each class under the few-shot scenarios, aiming to
reduce the adverse impact of irrelevant complex background in
RS images. For three public RS scene datasets, our proposed
approach demonstrates relatively competitive performance in
few-shot classification, and the proposed multiscale feature
learning method can effectively enhance the accuracy of scene
image feature representation.
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