
13308 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

A Novel Multidimensional Statistics Denoising
Algorithm Based on Gaussian Mixture Model for

Photon-Counting LiDAR Data
Sitong Chen , Sheng Nie , Xiaohuan Xi , Shaobo Xia , Feng Zhu , Cheng Wang, and Xiaoxiao Zhu

Abstract—The micropulse multibeam photon-counting laser al-
timeter significantly improves the sampling density along the orbit
while introducing abundant noise. Therefore, noise removal is cru-
cial for the subsequent applications of the photon-counting laser
altimeter. This study proposes a new multidimensional statistics
algorithm based on the Gaussian mixture model for photon noise
removal. The method can simultaneously utilize multiple point
cloud statistics and avoid manually selecting denoising thresholds,
dividing signals and noise adaptively. To evaluate the performance
of the algorithm, it is applied to both simulated ICESat-2 data
and real ICESat-2 data, and evaluation indicators including recall,
precision, and the harmonic means of recall and precision are
used for analysis. Experimental results indicate that compared
to denoising using a single statistic, denoising with multidimen-
sional statistics (specifically, the sum of the distance of k-nearest
neighbors, the photon density, and the standard deviation of the
height difference within an elliptic neighborhood of the target
photon) generally yields better results. Multidimensional statis-
tics can influence and constrain each other, leading to improved
decision-making outcomes. After comparing the algorithm with
mainstream DBSCAN and KNN methods, the results indicate that
the GMM method achieves the best denoising results, with average
F-values 5.22% and 7.26% higher than those of DBSCAN and
KNN methods, respectively, across all datasets. In conclusion, this
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algorithm can comprehensively assess and make decisions based
on different statistical measures, demonstrating robustness and
adaptability in extracting signal photons, and is worth promoting
in the photon denoising applications.

Index Terms—And land elevation satellite-2 (ICESat-2), cloud,
gaussian mixture model (GMM), ice, multidimensional statistics,
photon denoising, photon-counting lidar.

I. INTRODUCTION

L IGHT detection and ranging (LiDAR) is an active remote
sensing detection technology that enables the rapid and

precise acquisition of three-dimensional (3-D) spatial infor-
mation of target objects [1]. The launch of the ice, cloud,
and land elevation satellite-2 (ICESat-2) in 2018 [2], equipped
with the advanced topographic laser altimeter system (ATLAS),
has provided a wealth of photon point cloud data covering
the entire globe. These data have been employed in various
applications, such as Earth surface elevation extraction, forest
height and biomass estimation, and ice sheet and sea ice eleva-
tion measurements [3]. ATLAS employs micropulse multibeam
photon counting technology, offering small footprints and high
sampling density to achieve more accurate 3-D information
extraction of Earth’s surface [4]. However, since ATLAS records
all photon events, it is challenging distinguishing return pulses
from target objects from noise generated by atmospheric scat-
tering, solar radiation, and the instrument itself [5], [6]. Thus,
an effective noise removal method is required to identify signal
photons on target objects accurately.

Existing photon noise removal methods can be divided
into four categories: supervised learning-based, unsupervised
learning-based, image processing-based, and statistical-based
methods.

The supervised learning-based approach involves training
classifiers on labeled data samples containing signal and noise,
enabling them to classify new data [7]. Classical supervised
learning algorithms like decision trees, random forests, support
vector machines, and neural networks have been applied to
photon noise removal. For instance, random forest models adopt
point cloud features, such as height and orbit distance, to con-
struct classifiers that enhance model generalization and provide
denoising results [8]. A typical encoder–decoder architecture
network, which takes neighboring points of each noise point
as input and regresses a displacement vector to push the noise
point back to its ground truth position for denoising [9]. Inspired
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by neural synapse connections in the brain, the neural network-
based method determines neuron weights using a training set. It
verifies the classification effect using a testing set of point clouds
[10]. A method based on an end-to-end network transforms the
input point cloud into the underlying high-dimensional space,
and learns the latent manifold of each sampled point to achieve a
clean point cloud [11]. However, the main challenge of the super-
vised methods is that they typically require substantial training
datasets. Incomplete or noncomprehensive training datasets can
significantly reduce classification accuracy.

Unsupervised learning-based methods primarily involve clus-
tering to classify photon points based on feature similarity or
distance [12]. Many algorithms are based on density clustering
methods, improving and innovating to suit photon distribution
patterns. For example, density-based spatial clustering of appli-
cations with noise (DBSCAN) distinguishes signal from noise
photons using an elliptical search shape [13]. However, DB-
SCAN cannot be employed in complex terrains and is sensitive
to parameter selection. The method based on the clustering
method of ordering points to identify the clustering structure
(OPTICS) reduces the sensitivity to parameter, but the number
of parameters to be set is large and end up with complicated
process [14]. Multilevel asymptotic density clustering methods
exhibit good denoising performance across diverse terrains but
remain sensitive to input parameters [15]. The local outlier factor
algorithm effectively denoises complex terrains with strong
background noise based on elliptical density but was computa-
tionally intensive [16]. Cluster-based methods lack universality,
as a single algorithm cannot meet the requirements of point
cloud data processing across different terrains and noise levels,
increasing their sensitivity to algorithm parameters.

Image processing-based methods rasterize photon point
clouds, distinguish noise and signal pixels, and map the results
back to the original point cloud data for classification [17]. Var-
ious image processing techniques have been utilized to identify
features and extract signal photons, such as the Canny edge de-
tection algorithm, Gaussian filtering, and gradient computation
[18]. Median and dimensional filters have also been employed to
remove noise photons [19]. The empirical mode decomposition
algorithm segments image, and uses the nobuyuki otsu method
(OTSU) method to determine the noise-dominated IMFs, and
these IMFs were then filtered according to a soft threshold
method [20]. The voxel-based spatial filtering method filters
noise points using a variable pixel (voxel) binning approach,
while retaining the spatial and vertical fidelity of the dataset
[21]. Although these image processing-based methods have
demonstrated effective noise filtering [22], they convert photon
points into raster images, losing vital information, such as the
precise position of each photon point. Besides, it is challenging
eliminating noise points within the canopy and near the ground.

Statistical-based methods aim to find statistics reflecting pho-
ton intrinsic characteristics and set thresholds based on these
statistics to differentiate signal from noise photons. For instance,
Xia et al. [23] counted the sum of distances from each photon
point to the nearest k points using frequency distribution his-
tograms, setting a threshold for denoising. Nie et al. [24] intro-
duced photon density to calculate the number of photon points

within an elliptical neighborhood around each photon point as
the photon density value for classification. Gwenzi et al. [25]
employed elevation as a statistic, assuming a Poisson distribution
for the elevation of noise photons. Outliers deviating from this
distribution were identified as signal photons. Xie et al. [26]
proposed a directional filter method, which achieves the density
of the best filter direction by traverse and using the density differ-
ence between the point and points in its neighborhood to remove
the noise points. Pan et al. [27] innovated a 2-D profile point
cloud denoising method based on density and local statistics,
which utilizes a statistical outlier removal algorithm to extract
the valid signal point cloud. These methods have limitations.
They require manual threshold setting, which can be challenging
determining, and the optimal threshold varies among datasets,
complicating the denoising process. Furthermore, these methods
typically employ only a single statistic without utilizing various
photon characteristics, leading to unsatisfactory denoising re-
sults, especially in complex environments.

Among the four types of denoising methods, the inherent lim-
itations of the supervised learning-based and image processing-
based methods are demanding extensive training data and
causing information loss, respectively. Algorithm enhancements
cannot readily resolve these limitations. Conversely, unsuper-
vised learning-based and statistical-based methods show poten-
tial for improvement through innovative algorithm development.
Although unsupervised learning-based methods have introduced
advanced clustering algorithms, further advancements depend
on innovations in machine learning. However, statistical-based
methods offer considerable room for improvement by introduc-
ing cutting-edge mathematical statistics algorithms.

Consequently, the current work focuses on statistical-based
methods and proposes a novel multidimensional statistics de-
noising algorithm based on Gaussian mixture models (GMM).
The algorithm solves two main problems of the existing
statistical-based algorithms, including the manual threshold set-
ting and statistics underutilizing. The GMM method converts
the classification problem into a probability comparison prob-
lem to calculate the probability that each photon point fits the
distribution of each single Gaussian model (SGM), and classifies
each photon points into the class represented by the SGM with
the maximum probability to realize the adaptive selection of
the threshold. In order to satisfy the utilization of multiple
statistics, one statistic is regarded as 1-D data, and multiple
statistics as multidimensional data to put in GMM. The GMM
algorithm proposed in this article improves the accuracy of
photon denoising algorithms. There are two main advantages
of the GMM algorithm that make it highly potential for deeper
research in the future. First, the implementation of adaptive
classification eliminates the need to determine the threshold to
noise point removal through human experience, making the basis
of classification more scientifically grounded and reducing the
pressure of manual settings. Second, the use of multidimensional
statistics provides the GMM algorithm with significant room
for innovation. There are many statistics related to point clouds,
each with different emphases. The GMM algorithm makes it
possible to denoise using multiple different statistics simultane-
ously. More effective and complementary statistics discovered in
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future research can all be used as inputs to the GMM algorithm to
achieve more precise denoising effects. The following work are
performed to prove the advantages of our proposed algorithm.

1) Validation of the denoising effectiveness of our novel
GMM algorithm using both simulated and real ICESat-2
datasets, showcasing its robustness and generalizability
in handling photon cloud data with varying noise ratios,
acquisition periods, and terrains.

2) Demonstration of the superiority of the GMM algorithm’s
denoising approach based on multidimensional statisti-
cal quantities over denoising methods using individual
statistical quantities, addressing the limitations of poor
applicability of single statistical quantities and significant
variations in denoising results across different datasets.

3) Improvement in denoising efficacy compared to unsu-
pervised DBSCAN and KNN algorithms, along with the
algorithm’s adaptive implementation of point cloud clas-
sification to avoid the instability and empirical reliance
associated with manually setting classification thresholds
in previous approaches. The strong denoising performance
of our algorithm provides a solid foundation for further
extraction and interpretation of signal point cloud infor-
mation in practical applications.

The rest of this article is arranged as follows. The datasets
are introduced in Section II. The principles and processes of
our proposed algorithm are elucidated in Section III. Section IV
analyzes and evaluates the denoising results. Finally, Section V
concludes this article.

II. DATASET

A. Simulated ICESat-2 Data

NASA acquired simulated ICESat-2 data to assess photon
data quality and performance before the ICESat-2 launch. This
data is freely accessible at Airborne Data | ICESat-2 (nasa.gov),
NASA conducted random sampling to achieve three different
noise rates: 0.5, 2, and 5 MHz [4]. Our study utilized data from
Pine Barren regions in New Jersey, USA (Cedar2 and Cedar4
datasets) and the Smithsonian Environmental Research Center
in Maryland, USA (SERC1, SERC3, and SERC5 datasets).

Simulated ICESat-2 data was labeled with signal and noise
photons, enabling precise denoising and quantitative evaluation.
Fig. 1 describes the photons obtained from Cedar2 data with
different noise rates. Fig. 2 displays photons from five datasets
with a 0.5 MHz noise rate.

B. Real ICESat-2 Data

Real ICESat-2 data assessed the proposed algorithm’s perfor-
mance comprehensively, providing more topographic features
and data acquisition conditions. As a new-generation satellite-
borne LiDAR, ICESat-2 collects data using the ATLAS system,
contributing to global environmental research [28]. It aids in
quantifying the impact of polar ice sheets on sea-level change,
optimizing ice sheet prediction models, estimating ice thickness,
and measuring vegetation height.

Real ICESat-2 data was acquired using the ATLAS system,
comprising lasers, a diffractive splitter, a laser alignment system,

Fig. 1. Signal and noise photons of Cedar2 dataset with different noise rates.
(a) Cedar2 (0.5 MHz). (b) Cedar2 (2 MHz). (c) Cedar2 (5 MHz).

Fig. 2. Signal and noise photons of five datasets with a 0.5 MHz noise rate. (a)
Cedar2 (0.5 MHz). (b) Cedar4 (0.5 MHz). (c) SERC1 (0.5 MHz). (d) SERC3
(0.5 MHz). (e) SERC5 (0.5 MHz).

and a star sensor. Table I presents detailed information on
ICESat-2 and ATLAS. The diffractive splitter divides the laser
beam into six beams, organized into three parallel groups along
the rail direction, as depicted in Fig. 3. In each group, the distance
between two laser beams is approximately 90 m, and adjacent
groups are separated by about 3.3 km.

NASA provides 21 ATLAS data products labeled ATL00 to
ATL21 (excluding ATL05), categorized into Level 0, Level 1,
Level 2, and Level 3. These products can be freely downloaded
from the National Snow and Ice Data Center’s official web-
site[4].1

1Online. [Available]: ICESat-2(nsidc.org)
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TABLE I
ICESAT-2/ATLAS PARAMETERS

Fig. 3. Distribution of the ATLAS laser beams [1].

This study employed the ATL03 product, containing informa-
tion on the longitude, latitude, and elevation of photon points.
Our study incorporated four datasets, including two daytime
and two nighttime datasets, acquired in 2019 and 2020, all
with manually labeled true values, each comprising three data
strips. The real datasets include diverse land cover types and
extensive areas and does not specify a noise rate. The smallest
group contains 7000 points, and the largest has 130 000 points.
Figs. 4 and 5 present one data from each group for display
purposes.

III. METHODOLOGY

The denoising process consists of four main components: pho-
ton point cloud preprocessing, photon point features extraction,
denoising method based on the Gaussian Mixture Model, and
residual noise removal. To provide a comprehensive overview
of the entire process, a flowchart is presented in Fig. 6.

Fig. 4. Signal and noise photons of daytime datasets. (a) Day 1. (b) Day 2.

Fig. 5. Signal and noise photons of nighttime datasets. (a) Night 1. (b) Night
2.

A. Photon Point Cloud Preprocessing

As mentioned in Section II, simulated ICESat-2 data dis-
played dispersed point clouds across the 2-D elevation profile.
Conversely, real ICESat-2 data showed uneven distribution with
prominent areas, as indicated in Fig. 7. To mitigate the mis-
classification of photons in the step of GMM due to substantial
variations in statistics between prominent and other areas, the
grid method is introduced to remove noticeable noise areas.

The grid method divides the 2-D point cloud into grids along
the elevation and track directions. It identifies the grid containing
the most photons within the same track region (called target
grid), takes the region above and below the corresponding ele-
vation direction of the grid as a buffer, and designates photons
in this region as signal photons. Due to the relatively small
elevation variations in the real ICESat-2 dataset, with most not
exceeding 50 m, the buffer size is set at twice this value as
a precaution, which means 100 m in total elevation range for
the target grid—50 m above and below. Additionally, the grid
size along the trajectory direction can be set to a larger value
(100 m) as it has less impact on the identification of the target
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Fig. 6. Flowchart of the denoising process.

Fig. 7. Prominent areas of a daytime dataset.

grid. The width of the grid in the elevation direction needs to be
much smaller to distinctly differentiate areas where signals are
concentrated and accurately locate the target grid. Therefore, the
grid size in the elevation direction is set at 1/10 of 50 m, that is
5 m [15], [30]. The selection of grid size and the value of the
above and below region is quite flexible, and do not need to be
constrained to specific optimal values. As long as the grid size
can roughly identify where more signal occurs, and the buffer
zone can contain all signals and excludes prominent areas, the
values are effective.

B. Photon Point Features Extraction

The more significant the difference in the features for dis-
tinguishing signal from noise, the better the distinction. The
distribution in the 2-D profiles is considered the core difference
between signal and noise. The number of signal photons is
much larger than noise photons. More importantly, the noise
generation process reflects a random noise distribution while the
signal distribution is clustered. In this case, satisfactory results
can be obtained using appropriate features that can reflect the
difference in signal distribution and noise distribution.

Fig. 8. Schematic diagram of the distance of k-nearest neighbors.

Fig. 9. Schematic diagram of the photon density.

Three-dimensional features are selected for the GMM, in-
cluding the sum of the distances of k-nearest neighbors, the
photon density, and the standard deviation of height differences
within an elliptical neighborhood (HDSTD). They determine
the difference in signal and noise photons from three aspects:
distance, density, and elevation concentration, which are the
standard most apparent features to distinguish the difference in
distribution.

1) Distance-Based Feature: The sum of distances to a certain
number of the nearest photons for signal photons is smaller
than noise photons, reflecting a good classification effect. Fig. 8
illustrates the calculation process of the sum of the distance of
k-nearest neighbors.

2) Density-Based Feature: Photon density quantifies the
number of photons within the elliptical neighborhood around
the target photon, indicating that higher photon density is more
likely to indicate a signal photon. An elliptical neighborhood
shape is employed since the photon density along the orbital
direction is generally higher than along the elevation direction
[31] (as shown in Fig. 9). The elliptical neighborhood’s target
and edge photons contribute to photon density.



CHEN et al.: NOVEL MULTIDIMENSIONAL STATISTICS DENOISING ALGORITHM BASED ON GAUSSIAN MIXTURE MODEL 13313

Fig. 10. Flowchart of the GMM algorithm.

3) Height-Based Features: These features include height dif-
ference, height standard deviation, and the HDSTD. Among
them, HDSTD can better reflect the height closeness between
the target point and other points in its neighborhood. Since the
signal points are mainly gathered on the elevation, while the
noise points are mainly random, the two have different HDSTD
values, making denoising effective

HDSTD =

√∑n
i=1 (zi − zave)

2

n− 1
(1)

where zi is the height of the ith photon, zave is the average height
of the photons in the elliptic neighborhood, and n is the photon
density value.

The above three statistics reflect the difference in signal and
noise points with different denoising emphases. However, a
single statistic cannot be perfectly applied to all situations. The
GMM model achieves a better denoising effect when dealing
with various data types by simultaneously utilizing several
statistics. The selection of the parameter values in the above
three statistics takes into consideration both noise reduction
effectiveness and algorithm timeliness. Among them, the major
and minor axes of the ellipse are set as 6 and 2 m, and the
number of the nearest neighbors is set to 10. As evidenced in
Section IV-C, the selection of these values meet the aforemen-
tioned two requirements.

C. Denoising Method Based on the Gaussian Mixture Model

The GMM algorithm dynamically partitions the input features
into predefined categories, enabling the separation of signal
photons and noise photons in point cloud denoising. The GMM

Fig. 11. Statistical histograms of the mixed Gaussian distribution (blue) and
single Gaussian distribution (yellow and red) of the sum of the distance of
k-nearest neighbors of the simulated ICESat-2 data.

algorithm involves stages of parameter initialization using the
k-means algorithm, final parameter values determination of sin-
gle Gaussian models utilizes expectation-maximization (EM)
algorithm, and procedures for probability classification. The
flowchart illustrating these steps is presented in Fig. 10.

GMM treats input data as distinct groups following single
Gaussian distributions with a predefined number of groups [14].
For the photon denoising domain, the value of the groups is
determined by the number of categories to be classified. Since
we need to divide all photons into two categories: signal photons
and noise photons, the value of Gaussian components is set to
2, which means the statistical histogram corresponding to each
feature approximately follows a mixed Gaussian distribution
comprising two single Gaussian distributions (Fig. 11 illustrates
the distribution of the sum of distances of k-nearest neighbors
using simulated ICESat-2 data as an example). However, a
single statistic of signal photons and noise photons may not
have distinctive discriminative features, leading to the limited
denoising effect. Therefore, multiple statistics are considered
multidimensional information input to the GMM, to provide
more comprehensive information and achieve better decision-
making for photon cloud denoising. The input data can be
divided into signal and noise photons by separating the two
single Gaussian distributions in the mixed Gaussian distribution.

The core of the GMM algorithm is to estimate the parame-
ters of single Gaussian distributions for both groups, including
weight, mean and variance matrices. The weight determines the
contribution of the SGM distribution to the overall GMM dis-
tribution, representing the extent to which a statistic influences
the overall decision-making process. The mean and variance
matrices determine the shape of the SGM, including the central
position and the width of the distribution, as illustrated in Fig. 12.
The estimation of these parameters can be divided into two steps:
initial value determination and final value acquisition. In initial
value determination step, the k-means algorithm is applied to
obtain the initial value of the three parameters. In final value
acquisition step, the EM algorithm is used for iterating to get the
final exact parameter value. The EM algorithm involves E-step
and M-step. Repeat these two steps until the stopping condition
is met, which means that the change in parameters is below a
threshold or the predefined number of iterations is reached.
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Fig. 12. Shape of the SGM determined by the mean and variance matrices.

After all the parameters of the two SGM distributions are
determined, the probability of each photon belonging to these
two distributions can be computed. A photon with a higher
probability of belonging to the signal SGM is distinguished as a
signal photon. In contrast, a photon with a higher probability of
belonging to the noise SGM is distinguished as noise. In order to
illustrate the classification of using multi-dimensional statistics
visually, data originated from three distinct groups distributed in
a 3-D space as an example. Before classification, the data may
appear scattered and disordered. However, after classification,
it converges to three ellipsoidal shapes, which is compatible
with the characteristics of Gaussian distributions (as depicted in
Fig. 13).

Mathematically, the probability distribution density function
(p(xi)) for this dataset can be represented with the following
weighted function:

p(xi) =
M∑
j=1

αjNj (xi, μj ,Σj) (2)

where i is the serial number of the sample point xi, M is the
number of SGM, j is the serial number of the SGM, αj denotes
the weight of the jth SGM, and Nj(xi, μj ,Σj) is the probability
density function (PDF) of the jth SGM, described as follows:

Nj (xi, μj ,Σj)

=
1√

(2π |Σj |
exp

[
−1

2
(xj − μj) Σ

−1
j (xj − μj)

]
(3)

where xj denotes the sample vector (column vector), μj repre-
sents the model expectation, and Σj corresponds to the model
variance.

Two SGMs are considered for a photon point cloud dataset:
one for signal and one for noise. Each SGM comprises three un-
known parameters. The parameters for the ith SGM are defined
as follows:

θi = (αi, μi,Σi) . (4)

The unknown parameters required for the GMM in the photon
denoising process are as follows:

Θ = (θ1, θ2)
T (5)

Fig. 13. Data corresponding to a Gaussian mixed distribution. (a) Unclassified.
(b) Classified.

The input features of the photon point cloud data can be
employed to estimate these unknown parameters. The estima-
tion process involves two stages: initializing initial values and
refining them to obtain the final values iteratively.

1) Determining the Initial Parameters: There are two meth-
ods to determine the initial values of the unknown parameters.
The first method directly assigns values to the unknown param-
eters, sets the covariance matrix Σi0 as the unit matrix, defines
the proportion of the two data groups as αi0 = 1/2, and sets the
mean valueμi0 as a random number. The second method clusters
the data into two groups using the k-means algorithm to calculate
the mean valueμi0, the proportionαi0, and the covariance matrix
Σi0 of the two groups. Since the latter method provides estimated
values of the unknown parameters closer to their final values,
the number of iterations is reduced, and efficiency is improved.
The k-means clustering method estimates the initial values of
unknown parameters.

The core concept of the k-means clustering method is as
follows: it involves setting the value of k and initializing the
k-cluster center points. Subsequently, the distance between each
photon points and the center point of each cluster is calculated,
assigning each photon point to the class of the nearest cluster
center point. Since the photon points are assigned, the center of
each cluster is recalculated [32]. The process of photon points
assignment and cluster center point update is repeated until
the change in cluster center point coordinates becomes smaller
than a predefined threshold value or reaches the maximum
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allowable number of iterations. At this point, the parameters
are determined conclusively [33].

The mathematical expression for this process can be repre-
sented as follows: The feature dataset X of photon point cloud
contains n photon points, where Xiin the following equation
represents the 3-D properties corresponding to the ith photon
point

X = {X1, X2, . . . , Xn} . (6)

Distance calculation requires initializing the k cluster center
points obtained through random selection. Two clusters are em-
ployed for the photon denoising process, expressed as follows:

C = {C1, C2} (7)

where Cj represents the 3-D properties of the jth cluster center
point.

The Euclidean distance between each photon point and the
cluster center points can be calculated as follows:

dis(Xi, Cj) =

√√√√ 3∑
h=1

(Xih − Cjh)
2 (8)

where Xih represents the hth property of the ith photon point,
andCjh represents the hth property of the jth cluster center point.

After classifying each photon point into the cluster closest to
its center point, the following two clusters are obtained:

S = {S1, S2} . (9)

By calculating the mean value of each dimension within these
two clusters, the following two new cluster center points are
obtained iteratively:

Cj =

∑
Xi∈Sj

Xi

n
. (10)

The iteration continues until the new cluster center point
closely matches the previous one, while the difference between
the two becomes lower than the threshold value. At this point,
the iteration process stops, and the initial values of the unknown
parameters Θ are determined.

2) Obtaining the Final Parameters: Once the initial values
of the unknown parameters have been determined, the final
parameter values (Θ) are estimated using the EM algorithm. This
adaptive parameter estimation is a key feature of our approach,
highlighting the convenience and rationality of the GMM. The
EM algorithm comprises the expectation step (E-step) and the
maximization step (M-step).

a) E-step: Let βj be the posterior probability of αj , ex-
pressed as follows:

βj = E (αj |xi; Θ)

=
αjNj(xi; Θ)∑M
l αlNl(xi; Θ)

, 1 ≤ i ≤ n, 1 ≤ j ≤ M (11)

where Nj represents the PDF of the jth SGM calculated using
formula (3), the first Θ is obtained via the k-means algorithm,
while the M-step calculates the other Θ values.

b) M-step: In this step, all values to be estimated in Θ
are updated using βj obtained in the E-step, following these
formulas:

αj
′ =

∑
N
i=1βij

N
(12)

μj
′ =

∑
N
i=1βijxi∑
N
i=1βij

(13)

Σj
′ =

∑
N
i=1βij(xi − μj

′)(xi − μj
′)T∑

N
i=1βij

. (14)

c) Convergence condition: Let θi
′ = (αi

′, μi
′,Σi

′) be the
parameters after each M-step, and θi = (αi, μi,Σi) be the pa-
rameters before the update. The iteration process is halted when
the parameter change falls below the predefined threshold or
the maximum number of iterations is reached. Specifically, the
decision-making threshold is set at 10-10, and the criterion for
stopping the loop is defined as follows:{

Θ
Θ′ − 1 < ε
n ≥ nm

(15)

where ε represents the threshold value set to 10−10, and nm is
the upper limit set to 1000.

The probability of each photon point belonging to either of the
two groups can be calculated upon determining the parameters
of the two single Gaussian models through the EM algorithm.
By comparing these probability values, each photon point can
be classified into a cluster with a higher probability.

D. Residual Noise Removal

A substantial portion of the noise photons is successfully
removed using the GMM algorithm. However, a fraction of
remaining noise photons comprises points situated considerably
from the signal photons. In such cases, a three-sigma rule-based
approach is employed to enhance the denoising process.

This approach utilizes the sum of distances between each
remaining point and its k-nearest neighbors as a group of
statistical data to obtain the mean value denoted as µ and the
standard deviation represented by σ. Since the greater the sum
of distances, the lower the probability that a given photon point
corresponds to a signal point. It is reasonable to assume that the
statistical distribution of photon point is approximately normal.
For data that follow a normal distribution, the percentage of
data points within three standard deviations from the mean are
fixed at 99.73%. This indicates that the probability of the sum
of distances between each remaining point and its k-nearest
neighbors exceeding ε is very low, allowing it to be classified as
an outlier in the data. Since the distance values of most signal
points are close, these outliers are more likely the residual noise
points that were not excluded by the algorithm. Therefore, we set
µ + 3σ as the threshold for the sum of distances. Photon points
whose sum of distances exceeds this threshold are classified as
noise and consequently removed. The following decision law is
established according to the three-sigma rule:{

ε < μ+ 3σ signal photon
ε >= μ+ 3σ noise photon

(16)
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where ε is the threshold value.

E. Evaluation and Method Comparison

Our study employs qualitative and quantitative evaluation
methods to analyze and assess noise reduction outcomes com-
prehensively. For qualitative evaluation, two sets of data are
considered. First, the denoising process is illustrated using the
actual daytime data, showcasing the effectiveness of the three-
step approach, including the preprocessing with the grid method,
Gaussian Mixture Model denoising, and residual noise removal.
Second, the effectiveness of multidimensional statistics is com-
pared with the three individual statistics using the simulated
data.

In quantitative evaluation, three statistical evaluation metrics
are chosen: recall (R), precision (P), and F-value, represented
by the following equations:

R =
TP

TP + FN
(17)

P =
TP

TP + FP
(18)

F =
2P ×R

P +R
(19)

where TP represents the number of correctly classified real
signal photons, FN indicates the number of actual signal photons
misclassified as noise, and FP signifies the number of noise
photons incorrectly categorized as signal photons.

The denoising results of the multidimensional GMM method
are compared with those single statistics approach before the
residual noise removal to assess their effectiveness. Three types
of statistics are separately applied within the Gaussian mixture
model to obtain the individual statistics results. Additionally,
the denoising results of the proposed algorithm are compared
with two mainstream types of denoising algorithms, including
the DBSCAN [13] and KNN methods [29], to demonstrate the
superiority of our algorithm.

IV. RESULTS AND DISCUSSION

A. Qualitative Evaluation and Analysis

In order to illustrate the effect of preprocessing, the GMM
method, and residual noise removal, a representative dataset
was selected from a daytime dataset. The results are presented
in the following figures. Fig. 14 demonstrates the excellent
performance of the grid method in the preprocessing process.
In a dataset with such dense point clouds, it is challenging to
visually discern the concentrated signal areas. However, through
the preprocessing step that compares the number of points in
different height intervals along the trajectory span uniformly, the
preprocessing method accurately identifies the height interval
where the signal point clouds are located, effectively removing
the photon clouds far from the signal. Fig. 15 illustrates the
processing effect of the GMM algorithm. It can be observed
that after being processed by the GMM algorithm, the majority
of residual noise has been identified and removed, revealing
the overall outline of the signal photons, with only a small
portion of discrete noise points remaining to be eliminated.

Fig. 14. Denoising effect of the grid method-based preprocessing.

Fig. 15. Denoising effect of the Gaussian Mixture Model.

Fig. 16 shows the results of the residual noise removal step
utilizing the three-sigma rule after eliminating residual noise.
A noticeable comparison with Fig. 14 reveals that most of
the remaining discrete noise points have been identified and
removed by the method. Among these steps, the core contri-
bution of the GMM method in this study is the most significant
and impactful. Through the sequential contributions of these
three steps, noise in the point cloud is eliminated step by step
successfully, ultimately achieving the desired results.

In order to demonstrate the superiority of multidimensional
statistics to single statistics, a representative dataset was selected
from a simulated dataset for display. The reference results are
shown in Fig. 17, while the denoising effect of inputting the
three statistics as multidimensional statistics into the Gaussian
mixture model is shown in Fig. 18, while the denoising effect of
inputting the three statistics separately into the Gaussian mixture
model is shown in Fig. 19.
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Fig. 16. Denoising effect of residual noise removal.

Fig. 17. Real result of a simulated ICESat-2 data.

Fig. 18. Denoising effect of multidimensional statistics.

Fig. 19. Denoising effect of the three single statistics. (a) SERC3 (5 MHZ)
the sum of distance of k nearest neighbors. (b) SERC3 (5 MHZ) photon density.
(c) SERC3 (5 MHZ) HDSTD.

Upon comparing the three figures, it is apparent that the
denoising effect of the multidimensional statistics in Fig. 18
is the closest to the reference result in Fig. 17. However, each of
the individual denoising results of the three statistics exhibits its
own respective drawbacks. Many noise photons are incorrectly
identified as signals in the denoising results for both the sum of
the distance of k-nearest neighbors and the HDSTD methods [as
shown in the red rectangle box in Fig. 19(a) and (c)]. At the same
time, the photon density results miss many signals [as shown in
the blue rectangle box in Fig. 19(b)].
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Fig. 20. Comparison of the F-values of the GMM, DBSCAN, and KNN methods in simulated data.

Fig. 21. Comparison of the F-values of the GMM, DBSCAN, and KNN methods in real data.

Fig. 22. Influence of k on the denoising effect of k-nearest neighbors.

In this context, the GMM-based multidimensional statistics
denoising algorithm not only preserves more signals but also
removes more noise, successfully combining the strengths of
these methods, enhancing both the correct signal and noise
recognition rates, and achieving superior denoising results.

B. Quantitative Evaluation and Analysis

The simulated and real ICESat-2 data demonstrate the ro-
bustness and self-adaptability of the GMM method. It typically

yields the best denoising results when all statistics are effective
and achieves reasonably good results even when some statistics
are negative. Along with the advantages of adapting classifica-
tion without the need for manual threshold selection, the GMM
method is worth promoting.

Table II shows the denoising results of multidimensional
statistics and the three single statistics using the GMM method
of simulated ICESat-2 data. It reveals that the GMM method
consistently achieves the best denoising results, especially in
datasets with high noise rates. Although the GMM method may
not outperform the other methods in low noise rate datasets,
it still delivers commendable results. Despite the challenges
posed by photon density values, the GMM algorithm provides
denoising results that closely match the best among the four
methods, indicating the robustness of the GMM approach.

The denoising results for the k-nearest neighbors, photon
density, and HDSTD methods are worse in high noise rate
datasets due to different reasons. Photon density exhibits a high
P-value but low R-value, indicating effective noise removal,
while a significant proportion of true signal photons are missed.
Conversely, the HDSTD method demonstrates a high R-value
but low P-value, signifying the successful identification of most
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TABLE II
DENOISING RESULTS AFTER APPLYING THE GMM METHOD TO SIMULATED ICESAT-2 DATA

TABLE III
DENOISING RESULTS AFTER APPLYING THE GMM METHOD TO REAL ICESAT-2 DATA

signal photons but the misclassification of many noise photons
as signal photons. This is because the Gaussian distribution
difference of the photon density value between the signal points
with high concentration and the remaining photon points is more
significant than the difference between the signal and noise
points. Similarly, the Gaussian distribution difference of the
HDSTD value between the noise points with loose distribution
in elevation and the remaining points is larger than the difference
between the signal and noise points. The results of the two SGMs
are closer to the real noise and signal distribution models by
effectively considering the three statistics values simultaneously
in multidimensional cases. It demonstrates the GMM method’s
ability to mitigate the respective weaknesses of different statis-
tics and enhance the overall denoising effectiveness.

In low noise rate datasets, the denoising results for k-nearest
neighbors and HDSTD are excellent, while the performance of
photon density is subpar. This disparity is primarily due to the
similarity of photon density values of noise and signal photons,
misclassifying many signal photons as noise. However, incor-
porating photon density into the GMM method has a minimal

negative impact, primarily due to its low differentiation in photon
density and the GMM method’s integration of two effective
statistics, enhancing denoising quality.

Table III presents the four denoising results of the real ICESat-
2 data. Nearly all datasets exhibit at least one negative statistic,
while the GMM method still generates satisfactory results. The
GMM method achieves classification with helpful statistics but
is not susceptible to useless statistics. It sometimes selects valid
data from negative statistics to attain superior results, reflecting
its strong adaptability.

In daytime datasets, HDSTD consistently underperforms be-
cause the dataset distribution is not that clustered at elevation. In
contrast, the GMM method enhances the strengths of k-nearest
neighbors and photon density to yield impressive results. Even
in some cases where both k-nearest neighbors and HDSTD have
adverse effects, the GMM method closely approximates the best
denoising results obtained with photon density alone. This is
mainly due to the indistinguishable nature of negative statistics
when incorporated as dimensions in a GMM, making the model
approximately change from using 3-D statistics to 2-d statistics.
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Fig. 23. Influence of the major and minor axes of the ellipse on the photon
density. (a) The influence of ellipse axis on photon density. (b) The influence of
major axis on photon density. (c) The influence of minor axis on photon density.

Thus, the negative statistics will contribute minimally to both
classification and adverse effects.

In nighttime datasets, HDSTD performs well, while pho-
ton density underperforms. Similarly, considering the photon
density’s challenges, the GMM method consistently delivers
denoising results that rival the best among the three statistics.
Notably, the GMM method achieves the best results in the first
nighttime dataset, even when a statistic has a detrimental effect.

This indicates that although negative statistics are ineffective,
combining them with other positive statistics within the GMM
method can provide effective results.

Across all simulated and real datasets, the average F-value
of the GMM-based multidimensional statistic is 84.73%, while
the average F-values of the three single statistics, including
the sum of the distance of k-nearest neighbors, photon density,
and HDSTD, are 84.17%, 70.05%, and 80.98%, respectively.
This demonstrates that the sum of the distances of k-nearest
neighbors is the most useful statistic among the three statistics,
and even if affected by the other two relatively poor statistics,
the GMM method still obtains the best F-value among the four
results. Since different statistics may appear to perform poorly in
different datasets, the intelligent use of various statistics is truly
significant. The GMM method achieves this function, making
the denoising process easier and more accurate.

In order to comprehensively evaluate the denoising effect
of the GMM method, two mainstream algorithms, including
the DBSCAN and KNN methods, are applied for comparison,
and the results demonstrate the excellent performance of the
GMM method. To ensure comparability, the parameters to be set
for the DBSCAN and KNN algorithms are consistent with
those of the GMM algorithm. Specifically, for the DBSCAN
algorithm, the neighborhood size, representing the major and
minor axes of the ellipse, are set as 6 and 2 m, respectively. For
the KNN algorithm, the number of nearest neighbors is set to
10.

Tables IV and V compare the final F-values of the simulated
and real ICESat-2 data with respect to the DBSCAN and KNN
methods. More intuitive differences are shown in Fig. 20 and Fig.
21. In simulated data, as the noise rate increases, the denoising
results of the three algorithms decrease gradually. This indicates
that the difference between signal and noise points is generally
more remarkable in data with a low noise rate, making it easier
to obtain better denoising results. Different denoising results can
be obtained for various noise rates in real data, and the daytime
datasets are inferior to the night datasets.

The GMM method always outperforms the DBSCAN and
KNN methods for high and low noise rates. For all datasets, the
average F-value of the GMM method is 85.46%, which is 5.22%
and 7.26% higher than the corresponding ones for the DBSCAN
and KNN methods (80.24% and 78.20%), respectively, reflect-
ing the superiority of the GMM algorithm.

C. Parameter Sensitivity Analysis

The GMM-based multidimensional statistics denoising algo-
rithm incorporates three types of statistics: the sum of distances
of k-nearest neighbors, photon density, and HDSTD. This intro-
duces parameters such as the k-value and the major and minor
axes of the elliptical neighborhood. The SERC1 and SERC5 data
with 5 MHz noise ratios of the simulated ICESat-2 dataset were
utilized as examples to assess the sensitivity of these parameters.

Figs. 22 and 23 illustrate the influence of parameter varia-
tions on denoising results of the sum of distances of k-nearest
neighbors and photon density. As shown in Fig. 22, the F-value
is always stable as the k value increases. Fig. 23(a) shows the
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TABLE IV
COMPARISON OF THE F-VALUES OF THE GMM, DBSCAN, AND KNN METHODS IN SIMULATED DATA

TABLE V
COMPARISON OF THE F-VALUES OF THE GMM, DBSCAN, AND KNN METHODS IN REAL DATA

combined effect of different values of the major and minor axes
of an ellipse on the F-value. The major and minor axes of the
ellipse correspond to the x and y coordinates of the 3-D graph,
while the F-value corresponds to the z coordinate. Fig. 23(b) and
(c) respectively provide observations of the three-dimensional
graph from the directions of the major and minor axes of the
ellipse [as indicated by the arrows in Fig. 23(a)] to better
demonstrate the parameter insensitivity of the major and minor
axes of the ellipse. The F-value changes little no matter how the
values of the two axes change. To sum up, the GMM method
can analyze the general characteristics of signal and noise points
for denoising and is hardly affected by the overall change of the
input value caused by the parameter adjustment, indicating its
insensitivity to the input parameters.

V. CONCLUSION

This research proposed a multidimensional statistics denois-
ing algorithm based on the GMM. The results were compared
and analyzed comprehensively. The conclusions are as follows.

1) Compared multidimensional statistics with three single
statistics, the former obtained the best results for effective
inputs using multidimensional features to achieve com-
plementarity.

2) Although some statistics misbehaved, the multidimen-
sional statistics obtained relatively good results by elimi-
nating adverse effects.

3) The GMM method does not require a threshold setting
and can adaptively differentiate between signal and noise
photons.

4) The GMM method based on multidimensional statistics
outperformed the DBSCAN and KNN methods.

5) The GMM method is insensitive to the input parameters
of the multidimensional statistics.

In summary, our proposed GMM method fully uses multi-
dimensional statistics and is robust and adaptive for extract-
ing signal photons. However, this study only selected several
datasets from China, utilized the real ICESat-2 data collected
in 2019 and 2020, and employed both the real and simulated
data to perform the experiment. Future research should globally
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select more datasets to evaluate the GMM method’s reliability.
As a future improvement, the noise reduction process should
homogenize the noise level along the track direction to resolve
the uneven distribution of noise densities.
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