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Impact of Land Use/Land Cover Changes on Urban
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Abstract—Urban flooding caused by heavy rainfall is a common
natural hazard in cities globally. Impervious surfaces are often
increased during urban development, but there is limited research
on the impact of large-scale and long-term land use/land cover
(LULC) changes on urban flooding, while considering the influence
of using different remote sensing data sources. In this study, a
framework to evaluate the correlation between LULC changes
and flooding extents is proposed, mainly comprising: 1) classifying
remote sensing time series, using different sources but adopting
the same classifier, to obtain the LULC of the Greater Bay Area,
China, over a one decade period; 2) designing flooding scenarios
with different rainfall intensities, and using the soil conservation
service curve number (SCS-CN) model and local equal volume
method to extract the inundation extent of urban flooding; and
3) analyzing the influence of different data sources on flood simu-
lation results, and calculating the correlations between LULC and
inundation area over the decade to analyze the impact of LULC
changes on urban flooding. The resulting correlation coefficients of
water and built-up land are 0.93 and 0.42, and those of bare land,
grassland, orchard, and forest are−0.40,−0.61,−0.57, and−0.75,
respectively. The inundation derived by Sentinel and Landsat data
showed around 99% consistency, while Landsat tends to derive
more inundation areas, with the differences mainly scattered in
flat areas.

Index Terms—Guangdong–Hong kong–Macao greater bay area,
land use/land cover (LULC) change, landsat, soil conservation
service curve number (SCS-CN) model, Sentinel, urban flooding.

I. INTRODUCTION

URBAN flooding is a regional flooding phenomenon caused
by excessive rainfall and low-lying terrain that cannot be

drained in time when short-term heavy precipitation exceeds the
drainage capacity [1], [2]. Under the global process of climate
change and urban sprawl, the frequency and severity of urban
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flooding induced by extreme heavy rainfall are continuously
increasing [3], [4], [5], [6]. One of the reasons is that land
use/land cover (LULC) changes in cities affect the surface water
flux, altering the runoff generation and convergence processes of
watersheds, which may increase flood risk. The impact of LULC
changes on urban flooding has gained extensive attention in the
related research communities [7], [8], [9], [10].

LULC changes can be obtained through remote sensing ob-
servations. As remote sensing technology has evolved over the
years, the availability of satellite data has become increasingly
abundant [11]. Common optical satellite data sources, such as
the Landsat series, have the advantage of having long time series
imagery, while Sentinel-2 optical data provides higher spatial
resolution. In addition, microwave satellite data sources, e.g.,
Sentinel-1, have the advantage of all-weather observation. At
the same time, acquiring multitemporal multiplatform remote
sensing images from the same area has become more conve-
nient, which is conducive to multisource data fusion. Previous
studies have demonstrated that the fusion of multiple remote
sensing data sources for LULC classification, including optical
images and synthetic aperture radar (SAR) data, can improve
the classification accuracy based on pixel-based methods, and
the classification results are superior to those using only mul-
tispectral or microwave data [12], [13], [14], [15], [16], [17].
Different remote sensing data sources have their own strengths
and weaknesses, and it is necessary to evaluate the impact of
using different data on LULC classification and subsequent flood
modeling experiments.

Surface runoff is currently mainly simulated through various
hydrological models. Commonly used hydrological models in-
clude soil conservation service curve number (SCS-CN), Mike,
storm water management model (SWMM), InfoWorks ICM, and
Wallingford models [18], [19], [20], among which the SCS-CN
model requires few parameters. It is easy to operate and is
commonly used to compute surface runoff in coastal areas [21],
[22], [23], [24]. Many studies have used it to simulate the
generation and convergence processes of flood disasters in small
watersheds [25], [26], [27]. Liu and Li [28] used the SCS-CN
model to calculate the runoff process and the model accuracy
was above 75%. The results proved that the SCS-CN model
could simulate the runoff process in a typical subwatershed on
the Loess Plateau. The model was also combined with the local
equal volume method [29] and proved to be suitable for flooding
extent extraction in larger watersheds [30].

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0009-0007-7985-8059
https://orcid.org/0009-0004-6925-8920
https://orcid.org/0000-0003-4922-8228
mailto:yuqi.lei@cug.edu.cn
mailto:wen.xiao@cug.edu.cn
mailto:wen.xiao@cug.edu.cn


13262 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

The Greater Bay Area, China, is a coastal region with ex-
panding built-up land, increasing population, and industrial
concentration [31]. The rapid urbanization there has led to an
increased risk of urban flooding [20], [32], [33], [34], [35]. Prior
studies of the Greater Bay Area have evaluated the effects of
urbanization on precipitation [36], [37], and calculated the depth
of surface runoff under extreme rainfall [38], [39], [40], but did
not further simulate the inundation extent after a rainstorm, or
explore the impact of LULC change on the inundation range. In
addition, LULC classification is an important input for runoff
calculation, whereas little research has studied the impact of
classification results from different remote sensing data sources
on urban flooding simulation.

In this study, multitemporal satellite imagery is used to obtain
LULC changes in the Greater Bay Area over the past decade.
With the help of the SCS-CN model, surface runoffs under
various rainfall intensity scenarios are calculated, and the inun-
dation extent of urban flooding is extracted. Then, the inundation
extent of each administrative region and various LULC types are
statistically analyzed over a decade to calculate the correlation
coefficient between the extent of urban flooding and LULC
changes. Additionally, Sentinel-1 and Sentinel-2 images are
jointly used for LULC classification to compare with Landsat
data, and urban flooding simulation is conducted on both data
sources to explore the influence of different data sources and
feature selection on classification and flood simulations.

The main contributions of this study are threefold: 1) obtain
the LULC changes in the Greater Bay Area over a decade,
and simulate regional scale urban flooding under four rainfall
scenarios on this basis; 2) assess the influence of using different
remote sensing data sources, Landsat and Sentinel, on urban
flood simulation, revealing the consistency between the two in
both flooded and unflooded areas; 3) quantitatively evaluate
the correlation coefficient between each of the eight LULC
changes and urban flooding extents for the first time, providing
more detailed and accurate references on the impact of urban
development on flooding. The results reported in this article
provide scientific support for the Greater Bay Area to improve
its capacity to mitigate urban flooding.

The rest of this article is organized as follows. Section II of this
article details the study area and the data utilized. In Section III,
the experimental procedures will be followed to introduce
preprocessing, LULC classification, runoff modeling, flooding
extent estimation, and statistical methods. In Section IV, it
will sequentially present the interannual changes in LULC, the
analysis of flood simulation, the impact of LULC changes on
urban flooding, and the effects of different data sources on
the experimental results. In Section V, the deficiencies of the
experiment will be summarized, and future prospects will be
outlined. Finally, Section VI concludes this article.

II. STUDY SITE AND DATA

A. Study Site

As shown in Fig. 1, the Guangdong-Hong Kong-Macao
Greater Bay Area consists of the cities of Guangzhou, Zhuhai,
Shenzhen, Foshan, Dongguan, Huizhou, Jiangmen, Zhongshan,

Fig. 1. Elevation map of the Greater Bay Area, China.

and Zhaoqing in Guangdong Province, and Hong Kong and
Macao Special Administrative Regions, China. In 2022, the
Greater Bay Area had a population of 86.62 million and a gross
domestic product (GDP) of 1943.54 billion US dollars. With
its dense population and developed economy, urban flooding
hazards in the region can cause significant losses. Unfortunately,
the region is vulnerable to urban flooding owing to geographical
and climatic conditions. The Greater Bay Area has a subtropical
maritime monsoon climate with concentrated and heavy rainfall.
The terrain of a high north and low south makes it susceptible
to flash floods. The central urban areas have low-lying and flat
terrain with little gradient, resulting in poor natural drainage
capacity [41], [42], [43].

B. Data

The data used for the study include remote sensing imagery,
soil texture, soil type, weather station locations, etc. Table I
shows all utilized data sources.

Landsat images are sourced from the Landsat 8 Level 2,
Collection 2, Tier 1 dataset on Google Earth Engine (GEE). The
years of image acquisition are 2013, 2015, 2018, 2020, and 2022.
Sentinel-1 images are sourced from Sentinel-1 SAR GRD: C-
band SAR Ground Range Detected, log scaling dataset on GEE.
Sentinel-2 images are sourced from harmonized Sentinel-2 MSI:
Multispectral Instrument, Level-2 A dataset on GEE. The year
of image acquisition is 2022.

The spatial distribution of soil texture in China, provided
by the Data Center of Resource and Environmental Sciences,
Chinese Academy of Sciences (RESDC), is divided according
to the content of sand, silt, and clay particles. The content of
particles with different textures is reflected by percentage. Based
on this, a soil type map with a one-kilometer resolution was
obtained according to the International Standard for Soil Texture
Classification [44].

The locations of 33 weather stations in the study area were
obtained from the China National Meteorological Information
Center and NOAA National Centers for Environmental Infor-
mation. Among them, three stations are located in Hong Kong,
one is in Macau, and 29 belong to the other cities in Guangdong
province.



LEI et al.: IMPACT OF LAND USE/LAND COVER CHANGES ON URBAN FLOODING 13263

TABLE I
RESEARCH DATA AND SOURCES

III. METHODOLOGY

As shown in Fig. 2, the research methodology in this article
has four steps: LULC classification, SCS-CN runoff model-
ing, flood extent estimation, and statistical analysis. In LULC
classification, two different data sources are used for random
forest classification. The first source is Landsat 8 imagery
from the years 2013, 2015, 2018, 2020, and 2022. The second
source involves Sentinel-1 and Sentinel-2 imagery from 2022,
for comparison with Landsat results from the same year. The
classification results are then used in subsequent experiments.
Next, in the runoff modeling, four rainfall intensity scenarios
are simulated using the SCS-CN model to obtain surface runoff.
Then, the watersheds are divided based on the digital elevation
model (DEM) and the locations of reservoirs, and flooded areas
are extracted using the local equal volume method. Finally,
LULC and inundation areas over the decade are statistically
analyzed after normalization, i.e., calculating the correlation
coefficient between the flood area and each LULC. Moreover,
a comparative analysis is conducted on the classification results
and flooded areas obtained from the two satellite data sources.

A. Preprocessing

Before LULC classification, we preprocessed the remote
sensing images.

Landsat 8 images were obtained on GEE for 2013, 2015, 2018,
2020, and 2022. The imagery has undergone preprocessing such
as atmospheric correction and orthorectification. Further cloud
removal and fusion are needed to obtain the annual Landsat 8
images for five epochs. A mask is made from the cloud shadows
and cloud data of the QA_PIXEL band of each image, and
the pixels blocked by clouds and cloud shadows are removed
through the mask. After cloud removal, the median pixel values
of the annual images in the research area are extracted to form
five new images.

Seasonal Sentinel-2 imagery was acquired to create an image
with temporal features. Cloud removal processing was applied
to each seasonal image, and the pixel values were fused by taking
the median value of all pixel values at that location. For Sentinel-
1 imagery, in addition to preprocessing steps such as eliminating
ground range detected (GRD) border noise and thermal noise, as
well as radiometric calibration and terrain correction, the study

also performed coherent speckle filtering and shadow removal
on mountainous areas. The terrain data required for processing
comes from SRTM30. The latest data for each month within
the study period were obtained and combined to create monthly
images. Due to the cloudy weather conditions in the Greater Bay
Area, there were few images that could be used for classification
most of the time.

B. Land Use/Land Cover Classification

1) Classification Using Landsat 8 Data: Considering the
need to capture long-term LULC changes, the random forest
method was used to classify five years of Landsat 8 data over
the last decade. The LULC types were categorized into eight
classes: farmland, orchard, forest, grassland, bare land, built-up
land, water, and wetland. Random forest is an algorithm based
on classification trees [46]. Among various classifiers, random
forest has demonstrated higher accuracy, efficiency, and rela-
tively lower computational complexity. It has become a reliable
choice for studying LULC changes [47].

The random forest model in the study was trained using
sample data from the 2020 imagery. Due to the difficulty in
distinguishing some LULCs on the 30-m resolution images of
Landsat 8, we first recorded the location of LULCs based on
high-resolution images of Google Earth, and then confirmed and
selected them as samples on the Landsat 8 images. The number
of decision trees was tested at an interval of 5 within the range
of 0–150, and the one with the highest classification accuracy
was taken as the final number of decision trees. During training,
all classes were treated as balanced, which helped improve
the extraction of classes with fewer samples. The model was
then used to classify imagery from the years 2013, 2015, 2018,
and 2022. The annual validation data were selected by visual
interpretation on Google Earth, ensuring that they did not overlap
with the training samples. The overall accuracy represents the
proportion of correctly classified samples relative to the total
number of samples. Given the substantial variability in the areas
of different LULC types within the study area, a completely
random selection of validation samples would result in a small
sample size for underrepresented LULC types. This could lead to
an overall accuracy biased towards the dominant LULC types.
Therefore, balancing the number of validation samples across
classes is preferable. To address the imbalance, we obtained
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Fig. 2. Framework of the research methodology.

samples for underrepresented LULC types as much as possible
and selected representative samples for dominant LULC types.
For example, in the case of wetlands, we selected samples within
each catchment area, wherever available. Due to the absence of
wetlands in some catchment areas, the number of catchment

areas containing forests is approximately three times that of
those containing wetlands. As forests generally cover a larger
area, we therefore limited the number of forest samples in each
catchment area. The resulting sample difference is due to the
absence of wetlands in some catchment areas, which cannot be
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further adjusted without compromising the representativeness of
the forest samples across the study region. Therefore, even after
balancing the interclass quantity of validation samples, the gap
still exists. The forest sample was the largest, approximately 16
square kilometers, while the wetland sample was the smallest,
approximately 5.7 square kilometers. The total number of pixels
used for validation in each image should be greater than 100 000
and evenly distributed.

2) Classification Using Sentinel-1/2 Data: Sample selection
here is consistent with that of Landsat imagery, with eight
LULC types (farmland, orchard, forest, grassland, bare land,
built-up land, water, and wetland) of samples selected by visual
interpretation on Google Earth.

During preliminary feature selection, bands 2, 3, 4, 5, 6, 8,
11, and 12 were selected for the Sentinel-2 image, and then
ten spectral indices such as normalized difference vegetation
index (NDVI), normalized difference water index (NDWI),
soil adjusted vegetation index (SAVI), enhanced vegetation in-
dex (EVI), land surface water index (LSWI), bare soil index
(BSI), and 18 texture features such as angular second moment
(ASM), contrast, correlation, variance, inverse differential mo-
ment (IDM), sum average were calculated for each image [48].
The above indices were combined with the original bands to
form a new image. We selected the backscatter intensity of two
polarization modes, VV and VH, for the Sentinel-1 image, and
calculated six indices such as ratio and radar forest degradation
index (RFDI), which were combined into a new image. In
addition, we obtained four temporal features of each index in
the temporal image: mean, maximum, minimum, and standard
deviation.

Random forest can calculate out-of-bag (OOB) error to eval-
uate the importance of each feature [46]. Initially, features were
inputted into the random forest in batches to calculate and rank
their importance. The ten least important features were replaced
or removed in each iteration until the classification accuracy no
longer improved.

In summary, a total of 79 features were selected for Sentinel-2
optical imagery, including spectral, index, and texture features.
For Sentinel-1 radar imagery, 16 features were selected, includ-
ing terrain scattering characteristics and indices. Additionally,
the DEM was included, resulting in a total of 96 features, as
shown in Table II. All image bands were resampled to 10-m
spatial resolution.

In this study, the classification was carried out with the de-
cision tree number starting from 0 to 150 with a step size of 5.
The decision tree number that yielded the best performance was
selected as the final parameter for the random forest, and it was
set to 80 based on the test.

C. SCS-CN Runoff Modeling

The SCS-CN model, produced by the United States Soil and
Water Conservation Bureau, reflects the impact of varied land
uses and soil types on surface runoff in watersheds [49]. The
model requires relatively few input data, and the simulation
results are highly reliable [50], [51], hence it is widely used in the
calculation of surface runoff in coastal areas [22]. The SCS-CN

TABLE II
FEATURES EXTRACTED FROM SENTINEL 1/2 DATA FOR RANDOM

FORESTS CLASSIFICATION

method considers four main characteristics of runoff producing
basins, namely, land use, soil type, hydrological conditions, and
antecedent water conditions (AMC).

The formula for calculating surface runoff through the SCS-
CN model is {

Q = (P−Ia)
2

P−Ia+S (P > Ia)

Q = 0 (P ≤ Ia)
(1)

where Q is the depth of surface runoff; P is the precipitation at
a time; S is the maximum possible retention capacity; Ia is the
initial loss value of rainfall. All units are in millimeters.

The formula for calculating the initial loss of rainfall is

Ia = λS (2)

where λ is dimensionless, usually taken as 0.2.
The formula for calculating the maximum possible retention

capacity is

S =
25400

CN
− 254 (3)

where CN is a dimensionless parameter that ranges from 0 to
100.

There are three grades of AMC, AMC III (wet), AMC II
(normal), and AMC I (dry), which are based on the Antecedent
Precipitation Index (API), i.e., the total amount of rainfall (mm)
in the previous five days [52]. Based on the rainfall conditions
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TABLE III
CN VALUE OF ANTECEDENT MOISTURE CONDITION LEVEL 2 (AMC II)

in the study area, the normal AMC II conditions, which are
commonly used in local studies, are chosen in this study to
calculate the CN value. The CN value is an empirical relationship
obtained through statistical analysis based on measured data.
The subsequent extensive application results have also proven
its rationality. This study refers to the study by Peng et al. [53]
for the CN values set for different LULC types, which updates
the corrections of relevant research in the Pearl River Delta
and surrounding regions based on the CN value lookup table
provided by Mishra and Singh [54]. Finally, the CN values
corresponding to different underlying surface types under the
conditions of early medium soil moisture in the Greater Bay
Area were determined as shown in Table III.

Due to the significant impact of terrain slope changes on
surface runoff, when using the SCS-CN model, slope correction
is also necessary for the CN value. The Williams slope correction
formula [55] and Huang slope correction formula [56] are com-
monly used, between which the Huang slope correction formula
is more suitable for mountainous areas. Since the Greater Bay
Area is not mountainous, the Williams slope correction formula
is adopted in this article, as follows:

CN3 = CN2 ∗ exp[0.00673 ∗ (100− CN2)] (4)

where CN2 is the initial value of CN collected above; CN3 is
the curve value at another degree of wetting

CN2s =
(CN3− CN2)

3
∗ [1− 2 ∗ e−13.86∗slope] + CN2 (5)

where CN2s is the CN value after slope correction; slope is
calculated using SRTM30 m data in the GEE platform; CN3 is
the curve value obtained from the previous formula for another
degree of wetting.

Rainfall in the SCS-CN model is obtained through rainstorm
design. For the rainstorms in this article, the designed scenarios
of rainfall recurrence periods are 10 years, 20 years, 50 years,
and a century, and all last for 60 min. Note we only need the
final flooded area but not the rainfall process and rainfall tem-
poral distribution. To improve the spatial rationality of rainfall,
Thiessen polygons are used to divide meteorological stations
in each city [57]. The rainfall within each Thiessen polygon is
calculated using the rainstorm intensity formula corresponding
to the administrative region to which the meteorological station
belongs.

D. Flooding Extent Estimation

The process of each runoff from the urban surface converging
to the corresponding runoff unit outlet is called confluence.
As the study area is relatively large, watershed extraction and
watershed division are required [58]. Taking the river network
as input and combining with the locations of large-scale water
projects such as reservoirs and dams within the watershed, the
study site is divided into 160 catchment areas.

Based on the runoff in each catchment area, the accumulated
water in that area is obtained. Next, the range and depth of flood-
ing were simulated using the local equal volume method. The
method treats rainfall as a passive submerged state, regardless
of the actual process of convergence, and fills each depression
with the total amount of runoff according to the surface elevation
from high to low [59]. The formula is

W =

∫∫
A

[Ew(x, y)− Eg(x, y)]dδ (6)

where W represents the total volume of water; A is the area of
the flooded area; Ew(x, y) is the water elevation of a certain
point; Eg(x, y) is the elevation of a certain ground point; dδ the
flooded units.

Because the flow rate of flooding and ponding in urban rain-
storm is slow, the submerged water surface can be approximated
as a plane, and the formula is

W =

∫∫
A

[Ew − Eg(x, y)]dδ (7)

where Ew is the unified water surface elevation of the region.
Because the DEM data representing the surface elevation is a

discrete regular grid, the formula is then discretized as follows:

W =
N∑
i=1

[Ew − Eg(i)]Δσ (8)

where Δσ is the area of the grid unit; N is the total grids number
in the flooded area; Eg(i) is the elevation of the ith grid.

After solving Ew for each catchment area, the submerged and
nonsubmerged areas can be exported as elevation images. Then,
the correlation between LULC and inundation areas over the
decade can be statistically analyzed.
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TABLE IV
LULC CLASSIFICATION ACCURACY AND KAPPA COEFFICIENT

E. Statistical Analysis

The entire study area was divided into 11 sections by ad-
ministrative regions, and the LULC area and flooded area were
counted within each section. The area of each administrative
region varied greatly, hence the data needed to be normalized.
Therefore, the proportion of each type of LULC area and the
proportion of flooded area under each rainfall scenario were
calculated for each administrative region over the years. The area
proportions will be used to calculate the correlation coefficients
between the eight LULC categories and the flooded area under
the four rainfall scenarios.

Since our data do not follow a bivariate normal distribution,
it is not appropriate to use the Pearson correlation coefficient
calculation [60]. In addition, we do not assume a linear relation-
ship between LULC and flooded area, but speculate that there is
a monotonic correlation between the two. Thus, Spearman rank
correlation is a more appropriate measurement in our case [60].

The Spearman rank correlation coefficient [61] can be re-
garded as a nonparametric version of the Pearson correlation
coefficient. It is calculated between the ranks of two variables
instead of their actual values [62]. The Spearman rank correla-
tion coefficient ranges from −1 to 1, with closer to 0 indicating
a lower correlation.

As an example, the formula for calculating the correlation
coefficient (rs) between forest and the flooded area under the
once in a century rainfall scenario is (9) shown at the bottom
of this page, where x is the proportion of forest area; y is the
proportion of flooded area, R(x) and R(y) are the rank of x and
y, respectively; Ss is the sum of squared differences of ranked
variables x and y (xi, respectively, yi); n is 55. Other correlation
coefficients of LULC can be similarly calculated.

IV. RESULTS AND ANALYSIS

A. LULC Changes

Using the 2020 Landsat 8 image, the random forest classifier
was trained and tested, with an overall accuracy and a kappa
coefficient of 89.97% and 0.87. The overall accuracy of each
Landsat image exceeded 87%, with kappa coefficients above
0.83, as shown in Table IV. Based on Sentinel-1/2 images, the
overall accuracy of the LULC classification was 93.20%, and
the kappa coefficient was 0.92. The LULC results obtained by
the two data sources are shown in Fig. 3.

TABLE V
LANDSAT 8 CLASSIFICATION RESULTS OF LULC (km2)

The area occupied by each classified category can be found in
Table V. It shows that in the past decade, the farmland area in the
Greater Bay Area has shown a downward trend, while the areas
of water, wetland, and bare land have remained relatively stable.
Although bare land may have undergone positional changes due
to human activities such as cultivation and construction, the total
area has not changed much. The land use in the built-up area
increased and peaked around 2018, and then decreased. Since
2015, the grassland area has been decreasing, while the forest
and orchard areas have experienced significant fluctuations.

B. Urban Flooding Analysis

The designed rainfall scenarios are with recurrence periods
of 10 years, 20 years, 50 years, and a century. The runoff is
categorized into Level 1 (0–30 mm), Level 2 (30–50 mm), Level
3 (50–70 mm), Level 4 (70–85 mm), and Level 5 (85–100 mm).
The runoff levels in the Greater Bay Area under the four rainfall
scenarios obtained by using Sentinel-1/2 data are shown in
Fig. 4.

From the runoff map of the 1-in-10-year rainfall scenario, the
areas with higher runoff depths in the Greater Bay Area are: the
junction of Jiangmen, Zhongshan, and Zhuhai, the junction of
Foshan and Zhaoqing, the south coast of the Greater Bay Area,
and the area around the estuary of the Pearl River. In the runoff
map of the 20-year scenario, the overall runoff is deepened, with
the runoff around the estuary of the Pearl River deepening into
a circular pattern, while the runoff at the junction of Foshan and
Zhaoqing deepens into the cities. With the increase of rainfall,
the runoff at the junction of Jiangmen, Zhongshan, and Zhuhai
has the greatest depth, mostly reaching Level 5. Meanwhile, the
distribution of deep runoff areas in the estuary of the Pearl River
spans a wide range, with runoff depths also reaching Level 4 to

rs =

1
n

∑n
i=1

((
R (xi)−R(x)

)
−
(
R (yi)−R(y)

))
√(

1
n

∑n
i=1

(
R (xi)−R(x)

)2
)
∗
(

1
n

∑n
i=1

(
R (yi)−R(y)

)2
) (9)
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Fig. 3. Classification results based on Landsat and Sentinel-1/2 data. (a)–(e) Results of Landsat 8 in 2013, 2015, 2018, 2020, and 2022, respectively. (f) Result
of Sentinel-1/2 in 2022.

Level 5 in most of Dongguan, Shenzhen, and Hong Kong in the
eastern part of the estuary.

Using the local equal volume method within each watershed,
the flooded area under different rainfall scenarios was deter-
mined and presented in Fig. 5. It illustrates the inundation situa-
tion in various administrative regions. Zhaoqing in the northwest
and Huizhou in the northeast of the Greater Bay Area are affected
by hilly terrains, resulting in discrete blocks of flooded areas.
Jiangmen and the Pearl River estuary in the southwest, as well as
Dongguan, Shenzhen, Hong Kong, and Macau along the eastern
coast, exhibit coastal and riverine distributions of affected areas,
with less severe spreading and diffusion. The most severely
affected areas are Guangzhou, Foshan, Zhongshan, and Zhuhai,
located in the central part and the western part of the Pearl River
estuary. They exhibit large-scale inundation, with numerous
small blocks of inundated areas forming extensive coverage.
These areas are most affected by urban flooding.

Table VI lists the flooded areas under the four rainfall scenar-
ios. As can be seen, over the past decade, flooding trends have
varied between scenarios, due to the fluctuation of the terrain and
changes in the land. The flooded area of the 1-in-10-year rainfall
scenario increases abruptly from 2013 to 2015 and remains high.
Then, until 2022, it decreases to the level of 2013. The flooded
area of the 1-in-20-year rainfall scenario is relatively stable. The
flooded area of the once-in-50-year rainfall scenario increases
from 2013 to 2015, then stabilizes for the next three years before

TABLE VI
FLOODED AREA WITH RAINFALL SCENARIOS OF DIFFERENT RECURRENCE

PERIODS (km2)

declining in 2022. The flooded area of the once-in-100-year
rainfall scenario only decreases from 2015 to 2018, with a larger
area in 2015 and 2022.

C. Analysis of the Influence of LULC Change on
Urban Flooding

For the five LULC classification results obtained from Landsat
8 data over a decade, the flooded areas of 11 administrative
regions were calculated, and 55 sets of data were obtained for
each rainfall scenario. Table VII shows the flooded area of each
administrative region under the once in a century rainfall sce-
nario. After combination and normalization of the data from the
5 epochs across the decade, the correlation coefficients between
the proportion of flood area and the proportion of each LULC
are calculated for each of the rainfall scenarios, as shown in
Table VIII. Fig. 6 shows the scatter charts of the proportions of
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Fig. 4. Runoff levels in 2022 derived from Sentinel-1/2 data. (a)–(d) Results of once-in-10-year rainfall, once-in-20-year rainfall, once-in-50-year rainfall and
once-in-a-century rainfall, respectively. Level 1 (0–30 mm); Level 2 (30–50 mm); Level 3 (50–70 mm); Level 4 (70–85 mm); Level 5 (85–100 mm).

TABLE VII
FLOODED AREA (km2) AND PROPORTION (%) OF EACH ADMINISTRATIVE REGION UNDER A ONCE-IN-A-CENTURY RAINSTORM

flood area and LULC types under the once-in-a-century rainfall
scenario.

The results show that water, built-up land, farmland, and
wetland have positive correlation coefficients, among which
water has the highest one, whereas bare land, grassland, orchard,
and forest have negative correlation coefficients, and forest has

the highest. A positive correlation coefficient indicates that an in-
crease in the corresponding LULC type will lead to an increase in
the urban flooding area under the same precipitation conditions,
while a negative correlation coefficient indicates the opposite.
The larger the correlation coefficient, the stronger the effect of
the LULC type on urban flooding. In all the significance tests of
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Fig. 5. Flooded areas under different rainfall scenarios. (a)–(e) Results of the five years based on Landsat 8 data. (f) Result based on the 2022 Sentinel-1/2 data.

TABLE VIII
CORRELATION COEFFICIENT BETWEEN DIFFERENT LULC AND FLOODED AREA

correlation coefficients, only the p-value of farmland was greater
than 0.05. It is considered that there is no significant correlation
between the area of farmland and the area of inundation. Beside
that, the effect of water, bare land, built-up, grassland, orchard,
forest on flooded area was significant at the 0.01 level, and the
effect of wetland was significant at the 0.05 level.

It can be seen that bare land, grassland, orchard, and forest all
have a certain capacity to reduce surface runoff and flooding.
Among them, forest has the best flood control and storage
capacity, followed by grassland and orchard, while bare land has
the lowest capacity. The increase in water significantly increases
the area of urban floods, thus, the water level should be carefully
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Fig. 6. Scatter plot of proportion of LULC and flooded area in each administrative region.

monitored. The expansion of built-up land also causes a rise in
the flooding area. There is no significant correlation between
farmland and flooding. The correlation of wetland was small,
probably because it has a small area and few changes. However,
the role of wetland in regulating flooding cannot be denied. If
water is converted into wetland, there can be a notable reduction
in surface runoff, which is obviously easier than converting water
into forest.

D. Comparison of Experimental Results From Different
Data Sources

A comparison is made between the classification results of
Landsat and Sentinel data, as shown in Table IX. The comparison
of their flooded area results is shown in Table X. The columns
of these two tables represent the results based on Landsat data,
and the rows on Sentinel data.
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TABLE IX
COMPARISON OF CLASSIFICATION RESULTS FROM DIFFERENT DATA SOURCES (%)

TABLE X
COMPARISON OF FLOODED AREAS USING LANDSAT AND SENTINEL DATA (%)

Comparing the classification results of Landsat 8 with
Sentinel-1/2 data, it can be observed that there is high consis-
tency in water, built-up land, orchard, and forest between the two.
However, the bare land, grassland, and wetland in the Sentinel
results are occasionally classified as farmland in the Landsat 8
results. This is because the Sentinel-1/2 data have higher tempo-
ral resolution and can utilize temporal features for classification,
while the cloudy and rainy climate in southern China during the
summer limits the availability of sufficient temporal features
in Landsat 8 data. Additionally, during the harvesting period,
farmland and bare land appear similar, making them prone to
misclassification when Landsat 8 data are used. The consistency
in the classification of wetland between the two sets of results
is relatively low, as wetland can appear or disappear seasonally
with water level changes, and better classification results can
be achieved when temporal features are available. The built-up
land in the Sentinel-1/2 results is also prone to being classified
as farmland in the Landsat 8 results. This is because most of the
bands in Sentinel-1/2 have higher spatial resolution, allowing for
the differentiation of scattered built-ups near farmland, while at
30-m resolution, such built-ups are easily mixed within farmland
pixels in Landsat 8 data.

Table X shows that the two data sources have produced highly
consistent results, with more than 99% agreement for unflooded
areas and around 98% agreement for flooded areas under all four
rainfall scenarios, with differences mainly observed in scattered
flooded areas in relatively flat regions and at the edges of a few
rivers and lakes in mountainous areas. There is a tendency to
obtain more flooded areas with Landsat data than with Sentinel
data. Sentinel data have higher spatial and spectral resolutions,
which can better distinguish complex and mixed LULC types in
cities, such as grassland and farmland.

V. DISCUSSION

Previous studies have shown that built-up land increases the
impermeability of the surface, thereby increasing surface runoff
and leading to more severe urban flooding, while forest can
reduce surface runoff and hence the risk of flooding [63], [64].
This is consistent with the results of this study. However, we
made a more fine-grained categorization of vegetation, revealed
the difference in the flood mitigation capacity of forest, orchard,
and grassland, and also quantified the correlation between the
eight LULC types and flooding. More detailed categorization
and quantification can be beneficial for accurate modeling and
assessment of flood risk. For example, the impact of vegetation
has been accounted for in some flood hazard risk assessments,
but these studies tend to lump all vegetation together [65], [66],
[67]. In this study, we have demonstrated that different vegeta-
tion resists flooding differently and quantitatively assessed the
relationship between different vegetation types and flood hazard,
which is useful for a more accurate assessment of flood risk. The
results of the relationship between LULC and urban flooding
serve as a reference for urban flood control decision-making
and planning in the Greater Bay Area, while the analysis of
different remote sensing data sources provides evidence that the
variation of input data sources has an insignificant impact on
the final results. There is only an inconsistency of 1%–2% when
using mixed data with apparent different spatial and spectral
resolutions.

In terms of LULC classification, this study used the random
forest method, which has been widely used in experiments and
has been proven to have high accuracy and stability [47]. Prasad
et al. [68] compared the classification accuracy of different
algorithms when using Landsat 8 or fused Sentinel-1/2 data, and
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the results showed that random forest classification is better than
ANN and most algorithms. However, with the rapid development
of deep learning, complex neural networks have been applied to
LULC classification and achieved higher accuracy [69], [70].
Future studies can try to use additional classification methods,
provided enough training data is available.

In terms of urban flooding area extraction, there is no urban
drainage component in the model, limited by the difficulty in
obtaining data. Urban drainage data in the study area are not
publicly available. Quantitative assessment of urban drainage
capacity on a large scale is still lacking and could be a future
study after overcoming the data source problem.

In addition, based on the proposed methodology in this study,
the experiment can be applied to other regions, and the differ-
ences in the impact of LULC on urban flooding in different
climates can be analyzed. However, attention should be paid to
the subtle differences in surface infiltration relationships caused
by geological, soil, terrain slope, weather, and other factors in
different regions, taking into account the correction of CN values
in different regions through field experiments. Expanding the
scope of research could be a direction for future study.

VI. CONCLUSION

This study examined the LULC changes in the Greater Bay
Area, China, over the past decade and simulated the extent of
urban flooding under different intensities of rainfall. These two
factors are combined to explore the influence of LULC change
on urban flooding and analyze the influence of using different
remote sensing data on the experiment results. It has been
found that water and built-up land show a positive correlation
with urban flooding, while bare land, grassland, orchard, and
forest exhibit a negative correlation. Meanwhile, wetland has a
positive but insignificant correlation, and there is no significant
correlation for agricultural land. The Landsat and Sentinel based
urban flooding simulation results are highly consistent, with
differences mainly in scattered flooded areas in flat terrain,
ranging from 1% to 2%. The findings of this study can provide a
reference for the Greater Bay Area to make informed decisions
for urban flooding mitigation.
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