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RSC-APMN: Random Sea Condition Adaptive
Perception Modulating Network for SAR-Derived

Marine Aquaculture Segmentation
Jianchao Fan , Member, IEEE, and Qiwen Deng

Abstract—The changing marine environment profoundly affects
synthetic aperture radar (SAR) imaging quality. And the current
deep neural network model cannot consider the variation of envi-
ronmental factors. As sea conditions intensify, distinct variations
in sea surface scattering characteristics emerge, leading to diverse
feature distributions in images across different sea conditions,
which variability poses constraints on the extraction capabilities
of deep learning models. To address the above-mentioned issues,
the random sea condition adaptive perception modulation network
(RSC-APMN) is proposed to establish a coupled relationship with
sea condition levels for adaptive enhancement of SAR imagery
and semantic segmentation. Leveraging geographic coordinates
and acquisition time of SAR images, RSC-APMN employs the sea
condition level assessment method to estimate actual wind speeds
and determine sea condition levels. The sea condition adaptive
nonlinear decay module adjusts the decay ratio of different regions
in SAR images under varying sea conditions based on the grayscale
intensity and density characteristics of aquaculture targets, which
maximizes the retention of target information while suppressing
interference, such as sea clutter. To effectively utilize information
from both original and enhanced images and address challenges
posed by varying background noise and image blurring due to
diffuse or Bragg scattering under different sea conditions, we
designed the complex environments omnidirectional perception
segmentation module, which ensures robust semantic segmentation
in random sea conditions. Experiments demonstrate the effective-
ness of the proposed approach based on marine aquaculture under
sea conditions levels ranging from 0 to 5, with experimental data
composed of GaoFen-3 images from Ningde, Fujian.

Index Terms—Deep learning, marine aquaculture, random sea
conditions, synthetic aperture radar (SAR), semantic segmenta-
tion.
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I. INTRODUCTION

W ITH the ongoing growth of the world’s population,
the manner in which marine aquaculture interacts with

ecosystems will become increasingly crucial in ensuring the
long-term stability of food sources and social well-being [1].
By 2020, the total area of marine aquaculture nationwide had
reached 1, 173, 249.22 hectares, showing a spatial distribution
characteristic of Denser North and Sparser South [2]. However,
with the development of aquaculture, improper planning and
regulation may damage offshore ecosystems and adversely af-
fect their ability to provide the ecological services needed for
the sustainable development of marine aquaculture [3], such
as inorganic nitrogen imbalanced and nutrient composition of
seawater imbalanced [4], and biodiversity degradation [5]. To
achieve a balance between economic development and ecolog-
ical conservation, there is an urgent need for effective monitor-
ing of the marine aquaculture industry to achieve sustainable
development [6]. In recent years, China’s marine microwave
remote sensing satellite technology has made a major break-
through in the identification of marine environmental elements
and targets [7], and has the advantages of large coverage and
strong timeliness, which is of great significance to the scien-
tific management of aquaculture and the protection of marine
ecological environment [8], [9]. Compared to optical satellites,
synthetic aperture radar (SAR) satellites are characterized by
their independence from lighting conditions, high resolution,
and superior penetration capabilities [10], [11].

Marine aquaculture mainly includes two types: raft and cage
aquaculture. Raft aquaculture is composed of multiple buoys,
boards, and mooring systems [12]. Today, most marine aquacul-
ture uses gravity-based cage systems, which use heavy objects to
maintain the shape of the net and are connected to floating struc-
tures on the water’s surface [13]. Therefore, these two methods
exhibit distinct characteristics in remote sensing images. With
advancements in artificial intelligence technology, there have
been notable strides in extracting information related to marine
aquaculture using deep learning methods. Liu et al. [14] pro-
posed an SRUnet model based on a Swin transformer, utilizing
medium-resolution remote sensing images to extract nearshore
raft aquaculture areas. Cui et al. [15] employed an end-to-end
FCN-based model for extracting raft aquaculture areas, success-
fully addressing the adhesion phenomenon. Combining seg-
mentation networks and nonsubsampled contourlet transform,
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Zhang et al. [16] extracted marine raft aquaculture areas using
Sentinel-1 images. To tackle issues arising from turbid water
environments and varying buoy scales in aquaculture regions, Su
et al. [17] modified the U-Net network using dual-channel and
residual hybrid dilated convolution blocks, constructing RaftNet
to enhance the accuracy of target extraction. Moreover, Zhou
et al. [18] proposed an invariant information differentiable fea-
ture clustering network for extracting information from marine
aquaculture, aiming to enhance spatial continuity and reduce
the impact of speckle noise. To address the issues of interclass
confusion and intraclass disconnection that may arise in self-
supervised learning with large datasets, Fan et al. [19] proposed
a self-supervised feature fusion-based semantic segmentation
method for monitoring marine aquaculture in SAR images. To
fully utilize the phase information in PolSAR data, Fan et al. [20]
constructed a complex-valued convolutional neural network for
the recognition of marine aquaculture to improve detection ac-
curacy. With the development of intelligent extraction in marine
aquaculture, to overcome the dependence of deep learning on
labels, Wang et al. [21] and Zhou et al. [22], respectively,
proposed an incremental double unsupervised deep learning ap-
proach and an unsupervised mutual-information-differentiable
feature clustering model for extracting information from marine
aquaculture without requiring any labels.

However, current intelligent extraction methods often over-
look the potential impact of dynamic environmental changes,
such as sea conditions and wind speed on the performance of
deep learning networks, resulting in insufficient environmental
adaptability of the models, leading to a decrease in extraction
accuracy or even invalid. Jiang et al. [23] pointed out that improv-
ing the accuracy of remote sensing of oceanographic information
under severe sea conditions is one of the current main research
directions. In SAR measurements, sea surface backscatter con-
sists of resonant Bragg-wave backscattering and non-Bragg
scattering induced by breaking waves, which is directly affected
by sea surface roughness and wind field [24]. While, backscatter
is also subject to the influence of various environmental factors,
including swell, and sea temperature, among which wind speed
stands out as the primary influencing parameter [25]. According
to scattering theory, short-period waves on the sea surface are
modulated by the wind, resulting in periodic streaks of light
and dark on the image [26]. Coastal zones used for marine
aquaculture are mostly characterized by complex terrain, where
wave refraction and diffraction frequently occur, and the sea
surface wind field undergoes drastic changes in this region.
As the sea conditions rise, the sea surface scattering effect
intensifies, making the target signal easily submerged in strong
sea clutter signals [27], [28]. Moreover, due to the long satellite
re-entry cycle [29], the randomness of the marine environment,
and the time limit of monitoring tasks, it is of great significance
to carry out marine aquaculture information extraction under
random sea conditions.

When the sea condition level is close to B0, as shown in
Fig. 1(a), with no or low wind speed, the sea surface can be
regarded as a quasimirror. In this case, the electromagnetic
waves emitted by the side-looking radar are reflected off the
sea surface, resulting in a very weak echo signal. At the same

Fig. 1. Marine aquaculture under random sea conditions. (a) B0-level marine
aquaculture SAR image. (b) B3-level marine aquaculture SAR image. (c) B5-
level marine aquaculture SAR image.

time, the echo signal of the floating raft as an artificial target
is stronger than the sea surface. Therefore, the remote sensing
images have a higher signal-to-noise ratio, which makes the
target area better identifiable and presents a regular shape. As
the sea condition level gradually increases to around B3, as
shown in Fig. 1(b), the sea surface waves are generated under
the action of wind, and the sea surface roughness changes, thus
changing the radar sea surface backscattering intensity. At the
same time, when a large number of scattering elements are
within the same resolution cell, the scattering intensity will
have a weighted impact on each scattering point, resulting in
image blurring. When the sea condition level continues to rise
to about B5, as shown in Fig. 1(c), the backscatter may form
alternating bright and dark gray stripes in SAR images due to
modulation by the sea waves. Meanwhile, the increasing sea
conditions may bring disturbances, such as sea foam, breaking
waves, and airborne mist, making the identification of marine
aquaculture extremely challenging. It is important to note that
the gray stripes are primarily influenced by the sea wind, but
not all SAR remote sensing images will display consistent gray
stripe features corresponding to the wind. These features are
more pronounced under unstable atmospheric conditions and
may sometimes be completely absent under stable conditions.
Furthermore, atmospheric gravity waves or internal ocean waves
may also produce features similar to wind stripes, affecting the
extraction of sea surface targets.

To address the SAR target detection problem in random sea
conditions, numerous scholars analyze the statistical character-
istics of background noise to distinguish clutter and target infor-
mation. Constant false alarm rate (CFAR) is a mainstream tech-
nique used for target detection and clutter suppression, which
relies on probability distribution functions to establish the opti-
mal segmentation threshold between targets and background,
enabling target detection in strong clutter backgrounds [30],
[31]. Gao et al. [32] utilized the reciprocal of the gamma
distribution to describe the texture components of sea clutter
in nonuniform backgrounds, and derived a statistical model to
achieve the CFAR. Yang et al. [33] proposed a new orthogonal
projection-based CFAR detector, which effectively suppressed
sea clutter by constructing a clustering subspace using data
vectors of adjacent distance units and projecting signals from the
region to be detected into the subspace. In order to improve the
detection performance of sea clutter samples in the multitarget
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environment, Ai et al. [34] proposed a robust CFAR detection
method for Gaussian clutter anomalies in SAR images based
on truncated maximum likelihood estimation. Aiming at the
problem that wave shadows and sea peaks make small target de-
tection difficult under low sweep angles and high sea conditions,
Xie et al. [35] proposed a controllable CFAR detector based on
three radar echo phase characteristics. Fan et al. [36] proposed a
parameter estimation method based on variable interval to deal
with the influence of anomalous scattering unit echo with the
increase of sea wave height, which is suitable for the problem of
target detection performance when using Pareto distribution to
describe the statistical characteristics of sea clutter amplitude.
Xie et al. [37] proposed a target detection algorithm based on
the maximum eigenvalue of the sample covariance matrix to
address the limited performance of model-driven CFAR detec-
tors in complex and dynamic marine environments. However,
the method of adapting the background noise distribution in
simulated images through statistical analysis to suit dynamic
environments as described previously requires complex manual
parameter design and has certain limitations when dealing with
complex scenes. Deep learning demonstrates promising poten-
tial in capturing nonlinear relationships [38], [39], [40] under
random sea conditions, owing to its robust capability in nonlin-
ear mapping and approximation. However, current research in
extracting aquaculture information under random sea conditions
remains in its early stages. In this field, the adverse effects
of random sea conditions on image formation have not been
adequately addressed. There is a lack of effective methods to
mitigate the impact of varying sea conditions on the changes in
complex scattering characteristics and their influence on image
feature distributions. This deficiency significantly contributes to
the decline in extraction accuracy. Therefore, we are conducting
research using deep learning methods to enhance and extract
aquaculture information in SAR image under random sea con-
ditions.

Based on the above-mentioned research, this article proposes
a random sea condition adaptive perception modulation network
(RSC-APMN). The net is designed to establish a monitoring
system for marine aquaculture targets under random sea con-
ditions, and its feasibility has been verified by experiments
under real sea conditions of 0–5. It solves the problems of
sea conditions grading based on time and space information
of SAR images, adaptive improvement of signal-to-noise ratio,
and background noise of SAR images under random sea condi-
tions, and significant degradation of performance of traditional
semantic segmentation model under random sea conditions. The
entire net consists of three parts, including the sea condition
level assessment (SCLA) module, the sea condition adaptive
nonlinear decay (SCAND) module, and the complex environ-
ments omnidirectional perception segmentation (CEOPS) mod-
ule. First, the SCLA module utilizes the acquisition time and
geographical location information of SAR images to retrieve the
actual sea condition levels of the marine environment. Second,
the SCAND module can preliminarily eliminate ocean back-
ground noise and enhance the image signal-to-noise ratio by
establishing the relationship between gray value and distribution
density of marine aquaculture targets and sea condition levels.

Furthermore, considering the characteristics of the global dis-
tribution of background noise and mutual interference with
the target under random sea conditions, a CEOPS module is
designed for extracting marine aquaculture under random sea
conditions, which enhances the model’s focus on the effective
regions retained in the modulation results within the original
image, maintains a large receptive field of the model, and
promotes omnidirectional communication and weighted fusion
of multidimensional features. Effectively improve the filter-
ing of background noise in complex scenarios and the fusion
processing ability of target semantic information and spatial
information. This article makes the following contributions.

1) A random sea condition adaptive perception modulating
network is proposed for marine aquaculture under random
sea conditions, with levels ranging from 0 to 5. Compris-
ing SCLA, SCAND, and CEOPS modules, the network
utilizes the spatiotemporal information of SAR images to
determine sea condition levels, adaptively enhances image
quality, integrates original data with modulation results,
and facilitates multidimensional information omnidirec-
tional transfer and fusion for robust extraction in dynamic
marine environments, thus advancing aquaculture moni-
toring.

2) Based on the analysis of the variation of the gray scale
and density of the marine background and targets with the
sea conditions, a SCAND module is proposed to enhance
the image quality. It processes information decay rates
differently in different image regions based on sea con-
dition levels, effectively suppressing background noise,
such as sea clutter while preserving target information for
subsequent target extraction. In addition, an image com-
prehensive modulation quality (ICMQ) metric is designed
for evaluation.

3) The CEOPS module is tailored to extract information in
random sea condition environments, which merges orig-
inal data and modulation results to offer comprehensive
features. In view of the global distribution of ocean noise,
it maintains a large receptive field to capture long-range
information and employs a pyramid structure with multi-
scale information fusion and feature-weighted fusion to
learn the importance and effectiveness of different sea
conditions features, which prevents the decline in perfor-
mance of semantic segmentation models under random
sea conditions.

The rest of this article is organized as follows. Section II
proposes the related work related to the research direction of
this article and provides prior knowledge. Section III proposes
the proposed RSC-APMN model in detail for SAR image marine
aquaculture under random sea conditions. Section IV shows the
experimental results of the work. Finally, Section V concludes
this article.

II. PRELIMINARY WORK

A. BiFP Network

In random sea conditions, traditional deep semantic segmen-
tation networks with small receptive fields and weak integration
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of contextual information may be affected by phenomena, such
as sea clutter background noise, and image blurring caused by
changes in sea conditions and surface roughness. Tan et al. [41]
proposed a simple yet effective weighted bidirectional feature
pyramid (BiFP), as shown in Fig. 2, which combines top-down
and bottom-up feature propagation with multiscale weighted
fusion to enhance the model’s understanding and expression of
input data.

Due to the distinct resolutions of different input features,
they typically make unequal contributions to the output features.
Based on this concept, BiFP proposed a weighted fusion method

O =
∑
i

ωi · Ii
ε+

∑
i ωi

(1)

where O represents the output features, Ii denotes the input
features, ωi represents a learnable weight, which can be scalars,
vectors, or multidimensional tensors, and ε = 0.0001 is a small
value used to mitigate numerical instability.

B. Kernel Density Estimation

General probability density estimation methods can be
broadly categorized into two types: parametric estimation and
nonparametric estimation. Among them, nonparametric estima-
tion involves estimating the entire probability density function
based on the properties of a large sample when the distribution
form of the sample data is unknown and difficult to describe
using simple functions. Gaussian kernel density estimation fh(·)
is a nonparametric method used to estimate the probability
density function of a random variable

fh(x) =
1

n
×

n∑
i=1

Kh (x− xi) =
1

nh
×

n∑
i=1

K

(
x− xi

h

)

K(u) =
1√
2π

e−
u2

2

(2)
where n is the number of sample data points, h is the bandwidth,
which is a parameter controlling the smoothness of the estima-
tion, xi represents the sample data points, and K(·) is the kernel
function, with the gaussian kernel function being selected in this
context.

III. PROPOSED METHOD

To construct an adaptive extraction model for aquaculture
information under random sea conditions, actual sea condition
levels are obtained using latitude, longitude, and time. The
images are then adaptively enhanced, and a semantic segmen-
tation module handles global background noise to extract target
information. This method can be summarized into three parts, as
depicted in Fig. 3. The first part, as shown in Fig. 3(a), involves
obtaining measured wind speeds and generating sea condition
levels based on latitude and longitude information and acquisi-
tion time of SAR images. The second part, as shown in Fig. 3(b),
establishes a coupling relationship between sea condition levels
and SCAND module to adaptively mitigate background noise
produced in SAR images under different sea conditions. As

Fig. 2. Structure of BiFP, which includes: Bidirectional information flow
allows for the transmission of information in both upward and downward
directions. The weighted fusion mechanism enhances the capability of feature
representation.

Algorithm 1: RSC-APMN Model.
Require :ui, Pi, κ, ε
Bi ← SCLA({Pi})
u′i ← GrayscaleEstimation({ui, Bi})
u′′i ← DensityEstimation({u′i})
for True do
Initialize :θg
for t = 0 to κ do
Output← CEOPS({g(ui;u

′
i;u
′′
i ; θg)})

L← LBCE({Output})
end for
Out Output
if δ < ε do

break
end for

shown in Fig. 3(c) and 3(d), the third part involves designing
a CEOPS module tailored for aquaculture under random sea
conditions to obtain the extraction results of aquaculture.

A. RSC-APMN Model

The specific issues addressed by this network are as
follows. Assuming Input0 = {u1, u2, . . . , un}, ui ∈ RH×W×1

is a dataset composed of n high sea condition images. First,
wind speed information is obtained from the European cen-
tre for medium-range weather forecasts (ECMWF) based on
shooting time ti, i ∈ {1, . . . , n}, longitude and latitude Pi, i ∈
{1, . . . , n} of the high sea condition SAR images, and the corre-
sponding sea condition levelB = {B1, B2, . . . , Bn} is obtained
from the Beaufort scale. Considering the accuracy of ECMWF
climate data, in order to avoid missing climate information in
some images, an SCLA module has been designed. Please refer
to section B for details.

In addition, in order to highlight marine aquaculture targets
and suppress background noise to its minimum darkness, the
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Fig. 3. Structure of RSC-APMN model starts from: (a) SCLA module, which estimates the actual sea condition levels by combining geographic coordinates and
time data, (b) SCAND module, which includes two parts: grayscale intensity estimation and density estimation, and (c) ∼ (d) CEOPS module.

SCAND module is designed based on the characteristics of
SAR images under different sea condition levels. Because of
the influence of abnormal pixels, the module uses a sliding
window of different sizes to perform grayscale intensity statistics
to calculate the decay ratio on each image, enhancing regions
with higher grayscale values in the enhanced image. Due to the
use of ratio calculation for stretching, each part of the image
information is subjected to varying degrees of attenuation. To
enhance the contrast between the target area and the ocean
background, a histogram equalization method is used to further
highlight the target information. At this stage, while the target
regions exhibit improved contrast against the marine background
compared to the original image, minor background noise in
certain random marine scenarios has also been enhanced. For
instance, inB5 conditions, there are bright stripe noise caused by
Bragg scattering, which has not been fully suppressed. To further
enhance image separability, grayscale intensity estimation is
recalibrated based on sea condition levels, and decay ratio in-
dices are adjusted accordingly to accommodate the complexities
of each marine environment. Conducting grayscale intensity
statistics on the histogram-equalized images and adjust the decay
ratio to obtain r1, r1 ∈ RH×W×1 based on the sea condition
levelBi, i ∈ {1, . . . , n}. After that, multiply the ratio r1 with the
histogram equalized image to obtain the first set of modulation
result images Input1 = {u′1, u′2, . . . , u′i}.

To address the striped noise with higher grayscale values
caused by sea clutter and background noise that cannot be
completely eliminated in Input1, SCAND employed the Gaus-
sian kernel density estimation method to estimate the den-
sity of Input1, resulting in a probability density map D =
{d1, d2, . . . , dn}. Due to the smoothing nature of the Gaus-
sian kernel function, when grayscale values exhibit significant
variations in the image, the changes in density estimation are
not very pronounced and the presence of low grayscale value
pixels can propose errors, as it is commonly assumed that
these low grayscale value pixels do not belong to the target
region. So, SCAND module multiply u′i by the probability
density map di to create a new probability density image, which
will be used for subsequent distribution statistics and decay
ratio r2, r2 ∈ RH×W×1 calculations. The decay ratio calculation
method remains consistent with the previous approach. It is
worth noting that, in this context, to mitigate mutual interference
between the density distributions of target regions, SCAND
module employ two ratio calculation modes: one is a global
mode, and the other is divided into four parts. Ultimately, using
a weighted averaging approach to combine the results of these
two modes to obtain Input2 = {u′′1, u′′2, . . . , u′′n}.

In order to achieve semantic segmentation in random sea
conditions and effectively utilize valuable feature informa-
tion from the outputs of the SCAND module, this article
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proposes CEOPS module. Tailored for the specific task of ran-
dom sea condition images, this network incorporates a three-
input attentional multiscale convolution mechanism based on
convolutional block attention module [42] at the input, focusing
on valuable spatial areas within u′i and u′′i , and extracting mul-
tiscale target information from the images. During the feature
extraction stage, expanding the receptive field through dilated
convolutions helps the network better understand the global
feature information of the image and effectively suppresses the
background noise distributed globally. In addition, to improve
the model’s precise localization of target features and the fil-
tering effect of background features, offset convolutions are
used to select the feature extraction results at each layer. Si-
multaneously, the introduction of a BiFP structure facilitates the
transmission and weighted fusion of multidimensional feature
information within the model, thereby improving the model’s
understanding of object structures and semantics, and effectively
avoiding information loss during transmission. In each layer of
the decoding part, the attention gate mechanism is introduced
to fuse the multidimensional results generated by the BiFP, en-
hancing the model’s target recognition capability under random
sea conditions.

B. SCLA Module

In this article, actual wind speeds are retrieved based on the
geographic coordinates and acquisition time of the image, using
ERA5 data from ECMWF, which comprises global atmospheric
reanalysis data spanning hourly increments from 1959 to the
present, covering atmospheric, land, and ocean climate variables
on a global scale with a 30 km grid resolution (0.25°). It
can be obtained online.1 However, to address the absence of
environmental data, the SCLA module is designed to estimate
missing environmental information. In addition, sea conditions
typically refer to the surface wave dynamics influenced by the
strength of the wind. The Beaufort scale is widely recognized in
maritime circles as a standardized measure for assessing wind
speeds on land and at sea [43]. Furthermore, it has been expanded
to include evaluations of wave height and overall sea conditions,
and has been endorsed by multiple maritime authorities.

This module employs the Delaunay triangulation algorithm
to process a discrete set of data points, ensuring that the closest
three points form triangles where no segments intersect. Further-
more, the triangulation ensures that within the circumscribed
circle of any triangle, no additional data points exist, and among
all possible triangulations, it selects those triangles with the
largest minimum angle. During interpolation calculations, this
module selects the triangle with the smallest area that contains
the interpolation point as the computation domain, and utilizes
the barycentric coordinates of the triangle’s vertices for interpo-
lation within the triangle

v = λ1A+ λ2B + λ3C (3)

where, v represents the estimated wind speed, A, B, and C
represent the values at the three vertices of the triangle, λ1, λ2,

1[Online]. Available: https://cds.climate.copernicus.eu/#!/home

Fig. 4. Relative error between the interpolated results and the ground truth.
Five sets of data, each containing 50 samples, were selected to compute the
relative errors between interpolated values and ground truth. It is evident that
the vast majority of data points exhibit relative errors close to zero, remaining
within the range of 0–0.1. Only a small minority of samples show relative errors
exceeding 0.2, typically falling between 0.2 and 0.5.

and λ3, respectively, denote the ratios of the Euclidean distances
from the interpolation point to each vertex relative to the total
distance, satisfying λ1 + λ2 + λ3 = 1.

To validate the effectiveness of the method, interpolation
computations were conducted on randomly selected sets of wind
field data. Each set consisted of 50 samples, and relative errors
between each sample and the ground truth were computed. As
shown in Fig. 4, it is evident that only a small minority of relative
errors exceed 0.2. The majority of interpolated results maintain
relative errors below 0.1, overall demonstrating the effectiveness
of this interpolation estimation method. Finally, compare the
obtained wind speed v (m/s) with the Beaufort wind levels table
to determine the sea condition level Bn.

C. SCAND Module

Given the dynamic changes in the marine background of SAR
images under different sea conditions, this study proposes the
SCAND module by analyzing two key aspects: the grayscale in-
tensity and distribution density of targets and backgrounds under
different sea conditions. This module can adaptively attenuate
the information in different regions of SAR images according
to the sea condition levels, effectively enhancing the contrast
between aquaculture targets and the marine background, and sig-
nificantly improving the image’s segmentation capability. The
SCAND module mainly consists of two main parts: grayscale
intensity estimation and density estimation

u′i = F1(ûi)� ui

u′′i = F2(u
′
i)� u′i (4)

where F1 and F2 represent grayscale intensity estimation and
density estimation, respectively, ui represents the input random
sea condition SAR image, u′i and u′′i represent the output re-
sult of grayscale intensity estimation and density estimation,
respectively. ûi represents the effective information retained

https://cds.climate.copernicus.eu/#!/home
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Fig. 5. 3-D visualization of high sea condition SAR images. (a) Source SAR
image. (b) and (c) are 3-D visualization images.

after normalizing the input image ui, which is greater than 0.5. It
stems from extensive experiments indicating that in random sea
conditions, target regions typically exceed the normalized mean.
Such preservation not only reduces computational complexity
but also enhances the significant variation in decay rates across
different regions.

1) Grayscale Intensity Estimation: As the sea condition level
increases, as shown in Fig. 5, it is influenced by local sea surface
winds, resulting in changes in the distribution of microscale
waves on the sea surface and changes in sea surface roughness,
thereby affecting the intensity of radar backscattering. At the
same time, sea winds will generate wind-induced surface waves,
causing the sea surface microwave scattering to transition to
Bragg scattering. This change can affect or even obscure the
echo information of aquaculture targets, which is recorded in the
form of grayscale values on SAR images, resulting in reduced
contrast between targets and backgrounds, thereby affecting the
visibility and separability of the images.

It is observed that the grayscale values within the target area
remain higher than the background. Furthermore, in comparison
to sea clutter noise, certain portions of the sea clutter exhibit
grayscale values that are close to, equal to, or even higher than
those of the target area. However, upon closer examination of
their distribution characteristics, it can be noted that the high
grayscale information within the sea clutter presents in elongated
streak-like patterns, far less dense than the grayscale informa-
tion within the target area. So, in order to reduce the mutual
interference of different scattering targets within the image ui,
partition the input image into four parts: upper-left, upper-right,
lower-left, and lower-right.

However, under random sea conditions, while the contrast
of SAR images and the structure of aquaculture targets may
be affected by the sea conditions, the grayscale values of most
targets consistently remain higher than the background. In addi-
tion, certain parts of the bright-dark striped patterns generated
by wind-induced surface waves may approach, equal, or even
exceed the grayscale values of target areas, but their slender
image distribution characteristics are far less dense in high
grayscale information compared to aquaculture targets. Based
on the above-mentioned characteristics, a grayscale-based vari-
able sliding window decay ratio calculation method G(·) has

been designed

G(x) =

⎛
⎜⎜⎜⎜⎝
G11 G12 · · · G1j

G21 G22 · · · G2j

...
...

. . .
...

Gi1 Gi2 · · · Gij

⎞
⎟⎟⎟⎟⎠ . (5)

The Gij is given as follows:

Gij =
1

k×k
∑

x[p, q]−Mmin

Mmax −Mmin

p ∈
[
i− k − 1

2
, i+

k − 1

2

]

q ∈
[
j − k − 1

2
, j +

k − 1

2

]
(6)

where x represents the input of grayscale intensity estimation,
Gij represents the pixel decay ratio at the ith row and jth column
of the input x, k represents the size of the sliding window, set
to 5, 11, 21, and 31 in this study, and then the four results are
weighted fused. x[p, q] represents the pixel value at pth row and
qth column of x. Mmin and Mmax are, respectively, the minimum
and maximum values of 1

k×k
∑

x[p, q].
After undergoing information attenuation by the ratio G(·),

SCAND module employ histogram equalizationT (·) to enhance
the contrast of the processed image

s = T (r) (7)

where r represents the initial pixel value, and s represents the
pixel value after histogram equalization. The calculation method
for T (·) is as follows. Assuming the distribution function of the
random variable s is represented by Fs

Fs =

∫ s

0

ps(s)ds =

∫ r

0

pr(r)dr (8)

ps(s) =
Fs(s)

ds
=

d
[∫ r

0 pr(r)dr
]

ds
= pr(r)

dr

ds
= pr(r)

dr

dT
(9)

s = T (r) =

∫ r

0

pr(r)

ps(s)
dr = 255

∫ r

0

pr(r)dr (10)

where pr(·) is the probability density function of the normalized
input image, and ps(·) is the probability density function of
a uniform distribution from 0 to 255. Based on the above-
mentioned method, the grayscale intensity estimation formula
F1(·) is defined

u′i = r1 � ui

= F1(ûi)� ui

= G

((
T (G(û11

i )� u11
i ) T (G(û12

i )� u12
i )

T (G(û21
i )� u21

i ) T (G(û22
i )� u22

i )

))n

� ui

(11)
where u′i represents the original image ui enhanced through
grayscale intensity estimation, r1 represents the decay rate cal-
culated after grayscale intensity estimation, û11

i , û12
i , û21

i , and
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û22
i , respectively, represent the four equal parts of upper left,

upper right, lower left, and lower right of ûi, which aims to
reduce mutual interference among multiple targets within the
image. To effectively suppress background noise and preserve
target regions under different sea conditions, experiments were
conducted to determine the optimal hyperparameters n. Results
indicated that when the sea condition level is belowB3,n = 0.6.
When the sea condition level is equal to 4, n = 2.8. And when
the level is equal to 5, n = 1.8.

2) Density Estimation: When performing kernel density es-
timation on images, the bandwidth h of the density function
fh(·) controls the window width, affecting the accuracy and
sensitivity of the estimate. An excessively large bandwidth leads
to over smoothing of the estimate, resulting in a density plot
with insignificant variations. Conversely, an excessively small
bandwidth results in estimates that are overly sharp and sen-
sitive to noise, making them prone to disturbance by outliers
and yielding inaccurate results. By considering the influence
of all data points on the bandwidth, kernel function K(·)
can mitigate the disturbance caused by outliers. Moreover, as
the sample size tends toward infinity, the estimate approaches
the true probability density function without bias. Therefore,
the mean integrated squared error (MISE) method can be used
to select an appropriate bandwidth h.

MISE(h) = E

[∫ (
f̂(x)− f(x)

)2
dx

]
(12)

where f̂(·) is the estimated probability density function, f(·)
is the true probability density function, and E[·] represents the
expectation operation. Meanwhile, it is assumed that MISE(·)
holds under weak assumptions

MISE(h) = AMISE(h) + o

(
1

nh
+ h4

)
(13)

AMISE(h) =
R(K)

nh
+

1

4
m2(K)2h4R(f ′′) (14)

R(K) =

∫
K(x)2dx (15)

m2(K) =

∫
x2K(x)dx (16)

where n is the number of sample data points, h is the bandwidth,
AMISE stands for the asymptotic MISE. Minimizing MISE is
equivalent to minimizing AMISE, thus setting the derivative of
AMISE to 0

∂

∂h
AMISE(h) = −R(K)

nh2
+m2(K)2h3R(f ′′) = 0 (17)

hAMISE =
R(K)

1
5

m2(K)
2
5R(f ′′)

1
5n

1
5

. (18)

If using Gaussian kernel density estimation, the optimal
choice of bandwidth that minimizes the MISE is typically de-
termined to be the following:

h =

(
4σ̂

1
5

3n

) 1
5

≈ 1.06σ̂n−
1
5 (19)

where σ̂ represents the sample standard deviation. However,
when only the distribution of data points is considered, ne-
glecting their grayscale values, the invalid information from
low grayscale values may impact the density estimation results.
Therefore, this study integrates both the grayscale and density of
the input image, enhancing the probability density image, which
is then employed in the computation of the decay rate

u′′i = r2 � u′i

= F2(u
′
i)� u′i

= 0.5u′i �G(T (fh(u
′
i)� u′i)) + 0.5u′i

�
(
G(T (fh(u

11′
i )� u11′

i )) G(T (fh(u
12′
i )� u12′

i ))

G(T (fh(u
21′
i )� u21′

i )) G(T (fh(u
22′
i )� u22′

i ))

)
(20)

where u′′i represents the u′i enhanced through density estimation,
r2 represents the decay rate calculated after density estimation,
u11′
i , u12′

i , u21′
i , and u22′

i , respectively, represent the four equal
parts of upper left, upper right, lower left, and lower right of u′i.

D. CEOPS Module

In addressing the semantic segmentation challenges posed by
random sea conditions, the CEOPS module retains the founda-
tional architecture of feature encoding and decoding. Augmenta-
tions are made at the input of the CEOPS module, incorporating
spatial attention mechanisms and multiscale convolutions to
bolster the model’s capacity in processing intricate maritime
imagery. This approach facilitates enhanced comprehension of
both global contextual structures and local detailed information
in the input image and the SCAND module modulation result,
thereby fortifying the model’s capacity to autonomously discern
high-level semantic features. Consequently, the model exhibits
improved adaptability to diverse environmental scenarios.

In semantic segmentation tasks of SAR images under random
sea conditions, the encoder continuously increases the depth of
the network through a hierarchical cascade structure to extract
deeper semantic features. However, random sea condition SAR
images contain global distributions of random noise and the
typical convolution kernel sizes are often set to 3× 3 or 5× 5,
with a receptive field not exceeding 25 pixels, which may result
in a significant proportion of noisy pixels contaminating the
receptive field. In addition, aquaculture targets are influenced by
complex marine environments, and their scales and shapes may
change. The limited receptive field of traditional convolutional
layers restricts the model’s ability to accurately identify and
locate targets. Therefore, the CEOPS module selects dilated
convolution as the core for feature extraction to obtain a broader
context. Before context interaction, each layer of the network is
screened using offset convolution to eliminate the influence of
disturbing information as much as possible.

When dealing with complex scenes, one significant reason
for the failure of traditional semantic segmentation models is
their insufficient capability to handle multiscale information
processing and feature interaction. For example, using skip con-
nections may lead to significant noise from the original image
being propagated to lower level features, thereby impacting
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the accuracy of feature representation. In contrast, the BiFP
structure employed in the CEOPS module effectively manages
feature information across different levels of the network, fa-
cilitating efficient information exchange between feature maps
at various levels. This approach aids the model in achieving
a more comprehensive understanding of differences between
objects and backgrounds, thereby enhancing the model’s capa-
bility to suppress noise. However, it also results in some loss
of fine-grained details of the target object’s edges. In addition,
CEOPS achieves feature fusion by adaptively selecting feature
maps, which, compared to traditional models, such as U-net,
can better suppress background noise and adapt to input data
under different sea conditions. To restore spatial information in
the multidimensional features processed by the BiFP structure,
the decoder adopts the combination of upsampling and attention
gates. By dynamically adjusting the importance of each feature
map, this mechanism directs the model’s attention toward aqua-
culture target regions, mitigating interference from pseudotarget
regions generated by random sea conditions.

IV. EXPERIMENTS

The RSC-APMN model proposes two components that re-
quire in-depth discussion: the SCAND module and the CEOPS
module. To demonstrate the effectiveness of the SCAND module
in adaptively enhancing SAR images under random sea condi-
tions, and the capability of the CEOPS module in extracting
targets from SAR images in random sea conditions, this article
conducted extensive experimental validation. By comprehen-
sively considering key aspects, such as signal-to-noise ratio,
preservation rate of target information, and suppression rate of
background regions, evaluation metrics tailored to the results of
the SCAND module were designed. Subsequently, a hyperpa-
rameter comparison experiment is carried out to compare the
adaptive enhancement effect of SAR images in sea conditions
from 0 to 5, and the experimental results are presented and ana-
lyzed. Furthermore, this study validated the effectiveness of the
CEOPS module, constructed based on BiFP, in processing SAR
images under random sea conditions. Comparative experiments
were conducted with unsupervised methods, deep learning mod-
els, and the popular CFAR detection algorithm under random
sea conditions, further demonstrating the limitations of applying
CFAR algorithm theory to semantic segmentation.

All the experiments are implemented in PyTorch 1.7.0, with
an Intel Xeon Silver 4210 with 2.40 GHz and an Nvidia GeForce
RTX 3080.

A. Dataset

To validate the effectiveness of the RSC-APMN model in
extracting information on marine aquaculture under random sea
conditions, this study focuses on the marine aquaculture area in
Ningde, Fujian, covering the range from 119◦ ∼ 121◦E degrees
longitude and 26◦ ∼ 28◦N degrees latitude across various time
frames, and selects the HV polarization SAR data captured by
GaoFen-3 satellite, ranging from sea condition levels 0–5 deter-
mined according to Table I, captured by GaoFen-3 satellite. The

TABLE I
BEAUFORT WIND LEVELS 0 ∼ 6

data are based on ultrafine fringe technology with a resolution
of 3 m and a fringe width of 30 km.

The dataset was cropped into images of size 512× 512 pixels.
Among these, 122 images have been selected for the test set
to evaluate the performance of various contrast methods. In
addition, 291 images were selected from the dataset as the
training set, and 67 images were designated as the validation
set, totaling 480 images. Within these 480 images, a subset was
specifically chosen to verify the feasibility of the SCAND mod-
ule for adaptive modulation and enhancement of SAR images
under random sea conditions.

B. Evaluation Criteria

Based on the characteristics that the shape structure and
backscattering coefficient of aquaculture targets remain higher
than ocean background under random sea conditions, using
visual interpretation, pixels belonging to the target class were
labeled as positive, while all other pixels were labeled as neg-
ative. To evaluate the performance of the RSC-APMN model
in extracting aquaculture targets under random sea conditions
and the ability of the SCAND module to suppress background
noise, multiple evaluation indicators are introduced. The pri-
mary evaluation metrics [21] include overall accuracy (OA),
precision (P ), recall (R),F1 score, mean intersection over union
(MIoU), Kappa coefficient, ICMQ, image contrast (C), target
region’s decay rate (γ), and nontarget region modulating index
(NRMI)

ICMQ =
1

3
(C + γ + NRMI)

C =
T̄d − N̄d

T̄d
,

γ =
T̄d

T̄o
,

NRMI = 1− 10

m

∑(
Nd

255
− 0

)2

(21)

where T̄d and N̄d represent the mean values of the target region
and nontarget region in the modulated image, respectively, T̄o

represents the mean value of the target region in the original
image, Nd represents the nontarget region in the modulated
image, and m denotes the number of pixels in the nontarget
region. Moreover, a larger ICMQ value indicates better results
achieved by SCAND.

In binary classification problems, OA refers to the proportion
of pixels correctly classified by the model relative to the total
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Fig. 6. Experimental results of comparison methods for marine aquaculture under sea condition levels B3. (a) Original image. (b) Ground truth. (c) OTSU.
(d) 2-D-CFAR. (e) Watershed. (f) SegNet. (g) U-Net. (h) U-Net++. (i) DeepLabv3+. (j) MDOAU-Net. (k) RSC-APMN.

Fig. 7. Experimental results of comparison methods for marine aquaculture under sea condition levels B4. (a) Original image. (b) Ground truth. (c) OTSU.
(d) 2-D-CFAR. (e) Watershed. (f) SegNet. (g) U-Net. (h) U-Net++. (i) DeepLabv3+. (j) MDOAU-Net. (k) RSC-APMN.

number of pixels. However, in the case of class imbalance,
where one class has significantly more samples than the other,
accuracy may provide misleading results. MIoU calculates the
average ratio of intersection to union for all classes, reflecting
the spatial consistency between segmentation results and ground
truth labels. The Kappa is a statistical metric used to measure
the accuracy of classification models, primarily addressing the
limitations of accuracy in situations of class imbalance or ran-
dom classification, which ranges from –1 to 1, typically greater
than 0. Specifically, –1 indicates complete inconsistency, 0 indi-
cates chance agreement, and the ranges of 0.0–0.20, 0.21–0.40,
0.41–0.60, 0.61–0.80, and 0.81–1 represent levels of agreement
categorized as very low, fair, moderate, substantial, and almost
perfect, respectively. P emphasizes the proportion of instances
predicted as positive that are truly positive, while R emphasizes
the proportion of true positive instances successfully captured by
the model. The F1 score is the harmonic mean of P and recall
R, used to evaluate the overall performance of classification
models, particularly crucial in scenarios of imbalanced classes.
Its values range from 0 to 1, where a value closer to 1 indicates a
better balance between precision and recall, signifying a better

performance in balancing the accuracy of positive class iden-
tification and its coverage. ICMQ integrates multiple metrics
aiming to comprehensively assess the quality of the result of
SCAND module, which includes C, γ, and NRMI. C is used to
evaluate image contrast, γ measures the information decay rate
in target regions, and NRMI assesses the proximity of nontarget
regions to zero value, reflecting the SCAND’s effectiveness in
noise suppression.

C. Comparative Experiments

In this article, OTSU [44], 2D-CFAR [45], Watershed [46],
U-Net [47], SegNet [48], U-Net++[49], DeepLabV3+[50], and
MDOAU-Net [51] are compared with the proposed RSC-APMN
model. The experimental results of the marine aquaculture
under high sea conditions are shown in Figs. 6–8, respec-
tively. Moreover, the corresponding accuracy is tabulated in
Tables II–IV, respectively. The best results are marked in bold
in the tables.

1) B3: Under B3 sea condition, as shown in Fig. 6, with the
wind field changes, the surface roughness of the sea surface
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Fig. 8. Experimental results of comparison methods for marine aquaculture under sea condition levels B5. (a) Original image. (b) Ground truth. (c) OTSU.
(d) 2-D-CFAR. (e) Watershed. (f) SegNet. (g) U-Net. (h) U-Net++. (i) DeepLabv3+. (j) MDOAU-Net. (k) RSC-APMN.

TABLE II
EVALUATION OF COMPARATIVE EXPERIMENTAL RESULTS IN MARINE

AQUACULTURE UNDER B3 SEA CONDITIONS

TABLE III
EVALUATION OF COMPARATIVE EXPERIMENTAL RESULTS IN MARINE

AQUACULTURE UNDER B4 SEA CONDITIONS

TABLE IV
EVALUATION OF COMPARATIVE EXPERIMENTAL RESULTS IN MARINE

AQUACULTURE UNDER B5 SEA CONDITIONS

gradually increases, leading to a transition in the reflection
characteristics from quasispecular to diffuse reflection, and the
backscattering coefficient gradually increases. In SAR imaging,
due to the overlapping effects of scattering targets within the
resolution cell, the signal-to-noise ratio of the image begins to
decrease, resulting in an increase in image blur. In addition, there

is a probability of wind-induced surface waves, resulting in slight
light and dark streaks on SAR images. However, compared to
higher sea conditions, such interference is relatively minor, with
a small impact on image quality and target shape structure.

Compared to deep learning, OTSU, 2-D-CFAR, and Water-
shed are more susceptible to speckle noise and background
noise. Nonetheless, in B3 sea conditions, unsupervised meth-
ods based on pixel values can predict object boundaries and
positions relatively accurately. This capability arises from the
distinct grayscale distributions between targets and backgrounds
typically observed in low sea condition scenarios, allowing un-
supervised methods to effectively segment the image into fore-
ground and background using thresholding. This indicates that
these methods demonstrate a certain level of feature extraction
capability under low sea conditions. However, these approaches
overlook the semantic information of the targets, resulting in
lower Kappa coefficients and MIoU scores. In addition, the
performance of 2-D-CFAR is constrained by the size of the
detection window. In the case of rich targets, 2-D-CFAR can
effectively set thresholds for the target and background. How-
ever, sparse target scenarios may result in unstable classification
outcomes due to limited consideration of global image features.

When compared with the deep learning method, in B3
sea condition, the semantic segmentation performance of each
model did not decrease significantly, as shown in Table II, the
average test values of OA, F1, and Kappa remained at a high
level. In addition to processing images with minor background
noise interference or adhesion between some objects, SegNet
showed some missing detection. This is because SegNet retained
the position information of the maximum pooling layer for
up-sampling. At the same time, U-Net and U-Net ++ showed
a certain adhesion phenomenon to the aquaculture targets. This
may be due to the fact that the idea of jumping connections
fails to effectively integrate feature information from different
scales and different levels, making it difficult for the network
to distinguish small differences between targets. DeepLabV3+
and MDOAU-Net demonstrate more stable and superior per-
formance in semantic segmentation tasks. They both utilize
dilated convolutions to better capture contextual information
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and multiscale features of the targets. DeepLabV3+ further
enhances the restoration of target details and boundaries during
the decoding stage by introducing the atrous spatial pyramid
pooling (ASPP) module. Meanwhile, MDOA-UNet improves
segmentation effectiveness by employing offset convolutions
to filter out irrelevant features. The RSC-APMN integrates the
advantages of both DeepLabV3+ and MDOA-UNet, utilizing
BiFP instead of ASPP to enhance feature fusion capability,
maintaining high levels of performance in terms of OA, MIoU,
and Kappa metrics.

2) B4: When the sea condition level reaches B4, as shown in
Fig. 7, the roughness of the sea surface significantly increases,
leading to random scattering of electromagnetic waves in all
directions and exacerbating the phenomenon of diffuse reflec-
tion on the sea surface. This phenomenon results in a significant
enhancement of background clutter signals, causing the target
signals to become blurred or confused, thereby weakening the
intensity of target signals in the image, reducing the contrast
between targets and backgrounds, and increasing the difficulty
of target detection and recognition.

In such scenario, pixel-value-based methods, such as OTSU,
2-D-CFAR, and Watershed, which lack semantic understanding,
fail completely. The OTSU operates by finding the grayscale
threshold that maximizes interclass variance, suitable for images
with clearly distinct target and background grayscale distribu-
tions, characterized by bimodal histograms. However, in the
B4 sea condition, pixel distributions are influenced by diffuse
reflection, resulting in a more uniform distribution compared to
B3. This makes it challenging to accurately determine effective
thresholds. Similarly, the 2-D-CFAR adjusts thresholds dynam-
ically by adapting detection windows. However, in scenarios
where the target is sparse and the image contrast is reduced, as
is typical of B4 sea conditions, unstable threshold selections
can result in a high number of false alarms and missed detec-
tions. In addition, in diffuse reflection imagery, where targets
and background grayscale values are similar, this algorithm
struggles to effectively differentiate between them. Meanwhile,
Watershed algorithms are typically employed for segmenting
objects with well-defined boundaries. Nevertheless, in diffuse
reflection imagery, the boundaries of targets may lack clarity
or blend into surrounding backgrounds, potentially leading to
issues of oversegmentation.

SAR images formed in such sea conditions are relatively
difficult to distinguish inB0–B5 sea conditions, the strong back-
ground noise directly impairs the performance of deep learning
models and imposes higher demands on their semantic under-
standing capabilities. Therefore, under B4 sea conditions, the
deficiencies previously noted in SegNet, U-Net, and U-Net++
during B3 conditions become more pronounced. As shown in
Fig. 7, MDOAU-net, limited by the structure of the jump connec-
tion, significantly interfered with noise and attenuation of target
signal strength, resulting in a large number of errors. Although
Deeplabv3+ exhibits slightly better performance due to its ASPP
structure advantage, it also begins to exhibit a certain number
of errors. Overall, traditional semantic segmentation methods
have not adequately accounted for the effects of environmental
changes on model performance. When confronted with complex

environments, such as random sea conditions, background noise
significantly reduces various performance metrics. Despite the
OA still being maintained at over 80%, metrics such as MIOU,
Kappa, P , R, and F1 decreased by approximately 20%–30%,
indicating significant confusion or omission. However, the RSC-
APMN effectively alleviates performance degradation in ran-
dom sea conditions, showcasing strong noise suppression and
semantic comprehension capabilities in blurry and target-
confused SAR images.

3) B5: When the sea condition reaches B5, as shown in
Fig. 8, the random sea surface is formed by the combination
of waves of both sizes, and the small-scale wave equivalent to
the wavelength of the electromagnetic wave is superimposed on
the large-scale wave. The scattering in small areas is primar-
ily caused by small-scale waves, while long waves modulate
the local incidence angle of electromagnetic waves through
their tilted wavefronts, thereby affecting the radar’s backscatter
cross-section. At this point, the primary echo mechanism of
electromagnetic waves is the Bragg scattering caused by the
periodic structure of the target surface, resulting in alternating
bright and dark stripes in SAR images. Typically, compared
to the diffuse reflection in B3 sea conditions, target features
under this reflection background are more easily highlighted or
identified. However, as the sea condition level increases, factors
such as sea foam, mist, and rainfall may affect the extraction of
SAR sea surface information.

In the B5 sea condition, the boundary and gray difference
between the target and the background are usually more obvious
than B4, but they are affected by the globally distributed light
and dark striped noise. The gray value of this fringe noise is
very close to the target, and the floating raft target is often
submerged in it. Because unsupervised methods, such as OTSU,
2-D-CFAR, and Watershed, lack adequate semantic information
understanding, they often misidentify these noisy areas as tar-
gets, resulting in extremely poor performance of all evaluation
indicators. Furthermore, in deep learning approaches, Segnet
may misclassify substantial globally distributed bright striped
noise as targets due to limitations from max-pooling and lack of
spatial and semantic interaction, which is reflected in its OA and
R. Although U-Net and U-Net++ enhance model performance
by boosting information transfer among different-level feature
maps, limitations in information transmission result in errors
when handling target edges and multiscale targets. MOAU-Net
and Deeplabv3+ exhibit higher stability in B5 sea condition
environments dominated by Bragg scattering, owing to their
capabilities in multiscale information integration, feature selec-
tion, and multidimensional feature fusion.

In summary, unsupervised methods struggle with SAR im-
agery due to significant variations in surface scattering character-
istics across different sea conditions. This makes it challenging
to identify a universally applicable image feature for thresh-
old segmentation. Moreover, classical deep learning methods
have not effectively utilized environmental information and lack
robust feature exploration and interaction capabilities in com-
plex scenarios, resulting in significant performance degradation
in random sea conditions. Through in-depth analysis of the
strengths and weaknesses of various deep learning models under
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sea conditions ranging fromB3 toB5, this study improves upon
the well-performing MDOAU-Net and DeepLabV3+ models
under random sea conditions to design the RSC-APMN. This
network is capable of adaptively suppressing background noise
according to sea condition levels while possessing strong ca-
pabilities for multidimensional feature information propagation
and fusion. Consequently, it effectively mitigates the significant
performance degradation caused by variations in SAR image
target and background features due to changes in marine envi-
ronments, as shown in Fig. 9, resulting in the best comprehensive
performance across all sea conditions.

D. Hyperparameter and Ablation Part

The exponent n of the SCAND module decay ratio is a key
hyperparameter, as shown in equation (11), discussed in this
article, utilized to suppress background noise in the random
sea conditions. The discussion emphasizes the necessity of
considering various sea condition levels when setting n. Setting
it too high can lead to a significant loss of target information,
while setting it too low may not effectively suppress ocean
noise. During the experimental phase, n was varied from 0 to
5 for comparison purposes, assessing the performance of each
adjustment in both suppressing ocean noise and retaining valu-
able information, which aimed to determine the most suitable n
value adaptable to different sea conditions. The experimentation
on hyperparameters is designed to introduce the ICMQ metric,
aiming to comprehensively evaluate the performance of the
SCAND module.

With the modulation coefficient n increases, as shown in
Fig. 10, the background noise is modulated by the SCAND
module. At a smallern value, the loss of information in the target
area is minimal, resulting in a significant improvement in image
contrast and a substantial increase in the ICMQ. However, oncen
exceeds a certain threshold, the information within the target area
begins to decay because the background noise has been reduced
to extremely low levels, resulting in a decline in the ICMQ.
Therefore, in a variety of sea conditions, it is crucial to choose
the best n value corresponding to ICMQ. At the same time, the
comprehensive quality of the B3 sea condition image is the best
without SCAND modulation. In theB5 sea condition, due to the
influence of sea surface Bragg scattering, there is a lot of fringe
noise in the image, which leads to the decrease of ICMQ value.
In B4 sea condition, the image is seriously affected by diffuse
reflection, resulting in the worst image contrast and the lowest
ICMQ value, which is fully consistent with the analysis of each
sea condition image in the comparison experiment, indicating
the effectiveness of ICMQ design. Therefore, in the case of B3
sea condition, to avoid the loss of critical information, n = 0.6
is considered to be the most suitable hyperparameter. Under
the B4 sea condition, to balance the clutter suppression caused
by diffuse reflection and the preservation of target information,
n = 2.8 can obtain the optimal ICMQ value. Under the B5 sea
condition, adopting n = 1.8 can effectively remove the fringe
noise from the background.

Figs. 11 and 12 present partial results of the module’s
grayscale intensity estimation and density estimation under high

Fig. 9. Impact of different sea condition levels on unsupervised methods and
deep learning approaches. (a) OA. (b) MIOU. (c) F1.

sea conditions, depicting the effects as n values increase. It
is observed that upon selecting an appropriate n value, the
grayscale density estimation under high sea conditions effec-
tively eliminates a significant portion of nontarget noise while
preventing substantial loss of target information. However, de-
spite the grayscale density estimation, residual scattered noise
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Fig. 10. Experiment on the comprehensive modulating effect of different n
for B3–B5 sea condition images.

Fig. 11. Partial experimental results of grayscale intensity estimation under
different hyperparameter values of n. (a) Original image. (b) n = 0.6. (c) n =
1.8. (d) n = 2.8. (e) n = 4. (f) n = 5.

Fig. 12. Partial experimental results of density estimation under different
hyperparameter values of n. (a) Original image. (b) n = 0.6. (c) n = 1.8.
(d) n = 2.8. (e) n = 4. (f) n = 5.

may still interfere with subsequent information extraction. How-
ever, Fig. 12 demonstrates that employing density estimation for
further denoising improves image quality.

Under the same hyperparameter settings, as shown in
Table V, the study conducted ablation experiments to investigate
the effects of the SCLA module and SCAND module on the

TABLE V
RESULTS OF THE ABLATION EXPERIMENTS

Fig. 13. Experimental results of regional verification. (a) Original image.
(b) Ground truth. (c) Grayscale intensity estimation of SCAND. (d) Density
estimation of SCAND. (e) RSC-APMN.

RSC-APMN model. Disregarding the SCLA module implies
testing the RSC-APMN without considering changes in sea con-
dition levels. In addition, ignoring the SCAND module means
not modulating SAR images for background noise suppression
and other enhancements but directly testing the RSC-APMN. It
is important to note that the CEOPS module, proposed in this ar-
ticle for semantic segmentation under stochastic sea conditions,
cannot undergo ablation experiments.

E. Validation of Different Regional Applicability

To further validate the efficacy of the method, another segmen-
tation experiment is conducted, which is located in Changhai,
Dalian, Liaoning. The SAR image was captured at geographical
coordinates, 39◦N, 122◦E on 17 June 2021, at 17:48, under
sea condition B3. According to the results shown in Fig. 13,
the RSC-APM model effectively integrates significant features
from both the original image and SCAND modulation out-
comes, achieving more comprehensive information utilization.
The evaluation reveals that the RSC-APM model achieves an
MIoU of 0.8574, a Kappa of 0.7455, an OA of 91.27%, and an
F1 score reaching 92.33% on the dataset of this region. Hence,
even across regions with varying aquaculture characteristics,
the model demonstrates outstanding performance in information
extraction and exhibits significant generalization capabilities.

F. Extraction Experiment in a Single Image Under Varying
Wind Speeds

When analyzing SAR images under random sea conditions,
the same image may contain multiple different sea condition
scenes. Furthermore, images with similar environmental infor-
mation may also exhibit different characteristics, which are
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Fig. 14. Visual representation of sea surface wind speed captured at latitude
24◦ ∼ 30◦N and longitude 119◦ ∼ 130◦E at 10:05 on 16 May 2022. Areas with
varying wind speed information were selected for the validation experiments.

Fig. 15. Comparative experiment of images with uniform wind speed infor-
mation. (a) Original image. (b) Ground truth. (c) Grayscale intensity estimation
of SCAND. (d) Density estimation of SCAND. (e) RSC-APMN.

caused by other factors, such as satellite imaging conditions
and seabed terrain. The SCAND module of RSC-APMN not
only considers the levels of sea condition, but also considers
the signal-to-noise characteristics of the image to calculate the
decay rate. To validate the stability of the SCAND module in
processing such images, three regions within the same SAR
image exhibiting varying wind speed information were selected
for experimental verification.

As shown in Figs. 14 and 15, when disparate wind speed
data is present within a single image, the SCAND module

TABLE VI
EVALUATION OF COMPARATIVE EXPERIMENTAL RESULTS OF IMAGES WITH

UNIFORM WIND SPEED.

modulates the decay ratios in accordance with the specific wind
speed information pertaining to each region. Moreover, even
when factors result in disparate image characteristics despite
identical environmental conditions, the SCAND module also can
enhances SAR images based on its inherent signal-to-noise ratio
characteristics, thereby reducing noise interference in the back-
ground. RSC-APMN can further process the feature-enhanced
results from the SCAND module to better leverage semantic in-
formation in the image, thereby improving overall segmentation
quality and accuracy. As shown in Table VI, the model maintains
stable extraction accuracy, with the OA surpassing 95%, while
the F1 remains consistently above 0.80. RSC-APMN demon-
strates excellent adaptability in handling images with different
imaging characteristics and uneven background distributions,
even under the influence of environmental precision.

V. CONCLUSION

This article proposes an RSC-APMN model aimed at mit-
igating the significant impact of oceanic conditions on SAR
image quality and information extraction accuracy. Tailored to
the characteristics of SAR images under random sea conditions,
the network achieves adaptive enhancement of SAR images
based on sea condition levels by designing the SCLA module and
SCAND module. This effectively suppresses the strong clutter
background noise caused by sea conditions while maximizing
the retention of critical information in target areas, thereby
enhancing image contrast. To address the significant decrease in
the accuracy of semantic segmentation models in complex and
changing marine environments, the CEOPS module is designed.
This module facilitates the interaction and fusion of multilevel
semantic information without introducing a large number of
additional parameters, thereby improving the adaptability and
robustness of the model to complex and changing scenes. The
experimental data encompasses a range of sea conditions, from
B0 to B5, and includes a detailed analysis of environmental
factors influencing sea surface scattering characteristics and the
imaging features of SAR images under random sea conditions.
By comparing the performance of the RSC-APMN with that of
current unsupervised methods and deep learning models appli-
cable to random sea condition target extraction, the superiority
of the RSC-APMN in extracting information from aquaculture
under random sea conditions is validated.
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