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STMNet: Scene Classification-Assisted and Texture
Feature-Enhanced Multiscale Network for

Large-Scale Urban Informal Settlement Extraction
From Remote Sensing Images

Shouhang Du , Jianghe Xing , Shaoyu Wang, Liguang Wei, and Yirui Zhang

Abstract—Automatic urban informal settlement (UIS) extrac-
tion based on high-resolution remote sensing image (HRI) is of great
significance for urban planning and management. This study pro-
poses a scene classification-assisted and texture feature-enhanced
multiscale network (STMNet) for UIS extraction. First, STMNet
takes HRI and computed handcrafted texture feature (HTF) as
input. Second, it employs a pseudo-siamese network to extract
multidimensional deep features from HRI and HTF, respectively.
In addition, a feature attention fusion module is constructed to fuse
the aforementioned features. Finally, skip connection and feature
decoder are utilized to obtain UIS extraction results. In detail,
considering the sparse and dispersed distribution of UIS, a scene
information aggregation and classification module is constructed
to determine whether the input image patch contains UIS. For the
characteristics of high spatial heterogeneity and various shapes
and scales of UIS, an improved atrous spatial pyramid pooling is
presented to extract multiscale and multireceptive field features. An
edge loss function is applied during network training to minimize
errors in the edge regions of UIS. The effectiveness of STMNet is
tested on a self-produced UIS extraction dataset and the publicly
available UIS-Shenzhen dataset. Quantitative results demonstrate
that STMNet achieved the best performance in terms of fa,F1, and
IoU. The mr is slightly higher than that of MAResU-Net and UisNet.
In addition, STMNet achieved the best visual interpretation results
and the fastest inference speed on the self-produced UIS extraction
dataset.

Index Terms—Handcrafted texture feature (HTF), high-
resolution remote sensing image (HRI), scene classification,
semantic segmentation, urban informal settlement (UIS).

I. INTRODUCTION

URBAN informal settlements (UISs) refer to concentrations
of housing in urban areas that lack proper planning, exhibit
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poor living conditions, and are characterized by high population
density [1], [2], [3]. On one hand, UIS plays a positive role by
providing housing for low-income urban residents. However,
on the other hand, the existence of UIS has also given rise to
significant health and safety hazards, impeding the expansion
and modernization of urban functions [1], [4], [5]. Therefore,
accurately mapping the spatial extent of UIS is crucial in guiding
the relevant authorities to adopt appropriate policies and plans
to adjust urban planning.

Before the widespread application of remote sensing, field
investigation is a common way for obtaining the spatial extent of
UIS [4]. With the continuous improvement in the spatial and tem-
poral resolution of images, remote sensing has become a crucial
tool for urban monitoring and planning [6]. Previous studies have
largely focused on using traditional machine learning algorithms
to extract UIS from high-resolution remote sensing image (HRI).
For instance, Duque et al. [7] evaluated the ability of three tradi-
tional machine learning algorithms including logistic regression,
support vector machine, and random forest to extract UIS in
Buenos Aires (Argentina), Medellin (Colombia) and Recife
(Brazil), and the results showed that support vector machine with
radial basis kernel delivers the best performance. Gevaert et al.
[8] utilized the support vector machine with a radial basis kernel
to extract UIS in Kigali (Rwanda), and Maldonado (Uruguay).
Matarira et al. [9] employed the random forest on the Google
Earth engine platform to extract UIS in Durban (South Africa).
Although the aforementioned studies have achieved satisfactory
results in various study areas, traditional machine learning algo-
rithms still rely on manually designed and selected features, the
process is time-consuming and limits the generalizability of the
models. Moreover, as the spatial resolution of images continue
to improve, the structural and textural information of ground
objects becomes more detailed. Traditional machine learning
algorithms face challenges in effectively analyzing and utilizing
this complex spatial structural context [10], [11]. This poses
a disadvantageous impact on the accuracy and generalization
capability of UIS extraction.

In recent years, deep learning, particularly convolutional neu-
ral networks (CNNs) and fully convolutional networks (FCNs),
has made remarkable progress in the field of remote sens-
ing image processing, achieving higher accuracy compared to
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traditional machine learning algorithms [11], [12], [13], [14].
Many cutting-edge issues have been alleviated. For instance, a
spatial-spectral feature extraction network with a patch attention
module was proposed to address the efficient extraction of local
and global features in the field of hyperspectral image classifi-
cation [15]. In addition, a W-shaped hierarchical network was
introduced for change detection [16]. To tackle the problem of
limited labeled samples in transfer learning, a unified multiscale
learning framework was proposed in hyperspectral image clas-
sification [17]. To address the high cost of sample annotation, a
novel semi-supervised image semantic segmentation network
was introduced in the field of land use classification [18].
Moreover, in the domain of scene classification, where dense
distribution of objects often results in severe feature mixing, a
location-aware multicode generator network was introduced and
applied [19].

Currently, in the direction of UIS extraction, there are also a
few applications of deep learning. For instance, Verma et al. [20]
applied CNN to extract UIS from high and medium-resolution
images, demonstrating promising results. More related studies
involve the use of FCN for UIS extraction. For instance, Persello
and Stein [21] constructed an FCN with dilated convolutions for
UIS extraction, which showed the best performance on the self-
made dataset. Pan et al. [4] proposed a UIS extraction paradigm
based on the U-Net deep learning architecture, demonstrating
its superiority through comparison with random forest and
object-based image analysis. Fan et al. [11] constructed UisNet,
which can utilize multimodal data to extract UIS. Experiments
conducted in Shenzhen demonstrate its superior performance.
Wei et al. [12] tested the performance of three methods, FCN,
UNet, and ResUNet, in extracting UIS from HRI. The results
demonstrate that ResUNet is superior to FCN and UNet as it
effectively avoids fragmentation and overfitting of UIS.

While the aforementioned studies have made remarkable
progress, several challenges still remain. First, unlike widely
distributed ground objects such as buildings and roads, the con-
struction of UIS lacks planning, resulting in overall sparse and
scattered distribution. The strategy of processing image patches
one by one leads to a large amount of redundant computation,
which diminishes accuracy and efficiency, as well as may lead
to unnecessary false extraction. Second, the high internal spatial
heterogeneity of UIS, along with their crowded living spaces
and chaotic distribution, complicates the extraction process.
Furthermore, most current studies rely solely on remote sensing
images for UIS extraction, the strategy limits the extraction
capabilities. Although building floors and area data have been
applied for UIS extraction, this approach introduces significant
data acquisition challenges [11].

To address the aforementioned issues, this study proposes a
scene classification-assisted and texture feature-enhanced multi-
scale network (STMNet) for extracting UIS. The network tackles
these issues from three main perspectives.

1) Scene Classification Assisted UIS Extraction: Both scene
classification and ground object extraction are hot top-
ics in the remote sensing community. The former tar-
gets identifying the scene category represented by the
entire image [19], whereas the latter focuses on the

detailed categorization of each pixel within an image [22].
Particularly, scene classification methods are also com-
monly used in object-level extraction tasks [23]. The pro-
posed STMNet effectively integrates scene classification
with UIS extraction by first determining the presence
of UIS in the input image and subsequently deciding
whether to proceed with UIS extraction. This approach
significantly reduces unnecessary computations due to
sparse UIS distribution, decreases errors, and improves
extraction efficiency.

2) Multiscale and Multireceptive Field Feature Extraction:
Due to a lack of planning for UIS construction, these
areas exhibit high internal spatial heterogeneity, chaotic
distribution, and varied shapes and scales. To address these
challenges, the proposed STMNet incorporates a multi-
scale and multireceptive field feature extraction strategy.
The multiscale feature helps address challenges arising
from the inconsistent shapes and scales of UIS. The
multireceptive field configuration is designed to capture
multiresolution features. Images at different spatial reso-
lutions present varied representations of ground objects.
While high-resolution images capture detailed aspects
of UIS, they also magnify internal inconsistencies. Con-
versely, lower-resolution images can diminish these neg-
ative effects, effectively counteracting the complex and
heterogeneous scene characteristics associated with UIS.

3) Texture Features Enhance UIS Information: Handcrafted
features are derived directly through mathematical sta-
tistical analysis of images. Compared to images rich in
spatial information, handcrafted features can specifically
highlight regions of interest [24]. Therefore, we not only
input images into STMNet but also include handcrafted
texture features (HTFs) meticulously designed for UIS
characteristics. The incorporation of these texture features
significantly enhances the expressive capacity of the scene
and improves the accuracy of UIS extraction.

In summary, the proposed STMNet takes HRI and HTF as
inputs and utilizes the pseudo-siamese backbone network to ex-
tract multidimensional deep features respectively. A feature at-
tention fusion module (FAFM) is constructed to fuse the above-
mentioned features. A scene information aggregation and clas-
sification module (SIAC) is proposed to introduce scene clas-
sification within STMNet. An improved atrous spatial pyramid
pooling (ASPP) is introduced to extract multiscale and multire-
ceptive field features. Finally, an additional edge loss function
is included to alleviate extraction errors along the edges of UIS.
The proposed STMNet is tested on a self-produced dataset for
extracting UIS, showing that it effectively improves the extrac-
tion of UIS from both visualization and quantitative evaluations.

The innovations of this study can be summarized as follows.
1) A novel network named STMNet is proposed for extract-

ing UIS. The network utilizes the FAFM to ingeniously
integrate HTF with HRI for high-accuracy UIS extraction.

2) This study combines scene classification with ground
object extraction tasks through the SIAC, granting STM-
Net significant advantages in terms of operational speed
and reduced false extractions. The constructed improved
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Fig. 1. Illustration of STMNet.

ASPP effectively mitigates the complex and heteroge-
neous characteristics of UIS. In addition, the use of the
edge loss function significantly reduces extraction errors
at the edges.

3) The UIS extraction dataset is constructed and made public
to facilitate the progress of related research. Notably, this
dataset is particularly suitable for testing models aimed
at extracting sparsely distributed and divergent ground
objects in large-scale remote sensing application scenar-
ios. Furthermore, the proposed STMNet achieves optimal
performance on this dataset.

II. METHODOLOGY

A. Overall Architecture of STMNet

The structure of the proposed STMNet is shown in Fig. 1. It
mainly contains four components.

1) Input Data and Feature Encoding: In this study, both HRI
and HTF are input data for STMNet. A pseudo-siamese
backbone network is then constructed to extract multidi-
mensional deep features from HRI and HTF, respectively.
In addition, an FAFM is designed to fuse the features.

2) SIAC: Given the sparse and dispersed distribution of UIS,
the SIAC is constructed to aggregate the features of the
encoder paths and determine whether the input image
patch contains UIS or not.

3) Skip Connection and Feature Decoding: Skip connection
is utilized to fuse the features from the encoder path and
decoder path. In addition, an improved ASPP is introduced
to extract multiscale and multireceptive field features. The
features from the decoder path are gradually restored in

size through operations including upsampling, skip con-
nection, concatenation, and convolution, resulting in the
extraction results of UIS.

4) Loss Function: The loss function used in the study consists
of the loss for scene classification and the loss for ex-
traction. Moreover, an edge loss function is formulated to
impose additional penalties for extraction errors occurring
at the UIS edges, with the goal of enhancing the accuracy
at these regions.

The whole detailed process of training and testing for STMNet
is given in Table I. In the subsequent part sections, we present
the key network components.

B. Feature Extraction Utilizing Pseudo-Siamese Backbone

Before the widespread application of deep learning technolo-
gies, the design and utilization of handcrafted features play a key
role in ground object extraction tasks [25], [26], [27]. With the
evolution of deep learning technologies, an increasing number
of CNNs have been proposed [28], [29], [30]. Unlike traditional
handcrafted feature extraction, CNNs can automatically extract
effective features for tasks like scene classification and ground
object extraction [31]. Furthermore, some studies have shown
that combining handcrafted features with images as inputs to
CNNs can further improve the accuracy of tasks such as scene
classification or ground object extraction [32], [33], [34], [35],
[36]. This highlights the importance of handcrafted features in
complementing and enhancing task performance.

We noticed that UIS exhibits significant texture characteris-
tics, specifically high compactness in distribution and high in-
ternal disorder. To strengthen these characteristics, three texture
features, energy, homogeneity, and entropy, are calculated in this
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TABLE I
TRAINING AND TESTING PROCEDURE OF THE PROPOSED STMNET

Fig. 2. UIS in gray-scale HRI and texture features. (a) HRI. (b) Energy.
(c) Homogeneity. (d) Entropy.

study through the gray-level co-occurrence matrix [37]. Among
them, energy reflects the uniformity of gray-scale values in im-
ages, similarly, homogeneity reflects the similarity of grayscale
values in images. Entropy reflects the complexity of gray-scale
values in images. To highlight the distinctive texture features
of UIS more prominently, we present a comparison between
UIS and backgrounds, as well as other urban functional areas
including housing areas, factory areas, and educational areas in
Fig. 2. From the perspectives of energy and homogeneity, the
values in UIS are low due to the internal disorder of UIS, while
entropy exhibits relatively high.

The three aforementioned texture features are concatenated
along the channel dimension to form the network input HTF in

this study. To validate the effectiveness of HTF, we visualized
the gray-scale histograms of UIS and other regions in the gray-
scale HRI, as well as HTFs. As can be seen in Fig. 3, each texture
feature contributes to increasing the peak distance in grayscale
values between UIS and other regions, thereby enhancing the
separability of UIS. For instance, the energy shows that UIS has
a higher frequency of occurrences at lower pixel values, while
the background tends to have relatively higher pixel values. This
contrast is less pronounced in HRI. The distributions of homo-
geneity and entropy exhibit similar patterns. These differences
indicate that the texture features play a significant positive role
in extracting UIS.

This study utilizes the pseudo-siamese backbone network
to extract deep features from HRI and HTF, respectively. The
pseudo-siamese network is similar to the siamese network, but
the weights are not shared [24], [38]. Compared to siamese
network, pseudo-siamese network can extract more independent
and representative deep features [24], [39]. The backbone used
in this study is ResNet-18, proposed by Microsoft Research
in 2015 [40]. Notably, as shown in Fig. 4, for the UIS ex-
traction task, we have removed the classifier and retained the
Stem layer and Residual Blocks. The Stem layer is the initial
part of the network that extracts basic features from the input,
including a convolution layer, batch normalization, and ReLU
activation function. The Residual block, the core of ResNet,
contains several convolution layers, batch normalization, and
activation functions, as well as residual connections that help
address the vanishing gradient problem in deep networks. The
pseudo-siamese ResNet-18 configuration can extract five lay-
ers of deep features from both HRI and HTF, denoted as fri
and fhi, where i ∈ {1, 2, 3, 4, 5}. The FAFM is constructed in
the encoder path to fuse fri and fhi. This module includes a
channel attention fusion module (CAFM) and a spatial attention
fusion module (SAFM) that enhance fri by capturing useful
information from fhi in both channel and spatial dimensions.
Spatial attention amplifies responses in key areas, while channel
attention optimizes contributions across channels, focusing the
model on crucial information. As illustrated in Fig. 5, fhi is
treated as an auxiliary feature, with CAFM and SAFM are
utilized to calculate channel attention weight and spatial at-
tention weight, respectively [41]. In the CAFM, two features
are obtained through parallel operations of a global average
pooling function and a global max pooling function in the
spatial dimension. These features are then processed through
a multilayer perceptron (MLP), and the resulting features are
concatenated. The channel attention weights are subsequently
calculated using a sigmoid activation function. For the SAFM,
two features are obtained through two parallel operations using
the global average pooling and global max pooling function in
the channel dimension. The spatial attention weights are then
calculated through channel concatenation, a 1×1 convolution,
and sigmoid activation. Subsequently, fri are multiplied by these
attention weights to produce enhanced features, labeled as fei,
where i ∈ {1, 2, 3, 4, 5}. This process can be defined as follows:

wci = σ (MLP (GAP (fhi)) + MLP (GMP (fhi)))
i ∈ {1, 2, 3, 4, 5} (1)
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Fig. 3. Gray-scale histograms of UIS and other regions in the gray-scale HRI, as well as HTF. (a) HRI. (b) Energy. (c) Homogeneity. (d) Entropy.

Fig. 4. Modified architecture of ResNet-18 for UIS extraction.

wsi = σ (Conv1 (Cat (GAP (fhi) ,GMP (fhi))))
i ∈ {1, 2, 3, 4, 5} (2)

fei = fri × wci × wsi, i ∈ {1, 2, 3, 4, 5} (3)

where σ(·) denotes sigmoid function; MLP(·) denotes MLP
function; GAP(·) denotes global average pooling function;
GMP(·) denotes global max pooling function; Cat(·) denotes
the feature concatenated in the channel dimension; wc is the
channel attention weight; ws is the spatial attention weight.

Fig. 5. Illustration of FAFM. (a) CAFM. (b) SAFM.

C. Scene Information Aggregation and Classification

The task of ground object extraction often requires cropping
large images into smaller patches, which are then inputted
into the network for extraction, especially when computational



13174 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 6. Illustration of SIAC.

resources are limited [24]. However, when the target ground
object occupies a small proportion of the study area, most
image patches do not contain the target ground object. This can
result in significant redundant computation and extraction errors.
Therefore, the SIAC is constructed in this study to perform
scene classification, which involves aggregating the features of
the encoder paths to determine whether the input image patch
contains UIS or not (see Fig. 6). This module utilizes the last
three deep features from the encoder path, i.e., fe3, fe4, and
fe5, to determine the presence of UIS, providing a reference
for subsequent computation. Specifically, 1×1 convolution and
downsampling operations with different strides are employed
to process the aforementioned three features to ensure they
have the same number of channels and spatial dimensions.
Subsequently, these three features are concatenated, and global
features are extracted using GAP and GMP operations. Finally,
an MLP is utilized to obtain the scene classification result. The
computational process can be defined as

f ′ = Cat(ds×4 (Conv1×1 (fe3)) ,

ds×2 (Conv1 (fe4)) ,Conv1 (fe5)) (4)

resultyes or no

= MLP (Cat (GAP (f ′) ,GMP (f ′))) (5)

where ds×i represents i times downsampling operation; Convk
represents the convolution operation with a kernel size of k×k;
resultyes or no is the scene classification result.

During the network training, UIS extraction operations are
executed regardless of whether the scene classification result
is “yes” or “no.” This approach is essential as the training of
the decoder path requires both positive and negative samples
to ensure model generalizability. However, during the network
testing, the model parameters are fixed, UIS extraction will
not proceed if the scene classification result is “no.” This
strategy is particularly effective for UIS that are sparsely and
scatteredly distributed, as it significantly reduces unnecessary
computational time and decreases the falsealarm. Furthermore,
the accuracy of scene classification will influence the effective-
ness of UIS extraction. Specifically, a false negative, where a

Fig. 7. Illustration of the improved ASPP.

UIS-containing image patch is incorrectly classified as “no,”
leads to missed extraction, thereby increasing the mr. As an-
alyzed earlier, accurate scene classification helps to decrease
the fa and significantly shortens the runtime. Furthermore,
the loss of scene classification, serving as an auxiliary loss
for STMNet, improves gradient flow and mitigates potential
issues of gradient vanishing or exploding during training. It
also provides early supervisory signals, helping the network
learn more useful features, enhances training efficiency, and
reduces the likelihood of overfitting. Consequently, achieving
accurate scene classification contributes to the accuracy of UIS
extraction.

D. Multiscale and Multireceptive Field Features Extraction

Skip connection is an important component in CNNs with
an encoder–decoder structure, which serves to fuse the encoder
features containing rich spatial information with the decoder
features containing rich semantic information. It also helps to
alleviate the problem of gradient explosion or vanishing that
may occur during the network training [29], [40].

Due to the unplanned construction, UIS exhibits high internal
spatial heterogeneity, crowded living spaces, chaotic distribu-
tion, and varying shapes and sizes [5]. To further improve the
extraction accuracy of UIS, an improved ASPP is proposed
in the fifth layer of the skip connection [30]. As shown in
Fig. 7, unlike ASPP, we modify the global pooling to identity
mapping. The improved ASPP can use convolutions with dif-
ferent dilation rates to extract multiscale features while using
different receptive fields to capture multireceptive field fea-
tures. This module can alleviate the difficulty of UIS extraction
caused by the varying shapes and scales of UIS, as well as the
spatial heterogeneity within UIS. The improved ASPP can be
defined as

fASPP = Conv1 (Cat

(fASPP1, fASPP2, fASPP3, fASPP4, fASPP5)) (6)

fASPP1 = Conv1
3 (fe5)
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fASPP2 = Conv3
3 (fe5)

fASPP3 = Conv5
3 (fe5)

fASPP4 = Conv7
3 (fe5)

fASPP5 = fe5 (7)

where Convd
k represents the convolution operation with a kernel

size of k × k and a dilation rate of d.

E. Joint Global and Edge Loss Function Supervised Network
Training

Back propagation is an optimization technique widely used
in optimizing CNNs [31]. The back propagation involves cal-
culating the error gradients for each network layer based on
the computed loss and updating the parameters of the network
layers using the gradient descent algorithm [42]. The expression
for parameter updating can be defined as

θ̂ = θ − lr × (∂Loss/∂θ) (8)

where θ̂ is the updated weight; θ is the weight before the update;
lr is the learning rate; ∂Loss/∂θ represents the error gradient of
the loss function.

The calculation of the loss is key to the effective operation of
the back propagation algorithm. Overall, the loss in this study
contains two components: the loss of UIS scene classification
and the loss of UIS extraction. In detail, an edge loss function
is implemented in the extraction task to improve the accuracy
of edge regions of UIS, by adding a penalty to the extraction
error in those regions. The loss function used in this study can
be defined as

Loss = Lossscene + Lossextraction

= Lossscene +Lossglobal

+ Lossedge (9)

where Lossscene denotes the loss of UIS scene classification;
Lossextraction denotes the loss of UIS extraction; Lossglobal denotes
the global loss function; Lossedge denotes the edge loss function,
and Lossextraction= Lossglobal +Lossedge.

In this study, the binary cross-entropy loss function is em-
ployed to measure the differences between predictions and
ground truth in both scene classification and extraction tasks
[43], [44]. The binary cross-entropy loss function can be defined
as follows:

CELoss =
1

N

∑
− [yi × log (pi) + (1− yi)

× log (1− pi)] (10)

where N denotes the total number of samples; If the sample
is positive, yi = 1; otherwise, yi = 0. pi denotes the result
predicted by the method. Therefore, Lossscene can be defined as

Lossscene =
1

Ns

∑
− [yi

s × log (pi
s) + (1− yi

s)

× log (1− pi
s)] (11)

Fig. 8. Illustration of extraction errors within the buffer area.

where Ns represents the number of images. If the input image
contains UIS, yis = 1; otherwise, yis = 0. pis denotes the
result predicted by the SIAC. And Lossglobal can be defined as

Lossglobal =
1

Ng

∑
− [yi

g × log (pi
g) + (1− yi

g)

× log (1− pi
g)] (12)

where Ng represents the number of pixels in the image. If the
prediction result for a pixel is UIS, yig = 1; otherwise, yig = 0.
pi

g denotes the result predicted by the STMNet.
As illustrated in Fig. 8, the calculation of Lossedge first in-

volves using the sobel operator to compute and identify the
edges of UIS. Then, a buffer area is constructed both internally
and externally around each pixel β, and additional penalties
are applied to the extraction errors within this buffer area. The
relationship between the edge loss function and the global loss
function can be defined as

Lossedge= buffer (sobel (mask))×Lossglobal (13)

where mask represents the binary mask of UIS; buffer(·) denotes
the function for building buffer area.

III. EXPERIMENTS

A. Study Area and Dataset

The capital of China, Beijing, is selected as the study area.
Beijing faces challenges like uneven urbanization of social
spaces due to its rapid urban expansion. This problem is reflected
in the fact that the city contains a large number of modern
commercial, residential, and educational areas, as well as many
UIS to be developed [45]. Consequently, the extraction and
analysis of UIS hold significant reference value for subsequent
urban development and planning research.

The HRI used in this study was downloaded from the AMap
platform, with a resolution of 2.38 m. The image was cap-
tured by satellites from DigitalGlobe’s WorldView series and
SpaceView’s Gaofen satellite series in the year 2022. The image
includes three bands: red, green, and blue. Considering that UIS
is primarily located within the physical urban areas of Beijing,
this study specifically concentrates on the physical urban areas
of Beijing (the physical urban areas of Beijing can be found
online).1 The location and image coverage of the study area are
shown in Fig. 9. We randomly delineate 30 rectangular boxes
with 5000 m sides evenly spaced across the study area. The boxes

1[Online]. Available at: http://geoscape.pku.edu.cn/otherdata_en.html.

http://geoscape.pku.edu.cn/otherdata_en.html
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Fig. 9. Schematic diagram of the study area.

are randomly divided into training and testing areas in a 7:3 ratio,
assigning 21 boxes for training and 9 boxes for testing. These
processes do not involve any manual intervention. The area of
the study area is 3341.67 km2, with 525 km2 used for training and
225 km2 for testing. The key to the accuracy of the mask lies in
the correctness of the UIS boundaries. Due to the boundaries be-
tween UIS and other regions not being distinctly visible in HRI,
we adopted a strategy of field investigation, visual interpretation,
and cross-validation to construct the dataset. Specifically, during
the field investigation, we accurately recorded the boundaries
between UIS and other regions. These boundaries are usually
narrow and winding paths, which are difficult to distinguish in
HRI. Subsequently, we conducted visual interpretation using
the data from the surveys and HRI. Finally, different researchers
conducted on-site verification of the interpreted boundaries. Due
to limitations in computer processing performance, images need
to be cropped into patches before being fed into the network.
During this operation, we did not impose any regulations. Al-
though this may result in incomplete UIS structures and the
loss of global UIS information, it is consistent with practical
applications, where the distribution of UIS in the test regions is
unknown. In the study, an overlapping cropping strategy with
a 256-pixel overlap is applied when cropping the images and
masks. This method is widely used in large-scale ground object
extraction to minimize the negative influence of incomplete
structures. The images and masks are cropped to patches of
512×512 pixels. The data from the training regions is then
divided into the training dataset and validation dataset in the
ratio of 7:3. After cropping, the training dataset contains 720
pairs of samples, the validation dataset contains 309 pairs, and
the test dataset contains 441 pairs. To enhance the generalization
of the method, data augmentation is performed before training
by conducting various operations on image patches, including
horizontal flipping, vertical flipping, and diagonal flipping [46].

The dataset constructed in this study is publicly available.
Compared to other public UIS extraction datasets such as UIS-
Shenzhen [11] and Xi’an dataset [47], our dataset is distinctive
in that it is randomly selected and retains negative samples
that do not contain UIS. This strategy is commonly employed
in datasets focused on large-scale applications, such as the

WHU-Building dataset (After cropping into 256 × 256 image
patches, the proportion of negative samples is 28.09%) [48].
Retaining negative samples allows the model to encounter more
nontarget scenes during training, which aids in learning to
distinguish between targets and nontargets, alleviates overfitting
issues, and enhances the model’s robustness and generalization
capabilities in unknown application scenarios. Furthermore,
since STMNet includes the SIAC, removing negative samples
would render the SIAC training infeasible.

The dataset constructed in this study is publicly available
and provides a more accurate reflection of real-world applica-
tions compared to other public UIS extraction datasets, such
as UIS-Shenzhen and Xi’an datasets. Specifically, our dataset
involves random selection for training and testing sets, whereas
other datasets involve human intervention, retaining only image
blocks that contain UIS and discarding those without, which
distorts the dataset away from actual application scenarios.

B. Experimental Configuration

The experiments are implemented using a desktop computer
with Intel Xeon Gold 5118, 32GB memory, and NVIDIA
GeForce RTX2080Ti. All algorithms are performed using
Python language (v3.6.5) on the PyCharm platform (Community
Edition 2020.2.1 ×64). The deep learning framework is Pytorch
(v1.7.0+cu110).

The method of manual parameter tuning is employed to search
for a suitable learning rate and β, which are set to 0.0005 and
10, respectively. Due to the limitations of computer memory
and data volume, the batch size is set at 4. The Adam function is
selected as the parameter optimizer since it is robust and well-
suited to a wide range of non-convex optimization problems in
deep learning. To train the model until the loss curve tends to
be smooth, the maximum number of training iteration epochs is
set to 100.

The proposed method is compared with several advanced
and classical methods, including two transformer-structured
networks, namely Shunted Dual Skip Connection UNet (SDSC-
UNet) [49], UNet-like transformer (abbreviated as UNetFormer)
[50], and UIS semantic segmentation network (abbreviated as
UisNet) [11]; two CNN-structured networks, namely multiat-
tention network (abbreviated as MANet) [51] and multistage
attention ResU-Net (abbreviated as MAResU-Net) [52], and
two classical CNNs, namely DeepLabv3+ [30], and pyramid
scene parseing network (abbreviated as PSPNet) [53]. Notably,
since UisNet requires multimodal data inputs, the comparative
experiment with UisNet is not conducted on the self-produced
Beijing UIS extraction dataset. Instead, it is carried out on the
publicly available UIS-Shenzhen dataset.

The performance of STMN is evaluated from both qualitative
and quantitative aspects. Qualitative evaluation is to visualize
the extraction results to visually compare the performance of
different methods. Quantitative evaluation is conducted from
three perspectives: UIS extraction, UIS scene classification,
and method efficiency. Four evaluation metrics are adopted to
quantitatively evaluate the performance of extraction, including
falsealarm (fa) : FP/(TP + FP)×100%, missratemr : FN/
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TABLE II
QUANTITATIVE EVALUATION RESULTS OF DIFFERENT METHODS

(TP + FN)×100%, F1− score (F1) : 2× TP/(2× TP +
FP + FN)× 100%, and Intersection over Union (IoU) :
TP/(TP + FP + FN)×100%, where TP, FP, and FN
represent the true positive, false positive, and false
negative, respectively, in the confusion matrix for the
extraction task. Three evaluation metrics are adopted to
quantitatively evaluate the performance of scene classifica-
tion, including falsealarm′(fa′): FP′/(TP′+FP′)×100%,
missrate′(mr′): FN′/(TP′+FN′)×100%, F1− score′ (F1′) :
2× TP′/(2× TP′+FP′+FN′)×100%, where TP′, FP′, and
FN′ represent the true positive, false positive, and false negative,
respectively, in the confusion matrix for the scene classification
task. These metrics directly reflect the effectiveness of UIS
scene classification and extraction, avoiding the interference
of the background. Furthermore, metrics including params
size (measured in MB), floating point operations (FLOPs,
measured in Giga), and the inference time (measured in seconds
for the physical urban areas of Beijing) are calculated to evaluate
the complexity and efficiency [54]. Here, params size reflects
the model’s storage requirements, when the network parameters
are stored as float32 type, params size = parameters×4bytes.
FLOPs measure the computational complexity, and the inference
time indicates the model’s efficiency in practical applications.
To ensure reliable results and minimize random errors, all
experiments in this study are repeated nine times and the results
are averaged.

C. Comparison of Different Methods

The quantitative evaluation results are shown in Table II.
It is evident that STMNet achieves the best performance in
the metrics of fa, F1 and IoU. Specifically, compared to the
suboptimal method (MANet), STMNet reduces the fa by 1.65
percentage points, and compared to the worst method (PSP-
Net), STMNet reduces the fa by 5.92 percentage points. In
terms of the F1, STMNet outperforms the suboptimal method
(UNetFormer) by 1.11 percentage points, and outperforms the
worst method (PSPNet) by 5.13 percentage points. In terms
of IoU, STMNet outperforms the suboptimal method (UNet-
Former) by 1.77 percentage points and outperforms the worst
method (DeepLabv3+) by 7.87 percentage points. Although
STMNet does not achieve the lowest mr, it closely follows the
optimal method (MAResU-Net), with only a difference of 0.68
percentage points. In summary, STMNet exhibits a significant

advantage in the task of extracting UIS. It is worth noting that the
two classical CNNs (DeepLabv3+ and PSPNet) perform poorly.

The Quantitative evaluation results of the nine rectangular
boxes are shown in Fig. 10. Taking fa as an example, STMNet
achieved the optimal results in four of the nine rectangular boxes
(1, 6, 7, and 9). In the other five rectangular boxes, different
methods achieved optimal results; SDSC-UNet achieves optimal
results in rectangle box 4, MAResU-Net achieves optimal results
in rectangle box 8, DeepLabv3+ achieves optimal results in
rectangle boxes 3 and 5, and PSPNet achieves optimal results
in rectangle box 2. Regarding other evaluation metrics, STM-
Net has the lowest mr in two of the nine rectangular boxes
(2 and 4). In terms of F1 and IoU, STMNet achieves opti-
mal results in five of the nine rectangular boxes (1, 2, 4, 6,
and 9).

Fig. 11 illustrates the extraction results of UIS in some image
patches. It is evident that all methods can extract UIS from HRI.
However, it can be seen from some details that there is a signifi-
cant difference in the extraction ability of each method. STMNet
has the best visualization, characterized by the least number of
false and missed extracted pixels, as well as extracted boundaries
that closely match the true boundaries (e.g., regions 1, 2, 3, 4,
5, 6, and 8). Although the proposed STMNet in some regions
such as regions 7 and 9 has significant missed extractions, it is
also surpassed only by a few methods such as UNetFormer. We
have also counted the number of pixels of TP, FN, FP, and TN in
each image patch as a percentage of the total number of pixels in
Fig. 12. It can be seen in Fig. 12(a)–(e) that only the fifth image
patch where the sum of the percentage of FN and FP is 4.4% is
not the least. It can also be seen in Fig. 12(f) that the percentage
of FN and FP is the least among all the five image patches,
proving that the area of false and missed extracted pixels is
minimized.

Fig. 13 illustrates the UIS extraction results in two rectangular
boxes. In the first example, despite the obvious false and missed
extractions in MANet’s results, this is the only one of the seven
methods that extracts all UIS. It is evident that other meth-
ods have significant missed extractions, such as UNetFormer,
MAResU-Net, DeepLabv3+, and PSPNet, which failed to ex-
tract the UIS in Region 1. SDSC-UNet does not completely
extract the UIS in Region 4. The proposed STMNet also failed
to extract the UIS in Region 6, due to an incorrect judgment
by the SIAC about the presence of UIS in that image patch.
However, it can be seen from many details that the proposed
STMNet has the least number of false and missed extracted
pixels, such as in regions 2 and 7. In the second example,
all methods successfully extract all UIS. In Region 8, MANet
has the fewest miss-extraction pixels, while UNetFormer has
the most. In Region 11, the proposed STMNet has the fewest
false-extraction pixels. Additionally, it is noteworthy that due to
the use of the SIAC, STMNet has no false-extraction pixels in
regions 3, 5, 9, 10, and 12. Fig. 14 quantifies the proportions
of TP, FP, FN, and TN in the two aforementioned examples.
STMNet has the lowest proportion of FP, further confirming
the advantage of the SIAC. The combined ratio of FP and FN
is also the lowest in both the two examples, indicating that
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Fig. 10. Quantitative evaluation results of the nine rectangular boxes. (a) Rectangular box 1. (b) Rectangular box 2. (c) Rectangular box 3. (d) Rectangular box
4. (e) Rectangular box 5. (f) Rectangular box 6. (g) Rectangular box 7. (h) Rectangular box 8. (i) Rectangular box 9.

the STMNet has the fewest miss-extraction and false-extraction
pixels.

IV. DISCUSSION

The aforementioned studies have validated the effectiveness
of the proposed STMNet from both visual interpretation and
quantitative evaluation. However, some issues still need to be
further discussed. For example, the importance and performance
analysis of each module, and how well the method generalizes
to other datasets. Whether the method has advantages in terms
of computational complexity and efficiency? Last but not least,
what are the shortcomings of the proposed STMNet and the
outlook for future study? These will be discussed in detail in
this section.

A. Benefits of HTF

In this study, comparative experiments are designed to eval-
uate whether HTF is beneficial for UIS extraction, as well
as to assess whether all three computed texture features are

TABLE III
QUANTITATIVE EVALUATION RESULTS OF THE HTF EFFECT

advantageous. The results in Table III confirm that the three
texture features, whether used individually or in combination,
enhance UIS extraction performance, with the simultaneous use
of all three features yielding the optimal performance.

The aforementioned experiment validates the effectiveness
of HTF in the UIS extraction task. How to integrate HTF
into neural networks is also a widely studied topic. Existing
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Fig. 11. Extraction results of UIS in some image patches. Different colors represent the correctness or incorrectness of the results, including TP (green), TN
(black), FP (blue), and FN (red).

Fig. 12. The percentage of TP, FP, FN, and TN. (a) Image patch 1. (b) Image patch 2. (c) Image patch 3. (d) Image patch 4. (e) Image patch 5. (f) All image
patches.

studies are usually conducted with two methods: 1) Early fusion,
where HTF are concatenated with HRI and then inputted into
a feature extractor to obtain multidimensional deep features
[55], [56]. 2) late fusion, which involves directly concatenating
HRI with deep features extracted from HRI [34]. In this study,
we compared the pseudo-siamese feature extraction method

used in STMNet with the two methods mentioned above. The
experimental results, as shown in Table IV, reveal that STMNet
achieved the optimal results in terms of fa, mr, F1 and IoU.

In this study, the FAFM is utilized to integrate the deep
features extracted from HTF with those extracted from HRI.
Other common feature fusion strategies, including addition and
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Fig. 13. UIS extraction results in two rectangular boxes. Different colors represent the correctness or incorrectness of the results, including TP (green), TN
(black), FP (blue), and FN (red).

TABLE IV
QUANTITATIVE EVALUATION RESULTS OF DIFFERENT HTF UTILIZATION

METHODS

concatenation, are also considered. Comparative experiments of
these three strategies are conducted. It can be seen from Table V
that STMNet with FAFM obtains the optimal fa, mr, F1, and
IoU.

TABLE V
QUANTITATIVE EVALUATION RESULTS OF DIFFERENT FEATURE FUSION

STRATEGIES

B. Benefits of SIAC

Due to the lack of planning in the construction of UIS,
they are usually dispersed within physical urban areas. In this
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Fig. 14. Percentage of TP, FP, FN and TN. (a) Example 1. (b) Example 2.

TABLE VI
QUANTITATIVE EVALUATION RESULTS OF SCENE CLASSIFICATION FOR

DIFFERENT INPUT FEATURES

study, SIAC is introduced to determine whether the image patch
contains UIS or not. Lower level features contain rich spatial
information, whereas higher level features contain rich semantic
information. By fusing these low-level and high-level features,
we can enhance the spatial and semantic information of the
features used for classification. A comparative experiment on
feature selection is conducted to illustrate how the combination
of these features can achieve optimal scene classification results.
As shown in Table VI , the optimal results are achieved using
three features, specifically fe3, fe4, and fe5. The fa′, mr′, and
F1′ are 1.30%, 0.66%, and 99.02%, respectively.

In addition, comparative experiments are conducted to assess
the effectiveness of SIAC and to investigate the effect of the
scene classification threshold (θ) on scene classification and UIS
extraction accuracy. The results, presented in Table VII, can be
summarized in the following three points.

1) Appropriate θ Setting: It is evident that a lower θ leads to
higher rates of false classifications and false extractions,
whereas a higher θ results in greater rates of missed
classifications and extractions. When θ is set to 0.5, a
good balance is achieved. This value is commonly used
in scene classification and ground object extraction tasks,
and we believe it provides the most accurate balance for a
wide range of tasks. In addition, we recommend adjusting
θ based on experimental performance. For instance, for
tasks such as fire detection, we suggest setting a lower θ
to enhance the model’s sensitivity to early fire warnings,
as a timely response is far more critical than missing any
potential fire spots.

2) Advantages of SIAC: Although the use of SIAC (θ = 0.5)
increases mr by 1.44 percentage points, it significantly
reduces fa by 3.50 percentage points. In terms of com-
prehensive accuracy metrics, the F1 and IoU improve by
1.06 and 1.69 percentage points, respectively. Therefore,
the use of SIAC offers significant advantages.

3) Computational Complexity and Efficiency: From this per-
spective, although SIAC requires an additional 0.82 MB of
memory and increases computational demand by 394.00
Mega FLOPs, it significantly reduces the processing time
by 329.23 s when analyzing the physical urban areas of
Beijing.

Fig. 15 further demonstrates the effectiveness of SIAC. From
the first two image patches, it is evident that classification errors
in STMNet have led to an increase in missed extracted pixels
(regions 1 and 2). However, the correct scene classification of
the latter two image patches has prevented false extracted pixels
(regions 3 and 4).

C. Benefits of Improved ASPP

In this study, the improved ASPP is used to extract multiscale
and multireceptive field features, and the effectiveness of the
improved ASPP is verified in Table VIII and Fig. 16. As shown
in Table VIII, the application of ASPP decreases the fa and
mr by 1.03 and 0.64 percentage points, respectively. It also
improves theF1 and IoU, with increases of 0.83 and 1.33. Fig. 16
demonstrates that the extraction of multiscale and multireceptive
features using improved ASPP leads to results that are more
in line with the ground truth, with fewer false-extraction and
miss-extraction. In addition, it noticeably reduces the holes in
the extraction results, resulting in a higher compactness.

D. Benefits of Edge Loss Function

In this study, the edge loss function is utilized to penalize
errors at edges, with β controlling the size of the edge buffer
zone. The appropriate β is crucial for achieving optimal extrac-
tion performance. A larger β may dilute the emphasis on edge
loss, thereby reducing the training focus and increasing compu-
tational complexity. Conversely, a smaller β may be insufficient
to adequately cover the necessary boundary transition areas. The
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Fig. 15. Impact of SIAC on the UIS extraction results. Different colors represent the correctness or incorrectness of the results, including TP (green), TN (black),
FP (blue), and FN (red).

Fig. 16. Impact of improved ASPP on the UIS extraction results. Different colors represent the correctness or incorrectness of the results, including TP (green),
TN (black), FP (blue), and FN (red).
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TABLE VII
QUANTITATIVE EVALUATION RESULTS OF THE SIAC EFFECT

TABLE VIII
QUANTITATIVE EVALUATION RESULTS OF THE IMPROVED ASPP EFFECT

TABLE IX
QUANTITATIVE EVALUATION RESULTS OF THE EDGE LOSS FUNCTION EFFECT

effect of the edge loss function and β on the extraction accuracy
is presented in Table IX. Notably, β = 0 means the edge loss
function is not applied. It can be seen that when β is set to 10,
the performance is the best, achieving the best fa, F1, and IoU
of 10.60%, 88.61%, and 79.55%, respectively. Compared to not
using the edge loss function, fa decreases by 1.63 percentage
points, and F1 and IoU increase by 0.46 and 0.74 percentage
points, respectively, with only a slight decrease in mr. When β
is set to 15, the optimal mr of 11.34 is achieved.

Figs. 17 and 18 further validate the effectiveness of the edge
loss function, both from visualization and quantitative evalua-
tion. Fig. 17 illustrates that there are fewer false extracted and
missed extracted pixels at the edges of UIS, and the extracted
boundaries are more consistent with the ground truth. Fig. 18
quantifies the number of FP and FN pixels within the buffer area
around the edges of UIS. It demonstrates that the use of edge
loss function effectively reduces the number of FP and FN pixels
within the buffer area.

E. Ablation Experiments With Multiple Modules

In this study, both HRI and HTF are utilized for UIS ex-
traction. In addition, SIAC is introduced to determine whether
the image patch contains UIS or not. The improved ASPP
is used to extract multiscale and multireceptive field features,
and the edge loss function is employed to penalize errors at
boundaries. In this section, ablation experiments are conducted
to evaluate the effectiveness of these modules for UIS extraction.
The experimental results, as shown in Table X, indicate a gradual
improvement in the fa,F1, and IoU with the introduction of each

TABLE X
QUANTITATIVE EVALUATION RESULTS OF ABLATION STUDY

TABLE XI
QUANTITATIVE EVALUATION RESULTS OF THE NEGATIVE SAMPLE ABLATION

STUDY

module. However, the mr slightly increases with the introduc-
tion of SIAC. Nevertheless, overall, there is still a decreasing
trend. STMNet, which integrates all modules, exhibits the best
performance across all evaluation metrics.

Furthermore, the UIS dataset constructed in this study retains
negative samples that do not contain UIS, primarily to aid in
the training of SIAC and enhance the model’s generalization
capabilities. To explore the effectiveness of this strategy, we con-
ducted comparative experiments, specifically applying STMNet
without SIAC. The results, as shown in Table XI, demonstrate
that the removal of negative samples leads to an increase in
errors, particularly in terms of false extractions. Specifically, the
fa increased by 0.73 percentage points, the mr by 1.79 percentage
points, the F1 decreased by 1.24 percentage points, and the IoU
decreased by 1.94 percentage points.

F. Generalizability Analysis With Additional Datasets

To further prove the generalization performance of the pro-
posed STMNet, we conduct comparative experiments on the
publicly available UIS-Shenzhen dataset [11]. This dataset is
constructed using HRI of Shenzhen, Guangdong Province,
downloaded from Google Earth in 2020, with a resolution of
1.19 m, along with building polygons data obtained from Baidu
Maps.

The results of the comparative experiments are shown in
Table XII. STMNet still achieves the best performance in the
metrics of fa, F1 and IoU. It has a 0.005 percentage point lower
fa than the suboptimal method (PSPNet), a 0.86 percentage point
higherF1 than the suboptimal method (UNetFormer), and a 1.24
percentage points higher IoU than the suboptimal method, also
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Fig. 17. Impact of the edge loss function on the UIS extraction results. Different colors represent the correctness or incorrectness of the results, including TP
(green), TN (black), FP (blue), and FN (red).

Fig. 18. Number of FP and FN pixels within the buffer area.

TABLE XII
QUANTITATIVE EVALUATION RESULTS OF DIFFERENT METHODS ON THE

UIS-SHENZHEN DATASET

TABLE XIII
COMPUTATIONAL COMPLEXITY AND EFFICIENCY OF DIFFERENT METHODS

UNetFormer. In terms of mr, STMNet ranked third, only behind
UisNet and MAResU-Net by 0.52 and 0.23 percentage points,
respectively. Although not the best in mr, STMNet’s ability to
balance fa and mr still demonstrates its excellent performance.

G. Computational Complexity and Efficiency

To evaluate the computational complexity and efficiency of
STMNet and the other seven methods, the params size, FLOPs,
and inference time for the physical urban areas of Beijing are
calculated. The results are listed in Table XIII. It should be
noted that since UisNet requires multimodal data inputs, it is not
tested on the self-produced dataset, and thus, no inference times
for UisNet are reported. The analysis reveals that PSPNet has
the smallest params size, while DeepLabv3+ has the largest.
STMNet’s params size is only better than DeepLabv3+ and
MANet. This is due to its use of the pseudo-siamese backbone
with nonshared parameters, resulting in a larger params size of
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85.34 MB. In terms of FLOPs, SDSC-UNet registers the lowest,
and MANet registers the highest. STMNet is at an average level
among the various methods. However, when considering the
inference time, STMNet consumes much less time than other
methods, which is mainly attributed to the application of SIAC.

H. Limitations and Possible Improvements

The proposed STMNet has achieved higher accuracy in UIS
extraction, which has been proved in the experiments, but there
is still content worth studying to improve the accuracy further.

1) Improvements to the Current Model: The application of
SIAC decreases false-extraction, but scene classification
errors lead to an increase in miss-extraction. Therefore,
future studies could implement measures such as multi-
level scene classification to enhance accuracy. In addi-
tion, although the use of SIAC has significantly reduced
inference time, techniques such as model pruning and
reparameterization still need to be further explored to
reduce computation.

2) Application of New Technologies: To fully exploit the
information in HRI and HTF, we will explore the in-
tegration of effective Transformer or Mamba structures
with CNNs. To address the pressure of obtaining training
samples, we plan to combine pretrained large computer
vision models (such as segment anything model) with
unsupervised, weakly supervised, and semi-supervised
methods for UIS extraction. For challenging samples in
UIS extraction tasks, we will adopt effective hard sample
mining and constraint modules to improve accuracy. These
methods will be attempted in future research.

3) Expanding the Research Area: Despite efforts in most
developing countries to transform UIS, cities with rapid
urbanization rates, like Guangzhou in China and Dar es
Salaam in Tanzania, still have many such areas. Therefore,
future studies will focus on studying the distribution and
scale of UIS in these regions. This will provide reference
data for urbanization development in developing coun-
tries.

V. CONCLUSION

In this article, an STMNet is proposed for extracting large-
scale UIS. The proposed STMNet takes HRI and HTF as in-
puts and incorporates FAFM, SIAC, improved ASPP, and the
edge loss function to tackle the complex characteristics of UIS.
Comparative experiments are conducted on a self-produced
UIS extraction dataset and the publicly available UIS-Shenzhen
dataset. The results are analyzed for both visualization and
quantitative evaluation, with the STMNet achieving remarkable
results. The experiments also demonstrate that each module in-
corporated into the proposed STMNet contributes significantly
to the UIS extraction. From the perspective of method efficiency,
the application of SIAC has significantly decreased the inference
time. Future studies will focus on trying new segmentation
methods for UIS extraction to improve accuracy. In addition,
we aim to expand the study area for extracting UIS, especially
in developing countries, to promote the achievement of global
sustainable development goals.

Fig. 19. UIS extraction results within the physical urban areas of Beijing.

APPENDIX

The extraction results of UIS within the physical urban areas
of Beijing can be seen in Fig. 19. All the data and results in this
study are available online.2
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