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Mitigate Target-Level Insensitivity of Infrared Small
Target Detection via Posterior Distribution Modeling

Haoqing Li"”, Jinfu Yang

Abstract—Infrared small target detection (IRSTD) aims to seg-
ment small targets from infrared clutter background. Existing
methods mainly focus on discriminative approaches, i.e., a pixel-
level front-background binary segmentation. Since infrared small
targets are small and low signal-to-clutter ratio, empirical risk has
few disturbances when a certain false alarm and missed detection
exist, which seriously affect the further improvement of such meth-
ods. Motivated by the dense prediction generative methods, in this
article, we compensate pixel-level discriminant with mask posterior
distribution modeling. Specifically, we propose a diffusion model
framework for IRSTD. This generative framework maximizes the
posterior distribution of the small target mask to surmount the
performance bottleneck associated with minimizing discriminative
empirical risk. This transition from the discriminative paradigm
to generative one enables us to bypass the target-level insensitiv-
ity. Furthermore, we design a low-frequency isolation in wavelet
domain to suppress the interference of intrinsic infrared noise on
the diffusion noise estimation. The low-frequency component of
the infrared image in the wavelet domain is processed by a neural
network, and the high-frequency component is utilized to restore
the targets information, to estimate the residuals of the enhanced
features. Experiments show that the proposed method achieves
competitive performance gains over state-of-the-art methods on
NUAA-SIRST, NUDT-SIRST, and IRSTD-1 k datasets.

Index Terms—Deep learning, diffusion model, generative model,
infrared small target detection (IRSTD).

I. INTRODUCTION

NFRARED small target detection (IRSTD), a technique

for finding small targets from infrared clutter background,
provides many potential applications in remote sense, public
security, and other fields with strong antidisturbance imaging
capability [1], [2], [3]. However, infrared small targets tend to
be smaller than 9 x 9 pixels, insufficiency of color and texture
features, and consequently, submerged by a clutter background.
These constraints make IRSTD challenging and prone to false
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alarm and missing detection. Conventional unlearnable meth-
ods, forinstance, filtering-based [4], [5], local contrast-based [6],
[7], and low rank-based methods [8], [55] are hindered by
numerous hyperparameters. Concurrently, their pixel-level per-
formance is relatively inferior, with high false alarm and missing
detection. In addition, deep learning methods [9], [10], [11],
[12] have achieved better pixel-level accuracy and lower false
alarm and miss detection. Dai et al. [13] used discriminative
deep learning earlier and made a pioneering breakthrough. Li
etal. [14] proposed a dense nested attention network to incorpo-
rate and exploit contextual information. Zhang et al. [15] empha-
sized that shape matters and incorporated shape reconstruction
into IRSTD. At present, the mainstream deep learning IRSTD
methods are per-pixel discriminative learning, with intersection
over union (IoU) [16] or binary cross entropy (BCE) loss as the
cost function. For example, methodologies such as ACM [13]
and DNANet [14] calculate the IoU between predicted masks
and ground truth as empirical loss, whereas UIUNet [10] and
ILNet [17] employ pixel-level BCE for optimizing model pa-
rameters. However, due to the minuscule size of infrared small
targets, the ratio of target pixels to the overall infrared image
is exceedingly small. Consequently, the cost function has no
significant disturbances when a certain false alarm and missed
detection exist, owing to the rare pixels in the targets. The
inconspicuous error is manifested in the false alarm rate (the
prevailing state-of-the-art methods typically fall within the order
of 10°). Especially in the later training period with declined low
learning rate, this insensitivity of the empirical risk seriously
affects the further improvement of such methods.

How to avoid target-level insensitivity is the key to solving the
above problem. The discriminantive loss functions only consider
the local differences, which are not significant in IRSTD. How
to obtain general rules for the existence of targets from a global
perspective? Obtaining the posterior distribution of the target
mask directly is one way. Inspired by Le et al. [18], denoising
diffusion probabilistic models (DDPM) can model the condi-
tional distribution of binary masks, providing a perspective for
nonpixel-level discrimination in intensive prediction tasks.

In this article, the generative diffusion framework is employed
to obtain the mask distribution directly, instead of pixel-level
discrimination. The scattered false alarm pixels bring strong
disturbances to the simple data pattern, but the KL divergence
constraint on the mask posterior distribution can suppress such
outliers. Therefore, given the conditions of the input infrared
image, we maximize the posterior distribution of the small target
mask to surmount the performance bottleneck associated with
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Fig. 1. Schematic comparison between (a) existing discriminative methods
and (b) our generative method for IRSTD. Our approach obtains the posterior
distribution of small target masks.

minimizing discriminative empirical risk. The final detection
results are obtained by sampling from this distribution, as shown
in Fig. 1.

However, there is inevitably a massive amount of noise in the
infrared imaging process, including background and hardware
noise. The global white noise under the influence of background
radiation, as well as shot noise, thermal noise, and low-frequency
1/ f noise caused by hardware in the thermal imaging, leads to
an extremely low signal-to-clutter ratio [19], [20]. These inter-
ferences will affect the noise estimation of the diffusion model.
Several prophase image processing approaches [21], [22], [23],
[24] used wavelet transform [25], i.e., transform-filter-inverse,
to enhance the infrared image, which was beneficial to IRSTD
and other tasks. Nevertheless, these complex approaches cannot
be applied to end-to-end diffusion model training. Based on the
basic concept that “the infrared background remains in the low-
frequency component, while the targets with higher intensity are
reflected in the high-frequency” [26], a low-frequency isolation
module in the wavelet domain is designed. The low-frequency
component of the infrared image in the wavelet domain is pro-
cessed by a neural network, and the high-frequency component
is utilized to restore the targets information. Finally, a residual
of the enhanced features is estimated.

The contributions of this article can be summarized as follows.

1) We examine the back-propagation of IRSTD and highlight
a potential issue in discriminative training, i.e., the target-
level insensitivity.

2) A diffusion model framework for IRSTD is proposed.
We generatively obtain the posterior distribution of small
target masks, to surmount the performance bottleneck
associated with minimizing discriminative empirical risk.

3) A low-frequency isolation module in the wavelet domain
is designed, to reduce the influence of low-level infrared
interference on diffusion noise estimation.

4) Qualitative and quantitative experiments are evaluated on
three datasets and demonstrate better performance than
the state-of-the-art discriminative methods.
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II. RELATED WORK

A. Infrared Small Target Detection

IRSTD is widely investigated using different approaches.
These include unlearnable methods: filtering-based, local
contrast-based, and low rank-based methods; and deep learning
methods: ACM [13], DNA [14], ISNet [15], etc. The data-
driven deep learning methods have better accuracy and conve-
nient inference, without numerous manual hyperparameters. Dai
et al. [13] first introduced the data-driven deep learning method
into IRSTD and proposed an asymmetric contextual modulation
module. Furthermore, they combined discriminative networks
and conventional model-driven methods to utilize the infrared
images and domain knowledge [9]. Zhang et al. [27] proposed an
attention-guided pyramid context network and further improved
the applicability of data-driven methods of IRSTD. Li et al. [14]
proposed a dense nested attention network and a channel-spatial
attention module for adaptive feature fusion and enhancement, to
incorporate and exploit contextual information. Zhang et al. [15]
indicated that shape matters for IRSTD and proposed Taylor
finite difference (TFD)-inspired edge block aggregates to en-
hance the comprehensive edge information from different levels.
Our previous work [17] found that the infrared small target
lost information in the deep layers of the network, and proved
that the low-level feature matters for recovering the disappeared
target information. These data-driven deep learning methods are
discriminative, which are prone to generate plenty of false alarms
and miss detection in the process of pixel-level discrimination.
This phenomenon caused by the target-level insensitivity during
discriminative training. In this article, we surmount this problem
with generative posterior distribution modeling.

B. Diffusion Model

Diffusion model [28], a prevailing and promising generative
model at present, is superior to other types of generative models
such as GANs [29], [30] and VAEs [31], [32]. The conditional
diffusion probabilistic models [33], [34] use class embedding to
guide the image generation process to a certain extent. These
methods have led to some excellent large-scale applications,
e.g., Imagen [35], ERNIE-ViLG [36], and stable diffusion [37],
which have made significant contributions to Al-generated
content.

The diffusion model has been applied to many generative
tasks, such as inpainting [38], image translation [39], super-
resolution [40], etc. Similarly, the discriminative application has
also been explored. Xiang et al. [41] proved that the denois-
ing diffusion autoencoders (DDAE) are unified self-supervised
learners and the diffusion pretraining is a general approach for
self-supervised generative and discriminative learning. There-
fore, the generative pretraining paradigm supports the diffusion
model as a feasible discriminative learning method. Baranchuk
et al. [42] demonstrate that diffusion models can serve as an in-
strument for dense prediction tasks, especially in the setup when
labeled data are scarce. Simultaneously, Amit et al. [43] used the
diffusion model for image semantic segmentation, Wu et al. [44],
[45] used it to address the medical image segmentation problem,
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and Ma et al. [46] demonstrated the superiority of adapting
diffusion for unsupervised object discovery. These works, as
the explorers applied the diffusion model to discriminative tasks,
have proved their feasibility and excellent performance.

Additionally, Chen et al. [47] regarded semantic segmentation
as an image-conditioned mask generation, which is replacing
the conventional per-pixel discriminative learning with a latent
prior learning process. Le et al. [18] modeled the underlying
conditional distribution of a binary mask, which was conditioned
on an object region and K-shot information. These methods
provided a novel approach to pixel-level discriminative tasks
such as IRSTD.

In this work, we replace pixel-level discriminant with mask
posterior distribution modeling. A pertinence conditional diffu-
sion model is employed to achieve this purpose.

III. METHOD
A. Motivation

During the experiments of IRSTD, we found that the empirical
risk becomes quite low when the neural network is trained to the
later epochs. But there are still some target-level errors, and these
false alarm and miss detection are unable to be eliminated. What
causes this phenomenon?

We conducted extensive research on the loss function and
back-propagation of the IRSTD model [10], [13], [14], [17]. Our
research reveals that the IoU loss demonstrates insensitivity to
false alarms, but sensitivity to miss detection. BCE loss exhibits
insensitivity to all the target-level errors. IoU loss is computed
as the average within a minibatch

1 TP
Lgw=1-=5S"_—— 1
foU N T+P—TP M

where N is the batch size, T', P, and TP denote the predicted,
ground truth, and true positive pixels, respectively. For instance,
in a batch of size 8, if there are nine false alarm pixels, the
loss is a mere 0.0103, whereas the loss for a miss detection
in a single sample amounts to 0.125 (assuming a resolution
of 256 x 256). In addition, the BCE loss is more insensitive,
yielding aloss of only 8 x 1073 for the same false alarm scenario.
Discriminative empirical risk is progressively insensitive as the
resolution increases.

The insensitivity exerts a significant influence on the parame-
ter updates, allowing these error phenomena unpunished. Illus-
trated in Fig. 2, the minimal empirical risk results in all pertinent
partial derivatives -2 e (z =0,1,...,n)exceedingly diminutive.
Coupled with the learmng rate decaying to a small value in
the later epochs, the optimal parameters are struggling to be
obtained. Our methodology amalgamates generative paradigm
to address this performance bottleneck.

B. Background

Diffusion model [28], a type of generative latent variable
model, includes forward and reverse process. The forward pro-
cess adds Gaussian noise to the original image x¢ according to
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Infrared Image Neural Network

Fig. 2. Sketch map of the back-propagation process: The arrows to the right
represent the forward-propagation, while the arrows to the left represent the
back-propagation. For ease of representation, the bias and activation layers are
omitted. w; and h; are the parameter and output of the ith layer, respectively.
All these partial derivatives in the IRSTD networks are exceedingly diminutive,
but false alarms exist.
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The Markov process lasts 7 steps until the approximate standard
Gaussian noise NV (x7; 0, I) is obtained

Q(Xt|Xt—1) =

q(x1.7[%¢-1) Zq X¢[%¢-1) 3
t=1
where [x1, ..., X, ...X| is the implicit variable of the interme-

diate forward process, which can be obtained directly

N (%45 v/ @exo, (1 — a)I) 4

where a; := 1 — f3; and & := H';:l .

The reverse process starts with a standard Gaussian noise
x7, completes by T steps learnable Gaussian transformation,
and obtains the data distribution py(x) finally, which can be
formulated as

q(xi[x0) :=

Po(xe—1|X¢) = N (x¢-1; prg (X, 1), Bg(x, 1)) ©)

T
(xr) [ [ po(xealx)  (6)

t=1

Po(X0) = /pe(Xo:T)dX1:T (7

Do (XO:T) =P

where prg(x¢,t) = \/%Tt(xt - \/f%—&tee (x¢,t)) is alearnable pa-
rameterized expectation, and €y (x;, t) is a parameterized noise.
An unlearnable variance 3¢ (x;, t) with the configuration of [28]
is utilized.

Training is to optimize the variable boundary of negative
log-likelihood E[—logpg(x0)], and minimize the KL diver-
gence between pp(x;_1|x;) and the forward process posterior
q(x¢-1|xt, X0), which can be simplified as

L= ZDKL(Q(Xt—1|Xt7XO)”pf)(Xt—llXt)) (8)
t>1

where Dy (.) represents the KL divergence

= N(thﬁ ﬁt(xm X0)> BtI) 9

(Z(Xt71|xt7xo)
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If a neural network is used to predict noise €y, the Formula 8
can be equivalent to optimizing the conditional expectation

L' = Exyellle — €a(varxo + VI — are, t)||?]

where € ~ N (0,1
process posteriors.

(12)

) is a standard Gaussian noise of forward

C. Overall Architecture

A diffusion-based approach, IRSTD-Diff, is proposed
to obtain the underlying conditional mask distribution
po(xi—1|x¢, Z, t) for noised mask x;, conditioned on the infrared
image Z, and latent space encoding Z'. Then, the posterior distri-
bution of the original mask is obtained by the Markov process of
Formula 6 and 7. The conditional distribution pg (x;-1|x¢, Z, t)
can be formulated as

1 Br
.7 1) = — - — Tt
G(Xt, (i) ) \/a’_t <Xt 1 _dtee(xta I )>
(13)
pe(xt—llxtvzal-lvt) = N(Xt—l; N@(XhIaI/)t)? /BtI)
(14)

where p is the parameterized expectation and €y(.) is a noise
estimation neural network.

D. Conditional Encoder

As shown in Fig. 3, the noise estimation network €g(.) is
based on the original U-Net [48] architecture of the DDPMs [28],

[49] and combined with the conditional encoder (CE) network.
CE, composed of residual U-block [50], is used to achieve the
latent space perceptual compression of the infrared image Z,
and capture the semantic information of small targets. Residual
U-block is a network with sub-UNets embedded in the UNet
architecture. The nested U-shaped structure enables the network
to capture abundant local and global information from shallow
and deep layers, which is applicable to all resolutions. Previous
studies [10], [17] have demonstrated that this multilevel nested
residual U-block as the backbone is more suitable for feature
extraction of small infrared targets. Due to the high-level seman-
tic information deficiency of small infrared targets, excessive
latent space compression will remove the high-frequency target
information. Therefore, we use the appropriate low-level latent
space as the latent space embedding Z'. €4(.) can be formulated
as

€0(xt, L, T, t) = Uge(Uen(xt, 1) + f(T), 1) 15)

where Uy and U, denote U-Net encoder and decoder, respec-
tively, and f(.) is the CE network.

The intricate architecture of our CE network is delineated
in Table II. This encoder employs a nested subencoding and
decoding structure, comprising six encoders and five decoders
internally. The subencoder is employed to achieve the latent
space perceptual compression of infrared images. Throughout
this process, the low-level information of the infrared image
is compressed, and the semantic structure is preserved for the
target reconstruction and restoration. This restoration reflects
the necessity of the subdecoder’s existence, i.e., BCE discrimi-
native training. Our generative architecture is not to completely
abandon the discriminative paradigm, which is crucial for pixel-
level IRSTD. In the absence of joint discriminative training,
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the sampling of the posterior distribution yield superior target-
level performance, but struggle to achieve state-of-the-art pixel-
level performance. This aspect will be thoroughly discussed in
Section V.

Overall loss: To surmount the performance bottleneck
of pixel-level discrimination, i.e., reduce false alarm and
miss detection while maintaining pixel-level performance,
we minimize the BCE-loss and the KL divergence between
po(x¢-1|x¢, Z,Z',t) and posterior q(x;_1|x¢,%o) of the for-
ward process

L =1L — Axolog(P) + (1 —x¢)log(1 —P)]  (16)
where P is the estimated result of the CE, X is a factor to balance
an optimal learning rate of two parts.

E. Low-Frequency Isolation in the Wavelet Domain

During the imaging process, infrared images inevitably ex-
hibit substantial noise, leading to an exceedingly low signal-
to-noise ratio. It is inevitable to introduce unnecessary inter-
ference when using low-level latent encoding as Z’, owing to
the particularity of small infrared targets. Therefore, an LIW
is designed, to reduce the low-level disturbance of the CE in
diffusion noise estimation. The essence of infrared imaging
is that the infrared noise is global. The background radiation
predominantly consists of low-frequency components, whereas
the higher-intensity targets are evident in the high-frequency
components [26]. This should be considered from two aspects.

First, the wavelet transform demonstrates favorable local-
ization properties in both the time and frequency domains,
as well as multiscale features, facilitating image processing
across various scales. The k-level 2-D Haar discrete wavelet
transform (HDWT) [25] is applied to the original infrared fea-
tures, as shown in Fig. 4 and Formula 17, to obtain the low-
frequency approximation component L* and the high-frequency
vertical, horizontal, and diagonal components HY HY H~
(k=1,2,...K). This k-level 2-D HDWT of partial features
is shown in Figs. 4 and 5. A substantial presence of back-
ground noise interference is evident in the low-frequency com-
ponent, which is processed by the following neural network.
However, mere low-frequency information cannot guarantee
that high-frequency target features still exist after mapping.
Figs. 4 and 5 demonstrate that the background features are scarce
in high-frequency components, and the target features are more
significant. Therefore, the high-frequency component is applied
to the recovery of high-frequency target information. To sum up,
the low-frequency approximate component L* (k = 1,2, ... K)
is utilized for residual mapping, as shown in Formulas 19 and
20. Then, 2-D Haar inverse discrete wavelet transform (HIDWT)
based on the original high-frequency components H*, HY H
(k=1,2,...K) is applied to restore the infrared small target
information, and initiated with the K-level low-frequency ap-
proximate component LK = £X as shown in Formula 18.

Second, Swin Block [51] is employed to process the global
disturbances of infrared features. Transformers [52] are mar-
velous at capturing the semantic structure of images and have

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Infrared Features

f;

(2
2-D Haar Discrete Wavelet Transform |y S
I

L I

|
|
|
|
|
|
|
|
I
|
|
|
|

Fig. 4. Low-frequency isolation in the wavelet domain. L/H represent the
visualization of high/low-frequency components in the wavelet domain. R is the
visualization of the estimated residuals.

wavelet

Fig. 5. One-level 2-D HDWT [25] applied to the infrared features. The left
figures are CE output features, and the right figures are corresponding wavelet
domain visualizations. The bottom left, bottom right, top left, and top right
subfigures are low-frequency approximation and high-frequency horizontal, ver-
tical, and diagonal components, respectively. These wavelet domain components
are used as part of LIW.

strong global perception. It is applied for global semantic com-
pression in the wavelet domain, to isolate low-frequency dis-
turbances while preserving the semantic structure of infrared
features

L* H} H} Hj = HDWT(f}) (17
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fF = S(LY)

(2

k=1,2,....K—1 (18)

where HDWT(.) represents the 2-D HDWT, ff is the ith stage
features under k-level transform, and S(.) denotes the Swin
Block.

To obtain the optimal features f, it is easier to optimize the
residual mapping f = f + R when the original mapping f —
f is an identitylike mapping [53], [54]. Finally, as shown in
Fig. 4, LIW estimates a residual R to isolate low-frequency
disturbances

¥ = Conu(HIDWT(LF, HE, HE HE))

k=K K-1,...,2 (19)

R = RO(LY) (20)

where HIDWT(.) represents the 2-D HIDWT, Conv(.) is a
convolutional module, RO(.) represents the residual output
block, and L* is k-level inversed low-frequency approximate
component.

IV. EXPERIMENTS
A. Setup

1) Datasets: Our experiments are conducted on NUAA-
SIRST [13], IRSTD-1k [15], and NUDT-SIRST [14] datasets.
The NUAA-SIRST dataset has 341 training data and 86 testing
data. About 90% of the infrared images contain one target, and
the rest of the samples contain multiple targets. The IRSTD-1 k
dataset has 800 training data and 201 testing data. It contains dif-
ferent types of small targets, such as unmanned aerial vehicles,
animals, ships and vehicles, which capture infrared images at a
long imaging distance in multiple locations. The dataset covers
many scenarios, including oceans, rivers, fields, mountain areas,
cities and clouds, and has severe background clutter noise. The
NUAA-SIRST and IRSTD-1 k datasets are the real infrared
image data collected in the real scenario, and are manually
labeled with pixel-level mask. Different from the above two
datasets, all infrared images in the NUDT-SIRST dataset are
composed of infrared background and various simulated infrared
small targets. The dataset contains a variety of background
scenarios, such as cities, fields, oceans and clouds. For each
scenario, the resolution of all infrared images is 256 x 256. The
NUDT-SIRST dataset has 1062 training data and 265 testing
data. These datasets has a variety of target types, sizes, and clutter
backgrounds, which can reliably evaluate the performance of the
deep neural network-based methods. We use the same division
setting as original paper [13], [14], [15].

2) Evaluation Metrics: a) Intersection over Union: 1oU, a
common pixel-level evaluation metric of IRSTD, is the ratio of
the intersection and union region between the predictions and
the ground truth. IoU is calculated on the whole dataset and the
correctness of each pixel has a great impact

A; Z?:l TP;

U= 2% =
T A, TS T+ P - TP,

21
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where A; and A, are the intersection and union, respectively.
T denotes the pixels predicted as the targets. P denotes the
pixels of the ground truth targets. TP is the true positive pixels.
n represent the number of infrared images in the test set.

b) Probability of detection (P,): Py evaluates the ratio of
the true targets detected by the model to all the ground truth
targets. It is a target-level evaluation metric. A detected target is
considered as TP if the centroid derivation is less than 3 [14]

TPSle
TSUI‘H

where 1" Py, represents the number of detected targets and 7y,
represents all the targets in the test set.

c¢) False-alarm rate (Fa): A target-level evaluation metric, to
measure the ratio of predicted target pixels that do not match the
ground truth

Py = (22)

_ Z?:l FP;

F, = ALL (23)
where FP denotes the number of false alarm pixels, and ALL is
all pixels in the image.

3) Implementation Details: AdamW [58] is utilized as the
optimizer. Weight decay is O and the learning rate is 0.0001, with
a linear learning rate strategy. As the configuration of the diffu-
sion model shown in Table I, an inferior configuration is used to
verify the feasibility, limited by the computing hardware. The
implementation of a more generalized diffusion model configu-
ration may yield additional enhancements in performance, but it
necessitates elevated standards for the computing hardware. The
data pattern of the infrared small target masks is oversimplified
compared with standard visual images, with weak discreteness.
Accordingly, the step is set to 100. It can be reduced to an
smaller value (e.g., 30) to diminish sampling time and enhance
efficiency. The input images are resized to 256 x 256 during
training and testing. The IRSTD-Diff is trained for 80 000 steps.

4) Comparative Discriminative Methods: For the factors
outside the model, such as learning rate strategy, data augmen-
tation, weight initialization, training strategy, etc., are unified to
make a fair comparison [13]. All the methods are trained 400
epochs with a batch size of 8.

5) Comparative Generative Methods: Use the unified con-
figuration as Table 1. Select eight different steps for testing and
choose the best result.

All methods are implemented based on Pytorch 1.10.0 and
conducted on an NVIDIA GeForce RTX 3080 Ti.

A detailed configuration of the CE is shown in Table II. All
experiments in this article were completed with this configura-
tion.

B. Quantitative Comparisons

The IRSTD-Diff is compared with 13 SOTA methods
including unlearnable methods: WSLCM [7], TLLCM [6],
MSLSTIPT [55], PSTNN [8], IPI [56]; discriminative meth-
ods: ACM [13], AGPCNet [27], DNANet [14], ISNet [15],
UIUNet [10]; and generative methods: SigDiff [43], Med-
SegDiff [45], CIMD [57].
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TABLE I
UNIFIED CONFIGURATION OF THE DIFFUSION MODELS

Image  Batch  Diffusion  Training UNet Resblock Head Attention Channel Input Output
Size Size Step Step Channels esblocks €ads  Resolutions Multiple Channels  Channels
256 4 100 80000 64 2 4 ‘16’ (1,1,2,2,4,4) 3 1

TABLE II

DETAILED CONFIGURATION OF THE CE; IN_C, MID_C, AND OUT_C REPRESENT
THE INPUT, MIDDLE, AND OUTPUT CHANNELS, RESPECTIVELY; UP—-DOWN
INDICATES WHETHER TO USE UP/DOWN-SAMPLING

Modules In_C Mid_C Out_C Up-Down
Encoderl 3 16 64 True
Encoder2 64 16 64 True
Encoder3 64 32 128 True
Encoder4 128 32 256 True
Encoder5 256 32 256 False
Encoder6 256 64 256 False
Decoder5 512 64 256 False
Decoder4 512 32 128 True
Decoder3 256 32 64 True
Decoder2 128 16 64 True
Decoderl 128 16 64 True

As shown in Table I1I, nonlearning methods exhibit significant
disadvantages compared to deep learning-based approaches.
On the NUDT-SIRST dataset, the pixel-level accuracy (IoU)
shows a disparity of —74.38%, and the target-level accuracy
has differences of 40.15 x 107 Fa and —24.17 % Pd. At
present, nonlearning paradigms have no advantage compared
to the data-driven deep learning paradigms.

Our IRSTD-Diff attains state-of-the-art performance on three
datasets. As shown in Table III, our IRSTD-Diff is excellent in
the target-level performance compared with other discriminative
methods. It has established substantial superiority through the
comparison of false alarm rate. In contrast to DNANet, which
excels in pixel-level performance, our approach results in re-
ductions of 6.92 x 107°,3.18 x 107°, and 1.64 x 10° on the
three datasets. As for UIUNet, our method has advantages of
7.37 x 107°,4.69 x 107°, and 1.84 x 10~° on the three datasets,
respectively. Regarding the probability of detection, our IRSTD-
Diff demonstrates comparable performance to UIUNet on the
NUAA-SIRST and NUTD-SIRST datasets. On the IRSTD-1 k
dataset, IRSTD-Diff surpasses the UIUNet by 0.34 %. Our
method is comprehensively superior to other discriminative
models.

The aforementioned observations serve to validate the as-
sumptions articulated in the Section I. At the later period of
discriminative training, it is difficult to fluctuate the experience
risk, owing to a small proportion of false alarm and missed
detection pixels. It is even more demanding to punish this
phenomenon because of the decayed learning rate. Our approach
compensates for this issue from the perspective of generative
learning, i.e., modeling the mask posterior distribution. The
scattered false alarm pixels bring strong disturbances to the
simple data pattern. Therefore, KL divergence constraint on the
mask posterior distribution can suppress such outliers. There-
fore, IRSTD-Diff has low false alarm and missed detection,

and competitive pixel-level performance. Five of the experi-
mental outcomes outperformed the state-of-the-art methods in
the six comparison experiments conducted on the three datasets.
Besides, IRSTD-Diff has competitive pixel-level performance.
With the exception of a slightly 1.21% lower IoU on the NUAA-
SIRST dataset compared to UIUNet, the IRSTD-Diff achieves
the state-of-the-art performance on the other two datasets, with
improvements of 1.24% IoU compared to ISNet and 0.16% IoU
to UIUNet.

Similarly, our IRSTD-Diff has achieved comprehensive ad-
vantages compared with other diffusion-based methods. The
methods we compared with is the latest diffusion-based semantic
segmentation or medical image segmentation approaches [43],
[45], [57]. These excellent diffusion-based methods have made
a pioneering contribution to the discriminative DDPM appli-
cation. However, it is difficult to directly apply to IRSTD ow-
ing to the absence of pertinence design, resulting in inferior
pixel-level and Pd performance. However, we observe a counter-
intuitive anomaly: these nonpertinence designed, diffusion-
based dense prediction methods attain competitive false alarm
rate. CIMD [57], a diffusion-based ambiguous medical image
segmentation network, produces multiple plausible outputs by
learning a distribution over group insights. We transfer it to
the IRSTD task without modification. The false alarm rate
of CIMD surpassed state-of-the-art discriminative methods by
515 x 107%, 3.65 x 107°, and 1.44 x 10° Fa on three
datasets, respectively. The same phenomenon is also reflected
in SigDiff [43], a cityscape semantic segmentation approach.
SigDiff also delivered performance approaching the state-of-
the-art methods, with the 4.66 x 107°, 1.82 x 107°, and
—1.80 x 10~® Faadvantages on three datasets, respectively. This
atypical phenomenon further corroborates the hypothesis pro-
posed in Section 1, i.e., generative diffusion-based approaches
effectively restrain minimal false alarm pixels that would not
significantly disturb empirical risk.

In this work, the diffusion model for IRSTD is pertinence
improved, which makes the diffusion model truly applicable
to the issue of IRSTD. Our IRSTD-Diff demonstrates superior
performance at the target-level, particularly in Pd, with improve-
ments of 1.83%, 5.82%, and 0.81% compared to the optimal
CIMD. Our pertinence enhancements, specifically designed to
the intrinsic characteristics of infrared small targets, signifi-
cantly heighten pixel-level accuracy, yielding 3.09%, 3.39%,
and 2.99% IoU increasements on the three datasets, respec-
tively. These results establish the effectiveness of our generative
diffusion-based approach and emphasize the applicability for
IRSTD.

The receiver operating characteristic (ROC) curves shown in
Fig. 7 demonstrate the superiority and stability of our IRSTD-
Diff. We quantitatively compare our IRSTD-Diff with other
SOTA methods in area under curve (AUC), as shown in Table IV.
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COMPARISONS WITH SOTA METHODS ON NUAA-SIRST, IRSTD-1 K, AND NUDT-SIRST DATASETS IN IoU(%), PD(%), AND Fa(lO*")

TABLE III

Methods Description NUAA-SIRST IRSTD-1k NUDT-SIRST

ToU Fol Py ToU Fy Py ToU Fql Py
WSLCM [7] Local Contrast Based 1.16 5446 77.95 345 6619 72.44 2.28 1309 56.82
TLLCM [6] Local Contrast Based 11.03 7.27 79.47 5.36 4.93 63.97 7.06 46.12 62.01
MSLSTIPI [55] Local Rank Based 10.30 1131 82.13 10.37 3707 57.05 8.34 888.1 47.40
PSTNN [8] Local Rank Based 22.40 29.11 77.95 24.57 35.26 71.99 14.85 44.17 66.13
IPI [56] Local Rank Based 25.67 11.47 85.55 27.92 16.18 81.37 17.76 41.23 74.49
ACM [13] Discriminative CNN Based 63.06 4.04 94.50 55.38 2221 83.22 65.94 5.60 94.09
AGPC [27] Discriminative CNN Based 69.08 4.48 98.17 61.00 12.96 88.36 84.49 2.69 97.58
ISNet [15] Discriminative CNN Based 71.12 7.14 98.17 64.47 11.52 92.12 81.35 4.66 96.77
DNANet [14] Discriminative CNN Based 69.85 8.38 98.17 64.44 8.98 92.12 89.57 2.72 98.12
UIUNet [10] Discriminative CNN Based 75.30 8.83 99.08 63.68 10.49 92.81 91.98 2.92 98.66
SigDiff [43] Diffusion Based 66.00 4.17 94.50 47.41 8.67 81.16 75.53 4.72 94.89
MedSegDiff [45] Diffusion Based 64.19 16.80 97.25 57.65 21.94 81.16 78.27 10.15 96.50
CIMD [57] Diffusion Based 71.00 3.68 97.25 62.32 6.84 87.33 89.15 1.48 97.31
IRSTD-Diff(ours) Diffusion Based 74.09 1.46 99.08 65.71 5.80 93.15 92.14 1.08 98.12

The best result are in bold.

N
%
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Fig. 6. Class activation mapping (CAM) comparison between (d), (h) our IRSTD-Diff and (b), (f) our model without LIW. (a) and (e) Input infrared images.
LIW conspicuously isolates the background radiation and obtains a cleaner infrared CE. (c) and (g) Residuals R estimated by LIW for isolating low-frequency

disturbances.
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TABLE IV
AUC COMPARISION WITH OTHER METHODS

Methods IPI ACM AGPC DNANet ISNet UIUNet SigDiff MedSegDiff CIMD IRSTD-Diff
AUC 0.4545 0.6924 0.7019 0.7534 0.7692 0.8303 0.6727 0.6680 0.7828 0.7962
1.0 TABLE V
EFFECTS OF THE k IN LIW; THE TRAINING STEP IS SET TO 100, AND WE
STOCHASTICALLY CHOOSE A STATIONARY POSTERIOR PROBABILITY (60 000
STEPS) FOR INFERENCE
0.8
f k 4 3 2 1
S IoU (%) 62.06 62.17 64.98 61.80
g / ’ _
5 0.6 /,’ Fo(107%) | 8.17 6.37 7.42 6.00
_g ,/ Py(%) 91.10 91.10 93.15 91.44
G J -—- ACM
< /
a S AGPC
5 0.4 1 % DNA
. P20 B N R IPI TABLE VI
R4 ISNet EFFECTS OF THE DIFFUSION TRAINING STEPS; SMALL STEPS CAN ACHIEVE
R4 UIUNet STUPENDOUS PERFORMANCE; LIMITED BY 3, STEP CANNOT BE LESS THAN
0.2 1 #- SigDiff 20; NW MEANS NOT WORKING
/
N /54 MedSegDiff
/
/ A CIMD Steps 1000 500 200 100 50 30 20
/. = |RSTD-Diff
0.0 ToU 64.41 63.32 6428  65.71 61.32 5943 NW
0.000000.000020.00004 0.000060.000080.000100.000120.00014 F,l 8.58 8.13 7.96 5.80 2.59 5.61 NW
False Positive Rat
alse Fositive Rate P, 93.84 9212 9315 9315 8938 9110  NW

Fig. 7. ROC curves performance on the IRSTD-1 k dataset. The performance
of our IRSTD-Diff is stable and better than other diffusion-based methods. It
also has competitiveness compared with the discriminant methods.

The ROC curve of the IRSTD algorithm is special because of
the large initial derivative. The response of true positive rate
(TPR) to false positive rate (FPR) is very fast, but it tends
to converge when FPR is about 5 X 107>, Therefore, in this
case, AUC is almost only affected by TPR. ROC acts on the
evaluation of pixel-level Fa is reflected in the horizontal axis, but
the order of magnitude of the horizontal axis (107°) determines
that it will not have a significant impact on AUC. Nevertheless,
IRSTD-Diff represents strong competitiveness, second only to
UIUNet. IRSTD-Diff has better performance than unlearnable
methods and nonpertinent-designed generative methods. It also
has competitiveness compared with the discriminant methods,
such as ISNet and DNANet, which are recognized for their
excellent performance.

C. Qualitative Comparisons

Qualitative results are obtained by different methods on
NUAA-SIRST and IRSTD-1 k datasets. Most methods prefer
to find relatively bright spots in the infrared images, owing
to the dataset propensity. This brings numerous false alarm.
Our IRSTD-Diff makes a better penalty for such a tendency,
as shown in Figs. 8 and 9, thus achieving a significantly low
false alarm. Meanwhile, its performance in missed detection and
pixel-level edge fitting is competitive. UIUNet demonstrates a
relatively coarse fit to the edges, presenting targets in blocklike

pixel clusters. In contrast, DNANet and ISNet focus on tar-
get edges without blocklike clusters, but suffer from excessive
smoothness, which impacts pixel-level performance. Our ap-
proach achieves a better compromise.

The proclivity of results from diffusion-based methods ex-
hibits fundamental similarity, as shown in Fig. 10. These meth-
ods evince significantly fewer false alarms compared to the
discriminative models in Fig. 9. Thereby, the effectiveness of
our approach in addressing the hypothesis problem (Section I)
is confirmed. However, there is a massive amount of miss detec-
tion, with lower Pd than state-of-the-art discriminative methods
by more than 10%. Naturally, this results in substantial pixel-
level deficiencies. The subpar pixel-level performance is not
due to low accuracy in individual samples. On the contrary, the
detected samples are precise in pixel-level. Given the prevalence
of miss detection, resulting in 0 IoU for a considerable number of
samples, the pixel-level performance is inevitably impacted. Our
approach effectively averts this predicament, thereby facilitating
the feasibility of the diffusion-based paradigm in IRSTD.

V. ABLATION STUDIES

We performed ablation studies on the IRSTD-1 k dataset,
to verify the effectiveness of the latent space encoder I’, low-
frequency isolation in the wavelet domain and baseline, as shown
in Table IX. All the above modules can improve the performance
of the baseline.
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Qualitative results obtained by different discriminative methods on NUAA-SIRST and IRSTD-1 k datasets. Enlarged targets are shown in the right-top

corner. Circles in green, red, and yellow represent correctly detected targets, false alarm, and miss detected targets, respectively.

A. Effectiveness of the Latent Space Encoder ' and LIW
Modules

If only the noise estimation network is leveraged for IRST
mask generation, the pixel and target-level performance is in-
ferior, as shown in Table IX # 2. After introducing the latent
space embedding Z’ obtained by the CE, the IoU achieved
an improvement of 5.42% (from 58.85% to 64.27%) due to
more accurate low-level information, as shown in Table IX
# 3. Moreover, the target-level performance has achieved a
qualitative improvement, with the Fa reduced by 6.89 x 107°

and the Pd increased by 4.46%. As shown in Table IX # 4, after
the introduction of LIW, the pixel-level performance increased
by 1.42%, and the Pd increased significantly (2.05%), which
quantitatively demonstrated the effectiveness of the noise isola-
tion operation.

We conducted ablation experiments to remove the noise es-
timation network, as shown in Table IX # 0 and # 1. Rea-
sonable pixel-level and false alarm rate performance can still
obtained, but the Pd is slightly insufficient. LIW module can
improve the generative method, but it has a negative effect on
the discriminative CE module. As is shown in Table IX # 0, #
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Qualitative results obtained by diffusion-based generative methods on NUAA-SIRST and IRSTD-1 k datasets. Enlarged targets are shown in the right-top

corner. Circles in green, red, and yellow represent correctly detected targets, false alarm, and miss detected targets, respectively.

TABLE VII

UNDERSAMPLING AND OVERSAMPLING DURING INFERENCE; THE TRAINING
STEP IS SET TO 100, AND WE STOCHASTICALLY CHOOSE A STATIONARY
POSTERIOR PROBABILITY (60 000 STEPS) FOR INFERENCE

Steps 500 300 100 80 60 40
IoU (%) 64.93 64.76 64.98 64.61 64.42 31.66
Fa(1076) | 8.74 8.24 7.42 7.06 7.00 51.92
Pd(%) 93.15 93.15 93.15 93.15 93.15 92.81
TABLE VIII
EFFECTS OF THE ENSEMBLE
Ensembles IoU (%) Py (%) Fo(1076) |

5 64.86 93.15 7.19

3 64.55 93.15 7.31

1 64.98 93.15 7.42

Steps 500

300 100 60 40 20

Fig. 10. Undersampling and oversampling with various steps. The second line
is the magnification of the red box area in the first line.

2, and # 3, combined with the generative NE module can far
surpass their individual existence, especially at the target-level,
with the Fa reduced by 1.95 x 107° and the Pd increased by
2.40%. But IoU decreased slightly by 0.8%. In addition, the
generative combinations have better target-level performance
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TABLE IX
ABLATION: CONTRIBUTION OF OUR PROPOSED CE AND LIW

# NE CE LIW  ToU(%) Fo(1079) | Py(%)
0 v 65.07 7.63 88.70
1 v v 60.30 8.74 90.07
2 v 58.85 12.57 86.64
3 v v 64.27 5.68 91.10
4 v v v 65.69 5.80 93.15

Fig.11. Multiple samples under an identical posterior distribution. The second
line is the magnification of the red box area in the first line. The results
demonstrate the stability of sampling.

than discriminative methods under the same framework, by
comparing # 0, # 1 and # 3, # 4. This phenomenon demonstrates
that the prior issue has been well solved.

The low-frequency isolation module in the wavelet domain
(LIW), as shown in Fig. 6, conspicuously isolates the back-
ground radiation and obtains a cleaner infrared conditional
encoder. It makes the conditional encoder network attach sig-
nificance to the target area, which greatly reduces its attention
dispersivity compared with no LIW module.

B. Impact of k-parameter in LIW

As shown in Table V, we discuss the value of & in the k-level
2-D HDWT. Wavelet transform, a double reduced resolution
transform, makes the LIW enormously susceptible to k. An
excessive wavelet transform with k£ > 3 will still lose several
information because of the small target size, resulting in inferior
performance. When k£ = 1, the module capacity is not enough
to fit a better residual R. In summary, the best k (resolution
dependent) is 2 for 256 resolution.

C. Impact of Diffusion Training Steps

The mask data pattern is uncomplicated, thereupon the diffu-
sion training steps can be smaller than the original configuration
(1000) [28]. As shown in Table VI, taking 100 training steps has
achieved a stupendous result. Under excessive steps, the evalua-
tion metrics fluctuate, but there is no obvious improvement; and
too few steps are not feasible.

Impact of Undersampling or Oversampling: The (3 is large at
early steps, and the reverse process is intense, while the latter
steps are converse [28]. This tendency is reflected in Fig. 10.
To foreshorten the inference sampling time, undersampling can
be adopted. As shown in Table VII and Fig. 12, 60 steps can

13199
100
80 A
60 -
9 =0— loU (%)
% —0— Fa (107-6)
> =0— Pd (%)
40
20 A
0 W . ; :
0 200 400 600 800 1000
Steps
Fig. 12.  Effects of the diffusion training steps. Small steps can achieve stu-

pendous performance. When the step is greater than 100, continuing to increase
the step is not beneficial to performance improvement, but oscillates in a small
range.

achieve a reasonable performance. Oversampling does not bring
any improvement.

D. Sample Stability and the Ensemble

The infrared small targets are small in size and simple in ap-
pearance, and consequently, the differential of multiple sampling
results is not significant, as shown in Fig. 11. As quantitatively
shown in Table VIII, the ensemble [59] is not necessary for the
stability samples considering the sampling time.

VI. DISCUSSION

Previous deep learning-based IRSTD methods are discrimi-
nantive methods that have achieved reasonable pixel and target-
level accuracy. However, these methods have serious target-level
insensitivity, thus encounter a performance bottleneck in the
false alarm rate and miss detection. In this study, we analyzed
the principle of back propagation and model optimization com-
prehensively, and the problem is mitigated by the diffusion
model-based generative approach.

IRSTD-Diff is an efficacious generative approach for IRSTD.
Experimental results on two datasets demonstrate that IRSTD-
Diff achieves superior performance against other diffusion-
based and discriminative methods. However, diffusion-based
methods have inferior inference sampling speed than discrimi-
native methods, which entails additional sampling efficiency that
will improve in the future. Besides, the diffusion-based methods
are difficult to save the optimal results during training, which
limits our approach.

Although the disadvantage of the DDPM is that it is not a real-
time algorithm on medium/low-end equipment, IRSTD-Diff
is friendly with acceptable parameters and edge deployment.

. P 21.95Steps
Its computational complexity is Sampling Acccleration GFLOPs.
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At present, there are many methods to accelerate the diffu-
sion model. For example, denoising diffusion implicit models
(DDIMs) [60], PNDM [61], and EDM [62], etc., with non-
Markovian ODE acceleration. DDIMs can produce high-quality
samples 10X to 50 faster in terms of wall-clock time compared
to DDPMs [60]. In addition, LCM [63], LCM-Lora [64], and
other single-step knowledge distillation approaches that are
compliant with the consistency constraint can also achieve it.
At the inference of torch 2.0, if single-step inference LCM is
leveraged, the average inference speed can be < 0.02 seconds
per image.

Although many state-of-the-art performances have been
achieved on challenging datasets, the pixel-level performances
of the diffusion-based approaches are slightly inferior in
some cases. More neural network modules and novel training
paradigms designed for IRSTD should be proposed to solve
the pixel-level-inferior in this generative framework. Moreover,
is there any other generative paradigm that can be used to
model posterior distribution more efficiently and pixel-level-
superiorly? It is also feasible to explore another generative path,
which is of great significance.

VII. CONCLUSION

In this article, we have presented a diffusion model frame-
work for IRSTD, IRSTD-Diff, from the perspective of mask
posterior distribution generating. The target-level insensitivity
of the vanilla discriminative model is ameliorated. In addition,
a low-frequency isolation module in the wavelet domain is
designed, to reduce the impact of low-level interference infrared
features on diffusion noise estimation. IRSTD-Diff is an effica-
cious generative approach for IRSTD. Experimental results on
three datasets demonstrate that IRSTD-Diff achieves superior
performance against other diffusion-based and discriminative
methods. However, diffusion-based methods have inferior in-
ference sampling speed than discriminative methods, which
entails additional sampling efficiency improvement in the future.
Besides, the diffusion-based methods are difficult to save the
optimal results during training, which limits our approach.
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