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A Cross-Attention-Based Multi-Information Fusion
Transformer for Hyperspectral Image Classification
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Abstract—In recent years, deep-learning-based classification
methods have been widely used for hyperspectral images (HSIs).
However, in the existing transformer-based HSI classification meth-
ods, how to effectively and comprehensively utilize the rich in-
formation still has room for improvement, for example, when
utilizing multiple-image information, the comprehensive interac-
tion between information has insufficient consideration. To ad-
dress the above issues, cross-attention interaction, class token and
patch token information, and multiscale spatial information are ad-
dressed in a unified framework, and a cross-attention-based multi-
information fusion transformer (CAMFT) for HSI classification
was proposed, which includes the multiscale patch embedding mod-
ule, the residual connection-based DeepViT (RCD) module, and
the double-branch cross-attention (DBCA) module. First, the mul-
tiscale patch embedding module is formed for multi-information
preprocessing, accompanied by the built of different scale process-
ing branches and the addition of learnable class tokens. Second, the
RCD module is designed to utilize rich information from different
layers; this module includes reattention and residual connection.
Third, a DBCA module is constructed to obtain more representative
multi-information fusion features; this module not only integrates
multiscale patch information but also effectively utilizes comple-
mentary information between class tokens and patch tokens in
the interaction of two branches. Moreover, numerous experiments
demonstrate that, compared with other state-of-the-art classifica-
tion methods, the proposed CAMFT method achieves the optimal
classification performance, especially with a small training sample
size, but it still has excellent performance.

Index Terms—Classification, cross-attention, hyperspectral
image (HSI), multi-information fusion, transformer.

I. INTRODUCTION

W ITH the advancements in equipment, remote sensing
(RS) imaging technology is constantly evolving, and

the spectral resolution is improving, thus giving rise to hyper-
spectral RS technology. Unlike the traditional single-band RS
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and multispectral RS, hyperspectral RS captures a more com-
prehensive range of spectral information [1] and acquires 3-D
image data in the continuous electromagnetic spectrum using
spectral cameras. During observation, hyperspectral RS images
capture the information of covered objects from both spatial
and spectral dimensions simultaneously and continuously image
them in continuous spectral bands, ultimately forming a 3-D
cube of data, known as a hyperspectral image (HSI).

With the maturity of hyperspectral RS imaging technology,
the obtained HSI data have become more accurate due to
improvements in spatial and spectral resolution [2], [3]. Ben-
efiting from the rich spectral–spatial information, HSIs have
important applications in many fields, such as urban planning,
precision agriculture, mineral exploration [4], biomedicine [5],
food safety, and environmental monitoring [6]. Due to the in-
creasing quality and widespread application of HSIs, researchers
have focused more on intelligent processing methods. There-
fore, many urgent issues have been raised [7], and how to
achieve high-precision and high-efficiency classification of HSIs
[8], [9] is one of the research issues to be solved.

In recent years, deep-learning theory has led to a wave of
artificial intelligence and has gained the favor of researchers in
various fields [10], [11], [12]. It has made significant break-
throughs in image processing [13], speech recognition, and text
processing [14] and has also promoted technological innovation
in the field of HSI processing [15], [16]. Currently, many deep-
learning-based classification methods have been proposed for
HSIs [17], [18], [19], [20].

With the popularity of convolutional neural networks (CNNs),
CNN-based HSI classification methods have been proposed.
Zhao and Du [21] proposed a 2-D CNN-based HSI classification
model by employing PCA for dimensionality reduction and 2-D
CNN for spectral–spatial feature extraction. Zhong et al. [22]
developed an end-to-end spectral–spatial residual network that
continuously learns discriminative features from rich spectral
and spatial context information by using spectral and spatial
residual blocks. A double-branch multiattention mechanism
network [23] extracts spectral and spatial features separately
through two branches to reduce the interference between differ-
ent features. Roy et al. [24] developed a hybrid spectral CNN
(HybridSN) model, a hierarchical convolutional network that
combines 3-D and 2-D CNNs. In addition to effectively ex-
tracting spatial–spectral features, the HybridSN model can also
reduce computational complexity and improve classification
accuracy. Zhu et al. [25] designed the residual spectral–spatial
attention network model, which considers the information of
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spectral bands and spatial positions through spectral attention
modules and spatial attention modules, respectively. Zhang
et al. [26] proposed a double-branch structure comprising CNN
and transformer branches to capture local–global hyperspectral
features. A group parallel residual block was used before the
double-branch structure to capture local spectral–spatial features
in HSI patches. Additionally, a convolution operation was in-
troduced into the multihead self-attention (MHSA) mechanism
to enhance the classification accuracy further. Although CNN
dominates many computer vision fields due to its powerful local
feature extraction capability, it is unable to effectively capture
the global features of HSIs due to the limited receptive field of
the convolution kernel.

Recently, transformers have achieved great success in natural
language processing, challenging the dominance of CNNs in
computer vision tasks. The vision transformer (ViT) is one
of the first attempts to achieve performance comparable to
CNNs on image classification tasks using a pure transformer
architecture [27]. However, due to its high model complexity,
ViT requires pretraining on larger datasets to achieve relatively
good performance. To address the problem of data efficiency,
data-efficient image transformers (DeiT) [28] deploy knowledge
distillation to train models with larger pretrained teacher models.
Through this approach, DeiT can perform well on ImageNet-1k
without requiring pretraining on a larger dataset. The pyramid
ViT [29] integrates transformers into CNNs and can be trained
on dense partitions of images to achieve high output resolution.
Tokens-to-token ViT [30] recursively aggregates adjacent tokens
into one token, and the image is gradually structured into tokens,
providing a deeper and narrower high-efficiency backbone. Mo-
bileViT [31] significantly outperforms other lightweight net-
works by combining the inverse residual and ViT. When the
ViT layers are progressively deepened, the attention collapse
problem may occur. To address this issue, Zhou et al. [32]
proposed a simple but effective method called DeepViT, which
regenerates attention maps to increase the diversity in different
layers. Chen et al. [33] proposed CrossViT, which combines dif-
ferent image patch sizes to produce more discriminative features.
Fan et al. [34] proposed a multiscale visual transformer for image
and video recognition by integrating the hierarchical structure
of multiscale features with the transformer model. The Swin
transformer (SwinT) [35] restricts self-attention computations
to nonoverlapping localized windows by shifting them while
allowing cross-window connections. Conformer [36] designed
a feature coupling unit by combining the advantages of CNN and
transformer; this unit interacts with the local and global features
of each stage. Srinivas et al. [37] regarded ResNet bottleneck
blocks with self-attention as transformer blocks and improved
upon the baselines significantly on instance segmentation and
object detection while also reducing the number of parameters.
Wu et al. [38] improved ViT performance and efficiency by
incorporating convolutions, with fewer parameters and FLOPs.

Similarly, the transformer has been applied to HSI classi-
fication in many studies. Hong et al. [39] used ViT for HSI
classification and achieved good classification performance.
He et al. [40] proposed a spatial–spectral feature transformer
model that utilizes a convolutional network structure similar to

the visual geometry group network to extract spatial features
and construct the relationship between adjacent spectra using
densely connected transformers. Zhong et al. [41] proposed the
spectral–spatial transformer network (SSTN), which comprises
spatial attention and spectral correlation modules, to overcome
the limitations of convolution kernels. Sun et al. [42] designed
a spectral–spatial feature tokenization transformer (SSFTT)
method, which captures both spectral–spatial and high-level
semantic features simultaneously. Liu et al. [43] proposed a
deep-spatial–spectral transformer and utilized the self-attention
mechanism by replacing convolutional layers with transformer
layers to improve HSI classification performance. The spectrally
enhanced and densely connected transformer model [44] adds
dense connectivity to fuse features from shallow to deep layers
while also utilizing the transformer’s ability to extract global
features. In [45], an end-to-end inception transformer network
(IFormer) was proposed to extract high- and low-frequency in-
formation. Feng et al. [46] introduced a new spectral transformer
model with dynamic spatial sampling and Gaussian position
embedding. Liu et al. [47] proposed an HSI transformer iN
transformer to fuse local and global features. Xue et al. [48]
proposed a novel local transformer with spatial partition restore
network for HSI classification. Zhou et al. [49] proposed the
mobile 3-D convolutional vision transformer (MDvT), which
combines 3-D convolution with the transformer. Peng et al.
[50] proposed a novel convolutional transformer-based few-
shot learning method for cross-domain HSI classification. Zhao
et al. [51] proposed a multiple-vision architectures-based hybrid
network (MVAHN) to consider multiple-feature information.
Yang et al. [52] proposed a novel HSI classification method
based on the pyramid feature extraction with deformable-
dilated convolution (PD2C). Gao et al. [53] proposed a method
named main–sub transformer network with spectral–spatial sep-
arable convolution. In addition, drawing on cross-attention tech-
niques, He et al. [54] proposed a cross-spectral vision trans-
former to extract pixelwise multiscale features. Peng et al. [55]
proposed a spatial–spectral transformer with cross attention; it
can capture spatial–spectral semantic feature information. In
[56], the cross spatial–spectral dense transformer (CS2DT) is
proposed to extract spatial and spectral features.

It can be seen that how to fully utilize the rich informa-
tion in HSIs is a research hotspot in classification. In the ex-
isting transformer-based HSI classification methods, how to
effectively and comprehensively utilize the rich information
still has room for improvement, for example, when utilizing
multiple-image information, the comprehensive interaction be-
tween information has insufficient consideration. Inspired by
the studies of DeepViT [32] and CrossViT [33], to address the
above issues, a cross-attention-based multi-information fusion
transformer (CAMFT) for HSI classification was proposed,
which mainly includes a multiscale patch embedding module,
a residual connection-based DeepViT (RCD) module, and a
double-branch cross-attention (DBCA) module. First, according
to the central pixel, patches of two different scales based on
large and small scales are formed, and two processing branches
are built. By passing through linear layers, the patches are
mapped into patch embeddings, and the learnable class token
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Fig. 1. Illustration of the big–little Net module.

and position embeddings are also added. Subsequently, through
the RCD module, the diversity of features in different layers is
considered, the information in the intermediate layer is effec-
tively utilized, and the class token and patch token information
are also integrated. Next, the DBCA module not only integrates
multiscale patch information but also effectively utilizes com-
plementary information between class tokens and patch tokens
in the interaction of two branches to obtain more representative
features. Finally, the classification task is accomplished based
on the obtained more representative multi-information fusion
features.

In summary, the main contributions of this work are as
follows.

1) As far as we know, cross-attention interaction, class token
and patch token information, and multiscale spatial infor-
mation are addressed in a unified framework for the first
time for HSI classification, and a cross-attention-based
multi-information fusion transformer, namely, CAMFT,
is proposed. The CAMFT method not only considers the
interaction information between class tokens and patch
tokens but also fully utilizes multiscale patch information
while combining the generated multilayer diversity in-
formation, ultimately forming more discriminative image
features based on multi-information fusion.

2) A DBCA module is constructed to obtain more represen-
tative features. The DBCA module not only integrates
multiscale patch information through two branches—a
large-scale branch and a small-scale branch—but also
effectively utilizes complementary information between
class tokens and patch tokens in the interaction of two
branches to obtain more representative features. More-
over, by using the convolution–pooling operation, more
nonlinear features are obtained, and the unnecessary infor-
mation in intermediate processes is reduced, thus reducing
computational costs.

3) An RCD module is designed to utilize rich information
from different layers. The RCD module regenerates at-
tention maps by exchanging information from different
attention heads, preserving feature diversity in different
layers. Moreover, through residual connections, infor-
mation in the intermediate layer is effectively utilized,

smoothing the forward and backward propagation of infor-
mation and reducing the problem of network degradation.
Additionally, according to the input, the class token and
patch token information are also integrated.

The rest of this article is organized as follows. Section II
provides a brief review of related works. Section III describes
the proposed CAMFT method in detail. The experiments and
analyses are given in Section IV. Finally, Section V concludes
this article.

II. RELATED WORKS

This section briefly reviews the principles of the transformer
and introduces the big–little net and CrossViT network frame-
works.

A. Transformer

Through the introduction of the above references [27], [28],
[29], [30], [31], [32], [33], [34], [35], [36], [37], [38], it can
be seen that the transformer was initially used in natural lan-
guage processing. More recently, it has also been applied to
computer vision, producing the ViT and demonstrating strong
performance in image classification.

The ViT model consists of three main components: a linear
layer for patch embedding, a stack of transformer blocks with
multiple self-attention and feedforward layers for feature encod-
ing, and a linear layer for classification prediction.

The transformer is widely used in natural language process-
ing to encode input word token sequences into embedding se-
quences. To follow this sequence-to-sequence learning structure,
when processing images, ViT first evenly divides the input
image into patches and encodes each patch as a token embed-
ding. All these tokens are then fed into the transformer block
stack along with the class tokens. Each transformer block con-
sists of an MHSA layer and a feedforward multilayer perceptron
(MLP). The MHSA generates a trainable associative memory
with a query (Q) and a pair of key (K) value (V) pairs by linearly
transforming the inputs and obtaining the output.

B. Big–Little Net

Multiscale feature representation has been proved to be ef-
fective for various tasks; however, its computational complexity
remains challenging. The computational cost of CNNs is closely
related to the size of the input image. Based on this, Chen et al.
[57] developed a two-branch structure called big–little Net, in
which each branch has a different scale and can fuse multiscale
image features.

Fig. 1 shows an illustration of the big–little Net module, where
the upper branch is the big branch with a small image scale and
deep layers, and the lower branch is the little branch with a large
image scale and shallow layers. R is the number of layers in the
big branch, C is the number of channels, and α and β control
the width and depth of the little branch, respectively.

It can be seen that after passing through the big–little Net
module, the output consists of the fused features of the big branch
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Fig. 2. Illustration of cross-attention fusion.

and little branch as shown in the following equation:

output = F (w1S1(f1(input)) + w2S2(f2(input))) (1)

where subscript 1 denotes the big branch, and subscript 2 denotes
the little branch, and f(·) denotes the sequence of convolution
layers of the branch.S(·) is an operation used to match the output
size of the branch. This can be achieved either by increasing the
number of feature maps through a 1×1 convolution or by an
upsampling operation. The weights of different branches are
denoted by w, and F (·) denotes the fusion layer.

C. CrossViT

Inspired by big–little Net, CrossViT [33] first introduces
a double-branch ViT based on the small and large branches,
where each branch operates at different scale sizes and then
achieves information interaction by fusing the information be-
tween branches. CrossViT not only adds a position embedding
at the head position of the two branches but also adds an
additional class token. Then, all the tokens are passed through
a stacked transformer encoder, followed by cross attention to
obtain the fused information of different branches; finally, the
fused information is used for classification.

Fig. 2 shows an illustration of the cross-attention information
fusion of the small branch and large branch. Taking the small
branch as an example, its input contains the class token of the
small branch and the patch tokens of small and large branches.
Subsequently, information fusion is carried out to obtain the
output z1 of the corresponding small branch, as shown in the
following equation:

z1 = concat
(
XS

patch, X
S′
cls

)
(2)

where XS
patch is the patch token of the small branch and XS′

cls
denotes the output result obtained after the attention calculation
is performed on the class token of the small branch and the patch
token of the large branch.

Similarly, the final output of the large branch z2 is shown as
follows:

z2 = concat
(
XL

patch, X
L′
cls

)
(3)

where XL
patch is the patch token of the large branch and XL′

cls
denotes the output result obtained after the attention calculation
is performed on the class token of the large branch and the patch
token of the small branch.

Fig. 3. Illustration of the multiscale patch embedding module.

III. PROPOSED CAMFT METHOD

To fully utilize the rich information in HSIs, a cross-attention-
based multi-information fusion transformer for HSI classifi-
cation, namely, CAMFT, is proposed. It mainly includes the
multiscale patch embedding module, the RCD module, and the
DBCA module.

A. Multiscale Patch Embedding Module

The HSI data are divided into patches according to the central
pixel. Patches of two different scales based on the large and
small scales are formed, and two processing branches are built.
By passing through linear layers, the patches in each branch are
mapped into patch embeddings, and the learnable class token and
position embeddings are also added. The final token sequences
xS and xL are used as inputs for the subsequent operations. The
subscripts S and L denote the small branch and large branch,
respectively, as shown in Fig. 3. The processing of the multiscale
patch embedding module can facilitate subsequent operations to
capture information at different scales. Moreover, this approach
can maintain local continuity in HSIs, effectively capturing
contextual information from local regions and integrating this
information into a global feature representation, contributing
to the comprehensive representation of multiple features in
images.

B. RCD Module

To utilize rich information from different layers in HSIs and
to avoid the problem that the attention maps gradually become
similar during the process of deepening the number of trans-
former block layers, the RCD module based on DeepViT was
designed. The RCD module regenerates attention maps by ex-
changing information from different attention heads, preserving
the diversity of features in different layers. Moreover, through
residual connections, the network can effectively utilize the
information in the intermediate layer. Additionally, according
to the input, the class token and patch token information are
also integrated. A specific illustration of the proposed RCD
module is shown in Fig. 4, and the main core includes reattention
and residual connection. Reattention [32] uses head attention
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Fig. 4. Illustration of the proposed RCD module.

maps as the base and generates a new set of attention maps by
dynamically aggregating them. It mixes the multihead attention
maps into regenerated new attention maps through a learnable
transformation matrix θ ∈ RH×H , which is then multiplied by
V as shown in the following equations:

Reattention(Q,K, V ) = Norm(θTA)V (4)

A = Softmax

(
QKT

√
d

)
(5)

where the superscript T denotes the transpose operation and
√
d

is the scaling factor. Norm is the layer normalization function
used to reduce the layerwise variance.

The DeepViT encoder can be represented as follows:

xRe = Reattention(LN(x)) (6)

xencoder = MLP(LN(xRe + x)) + (xRe + x) (7)

where x is the input, xRe is the result of reattention, LN is the
layer norm operation, MLP is the multilayer perceptron, and
xencoder is the output of the DeepViT encoder.

Additionally, exchanging information from different attention
heads to regenerate attention maps can preserve the diversity of
HSI features in different layers.

To fully utilize the intermediate layer information, the Deep-
ViT encoder was stacked twice and the intermediate features
were integrated with residual connection. The output informa-
tion of the first reattention is connected to the output of the
second reattention through a skip connection, thus creating
intermediate layer information transmission between the two
encoders and allowing for full utilization of the information in
the intermediate layer. This approach can smooth forward and

backward propagation of information and reduce the network
degradation problem to a certain extent. The output y of the
RCD module is presented in (8)–(11)

y = RCD(x)

= MLP(LN(xRe2 + xRe1 + xencoder1)) + xRe2

+ xRe1 + xencoder1 (8)

xRe2 = Reattention(LN(xencoder1)) (9)

xencoder1 = MLP(LN(xRe1 + x)) + xRe1 + x (10)

xRe1 = Reattention(LN(x)) (11)

where x is the input of the RCD module, xRe1 is the out-
put of the first reattention, xencoder1 denotes the output of the
first DeepViT encoder, and xRe2 is the output of the second
reattention.

The RCD module is used to obtain the outputs yL−encoder and
yS−encoder for the large-scale branch and the small-scale branch,
respectively.

The designed RCD module takes the output of the multiscale
patch embedding module, i.e., the sequence of tokens containing
the class token and patch token information, as input. The
RCD module also integrates the class token and patch token
information according to the input. The RCD module regener-
ates attention maps by exchanging information from different
attention heads, preserving the diversity of features in different
layers. Moreover, through residual connections, information
in the intermediate layer is effectively utilized, smoothing the
forward and backward propagation of information and reducing
the problem of network degradation. The RCD can utilize rich
information from different layers.
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Fig. 5. Illustration of the proposed DBCA module.

C. DBCA Module

Considering that HSIs contain rich information, to better use
the complementary information between class tokens and patch
tokens and to take into account the multiscale patch information,
the DBCA module is proposed to realize the multi-information
fusion of HSIs. Its illustration is shown in Fig. 5.

The inputs of the DBCA module are the double-branch out-
puts of the RCD module, yL−encoder and yS−encoder. The main
interaction core of the DBCA module is to fuse the class token
from its own branch with the patch token from another branch
(the auxiliary branch) to achieve double-branch information
interaction.

Taking the small branch as an example, it mainly consists
of three input branches: a small-scale class token branch, a
large-scale patch token auxiliary interaction branch, and a small-
scale patch token connection branch. The specific interaction
processes are shown in (12)–(20).

In the small-scale class token branch, after linear projection,
the small-scale class token XS

cls becomes XS′
cls

XS
cls

′
= Proj(XS

cls). (12)

In the large-scale patch token auxiliary interaction branch, the
large-scale patch token XL

patch passes through convolution and
pooling operations to obtain xpool. The designed convolution
and pooling operations can obtain more nonlinear features and
reduce unnecessary information in intermediate processes to
reduce computational costs

xpool = Pool(conv(XL
patch)). (13)

Then, xpool andXS′
cls are concatenated, and key(k) and value(v)

can be obtained by (15) and (16). The query(q) is obtained
through (17) by using the information from XS′

cls

xcon = concat
(
xpool, X

S
cls

′)
(14)

k = xconWk (15)

v = xconWv (16)

q = XS
cls

′
Wq (17)

where Wq,Wk, and Wv are the weight parameters.
Next, the attention calculation is performed to obtain the atten-

tion result xatt, which is subsequently added with XS′
cls and after

reverse linear projection, returning to the original dimension to
obtain XS′′

cls , as presented in the following equations:

xatt =

(
Softmax

(
qkT√
d

))
v (18)

Xcls
S ′ ′

= Reproj
(
xatt +XS

cls
′)

. (19)

In the small-scale patch token connection branch, the small-
scale patch token XS

patch is concatenated with XS′′
cls to obtain the

final small-scale branch output yS , as shown in the following
equation:

yS = concat
(
XS

patch, Xcls
S ′ ′)

. (20)

The large branch interaction operation is similar to the
above operations; through the large-scale class token branch,
the small-scale patch token auxiliary interaction branch, and
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Fig. 6. Flowchart of the proposed CAMFT method.

the large-scale patch token connection branch, the final output
of the large-scale branch yL can be obtained.

The above interaction process of the double branch shows that
the DBCA module not only integrates multiscale patch informa-
tion through two branches, a large-scale branch and a small-scale
branch, but also effectively utilizes complementary information
between class tokens and patch tokens in the interaction of two
branches to obtain more representative features, achieving the
multi-information fusion. Moreover, by using the convolution–
pooling operation, more nonlinear features are obtained, and the
unnecessary information in intermediate processes is reduced,
thus reducing computational costs.

In summary, the flowchart of the whole CAMFT method is
shown in Fig. 6. It mainly consists of a multiscale patch embed-
ding module for multi-information preprocessing, an RCD mod-
ule utilizing rich information from different layers, and a DBCA
module that obtains more representative multi-information fu-
sion features. First, the HSI is reduced to three dimensions by
PCA. In the multiscale patch embedding module, according to
the central pixel, patches of two different scales, one at a large
scale and one at a small scale, are formed, and two processing
branches are built. The output token sequences contain both
class tokens and patch tokens. The two processing branches
input their respective token sequences into the RCD module
and subsequently pass through the DBCA module to obtain
representative features via multi-information fusion. Then, the

multi-information fusion features are mapped to the sample
labeling space through the fully connected layer, after which
the two branches are stacked together to achieve a fusion of
the classification results. Finally, the classification results are
obtained by averaging the stacked data.

The proposed CAMFT method not only considers the interac-
tion information between class tokens and patch tokens but also
fully utilizes multiscale patch information while combining the
generated multilayer diversity information, ultimately forming
more discriminative image features based on multi-information
fusion.

IV. EXPERIMENTS

To validate the effectiveness of the proposed CAMFT method,
experiments were conducted on three real hyperspectral datasets
and compared with other state-of-the-art HSI classification
methods.

A. Datasets

The experiments utilized three public hyperspectral datasets:
the Indian Pines (IP), the GF-5 Yancheng (GFYC), and the ZY1-
02D Huanghekou (ZYHHK) datasets. For the experiment, 3%
of each class was selected as the training set, with a minimum of
two samples from each class guaranteed. The remaining samples
were used as the test set.
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Fig. 7. IP dataset. (a) False-color image. (b) Ground truth map.

TABLE I
SAMPLE INFORMATION FOR THE IP DATASET

The IP dataset was acquired in 1992 by an AVIRIS sensor
over the IP test site in northwestern Indiana with a spatial size
of 145 × 145 pixels, a spatial resolution of 20 m/pixel, and 16
land cover classes.1 A total of 200 spectral bands were retained
in the classification experiments. The false-color image and the
ground truth map of this dataset are shown in Fig. 7, and the
specific sample information is shown in Table I.

The GFYC dataset was acquired by the AHSI sensor aboard
on China’s GF-5 satellite over the coastal area of Yancheng,
Jiangsu, China [58], [59]. The image size is 1175 × 585,
with a spatial resolution of 30 m/pixel. A total of 147 bands

1[Online]. Available: https://www.ehu.eus/ccwintco/index.php/Hyper
spectral_Remote_Sensing_Scenes#Indian_Pines

Fig. 8. GFYC dataset. (a) False-color image. (b) Ground truth map.

TABLE II
SAMPLE INFORMATION FOR THE GFYC DATASET

and 7 common classes are chosen for classification. The false-
color image and the ground truth map of this dataset are
shown in Fig. 8. The specific sample information is shown in
Table II.

The ZYHHK dataset was acquired by the China ZY1-02D-
AHSI sensor over the area around the Yellow River Estuary of
China (“Huanghekou” in Chinese) on 29 September 2021 [58],
[59]. The image size is 1050 × 1219, with a spatial resolution of
30 m/pixel. The dataset for classification consists of 108 bands
and 8 common classes. The false-color image and ground truth
map of this dataset are shown in Fig. 9. The specific sample
information is shown in Table III.

B. Comparison of Different Classification Methods

To evaluate the performance of the proposed CAMFT method,
several state-of-the-art ViT-based HSI classification methods,
namely, the SSFTT [42], SwinT [35], SSTN [41], MDvT [49],

https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Indian_Pines
https://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes#Indian_Pines
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Fig. 9. ZYHHK dataset. (a) False-color image. (b) Ground truth map.

TABLE III
SAMPLE INFORMATION FOR THE ZYHHK DATASET

CS2DT [56], MVAHN [51], IFormer [45], and PD2C [52],
were selected for comparison. All the experiments were run
for 150 epochs with a learning rate of 0.0005 and a patch
size of 13 × 13 for the comparison methods. The Adam op-
timizer was used to optimize the network. The classification
performance of the networks was measured by three commonly
used evaluation metrics [60], [61]: overall accuracy (OA), av-
erage accuracy (AA), and Kappa. To ensure fairness, all exper-
iments were repeated ten times and the averaged results were
taken.

Figs. 10 –12 show the classification maps for different meth-
ods. Taking the IP classification map in Fig. 10 as an example,
there are more misclassified regions in the CS2DT and IFormer
classification maps. The MVAHN and PD2C methods perform
better but still have some obvious misclassified regions. Com-
pared with those of the other methods, the classification map of
the proposed CAMFT method has fewer misclassified regions
and can yield the optimal classification map. Moreover, accord-
ing to the GFYC classification map in Fig. 11 and the ZYHHK
classification map in Fig. 12, the classification maps of the
CAMFT method also have the best performance, with fewer mis-
classified regions and closer proximity to the ground truth map.

Tables IV–VI list the detailed classification results for the
different methods. The data in the tables show that the proposed
CAMFT method achieved the highest classification accuracy.
Moreover, among the comparison methods, MVAHN and PD2C
had better classification results. Table IV lists the classifica-
tion results for the IP dataset. The proposed CAMFT method

achieves the highest classification accuracy, with OA, AA, and
Kappa values of 91.61%, 86.7%, and 90.43%, respectively.
Among the comparison methods, MVAHN and PD2C perform
better, while the CS2DT has the worst performance. The OA,
AA, and Kappa of the proposed CAMFT are 3.77%, 1.75%,
and 4.32% greater than those of the MVAHN (OA:87.84%,
AA: 84.95%, and Kappa: 86.11%, respectively); meanwhile,
they achieve 21.56%, 23.1%, and 24.95% greater than those
of the CS2DT (OA: 70.05%, AA: 63.6%, and Kappa: 65.48%,
respectively). Compared with PD2C (OA: 90.25%, AA: 87.71%,
and Kappa: 89.99%, respectively), the proposed CAMFT is
1.36% and 0.44% greater in OA and Kappa.

Similarly, according to the results for the GFYC dataset,
as presented in Table V, the proposed CAMFT method
achieved 96.65%, 87.98%, and 95.53% for OA, AA, and
Kappa, respectively. In addition, the results of the ZYHHK
dataset, as shown in Table VI, indicate that the proposed
CAMFT method achieved 98.18%, 92.54%, and 96.04% for
OA, AA, and Kappa, respectively. On both datasets, the
proposed CAMFT method achieved the best classification
performance.

Then, based on the classification accuracies for each class
in the tables, the proposed CAMFT method can achieve good
results in most classes. For the IP dataset, the CAMFT method
achieves excellent classification performance for many classes,
including classes 3, 10, and 13, with accuracies of 90.31%,
90.95%, and 98.48%, respectively. Parts of classes 3, 10, and
13 are surrounded by a red rectangular box in Fig. 10 and
the proposed CAMFT method achieves the best classification
result. For the GFYC dataset, the proposed CAMFT method
also achieves higher classification accuracy than the other com-
parison methods for classes 1, 3, 5, 6, and 7. In addition, in the
ZYHHK dataset, with accuracies of 98.09%, 96.64%, 89.62%,
and 99.71% for classes 1, 2, 3, and 4, respectively, the proposed
CAMFT method achieved the highest accuracy among these
methods. For a clearer presentation, Fig. 12 also displays a local
zoom-in view of the classification maps for parts of classes 2,
3, and 4, demonstrating that the proposed CAMFT method has
fewer misclassified pixels in the region and achieves the best
classification results.

The reasons why the proposed CAMFT method can achieve
optimal classification performance are as follows: First, the
RCD module in the CAMFT method integrates the class token
and patch token information and regenerates the attention map
by exchanging information from different attention heads, pre-
serving the diversity of features in different layers. Moreover,
through residual connections, information in the intermediate
layer is effectively utilized, smoothing the forward and backward
propagation of information and reducing the problem of network
degradation. Second, the DBCA module in the CAMFT method
not only integrates multiscale patch information through two
branches—a large-scale branch and a small-scale branch—but
also effectively utilizes complementary information between
class tokens and patch tokens in the interaction of two branches
to obtain additional representative features. Meanwhile, by using
the convolution–pooling operation in the DBCA module, more
nonlinear features are obtained, and the unnecessary information
in intermediate processes is reduced. Finally, the classification
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Fig. 10. Classification maps of different methods for the IP dataset. (a) Ground truth map. (b) SSFTT (OA: 85.64%). (c) SwinT (OA: 80.43%). (d) SSTN (OA:
81.77%). (e) MDvT (OA: 74.92%). (f) CS2DT (OA: 73.83%). (g) MVAHN (OA: 89.06%). (h) IFormer (OA: 72.85%). (i) PD2C (OA: 91.69%). (j) Proposed (OA:
93.61%).

TABLE IV
CLASSIFICATION RESULTS OF DIFFERENT METHODS FOR THE IP DATASET

task is accomplished based on the more representative multi-
information fusion features obtained by fusing the classification
results of two branches.

C. Parameter Analysis

This section discusses and analyzes several important param-
eters of the proposed CAMFT method.

1) Effects of Training Sample Percentages: To evaluate the
effects of the training sample percentage on the classification
performance, in the three datasets, 1%, 2%, 3%, 4%, and 5%
of the samples in each class were selected as training samples,
respectively. The classification results are presented in Fig. 13.
As the percentage of training samples gradually increases, the

overall classification accuracy of all methods improves. This
is because as the number of training samples increases, the
amount of information input into the classification methods
also increases, allowing the classification model to better learn
the implicit features in the data and improve the classification
accuracy.

The red folded line represents the proposed CAMFT method,
which consistently achieves the highest accuracy with differ-
ent percentages of training samples. This advantage is par-
ticularly prominent when the training sample size is small,
and the proposed CAMFT method still has excellent perfor-
mance. For example, when the training percentage is only 1%
for the IP dataset, the OA of the proposed CAMFT reaches
80.07%, which is 3.21% higher than that of the PD2C (76.86%),
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Fig. 11. Classification maps of different methods for the GFYC dataset. (a) Ground truth map. (b) SSFTT (OA: 95.97%). (c) SwinT (OA: 95.47%). (d) SSTN
(OA: 95.43%). (e) MDvT (OA: 95.17%). (f) CS2DT (OA: 96.65%). (g) MVAHN (OA: 96.19%). (h) IFormer (OA: 96.69%). (i) PD2C (OA: 95.74%). (j) Proposed
(OA: 97.21%).
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Fig. 12. Classification maps of different methods for the ZYHHK dataset. (a) Ground truth map. (b) SSFTT (OA: 96.94%). (c) SwinT (OA: 96.47%). (d) SSTN
(OA: 96.95%). (e) MDvT (OA: 96.9%). (f) CS2DT (OA: 96.88%). (g) MVAHN (OA: 97.31%). (h) IFormer (OA: 96.52%). (i) PD2C (OA: 97.32%). (j) Proposed
(OA: 98.72%).
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TABLE V
CLASSIFICATION RESULTS OF DIFFERENT METHODS FOR THE GFYC DATASET

TABLE VI
CLASSIFICATION RESULTS OF DIFFERENT METHODS FOR THE ZYHHK DATASET

Fig. 13. OAs of different methods under different percentages of training samples. (a) IP dataset. (b) GFYC dataset. (c) ZYHHK dataset.

which has the highest accuracy among the comparison meth-
ods, and 23.39% higher than that of the CS2DT method
(56.68%).

2) Influence of the Number of DeepViT Encoders: This sec-
tion discusses the influence of the number of DeepViT encoders

in the RCD module. Fig. 14 displays the OA, AA, and Kappa
values for the three datasets with varying numbers of DeepViT
encoders: 0 (normal ViT encoder), 1, 2, and 3 (residual con-
nections are also added between intermediate layers when the
number of DeepViT encoders are 2 and 3). The experimental
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Fig. 14. Classification accuracies for different numbers of DeepViT encoder. (a) IP dataset. (b) GFYC dataset. (c) ZYHHK dataset.

Fig. 15. OAs of different multiscale patch sizes.

results demonstrate that, when the number of DeepViT encoders
is 0 (only using the normal ViT encoder), the classification
accuracy is relatively low. By adding 1 DeepViT encoder, the
classification accuracy significantly improves, indicating the
effectiveness of reattention in preserving the diversity of fea-
tures in different layers. As the number of DeepViT encoders
increases, the classification accuracy gradually improves. How-
ever, too many encoders can lead to a decrease in classification
accuracy due to the overfitting problem. When the number
of DeepViT encoders is 2, the method achieves the highest
classification accuracy by preserving the diversity of features in
different layers, and through residual connections, it effectively
utilizes the information in the intermediate layer, smoothing the
forward and backward propagation of information and reducing
network degradation. Based on these analyses, a proper number
of DeepViT encoders can improve the classification accuracy,
and the number of DeepViT encoders is ultimately set to 2 in
the proposed CAMFT method.

3) Impacts of Multiscale Patch Sizes: This section discusses
the impacts of multiscale patch sizes in the proposed CAMFT
method, specifically the combination of patch sizes for large-
scale branch and small-scale branch. The patch sizes for the
large branch were set to 13, 21, 31, and 35, while the patch

TABLE VII
ABLATION STUDY ON CONVOLUTION AND POOLING OPERATIONS FOR THE IP
DATASET (× REPRESENTS NO SUCH OPERATION, AND � REPRESENTS WITH

SUCH OPERATION)

sizes for the small branch were set to 5, 7, and 13. The ex-
perimental results for the IP dataset are shown in Fig. 15.
When a multiscale patch is combined with a large and small
branch size, it can be seen that when the gap between the
patch sizes of the two branches is large, complementary mul-
tiscale information is advantageous, and the classification per-
formance is better. However, patches that are too large will also
include some pixels that are unrelated to central pixels to reduce
classification effects. From Fig. 15, it can be observed that
the classification accuracy is higher when the multiscale patch
size combination is set to (7, 31) (the patch size of the
small branch is 7 and the patch size of the large branch is
31) and (5, 35) because the interaction of large and small
branches by these multiscale patch size combinations can
achieve better complementarity information. Moreover, con-
sidering the actual computational complexity, the proposed
CAMFT method sets the multiscale patch size combination to
(7, 31).

D. Ablation Study

This section discusses the effectiveness of the DBCA module.
1) Effectiveness of Convolution and Pooling Operations:

This experiment aimed to verify the effectiveness of
the convolution and pooling operations designed for patch to-
kens in the DBCA module. The corresponding ablation ex-
perimental results for the IP dataset are listed in Table VII.
The results show that the classification accuracy is low when
both convolution and pooling operations are absent, with an
OA of 89.73%. However, when pooling operations are added,
the OA improves to 92.04%. Conversely, when there is only
convolution and no pooling, the accuracy decreases (OA:



13372 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

TABLE VIII
ABLATION STUDY ON THE FUSION OF CLASSIFICATION RESULTS FOR THE IP

DATASET

TABLE IX
ABLATION STUDY ON THE PATCH TOKEN INTERACTION BETWEEN TWO

BRANCHES FOR THE IP DATASET

86.95%). The proposed CAMFT method, which combines con-
volution and pooling operations, achieves the highest accuracy,
with an OA of 93.61%. The reasons for the above phenomenon
are as follows: when the convolution operation is used alone,
important information may not be effectively retained from
the original features, resulting in information loss. However,
by adding a pooling operation and selecting an appropriate
pooling size, the information on neighboring positions can
be aggregated, leading to an improved classification result
while retaining important information. In the DBCA module,
a combination of convolution and pooling operations is used,
additional nonlinear features are obtained, and unnecessary in-
formation from intermediate processes is reduced, thus reducing
computational costs.

2) Effectiveness of Classification Result Fusion: This experi-
ment was conducted to verify the effectiveness of fusing the final
double-branch classification results with respect to only a single-
branch output. The specific results are presented in Table VIII.
The results show that, when only the small branch features are
output for classification, the OA is 93.18%, while when only
the large branch features are output for classification, the OA is
88.62%. By fusing the double-branch classification results, the
proposed CAMFT method can achieve an OA of 93.61%. This
demonstrates that the fusion stage of the classification results
can combine the generated multiscale information of the double
branch to improve the classification performance.

3) Effectiveness of the Patch Token Interaction Between Two
Branches: This experiment is used to verify the effectiveness of
patch token interaction between two branches, compared with
no patch token interaction between two branches. The results
are shown in Table IX. Table IX reveals that, if there is no
patch token interaction between the two branches, the OA de-
creases from 93.61% to 92.42%, indicating that using the patch
token from another auxiliary branch can achieve double-branch
information interaction and provide complementary informa-
tion. Additionally, the multiscale patch information is consid-
ered, and the output multi-information fusion features are more
representative.

4) Effectiveness of the Class Token: This experiment aimed
to verify the effectiveness of the proposed CAMFT method

TABLE X
ABLATION STUDY ON THE CLASS TOKEN FOR THE IP DATASET

TABLE XI
ABLATION STUDY ON MULTI-INFORMATION FOR THE IP DATASET

on class tokens. A comparison experiment is designed without
the addition of any class token in the whole network, and the
attention operation in the DBCA module is then changed to
ordinary multihead attention, i.e., q, k, and v are all from the patch
token information. Table X displays the experimental results.
When the class token is removed, the OA drops to 86.22%, which
is 7.39% lower than that of the proposed CAMFT (93.61%). By
involving the class token in the entire transformer structure and
attention operation, the input image can be comprehended from
a global perspective, allowing us to better capture important
features. Additionally, the proposed CAMFT method includes
cross-branch interactions between the class tokens and the patch
tokens, which enhances information complementarity.

5) Effectiveness of Multi-Information: Based on the previ-
ous ablation experiment (4), the whole network is modified to
have only one branch to verify the effectiveness of the multi-
information process. Here, the single branch has no class token
and no patch token interaction. As shown in Table XI, the OA
is only 71.1% if there is only a small branch. The reason for the
poor classification performance is that the small patch size is
only 7, which cannot capture enough global context information
when processing HSIs. In contrast, when larger branches are
available, the size of the initial patch is effectively expanded,
resulting in an increase in OA to 82.95%. This indicates that
a larger patch size can better capture global information and
contextual dependencies. The above classification accuracy is
relatively low because only single-scale information is adopted,
without utilizing rich multi-information in HSIs. In contrast,
based on the rich multi-information, the proposed CAMFT
method has the highest OA of 93.61% because it considers large
and small branches to combine multiscale patch information
while utilizing the complementary information of class tokens
and patch tokens, thus enhancing the model’s ability to perceive
important features in HSIs.

The effectiveness of the proposed DBCA module was verified
through the above ablation experiments. The DBCA module
not only integrates multiscale patch information through two
branches—a large-scale branch and a small-scale branch—but
also effectively utilizes complementary information between
class tokens and patch tokens in the interaction of two branches
to obtain more representative features. Moreover, by using the
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TABLE XII
MODEL SIZES OF DIFFERENT METHODS FOR THE IP DATASET

convolution–pooling operation, more nonlinear features are ob-
tained, and the unnecessary information in intermediate pro-
cesses is reduced, thus reducing computational costs.

E. Comparison of Model Size

The model size is measured by using FLOPs and parameters
(Params). Table XII lists the model sizes of different methods on
the IP dataset. It can be seen that the model size of the proposed
CAMFT method is relatively large in the comparison methods,
but not the largest. The FLOPs of the proposed CAMFT (1.34G)
are lower than those of SSFTT (10.05G) and MDvT (1.36G), and
the Params of the proposed CAMFT (0.87M) are lower than
those of MDvT (7.74M), PD2C (4.95M), IFormer (2.03M), and
CS2DT (1.98M). Therefore, to some extent, the classification
performance improvement of the proposed CAMFT method
comes at the cost of increasing the model size.

V. CONCLUSION

Existing transformer-based HSI classification methods gen-
erally involve limited information utilization and insufficient
consideration of the rich information in HSIs. To address the
above issues, the CAMFT method was proposed for HSIs; this
method mainly includes the multiscale patch embedding, RCD
and DBCA modules. The CAMFT method not only considers
the interaction information between class tokens and patch to-
kens but also fully utilizes multiscale patch information, while
combining the generated multilayer diversity information, ul-
timately forming more discriminative image features based on
multi-information fusion. Numerous experiments demonstrate
that, compared with other state-of-the-art classification methods,
the proposed CAMFT method achieves optimal classification
performance, especially when with a small training sample size,
it still has excellent performance.

The classification performance improvement of the proposed
CAMFT method comes at the cost of increasing the model size.
Additionally, the multiscale patch size parameters were man-
ually selected. Therefore, in future research, some lightweight
networks will be explored and intelligent methods can be con-
sidered for multiscale patch size selection.
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