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Abstract—Exploiting machine learning techniques to automati-
cally classify multispectral remote sensing imagery plays a signifi-
cant role in deriving changes on the Earth’s surface. However, the
computation power required to manage large Earth observation
data and apply sophisticated machine learning models for this
analysis purpose has become an intractable bottleneck. Leveraging
quantum computing provides a possibility to tackle this challenge
in the future. This article focuses on land cover classification by
analyzing Sentinel-2 images with quantum computing. Two hybrid
quantum-classical deep learning frameworks are proposed. Both
models exploit quantum computing to extract features efficiently
from multispectral images and classical computing for final classi-
fication. As proof of concept, numerical simulation results on the
LCZ42 dataset through the TensorFlow Quantum platform verify
our models’ validity. The experiments indicate that our models
can extract features more effectively compared with their classical
counterparts, specifically, the convolutional neural network (CNN)
model. Our models demonstrated improvements, with an average
test accuracy increase of 4.5% and 3.3%, respectively, in compar-
ison to the CNN model. In addition, our proposed models exhibit
better transferability and robustness than CNN models.

Index Terms—Earth observation (EO), land cover classification,
multispectral imagery, quantum circuit, quantum machine
learning (QML), remote sensing, sentinel-2 data.

I. INTRODUCTION

LAND use and land cover (LULC) classification, an impor-
tant field of Earth observation (EO) data analysis, attracts

great attention in the remote sensing community, which con-
tributes to tracking changes on the surface of the Earth resulting
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from natural processes, human activities, etc. Multispectral im-
ages, such as Sentinel-2 data having 13 spectral bands, play an
important role in land cover classification tasks.

Numerous studies have attempted to utilize different machine
learning techniques to extract features from multispectral re-
mote sensing imagery for land cover classification [1]. Belgiu
et al. [2] and Mountrakis et al. [3] summarized the contribu-
tions regarding using random forest and support vector machine
algorithms for land cover classification. In recent years, deep
learning, which extracts critical features automatically from
images without feature engineering, has achieved significant
success in land cover classification [4]. For example, the convo-
lutional neural network (CNN), which can automatically extract
high-level features from images by applying various filters in its
sequential structure, draws great attention in the remote-sensing
community due to its promising performances.

To achieve accurate LULC mapping results, researchers have
been exploring various techniques and data sources. Bouslihim
et al. [5] evaluated the capabilities of Landsat-9 data to generate
LULC maps. Pan et al. [6] presented a CNN-based model that
analyzes multispectral LiDAR data as a new data source for
LULC classification. Dou et al. [7] proposed feature relations
map learning to enhance the separability of different entities
in an image for improving classification accuracy, and Chen
et al. [8] utilized the attention mechanism between channels in
the feature fusion part of a U-Net for Sentinel-2 A images anal-
ysis. In addition, rather than only relying on the features from
a single-date image for LULC classification, some studies [9],
[10] attempt to leverage time-series EO data for accurate clas-
sification. Moreover, apart from investigating a single-classifier
structure for recognizing various LULC categories, studies, such
as Dou et al.’s [11] work, explore multiple classifier systems to
merge the benefits of different base classifiers for more accurate
LULC mapping results.

However, the integration of sophisticated mechanisms in deep
learning models for more accurate LULC classification comes
at the cost of increased computational power required for train-
ing such models. Meanwhile, the advances in remote sensing
technologies lead EO into the big data era, resulting in the rapid
growth of EO data for analysis. These lead to an intractable
challenge for classical computers [12], and quantum computing
might provide a solution to tackle this challenge in the future
since the main expectation of quantum computing is to solve
classically expensive problems efficiently [13].
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Fig. 1. Structures of the two proposed models for classifying M-spectral image with the size of N ×N . (a) MQCNN model. (b) FQCNN model.

The field integrating machine learning and quantum comput-
ing is quantum machine learning (QML). Regarding applying
QML for land cover classification, some studies use quantum an-
nealers [14], [15]. Besides that, exploiting quantum circuits also
attracts great attention. Gawron et al. [16] used the PCA algo-
rithm to obtain features from multispectral images and propose
a quantum neural network model to classify land cover based
on the extracted features. Zaidenberg et al. [17] investigated a
hybrid model to classify the EO data, in which a CNN model
is applied to extract features from multispectral remote sensing
data, and a quantum circuit is used for the final classification task.
Sebastianelli et al. [18] proposed a hybrid QCNN model with
three sequential parts to analyze multispectral images for land
cover classification. Specifically, one classical CNN extracts the
features from images first, then one quantum circuit transforms
the extracted features, and one classical dense layer is for the
final prediction. Otgonbaatar et al. [19] used the VGG16 with
a convolutional autoencoder to extract features from Sentinel-2
data first. Then, they use a parameterized quantum circuit (PQC)
for the final classification. Abdel-Khalek et al. [20] proposed
a hybrid model named QNN-MLAIC that uses Faster R-CNN
with Inception with Residual Network-v2 model as the baseline
model for object detection and a QNN model for classification.
Note that the aforementioned studies mainly rely on classical al-
gorithms for feature extraction and quantum computing for fea-
ture transformation or final prediction. Jing et al. [21] proposed
two quantum-convolutional ansaetze (HQconv and FQconv)
which can extract features from RGB images for classification.
In addition, studies about using quantum computing to transform
the input EO data for further analysis are also undertaken. Gupta
et al. [22] utilized the projected quantum kernels to reduce the
large training set dimension to a smaller classical space for land
cover classification with sentinel-2 data.

Despite various contributions related to QML made so far,
it is still unclear whether QML algorithms are superior to their

classical counterparts. In addition, most studies, such as [18],
[19], and [20] as introduced before, still rely on classical algo-
rithms to extract features from EO data, and quantum computing
is mainly applied to transform the extracted features for final
classification. However, feature extraction is more computation-
ally expensive compared to the final classification procedure.
Thus, further studies on QML are still necessary.

However, existing quantum machines have limitations in
terms of full fault tolerance and support only a few qubits, which
constrains the practical applications of QML algorithms, and
many algorithms can only be tested via small-scale simulations.
Still, it is important to recognize the significance and necessity
of investigating QML algorithms, as it is essential for the de-
velopment of future practical applications when more advanced
quantum devices become available.

This study seeks to investigate how to exploit the power
of quantum computing to efficiently extract critical features
from multispectral images using quantum circuits for land
cover classification. In this article, we introduce two hybrid
quantum-classical CNNs, which can comprehend multispec-
tral images and perform multicategory classification accord-
ingly. Specifically, our models exploit quantum computing for
efficient feature extraction from multispectral images and clas-
sical computing for final classification to handle multicategory
classification effectively.

To evaluate the validity of our proposed models on the land
cover classification tasks, we conducted experiments aimed
at classifying the local climate zone (LCZ)-based urban land
covers. Note that the LCZ scheme was originally introduced
for urban climate studies, such as [23] and [24]. Nevertheless,
researchers have also explored the potential of LCZ for urban
land cover classification, providing insights into human settle-
ment for sustainable urbanization monitoring [25].

In our experiments, we trained our models using the
LCZ42 [26] dataset through the TensorFlow Quantum (TFQ)
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platform [27]. The experimental results indicate that our mod-
els are superior regarding feature extraction and transferability
compared with their classical counterparts.

The main contributions of this work include the following.
1) Two hybrid quantum-classical deep learning models for

land cover classification are introduced, and they both
can efficiently extract features from multispectral images
using quantum computing and handle multicategory clas-
sification tasks.

2) We investigate and analyze the transferability and robust-
ness of the two introduced models.

3) This study demonstrates proof of concept of implementing
the CNN model in the quantum domain for land cover
classification with multispectral images.

The rest of this article is organized as follows. Section II de-
tails the structures of our proposed models. Section III presents
the experiments on the LCZ-based land cover classification tasks
and discusses the experimental results. Section IV discusses the
suitability and efficiency of our models based on the required
quantum resources. Finally, Section V concludes this article.

II. METHODOLOGY

In this article, we introduce two hybrid deep learning models
for land cover classification by analyzing Sentinel-2 images,
namely the MCQI-based QC-CNN (MQCNN) model and the
FRQI-based QC-CNN (FQCNN). As can be seen in Fig. 1, three
key tasks are conducted sequentially in both models, namely
A) quantum image representation, B) feature extraction, and C)
classification. We will explain them individually for each model.

A. Quantum Image Representation

The two proposed models apply different image representa-
tion methods to encode multispectral images, and these methods
both take advantage of quantum properties and amplitude em-
bedding to represent images efficiently. To encode a M -spectral
image with the size of N ×N , notated as N ×N ×M , the
number of required qubits and basic quantum gates are different.

1) Image Encoding in MQCNN: The MCQI [28] method is
adopted to encode images with multiple bands in the MQCNN
model. To accurately represent this multispectral image, we
need a quantum register qL with 2n qubits (N = 2n) to encode
the input image’s spatial information, a register qM with m
qubits (2m ≥ M > 2m−1) to indicate the band information, and
one register qC (single qubit) to represent the corresponding
pixel value. The entanglement among qL, qM, and qC aims to
match the information accurately. The following equation shows
its implementation:

|I〉 = 1

N ×√
M

M−1∑

i=0

N−1∑

x=0

N−1∑

y=0

|lx,y〉|i〉|cix,y〉 (1)

where |lx,y〉 indicates the spatial information, |i〉 identifies the
band information, and |cix,y〉 embeds the pixel’s value in the ith
band.

To obtain the desired quantum state for this image, we prepare
a quantum circuit constructed with 2n+m+ 1 qubits. Given
the initial quantum state, 2n Hadamard gates are applied on the
qL register to prepare all the needed location information. A
series of quantum gates are applied on the qM register to obtain
M basis states with the equivalent amplitudes (1/

√
M ) for band

identification. In the end, we use RY gates to rotate the qC with
specific degrees around the Y-axis based on the states of the
qL and qM that specify the location and the band information,
respectively. The rotated qC can be represented by (2), in which
|0〉 and |1〉 are the basis states and θix,y is the pixel value in the
ith band mapped from [0,255] to [0, π/2]

|cix,y〉 = cos θix,y|0〉+ sin θix,y|1〉. (2)

Fig. 2(b) illustrates one circuit encoding a target image (2×
2× 3), in which qL (white) with two qubits refers to the spa-
tial information, qM (red) with two qubits identifies the band
information, and qC (gray) encodes the converted pixel values.

2) Image Encoding in FQCNN: The quantum image repre-
sentation applied in the FQCNN model is based on the FRQI
method [29] that was originally proposed to encode classical
gray-scale images into quantum states. To represent a multispec-
tral image using FRQI, we employ multiple quantum circuits
rather than one, and each circuit encodes one spectral band
information of the image. Thus, the quantum register for band
identification (qM) in the MQCNN model is not necessary for
the FQCNN model.

Specifically, the classical image with the size N ×N ×M
can be represented as I = {I1, . . ., IM}, and each element indi-
cates one band information with the size N ×N . An arbitrary
band Ii can be encoded into a quantum state following (3),
in which |lx,y〉 indicates the location, and |cix,y〉 embeds the
pixel’s value in the ith band, where i = 1, 2, 3, . . .M . Thus, the
quantum state of the multispectral image can be represented as
|I〉 = {|I1〉, . . ., |IM 〉}

|Ii〉 = 1

N

N−1∑

x=0

N−1∑

y=0

|lx,y〉|cix,y〉. (3)

To represent one band information of the given image (e.g.,
|Ii〉), a quantum circuit containing 2n+ 1 qubits is prepared.
Given the initial quantum state, we apply 2n Hadamard gates on
the qL register. Then controlled rotation gates are used to rotate
the qC around the Y-axis based on the qL’s state with specific
degrees so as to encode the pixel values from the ith band and
entangle them with the corresponding location. The rotated qC
can be represented by (2).

Fig. 2(c) illustrates the circuits to encode the target image.
Totally, three circuits are needed, and each circuit requires three
qubits: two qubits for qL (white) for the spatial information and
one qubit for qC (gray) for the converted pixels’ values in each
band.

B. Feature Extraction

The quantum circuit ansatz used for automatic feature ex-
traction in our models is rooted in the QC-CNN model [30].
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Fig. 2. Circuit structure of the encoding layer in our models, illustrated using a classical RGB Image as an example: 1) the qubit color indicates the qubit
register: white for qL; red for qM; gray for qC; 2) dot markers indicate the controlled state: white dots for |0〉 and black dots for |1〉; 3) H represents the Hadamard
gate, and RY(θ) represents the RY gate with θ degrees; 4) the gate for the band-index initialization can rotate two qubits from qM so that the quantum state
(|00〉/√3 + |01〉/√3 + |10〉/√3) is obtained for band identification; 5) (a) target classical RGB image with the size of 2 × 2, and θ indicates the pixel value
converted from [0,255] to [0, π/2]; 6) (b) and (c) are the circuit examples of the encoding layer in the MQCNN model and the FQCNN model, respectively.
(a) Target image. (b) Encoding layer of the MQCNN model. (c) Encoding layer of the FQCNN model.

As shown in Fig. 1, the circuit for feature extraction sequentially
includes two types of layers as follows. 1) Quantum convolution
layer to extract features with quantum computing. 2) Measure-
ment layer to obtain generated feature values from the quantum
states to the classical states.

1) Quantum Convolution Layer: The quantum convolution
layer in our models conducts the convolutional operation for
feature extraction. Both models independently extract the critical
features from different bands. We set the kernel’s size as 2 × 2
and the convolutional stride as 2 to reduce the dimension of
the generated feature maps, so there is no pooling layer in the
models.

In the quantum convolution layer of our models, we employ
controlled U3 gates that can rotate a qubit with three Euler
angles according to the controlling state, and their degrees will be
optimized during the training process. As the kernel size is set to
be 2 × 2, we require four U3 gates with trainable parameters, and
each U3 gate represents one weight of the kernel. To distinguish
the locations of these four weights, we add two controllers to the
U3 gates. In cases where multiple kernels are used, the number of
controllers required for the U3 gates will increase accordingly.
Nevertheless, due to quantum parallelism, only four U3 gates are
necessary to execute the convolution operation with one kernel
over the entire input, regardless of its size.

Specifically, for the MQCNN model, Fig. 3(a) represents a
quantum circuit example for a single quantum convolution layer
with two filters (two kernels for each filter) to process an input
image with the size of 4 × 4 × 2. As depicted in Fig. 3(a), each
feature map consists of the features extracted from two bands,
and in the end, two generated feature maps with the size of
2 × 2 × 2 are expected accordingly.

As for the FQCNN model, due to the adopted image rep-
resentation method, one quantum circuit ansatz only extracts
features from one band of the input image. Thus, to process
a 4 × 4 × 2-sized image, two circuits are needed for feature
extraction. The example circuits are depicted in Fig. 3(b). In the

end, two feature maps with the size of 2 × 2 for each band (two
bands in total) will be generated.

2) Measurement Layer: This layer can obtain the extracted
feature maps from the quantum states to the classical data
following:

E(V ) = 〈ϕ|V |ϕ〉 (4)

whereV is the operator for measurement, and |ϕ〉 is the quantum
state embedding generated feature maps. The obtained expecta-
tion value, E(V ), will be utilized as the extracted feature value.

To be more specific, we define a set of operators V and per-
form measurements on the state |ϕ〉 individually in the X-basis,
Y-basis, and Z-basis. Each basis is formed by a set of states |b〉,
and for each state |bi〉 of interest, we can identify an operator
Vi using |bi〉〈bi| and obtain the corresponding expectation value
E(Vi) as the ith feature using (4). Ultimately, we concatenate
all the obtained expectation values and generate a feature vector
for the final classification.

Fig. 4 illustrates a circuit example of the measurement layer
for the MQCNN model, where five qubits are measured to
obtain all the extracted features, including two qubits from qL
for the spatial information of the feature maps, one qubit from
qM for the band indication, one qubit from qK for the kernel
information, and one qubit from qR for the value of the feature
maps. Different from the MQCNN model which extracts all the
features in one measurement layer, the FQCNN model applies
multiple circuits for feature extraction, so several measurement
layers are needed. Each layer will only obtain the high-level
features from one band, so compared with the MQCNN model,
only four qubits will be measured for each circuit since there is
no qubit for band information in the FQCNN model.

C. Classification

For the final classification, with the classical feature vector
from the measurement layer, a classical dense layer is utilized
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Fig. 3. Circuit example of the quantum convolution layer for the proposed models: (a) and (b) are the circuit examples for the convolutional transformation on
the image (4 × 4 × 2) with two kernels (2 × 2) for the MQCNN model and the FQCNN model, respectively; 1) the qubit color indicates the qubit register: white
for qL; red for qM, gray for qC; green for qK; yellow for qR; 2) dot markers in the circuit indicate the controlled state: white dots for |0〉 and black dots for |1〉; 3)
H represents the Hadamard gate, and U3 represents the U3 gate. (a) Circuit example of the quantum convolution layer in the MQCNN model. (b) Circuit example
of the quantum convolution layer in the FQCNN model.

Fig. 4. Circuit example of the measurement layer for the MQCNN model. 1)
White for qL; red for qM; gray for qC; green for qK; and yellow for qR.

for the final classification in both models. Each neuron encodes
one feature value, and they are fully connected. The activation
function (softmax) will be applied to output a probability distri-
bution for multicategory classification tasks.

D. Training Procedure

The quantum convolution layers with trainable parameters in
our models are PQCs, in which the gates are fixed, but their
parameters can be optimized during the training process.

More precisely, as shown in Algorithm 1, the training process
is composed of the following steps.

1) The training dataset can be represented as D = (x,y),
where x are the normalized images and y are the corre-
sponding one-hot encoded labels.

2) For input images, the model outputs probability distribu-
tions ỹ = f(x, θ), where θ denotes the trainable parame-
ters in the models.

Algorithm 1: Training Procedure for Our Models.

3) The cross-entropy loss function is used to compare the
output against the label L(ỹ,y).

4) The trainable parameters θ will be optimized with the
Adam algorithm [31].

We repeat these steps until θ is optimized.
For inference on the images I, the learned parameters will

be assigned to the gates in the quantum convolution layers and
weight variables in the dense layers of our models. The output
f(I, θ) indicates the predicted classes of input images I.

III. EXPERIMENT

To evaluate and compare the performance of the MQCNN
model and the FQCNN model on the LCZ-based land cover
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Fig. 5. Derived land cover classes and their corresponding LCZ labels, and the visualization of the LCZ concept from WUDAPT [32].

Fig. 6. Distribution of the land cover classes from the three target cities.

classification tasks, we conducted experiments with different
models on the LCZ42 [26] dataset.

A. Data Preparation

The LCZ42 dataset consists of around half a million Sentinel-
1 and Sentinel-2 image patches in 42 urban areas across the globe
with annotated 17 LCZ labels. In the dataset, the Sentinel-2
image patches (32× 32) contain ten bands, including bands B2,
B3, B4, B8 with 10 m ground sampling distance (GSD), bands
B5, B6, B7, B8a, B11, B12 with 10 m GSD upsampled from
20 m.

Due to the high requirement on computation power for quan-
tum simulation, downsampling the training images is necessary.
Thus, in our experiments, the patch size was compressed from
32× 32 to 8× 8, and only four bands were selected, including
B2 (blue), B3 (green), B4 (red), and B8 (nearinfrared) with 10 m
GSD. Moreover, the labeled patches from three German cities,
Berlin, Munich, and Cologne, were used for the experiments
rather than all 42 cities.

In addition, to simplify the experiments, we regrouped 13 LCZ
labels into five semantic classes instead of considering all 17
LCZ labels following the land cover classification scheme [25].
Fig. 5 shows the semantic classes with the corresponding LCZ
labels. Note that four LCZ labels (7, 9, E, F) were not considered
in our experiments. The reason is that, as shown in Fig. 6, only
around 2.72% labeled patches from these three cities belong to
these four LCZ labels. Therefore, we only concentrate on the five
dominant semantic classes shown in Fig. 5 in our experiments.

We randomly selected 10 000 labeled patches in these three
cities from these five classes for the experiments. Each class has

TABLE I
DISTRIBUTION OF THE EXPERIMENTAL DATA FOR CLASSIFICATION

PERFORMANCE EVALUATION

2000 samples to build a balanced dataset. The distribution of the
experimental data is shown in Table I.

B. Experiment Settings

In the experiments, we trained our quantum models with two
quantum convolution layers, and each layer applied two filters.
Besides, the epoch number was set as 200, and the batch size
was given as 50. The cross-entropy loss function and the Adam
optimizer [31] with the learning rate 0.003 were applied.

Due to the goal of the experiments being to verify the models’
validity, we adopted a noiseless simulator from the TFQ platform
in our experiments. This simulator outputs the analytic results,
and it runs faster than other simulators. Regarding the backprop-
agation procedure, we applied the Adjoint differentiator from
TFQ that can compute the gradients faster than others, and it is
compatible with the adopted simulator.

To fully validate our models, we designed a five-fold cross-
validation experimental setup. Thus, we split the data evenly
into five sets, and accordingly, we conducted five different
experiments. In each experiment, one set of data was used for
accuracy assessment, whereas the other four sets were used for
training models. In the end, the average results over all the con-
ducted experiments were summarized for further comparison
and discussion.

C. Classification Performance Comparison

We compared the performance of our models with one clas-
sical CNN model and one quantum framework (QCNN [18]).
The QCNN model exploits the classical CNN as a feature
extractor so it can handle images with four bands, and it utilizes
a classical dense layer at the end, which supports multicategory
classification. For a fair comparison, we adopted the QCNN
model with a similar number of trainable parameters as our
models as the competitor. Particularly, the CNN part of the
QCNN model comprises two convolutional layers: one with
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Fig. 7. Confusion matrices for the models with the best performance in the experiments on the test dataset. (a) MQCNN with the OA 0.90. (b) FQCNN with
the overall accuracy 0.88. (c) CNN with the overall accuracy 0.85. (d) QCNN with the overall accuracy 0.87; Classes 1–5 are compact built-up area, open built-up
area, large low-rise and heavy industry, vegetation, and water, respectively. (a) MQCNN. (b) FQCNN. (c) CNN. (d) QCNN.

TABLE II
COMPARISON OF MULTICATEGORY CLASSIFICATION PERFORMANCE OF

DIFFERENT MODELS

four kernels and the other with 12 kernels. Each kernel size
is set to 2 × 2, with a convolutional stride of 2 as our models
in the experiment. In addition, a dense layer within the CNN
produces eight features. These extracted features serve as input
for the quantum component, which in turn generates 16 feature
values to feed into the subsequent classical dense layer for final
prediction.

Regarding the classical CNN model, to assess the effec-
tiveness of our models for feature extraction, we selected a
CNN with two convolution layers, each comprising two and
24 kernels, respectively, as the competitor. The kernel size was
set to 2 × 2, and the convolutional stride to 2, consistent with
our models. These convolution layers have a similar number
of parameters as the quantum layers in our models, and the
same number of the features (96 features) would be extracted
for the final prediction. Thus, we could analyze the validity of
the quantum circuits for feature extraction by comparing the
classification accuracy without considering the effects of the
classical dense layers.

Table II shows the averaged classification accuracy achieved
by different models. As shown in the table, our models out-
perform the classical CNN model and the QCNN model in
terms of classification accuracy. For the performance difference
between our models, as indicated in the table, the MQCNN
model is superior to the FQCNN model, but the improvement is
moderate (from 0.872 to 0.884).

Fig. 7 visualizes the confusion matrix for each model with
the best performance from the experiments. From the figure, we
observe that our models can identify the compact built-up area
and the open built-up area more accurately than the competitors.
When comparing our models, according to the confusion matri-
ces [see Fig. 7(a) and 7(b)], the FQCNN can reach slightly higher

accuracy for the compact built-up area and the open built-up
area classification, whereas the MQCNN model performs better
in general.

Fig. 8 illustrates the land cover maps for Berlin, Munich, and
Cologne, and they were produced by the trained models with
the best performance via applying the sliding window algorithm
on the cloud-removed Sentinel-2 data of these three cities from
Google Earth Engine [33]. In general, the maps produced by
these models basically all display reasonable urban structures.

According to the experimental results, we could conclude that
our proposed models have comparable performance in terms
of classification accuracy (0.872 for FQCNN and 0.884 for
MQCNN). They both can extract critical features more effec-
tively than the classical CNN model and have better performance
than the QCNN model.

In addition, besides the QCNN model, we also considered
other quantum frameworks for comparison, for example, the
HQconv [21] and the QNN4EO model [17]. However, the HQ-
conv ansatz is designed to process RGB images rather than im-
ages with an arbitrary number of bands. The QNN4EO model is a
binary classifier that can perform multicategory classification by
applying the one-versus-one strategy. For a fair comparison, we
carried out another binary classification experiment with RGB
images for classification performance evaluation.

For this binary classification experiment, we used the patches
from Class 1 and Class 2 in Table I that are the compact
built-up area and the open built-up area, respectively. To meet
the requirement of all the experimented models and compare
the performance fairly, we only kept the RGB bands of the
target patches for the experiment. We also applied the five-fold
cross-validation procedure for this experiment, and the averaged
results were compared and discussed.

Table III shows the binary classification experiment results.
As shown in the table, our proposed models are superior regard-
ing classification accuracy compared with the tested quantum
frameworks.

Moreover, note that the QCNN model and the QNN4EO
model rely on the classical CNN models for feature extraction,
and the quantum circuits aim to conduct the feature trans-
formation or final classification. In comparison, our models
use quantum circuits to extract features, which can speed up
the convolutional operation by simultaneously transforming all
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Fig. 8. Land cover maps produced by the trained models with the best performance for Berlin, Munich, and Cologne, covering about 30 × 30 km2 and the GSD
of each map is 10 m: (a–c) for the false-colored cloud removed Sentinel-2 Google Earth images of the three cities; (d–f) land cover maps produced by the trained
MQCNN model; (g–i) land cover maps produced by the trained FQCNN model; (j–l) land cover maps produced by the trained CNN model; (p–r) land cover maps
produced by the trained QCNN mode.

TABLE III
COMPARISON OF BINARY CLASSIFICATION PERFORMANCE OF

DIFFERENT MODELS

desired quantum states. In addition, the QNN4EO model is
a binary classifier. To handle g-category classification tasks,
training g × (g − 1)/2 classifiers is necessary when using the
one-versus-one strategy, which will compromise the overall effi-
ciency. Besides, the HQconv model uses a quantum circuit as the
kernel and the sliding window mechanism for feature extraction.
On the contrary, our models can perform the convolutional
operation over the image without applying the sliding window
mechanism because of quantum parallelism. Thus, our models
can extract features more efficiently than the HQconv model.

D. Transferability and Consistency Evaluation

For land cover classification, the cities where we would like
to apply the trained classifier can be significantly different from
the source dataset used for training. The model with good trans-
ferability can manage the discrepancy across cities and classify
the land cover types of the target cities accurately.

To evaluate the transferability of our models, we carried out
three additional experiments with different datasets following
the cross-validation method. In each experiment, we used two
cities as the source cities to train the model and the last city as
the target city to assess the model’s performance. Therefore, no
samples from the target city will be used to train the models. We
repeated each experiment three times, and the average results
over the repeated experiments were compared and discussed to
evaluate the transferability of the models.

Regarding the data for each experiment, we randomly res-
elected 800 patches for each semantic class from the source
cities in the LCZ42 dataset and built a balanced training dataset.
As for the test dataset, the numbers of labeled patches from
the target cities are not equivalent in quantity (Berlin: 18 696,
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TABLE IV
NUMBER OF LAND COVER SAMPLES FOR TRANSFERABILITY EVALUATION

TABLE V
COMPARISON OF CLASSIFICATION ACCURACY FOR EACH DATASET IN TRANSFERABILITY EVALUATION

Munich: 4685, Cologne: 15 052). To eliminate its potential
impact on transferability evaluation, we downsampled the data
for Berlin and Cologne and randomly selected 4685 patches for
each of these cities. Note that we maintained the distribution over
the semantic classes in each city since the land cover types in
the real world are not comparable in quantity. Table IV shows
the distribution of the data for the evaluation.

In our experiments, we evaluated the models’ performance
on the target cities (test datasets) with two accuracy assessment
strategies, namely imbalanced test and balanced test. For the
first strategy, we assess the classification performance of the
models on all the labeled patches of the target cities. Since the
test datasets are imbalanced, as shown in Table IV, we compared
overall accuracy (OA), average accuracy (AA), and weighted
accuracy (WA) for performance evaluation.

To overcome the potential problems due to the imbalanced
test datasets, we also considered the second strategy, where we
conducted 20 assessments for each repeated experiment. For
each assessment, we randomly selected the same number of
samples for each category in the target city. To obtain more
samples for the assessment, the number of the selected samples
for each category is the same as the number of samples in the
category with the least samples (i.e., the numbers of the selected
samples for each category for Berlin, Munich, and Cologne are
364, 339, and 178, respectively). In this way, 20 balanced subtest
datasets were built for one experiment. The averaged OA and
kappa coefficient over all the experiments would be compared
and discussed.

Table V shows the results for each experiment, and Table VI
shows the averaged results over all experiments for the transfer-
ability evaluation. To evaluate the transferability of our models,
the CNN model with 56 kernels and the QCNN model worked
as the baseline models. As indicated in Table VI, our pro-
posed models have higher transferability than baseline models
no matter in the imbalanced test setting or the balanced test
setting. Between the MQCNN and FQCNN models, the former
is superior in terms of transferability.

Fig. 9 shows the land cover maps and the agreement maps
of Berlin, Munich, and Cologne. For each target city, the land
cover maps were produced by our models with the best per-
formance in the transferability evaluation experiments, so the
applied models were trained without samples from the target
city. In general, these land cover maps display reasonable urban
structures, indicating the experimented models are able to handle
the difference between the source cities and target cities at certain
levels.

Regarding the agreement maps shown in Fig. 9, they illustrate
the difference between the land cover maps generated by the
models trained with and without the samples from the target
city, which imply the impact of the samples in the target cities
on classification inference results. As shown in the figure, our
models can have more consistent predictions than the CNN
model and the QCNN model (the averaged agreement rate:
88.46% for MQCNN; 88.67% for FQCNN; 79.36% for CNN;
81.01% for QCNN). Thus, training without samples from the
target city has less influence on the classification results for our



12486 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

TABLE VI
COMPARISON OF CLASSIFICATION ACCURACY FOR TRANSFERABILITY EVALUATION

Fig. 9. Land cover maps of the target cities produced by the models trained without samples from the target cities and agreement maps of the target cities
generated based on the models trained with and without samples from the target cities (purple pixels for the consistent classification results and yellow for the
inconsistent results). The map covers 30 × 30 km2 and the GSD of each map is 10 m.

models than the competitors, implying that our models have
higher consistency.

In conclusion, our models can extract important features
more effectively than the classical CNN model and have supe-
rior classification performance than the experimented quantum
frameworks. In addition, the experimental results indicate that
our models have higher transferability and consistency than
the competitors, implying that they have a greater capacity to
cope with the discrepancy between the cities for land cover
classification.

As for the comparison between our models, the MQCNN
model has moderate advantages regarding classification ac-
curacy and transferability than the FQCNN model. However,
note that these two models require different quantum resources,
which will be discussed in Section IV in detail. Besides, the
quantum simulators used in the experiments are noiseless, so

the quantum models’ performance can be compromised when
adopting noisy quantum devices.

IV. DISCUSSION

The quantum resources required for classification are a crucial
factor in evaluating and comparing our models. This criterion not
only reflects the suitability of the proposed models for different
EO applications but also indicates the efficiency of our models.

A. Analysis of the Suitability of Our Models for EO
Applications on Quantum Computers

According to our experimental results, the MQCNN model
can have a better classification performance and transferability
than the FQCNN model. However, note that the performance
improvement is moderate.
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Besides, as introduced in Section II, the MQCNN model
requires extra qubits to indicate the band information of the input
image, so it requires more qubits and more complex quantum
gates for image encoding and convolutional operation compared
to the FQCNN model. The computational resources needed for
the quantum system simulation generally grow exponentially
with the size of the system instead of linearly [34]. Thus, training
the MQCNN model requires more time than the FQCNN model
when analyzing the same input images.

Due to the difference between the structures of the MQCNN
model and the FQCNN model, they are suitable for different
classification tasks, especially in the noisy intermediate-scale
quantum (NISQ) era, since the number of qubits in quantum
machines is constrained.

As mentioned before, we experimented with our models on
the same input without considering the difference in the number
of qubits between these two models. For a quantum system with
a fixed number of qubits, the MQCNN model requires some
qubits to encode the band information, so the number of qubits
for spatial information is limited, which results in a decrease in
the size of the input image. Thus, less spatial information will be
considered for classification. The performance of the MQCNN
model will be jeopardized due to the smaller receptive field
for feature extraction. When analyzing the EO data with more
bands, the disadvantage of the MQCNN model could become
more obvious. Differently, the FQCNN model applies multiple
circuits to analyze multispectral images, so the increase of the
band information will not influence the number of qubits for
spatial information encoding of the input image.

However, because the MQCNN model only utilizes one quan-
tum circuit for classification, all the information is encoded
and transformed in the same circuit. It provides the potential to
achieve a more complex transformation between different bands
of the input image to extract more sophisticated features for
classification. It is beneficial for classification performance, but
it might be challenging for the FQCNN model without changing
its structure.

Ultimately, the selection of these two models for EO appli-
cations should depend on the requirements of the tasks and the
capacity of the available quantum computers. Given a quantum
computer that can support both models for encoding and an-
alyzing the EO data, the MQCNN model might be preferred
due to its superior classification performance. When the qubit
number is limited such that the MQCNN model has to reduce
the size of the input image, the FQCNN model could be more
compatible since the input information will not be compromised
because of the constraints of the quantum machine. When
desiring feature extraction across bands of the input image,
the MQCNN model is more suitable, but it requires further
investigation.

B. Analysis of the Efficiency of Our Models

To assess the efficiency of our models for classification, we
evaluate them from two different aspects: quantum gates and
qubits, reflecting the required quantum resources, which can
affect the speed of the classification algorithms. For comparison,

we concentrate on the convolution operation as it is the crucial
component for feature extraction. Specifically, we consider an
example of the convolution layer, involving K kernels of size
2 × 2 and a convolution stride of 2, applied to an M -band image
of size N ×N .

1) Quantum Gates: A quantum circuit consists of quantum
gates, with each gate representing a specific operation, so the
number of gates directly correlates with the number of operations
required for computation. It has been widely used for efficiency
analysis and comparison.

Based on the information provided in Section II, the convolu-
tion layer in our models requires 4KM operations since 4KM
U3 gates are involved in the circuits, regardless of the input’s
spatial size. However, the U3 gates for the MQCNN model are
more complex than those in the FQCNN model, since each
former gate has 2 + log(KM) controllers, while each latter gate
has 2 + log(K) controllers. In contrast, a classical convolution
layer requires MKN2 operations, which increase quadratically
with the input’s spatial size. Therefore, our models could offer
higher computational efficiency for feature extraction compared
to classical counterparts, particularly when processing large
images.

However, note that when considering the encoding layer and
measure layer, the overall efficiency of our models will be
compromised, but how to encode images more efficiently is
beyond the scope of this study.

2) Quantum Qubits: The number of qubits is also an impor-
tant factor in evaluating the efficiency of a quantum algorithm,
especially in the NISQ era. With the usage of amplitude en-
coding, our models require relatively fewer qubits compared
to those using computational encoding for accurate information
embedding and transformation. Specifically, the FQCNN model
needs log(N2 +K) + 2 qubits, and the MQCNN model needs
log(N2 +K +M) + 2 qubits. Thus, the qubit requirements for
both models increase logarithmically with the size of the input
and the number of applied kernels.

V. CONCLUSION AND FUTURE WORK

In this work, two quantum-classical CNNs, MQCNN, and
FQCNN, are introduced and compared for land cover classifica-
tion tasks. They both can use quantum computing to extract crit-
ical features from images with multiple bands for multicategory
classification purposes. Furthermore, our efficiency analysis
indicates our models could extract features more efficiently with
a small number of qubits due to quantum parallelism and am-
plitude encoding. The numerical experimental results indicate
the advantages of our models for effective feature extraction
compared to their classical counterparts. In addition, they both
have higher transferability and consistency than the CNN model
and other quantum frameworks. It is important to note that due to
computational constraints in quantum simulation, we downsam-
pled the images to 8× 8 for experiments, which may not fully
reflect practical scenarios in the EO domain. Nevertheless, the
experiments demonstrate a proof of concept of using quantum
computing for land cover classification and verify the validity
of our proposed models.
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Toward the comparison between our models, the MQCNN
model can outperform the FQCNN model in terms of classifi-
cation performance and transferability without considering the
limit of quantum computers. When the quantum resources are
not adequate for the MQCNN model to encode and analyze the
original EO data, the FQCNN might be able to extract features
using all the available information from the EO data for more
accurate classification.

Regardless, future research could continue to explore the
following directions.

1) Exploring how to encode EO data into quantum states
more efficiently.

2) Investigating quantum circuits that can extract important
features across different bands.

3) Studying how to leverage the power of quantum comput-
ing for hyperspectral remote sensing data analysis and
classification.
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