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Abstract—In the context of frequent global flood disasters, flood
detection is of great significance for emergency management and
human sustainable development, especially in urban areas with in-
creasing population and socio-economic activities. However, there
are similar reflection/scattering characteristics between flooded
and nonflooded land use and land cover (LULC) classes in complex
urban environments, which limit the accurate detection of floods. In
this study, we develop a new method for fine-grained and accurate
flood detection by integrating multitemporal Sentinel-1 synthetic
aperture radar images, OpenStreetMap data, and convolutional
neural networks. We take the 2017 Houston flood event as a test
case, where the study areas are divided into six fine-grained LULC
classes, i.e., residential areas, service areas, main roads, forest,
grassland, and waterways. Based on the information of fine-grained
LULC classification, the proposed method performs more promi-
nently than the baseline methods for urban flood detection. Specifi-
cally, compared with such baseline methods, F1 score, overall accu-
racy, and Kappa increase by more than 3.96%, 4.53%, and 9.26%,
respectively. The integration of remote sensing and crowdsourced
data provides a new perspective for flood detection in complex
urban environments, thus supporting emergency management.

Index Terms—Data fusion, flood detection, OpenStreetMap
(OSM), Sentinel-1, supervised classification.

I. INTRODUCTION

FREQUENT global floods have caused serious casualties
and socio-economic losses, especially in urban areas with

high population density and high proportion of impervious
surface [1], [2]. The United Nations Office for Disaster Risk Re-
duction pointed out that the number of global flood disasters has
increased dramatically from 1980–1999 (1389) to 2000–2019
(3254).1 At present, many disaster prevention and mitigation
measures taken by governments and relevant institutions and
organizations in flood management have advanced significantly.
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However, due to global climate change and the increasing pop-
ulation and socio-economic activities in disaster-prone urban
areas, the frequency and risk of urban flood disasters have soared
simultaneously. In this context, urban flood disasters remain
one of the key challenges of the 21st century [3], [4]. As a
result, accurate urban flood detection is of great significance for
emergency management, environmental protection, and human
sustainable development.

Traditional ground surveys can collect accurate flood infor-
mation on a local scale, but require to consider high costs and
the threat to life caused by flood disasters. In contrast, remote
sensing technology can monitor large-scale flood disasters and
obtain near-real-time spatio–temporal information, which has
been widely used in urban flood detection [5], [6], [7]. Common
data sources mainly include optical remote sensing satellites and
synthetic aperture radar (SAR) data. Optical data can capture
reflectance differences of flooded areas in different spectral
bands, but limited by factors, such as extreme weather and
cloud cover during flood disasters [8]. Compared with optical
remote sensing, SAR is capable to obtain all-weather and all-day
information about floods. So far, a large number of studies
have leveraged SAR data for urban flood detection [9], [10],
[11]. However, few research studies have explored the SAR
reflection/scattering mechanisms of fine-grained land use and
land cover (LULC). In complex urban environment, different
LULC classes generally exhibit various reflection/scattering
mechanisms when flooding, such as specular reflection, surface
backscatter, as well as single, double, and triple bounces [12],
[13]. Meanwhile, intensive residential activities in urban areas
also have an impact on SAR characteristics [14], [15]. In this
case, a flooded LULC may have similar reflection/scattering
characteristics than another nonflooded LULC, and ignoring
this phenomenon is likely to reduce the performance of flood
detection.

In addition to flood detection, remotely sensed data have
also become one of the most important data sources for LULC
classification [16], [17]. But these data may not be able to iden-
tify fine-grained LULC types with similar spectral, geometrical,
and contextual features but different anthropogenic properties,
such as residential areas and service areas. [18], [19]. With
the development of mobile positioning and data acquisition
techniques, crowdsourced data are voluntarily created to pro-
vide human activities and socio-economic information [20]. A
number of crowdsourced LULC datasets have been developed
using tools, such as OpenStreetMap (OSM), LandSense, and
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Geopedia, among others [21], [22], [23]. In particular, OSM is a
free, open-access, crowdsourced platform with which volunteers
from all over the world collaboratively contribute geometric
representations of LULC data [24]. OSM has great potential for
fine-grained classification of urban LULC due to key factors,
such as the availability of up-to-date data with global coverage,
improvements in data quality over time, and extensive volume
and variety of thematic attribute data [21], [25], [26]. However,
the spatial coverage, temporal accuracy, positional accuracy,
and thematic accuracy of OSM data are heterogeneous across
different regions, especially for polygon vector data generated
by individual users [27], [28]. In comparison, OSM line vector
data are usually provided by governments, social organizations,
and institutions, and exhibit advantages, such as comprehensive
coverage, accurate land attributes, and spatio–temporal position-
ing, including road data [29], [30].

To address the problems introduced by the similar reflec-
tion/scattering characteristics between flooded and nonflooded
LULCs in complex urban environments, we propose a new
method for fine-grained flood detection based on the combi-
nation of OSM line vector data and multitemporal Sentinel-1
SAR images. The 2017 Houston (Texas) flood event is adopted
as a test case to test the proposed method. The main innovative
contributions of our work are as follows.

1) A systematic investigation of the reflection/scattering
characteristics of different LULCs in complex urban en-
vironment.

2) Fine-grained LULC classification is carried out by using
OSM line vector data.

3) A new method for fine-grained and accurate flood de-
tection is developed based on LULC classification and
Sentinel-1 SAR images.

The rest of this article is organized as follows. Section II
introduces related works in the areas of LULC classification
and urban flood detection. Section III describes the datasets and
the newly proposed method in detail. Section IV presents the
experimental results. Section V discusses the results and pro-
vides hints at plausible future research lines. Finally, Section VI
concludes this article with some remarks.

II. RELATED WORKS

In this section, we review the existing literature on LULC
classification and urban flood detection using crowdsourced and
remote sensing data.

A. LULC Classification Using Crowdsourced Data

Crowdsourcing is increasingly recognized as a valuable
source for understanding various human and land activities [20].
New emerging types of crowdsourced data provide comple-
mentary information for LULC classification, including geo-
tagged photos, social media data, traffic trajectories, points of
interest (POIs), and volunteered geographic information [31].
In general, crowdsourced data are served as ground truth and
training samples to obtain LULC information. For example,
Schultz et al. [32] combined OSM tags and remote sensing data
for LULC classification in Heidelberg, Germany. Fritz et al.

[33] described the global LULC reference data collected by
a crowdsourcing platform called Geo-Wiki, which provided
information on land cover disagreement and human impact.
Andrade et al. [34] investigated the potential of POI data to char-
acterize geographic spaces, and presented an approach for LULC
classification based on different types of features extracted from
POIs.

B. Flood Detection Using Remote Sensing Data

Remote sensing technology enables large-scale observa-
tions of urban floods in an objective manner. Common data
sources include optical remote sensing satellites and SAR data.
Data from optical remote sensing satellites, such as MODIS,
Sentinel-2, and Landsat Thematic Mapper, Enhanced Thematic
Mapper Plus, and Operational Land Imager, can provide rich
spectral information [35], [36], [37]. Based on the difference
in spectral reflectance of the flooded areas, the contrast be-
tween the flooded areas and other land surfaces is enhanced
for flood detection. For example, Samela et al. [38] combined
spectral indices, such as modified normalized difference wa-
ter index (NDWI), NDWI, and normalized difference turbidity
index, calculated from Sentinel-2 images and digital elevation
models to enhance real-time identification of river flooding.
Tulbure et al. [39] applied machine learning to detect surface
water and flooding dynamics based on the Harmonized Landsat
Sentinel-2 surface reflectance product of the National Aeronau-
tics and Space Administration, which combines Landsat-8 and
Sentinel-2 observations with high temporal frequency of 3–4
days.

SAR data provided by instruments can break through the
limitations of severe weather conditions, such as clouds and rain,
during Earth observation, and provide large-scale spatial data for
urban flood detection during disaster periods, such as Sentinel-1,
TerraSAR-X, and Advanced Land Observing Satellite-2/Phased
Array L-band SAR-2 [40], [41], [42]. For instance, Islam and
Meng [43] designed threshold, change detection, unsupervised,
and supervised classification methods for urban flood mapping
according to different combinations of Sentinel-1 transmit-
horizontal receive and vertical transmit-vertical receive (VV)
polarizations. Baghermanesh et al. [44] integrated simulated
reflectivity maps and polarimetric and interferometric features
generated from TerraSAR-X images to improve urban flood
detection. Based on existing research, a new method is developed
for fine-grained flood detection in complex urban environments
by integrating crowdsourced and remote sensing data, and a case
study is provided for testing.

III. MATERIALS AND METHODS

This section introduces the datasets and the proposed method
for urban flood detection in detail (see Fig. 1). The input data in-
clude OSM data, finer resolution observation and monitoring of
global land cover (FROM-GLC10) product [45], and Sentinel-1
SAR intensity and coherence. Based on the integration of these
data, fine-grained flood detection in complex urban environ-
ments is realized.
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Fig. 1. Flowchart of fine-grained urban flood detection by combining OSM data, finer resolution observation and monitoring of global land cover (FROM-GLC10)
product, Sentinel-1 SAR images, and CNNs.

A. Test Case

Hurricane Harvey made landfall in Texas on 25 August 2017,
causing severe damages in large areas of Houston, the fourth
largest city in the United States [46]. After hitting Houston,
Harvey weakened to a tropical storm and progressed slowly,
resulting in extremely high rainfall. According to the statistics
by local National Weather Service office in Houston, 370 and
408 mm of daily rainfall were observed on 26 and 27 August,
respectively. As a result, the Houston bayous burst their banks for
several days, leading to widespread catastrophic flooding. Tak-
ing the 2017 Houston flood event as a test case, two areas located
in western Houston are considered, which are mainly occupied
by residential houses/apartments, commercial and industrial
districts, parks, forest, grassland, reservoirs, and waterways. The
spatial extent of the two study areas is shown in Figs. S1 and S2
in the Supplementary Material, respectively. Specifically, study
area 1 is used to construct the training set, validation set, and
test set required by the urban flood detection model. The trained
classification model is directly applied to detect the urban floods
in study area 2 for further test and analysis.

B. Sentinel-1 SAR Data

In response to the 2017 flood event in Houston, the pre-
event and co-event ground range detected data and single look
complex data of Sentinel-1 VV polarized interferometric wide
swath mode were acquired from the Copernicus Open Access
Hub.2 Here, we generate the Sentinel-1 SAR intensity and co-
herence images using Sentinel application platform [47]. The
intensity images are processed by orbit correction, thermal
noise removal, radiation calibration, speckle reduction with
the Refined Lee speckle filter (window size of 7 × 7 pixels),
radiometric terrain correction, and conversion from linear to

2[Online]. Available: https://scihub.copernicus.eu/

TABLE I
SENTINEL-1 SAR INTENSITY AND COHERENCE DATA USED IN THE 2017

HOUSTON FLOOD EVENT

dB. The coherence images are processed by orbit correction,
back geo-coding, coherence estimation with a window size of
28 × 7 (range × azimuth), debursting, terrain phase removal,
multilooking (window size of 4 × 1 pixels), and resampling to
10-m resolution. Table I provides details about the exact acqui-
sition dates of the involved Sentinel-1 intensity and coherence
data.

C. OSM Data

OSM is a collaborative project updated and maintained by
a community of volunteers. OSM data can be accessed and
downloaded for free through its official website.3 Here, we
collect OSM line vector data to support LULC classification
in the studied areas, including road data and waterway data
[see Figs. S1(a) and S2(a) in the Supplementary Material].
Specifically, we define four meta-categories of LULC based on
OSM data: 1) residential areas, 2) service areas, 3) main roads,
and 4) waterways. The tags in OSM to our meta-categories are
as follows:

1) residential areas: using tag value “residential”;
2) service areas: using tag value “service”;

3[Online]. Available: http://www.openstreetmap.org

https://scihub.copernicus.eu/
http://www.openstreetmap.org
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Fig. 2. Variations of Sentinel-1 SAR intensity and coherence for different
LULC types under nonflooded and flooded conditions: (a) residential areas, (b)
service areas, (c) main roads, (d) forest, (e) grassland, and (f) waterways.

3) main roads: using tag values “motorway,” “trunk,”
primary, and secondary;

4) waterways: using tag values “drain,” “river,” and “stream.”

D. FROM-GLC10 Product

FROM-GLC10 is the first 10-m resolution global land cover
product, which is developed based on global Sentinel-2 images
and powerful cloud computing capabilities of Google Earth
Engine [45]. The FROM-GLC10 product divides land cover
into ten types of cropland, forest, grassland, shrubland, tundra,
wetland, water, impervious surface, bareland, and snow/ice, with
an overall accuracy (OA) of 72.76% [45]. In this study, the
FROM-GLC10 product is used to provide auxiliary information
for fine-grained classification of urban LULC.

E. Ground-Truth Data

Based on the very high resolution aerial photographs acquired
on 30–31 August 2017 by the National Oceanic and Atmo-
spheric Administration Remote Sensing Division, we virtually
digitize the ground-truth flooded and nonflooded areas with a
spatial resolution of 70 m in the study areas [see Figs. S1(b) and
S2(b) in the Supplementary Material].

F. SAR Intensity and Coherence in Urban Environments

There are various flooded/nonflooded reflection/scattering
mechanisms in complex urban environments. Here, we analyze
the variations of Sentinel-1 SAR intensity (σ◦) and coherence
(γ) for different LULC types under nonflooded and flooded
conditions, including residential areas, service areas, main roads,
forest, grassland, and waterways (see Fig. 2). Residential areas
are described as a mixture of impervious surfaces and vegetation

[see Fig. 2(a)]. A dihedral corner reflector formed from the
wall–ground structure causes double bounce effect in residential
areas, and the floods have a higher dielectric constant, resulting
in an increase in σ◦ [48], [49]. In addition, the impervious
surfaces (e.g., houses/apartments) are steady targets character-
ized by high γ, while the floods between buildings can cause a
significant decrease of the γ. Compared with residential areas,
service areas have a higher proportion of impervious surface and
a lower proportion of vegetation [see Fig. 2(b)]. Flooded service
areas show a larger increase in σ◦ and a larger decrease in γ.
Main roads includes motorways, trunks, primary roads, and sec-
ondary roads, which are smooth in both flooded and nonflooded
conditions [see Fig. 2(c)]. In this case, backscattered energy is
predominantly directed in the specular direction, causing low σ◦

[12]. Meanwhile, the floods on the main roads can cause a de-
crease in γ. As for forest, the presence of floods between sparse
trees can increase σ◦ by means of the double bounce effect, but
tree canopies may also block dihedral scattering [see Fig. 2(d)].
Due to the low correlation of vegetation and the decorrelation
of floods [13], both flooded and nonflooded forests show low
γ. When grassland is flooded, the surface backscatter changes
to specular reflection [12], causing a significant decrease in
σ◦ [see Fig. 2(e)]. The γ of flooded grassland can decrease
due to the changes in the spatial distribution of scatterers. The
changes of σ◦ and γ in waterways are mainly influenced by the
surrounding land cover [see Fig. 2(f)]. For instance, dihedral
scattering between floods and trees will increase σ◦ and floods
can lead to a certain degree of γ decline. Note that mixed pixels
of medium-resolution images and frequent human activities can
also lead to changes in the composition and position of scatterers,
which makes the reflection/scattering characteristics of LULC
more complicated in urban areas [12], [13], [50].

G. Fine-Grained LULC Classification Using OSM Data

Citizen science/crowdsourcing has shown great potential for
urban LULC classification. Based on the collected OSM line
vector data, we generate the following meta-categories for fine-
grained LULC classification of the study areas: residential areas,
service areas, main roads, and waterways. First of all, the multi-
temporal Sentinel-1 intensity and coherence images (pre-event
and co-event) are split into the nonoverlapping patches of spatial
size 7×7. Since the spatial resolution of the Sentinel-1 images is
10 m, all patches cover a ground area of 70 m × 70 m. Assume
that there are J LULC meta-categories; we calculate the length
of each meta-category (lengthj) in each image patch through
spatial analysis. The LULC of the image patch i can be expressed
as follows:

LULCi = {j|max(lengthj), j ∈ [1, J ]}. (1)

With respect to the image patches that are not classified by
(1), we combine the FROM-GLC10 product for subsequent
classification. Assume that there are K land cover types of the
FROM-GLC10 data in the study areas; we calculate the area of
the kth type (areak) in each unclassified i image patch through
spatial statistics. On this basis, the LULC of the unclassified
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Fig. 3. Graphical illustration of processing similar reflection/scattering char-
acteristics of different LULCs under flooded and nonflooded conditions by using
fine-grained LULC classification obtained from OSM data.

image patch i is given as follows:

LULCi = {k|max(areak), k ∈ [1,K]}. (2)

Note that, for the land cover types that do not exist in the
meta-categories obtained from the OSM data, these types of
FROM-GLC10 are supplemented for LULC classification, such
as forest and grassland. For the land cover types similar to meta-
categories, these types are reclassified into the meta-categories.
For example, the types of water and wetland of FROM-GLC10
are reclassified into waterways. The impervious surface type of
FROM-GLC10 is reclassified into residential areas or service
areas or main roads in the meta-categories, depending on the
number of meta-categories within 3 × 3 image patches.

H. Urban Flood Detection by Integrating Multisource Data

The fine-grained LULC classification obtained through OSM
data provides a solution to the issue that a flooded LULC may
have similar reflection/scattering characteristics than another
nonflooded LULC in a complex urban environment (see Fig. 3).
It can be observed in the graph that there are two categories of
LULC with similar reflection/scattering similar characteristics
under flooded and nonflooded conditions. As marked by the
green dotted rectangles, it is very difficult to separate flooded
and nonflooded areas. Combining the fine-grained classification
of these two LULC categories, it is much easier to classify the
flooded and nonflooded category 1, and reduce the possibility
of misclassification. The same is true for category 2.

Convolutional neural networks (CNNs) can automatically
learn complex, nonlinear relationships between input features
and output targets, and are widely used in urban flood de-
tection [41]. Based on the information of fine-grained LULC
classification, we adopt CNNs to conduct patchwise urban
flood detection for each LULC type. Compared with pixelwise
classification models, patchwise models can reduce the impact
of errors in multisequential image registration, and save time

and cost for annotation in urban areas with complex backscat-
tering backgrounds [51]. Specifically, the labeled flooded and
nonflooded patches of each LULC type in study area 1 are,
respectively, divided into training dataset, validation dataset, and
test dataset, according to a ratio 6:2:2. In this study, we use a
simple five-layer CNN model for the flood detection of each
LULC, consisting of one input layer, three hidden layers and
one output layer. The hidden layers, respectively, contain 32, 64,
128 neuron nodes, using the ReLU activation function [52]. The
input data include pre-event Sentinel-1 SAR intensity and co-
herence, and co-event Sentinel-1 SAR intensity and coherence.
Each CNN model is trained with a batch size of 64, using Adam
optimizer with an initial learning rate of 1e−4 and momentum
parameters (β1, β2) = (0.9, 0.999). The number of epochs for
model training is set to 200. Instead of using early stopping, the
model weights are saved every ten epochs and the best model is
selected for testing. Besides the test dataset, we directly apply
the trained CNN models for flood detection in study area 2 to
verify the effectiveness of the proposed method.

I. Accuracy Assessment of Urban Flood Detection

Here, we compare the results of urban flood detection obtained
by different methods with ground-truth flooded areas for accu-
racy assessment. The quantitative metrics of precision: recall,
F1 score, OA, and Cohen’s Kappa coefficient are calculated by
combining the confusion matrix. For comparative analysis, we
implement the following two baseline experiments: 1) “CNN”:
multiple training datasets, validation datasets, and test datasets
of different LULC types are combined into one training dataset,
validation dataset, and test dataset, which are used for urban
flood detection through a patchwise CNN model and 2) “FROM-
GLC10”: we only use the FROM-GLC10 product for land cover
classification, and patchwise CNN models are trained for each
land cover type.

IV. RESULTS

In this section, we first present the results of fine-grained
LULC classification obtained through OSM data. Then, we
quantitatively evaluate the results of urban flood detection gen-
erated by different methods.

A. Fine-Grained Urban LULC Classification

Combining the OSM line vector data and the FROM-GLC10
product, we generate the fine-grained urban LULC classification
maps in the study areas (see Fig. 4, and Fig. S3 in the Supplemen-
tary Material). The study areas contain a total of six urban LULC
types, namely, residential areas, service areas, main roads, forest,
grassland, and waterways. Residential areas and service areas
are widely distributed in study area 1, accounting for 73.43% of
the area. Main roads show obvious linear characteristics, with an
area proportion of 10.94%. The area proportions of waterway,
grassland, and forest are 6.57%, 6.19%, and 2.88%, respectively.
In study area 2, residential areas are the most dominant LULC
type, accounting for 53.79% of the area. The area proportions
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Fig. 4. Fine-grained classification of urban LULC in study area 1.

of forest, service areas, grassland, waterways, and main roads
are 16.61%, 14.10%, 6.59%, 5.91%, and 2.98%, respectively.

B. Fine-Grained Urban Flood Detection

First of all, the red, green, and blue (RGB) band combina-
tion of multitemporal Sentinel-1 SAR intensity and coherence
images in study area 1 is used for qualitative analysis to pro-
mote the understanding of the SAR reflection/backscattering
mechanisms in a complex urban environment with flooded and
nonflooded condition (see Fig. 5). Fig. 5(a) presents the RGB
color composite given by R: pre-event intensity, and G and B:
co-event intensity. Red color may indicate the flood bare soil or
short vegetation with a decrease of SAR intensity. Cyan may
be partially flooded residential areas or vegetation, and dihedral
scattering with floods leads to an increase of SAR intensity.
White color indicates flooded areas where dihedral scattering
is dominant such as service areas. Fig. 5(b) presents the RGB
color composite given by R: pre-event coherence, and G and
B: co-event coherence. Darker areas indicate lower coherence
in both pre-event and co-event, which generally consist of
vegetation or areas with dense activities, such as parking lots
and roads. White color represents the nonflooded built-up areas
that have high coherence in the pre-event and co-event. Red
color may be the zones where built-up areas are decorrelated by
floods or vegetation is decorrelated by random changes. Fig. 5(c)
presents the RGB color composite given by R: co-event intensity,
G: pre-event coherence, and B: co-event coherence. Yellow
color indicates the flooded built-up areas, such as service areas.
Brown color may be the areas of mixed flooded buildings and
vegetation, such as residential areas. White and cyan colors are
the nonflooded built-up areas. Red color represents the flooded
or nonflooded vegetation with medium SAR intensity and low
SAR coherence.

Based on the obtained fine-grained LULC classification, we,
respectively, train CNN models for each LULC type for urban
flood detection. Table II gives the flood detection results of var-
ious LULC types on the test datasets. The OAs of residential ar-
eas, service areas, main roads, forest, grassland, and waterways

Fig. 5. RGB color composites of multitemporal Sentinel-1 SAR intensity and
coherence images for the interpretation of different LULCs under flooded and
nonflooded conditions. (a) R = σ° (2017/08/24), B= σ° (2017/08/30), B= σ°
(2017/08/30). (b) γ (2017/08/18-2017/08/24), G = γ (2017/08/24-2017/08.30),
B= γ (2017/08/24-2017/08/30). (c) R = σ° (2017/08/30), G = γ (2017/08/18-
2017/08/24), B = γ (2017/08/24-2017/08/30).

are 0.8, 0.89, 0.85, 0.92, 0.82, and 0.92, respectively. The overall
results of the proposed method can be obtained by combining
the flood detection results of each LULC type (see Table III). It
can found that the proposed method performs more prominently
than the baseline methods according to all quantitative metrics.
Compared with the baseline method “CNN,” F1 score, OA, and
Kappa of our method increase by 2.57%, 2.35%, and 4.74%,
respectively. This indicates that the similar reflection/scattering
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TABLE II
EVALUATION OF THE FLOOD DETECTION RESULTS OF VARIOUS LULC TYPES

ON THE TEST DATASET OBTAINED BY THE PROPOSED METHOD

TABLE III
EVALUATION OF THE FLOOD DETECTION RESULTS OBTAINED BY DIFFERENT

METHODS ON THE TEST SET

Fig. 6. Flood detection results of various LULC types in study area 2 obtained
by the proposed method.

characteristics between flooded and nonflooded LULCs can be
well separated by our method.

To further test the effectiveness of the proposed method, the
CNN models trained in the study area 1 are directly applied to
study area 2 for urban flood detection (see Fig. 6). As given in
Table IV, the OAs of residential areas, service areas, main roads,
forest, grassland, and waterways are 0.78, 0.85, 0.84, 0.97, 0.65,
and 0.99, respectively. Similarly, the flood detection results in
the entire study area 2 can be obtained by combining the corre-
sponding results of each LULC type [see Table V and Fig. 7(c)].
Compared with the baseline methods, the F1 score, OA, and
Kappa of our method increase by more than 3.96%, 4.53%, and
9.26%, respectively. It can also be found that more areas of flood

TABLE IV
EVALUATION OF THE FLOOD DETECTION RESULTS OF VARIOUS LULC TYPES

IN STUDY AREA 2 OBTAINED BY THE PROPOSED METHOD

TABLE V
EVALUATION OF THE FLOOD DETECTION RESULTS OBTAINED BY DIFFERENT

METHODS IN STUDY AREA 2

Fig. 7. Detection results of flooded extents in study area 2 obtained by (a)
CNN, (b) FROM-GLC10, and (c) the proposed method.
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underdetection occur when using the baseline method “CNN”
[see Fig. 7(a)], while more areas of overdetection occur when
using the baseline method “FROM-GLC10” [see Fig. 7(b)].

V. DISCUSSION

In this article, we develop a new method for fine-grained and
accurate flood detection by integrating multitemporal Sentinel-1
SAR and OSM data. Different from previous studies [53], [54],
the proposed method leverages LULC information to improve
urban flood detection, instead of overlapping LULC after flood
detection for damage assessment. Based on the fine-grained
LULC classification, the issue that similar reflection/scattering
characteristics between flooded and nonflooded LULC in com-
plex urban environment can be addressed according to the results
obtained by our method and the baseline method “CNN” (see
Tables III and V). In addition, similar results obtained by two
baseline methods indicate the importance of fine-grained and
accurate classification of urban LULC. Specifically, there are
only three land cover types obtained by “FROM-GLC10”, i.e.,
imperious surface, forest, and grassland, and many patches
that mix vegetation and buildings may be misclassified as for-
est. Therefore, the baseline method “FROM-GLC10” does not
achieve as good performance as our method in the context of
urban flood detection.

So far, flood detection in complex urban environments has
been a very challenging task [12], [50]. In future research, be-
sides the OSM line vector data used in this study, other OSM data
that have been evaluated for spatial coverage, land attributes, and
spatio–temporal positioning accuracy [29], [55], [56] can also
be considered to further improve the fine-grained urban LULC
classification. In addition, the proposed method may be limited
by sample size during model training, especially for the LULC
types with smaller areas. Therefore, data augmentation can be
used to generate more data and improve the generalization ability
of the classification models [57], [58].

VI. CONCLUSION

There are similar reflection/scattering characteristics between
flooded and nonflooded LULCs in complex urban environments.
To address this issue, a new method for fine-grained and accu-
rate flood detection is proposed by integrating multitemporal
Sentinel-1 SAR images and OSM line vector data. Taking the
2017 Houston flood event as a test case, we, respectively, train
CNN models for each LULC type to detect urban flood extents.
According to our experiments, the proposed method performs
more prominently than the baseline methods in the task of flood
detection. In addition, our method can separate similar reflec-
tion/scattering characteristics between flooded and nonflooded
LULCs to improve urban flood detection.
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