
13376 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Efficient Pansharpening by Joint-Modality
Recursive Training

Qilei Li , Graduate Student Member, IEEE, Wenhao Song , Mingliang Gao , Senior Member, IEEE,
Wenzhe Zhai, Jianhao Sun, and Gwanggil Jeon , Senior Member, IEEE

Abstract—Multispectral images captured by remote sensing sys-
tems usually have low spatial resolution. Pansharpening offers
a promising solution by enhancing the resolution of these low-
resolution multispectral images to a high-resolution multispectral
without the need for costly hardware upgrades. Existing meth-
ods employ either CNN or Transformer as the feature extractor
backbone, however, CNN-based methods are weak in capturing
long-distance correlation, and Transformer-based methods are
limited to extracting fine-grain detail. Moreover, these models
achieve impressive results with numerous learnable parameters,
which makes them impractical for integration into remote sensing
systems. In this work, a parameter-efficient pansharpening model,
named joint-modality association network, is built by leveraging
complementary information from multiple modalities and recur-
sive training. It aims to improve the resolution of remote-sensing
images. Specifically, we efficiently leverage the complementary in-
formation from different modalities, including the transformer and
CNN joint block, and employ a hierarchical association mechanism
to create a more distinctive and informative representation by
associating intramodality and cross-modality. Furthermore, the
parameter-sharing mechanism of recursive training can effectively
reduce the number of parameters in the model. Benefiting from
its lightweight design and effective information fusion strategy,
the proposed method can generate faithful super-resolved multi-
spectral images that excel in both spectral and spatial resolution.
Experimental results show the superiority of the proposed method
over extensive benchmarks.

Index Terms—Multimodalities, multispectral images, panshar-
pening, parameter-efficient, spatial resolution.

I. INTRODUCTION

OWING to the robust grounding capabilities exhibited
by satellites, remote sensing images obtained through
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sensor systems encapsulate much substantive ground informa-
tion. Low-resolution multispectral (LMS) images and panchro-
matic (PAN) images are two modalities frequently captured by
satellites [1]. The LMS image exhibits high spectral resolution
yet comparatively constrained spatial resolution, whereas the
PAN image shows inverse attributes in this regard [2]. Pansharp-
ening is significant in remote sensing systems because it en-
hances the spatial resolution of LMS images without the need for
expensive hardware upgrades. In response to the requirements
posed by various practical applications, such as land survey-
ing [3], environmental monitoring [4], and object detection [5],
pansharpening techniques fuse acquired LMS images and PAN
images to generate a high-resolution multispectral (HMS) im-
age.

Over the past few decades, traditional approaches have been
introduced to address the pansharpening task [6]. The traditional
methods of pansharpening can be categorized into four primary
categories, i.e., component substitution (CS)-based methods [7],
multiresolution analysis (MRA)-based methods [8], CS-MRA
hybrid-based methods [9], and model-based methods [10].
Nonetheless, considering the diverse sensors’ different spectral
responses and terrestrial objects’ intricate nature, it is difficult
to formulate the correlation between source images and HMS
image representations through traditional methods [11].

In recent years, the prominent feature extraction capa-
bilities and inherent nonlinearity exhibited by deep neural
networks [12], [13], [14] have propelled the development of
pansharpening. For example, Masi et al. [15] proposed a con-
volutional neural network (CNN) for pansharpening (PNN),
which adapts the architecture of the super-resolution technique
SRCNN [16] by incorporating domain-specific insights from
remote sensing. In addition, Zhong et al. [17] introduced a hy-
brid pansharpening method, which leverages a three-layer CNN
architecture to enhance the spatial resolution of LMS images.
Furthermore, Wei et al. [18] introduced the DRPNN model.
It employs a deeper neural network to capture the residuals
between the LMS image and the ground truth. While the GAN-
based methods incorporate a generator and a discriminator to
facilitate the fusion procedure through a game, without reliance
on ground truth [19]. For example, Liu et al. [20] introduced
PSGAN, which aims to enhance similarity by emphasizing the
alignment of probability distributions. Ma et al. [21] introduced
an unsupervised method in terms of PAN-GAN, with an architec-
ture designed to enable the retention of abundant spectral details
from MS images and spatial characteristics from PAN images.
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In particular, PAN-GAN’s generator is designed to engage in
adversarial games with both the spectral discriminator and the
spatial discriminator independently. Zhang et al. [22] introduced
a bidirectional pyramid network that combines the traditional
approach with deep learning, processing MS and PAN images
through distinct branches at different levels.

Despite the notable successes of current pansharpening tech-
niques, three unresolved challenges merit attention. First, most
existing pansharpening methods may involve large model pa-
rameters and high-computational costs, which are detrimental to
practical deployment and execution. Second, different remote-
sensing image modalities contain different complementary in-
formation features. For example, PAN images possess strong
spatial information, whereas multispectral images contain strong
spectral information. Existing methods are unable to effectively
utilize these complementary pieces of information to enhance
the spectral fidelity and spatial resolution of fused images. Fur-
thermore, many transformer models require a significant amount
of computation to achieve high performance. Their limitations
in terms of hardware resources and battery life make them
unsuitable for mobile applications.

To cope with the above issues, we propose a model with
the recursive neural network (RNN) design. By introducing a
parameter-sharing mechanism within the RNN, we effectively
reduce the parameter count of the model. Besides, CNN and
transformer blocks are used to extract local and nonlocal fea-
tures, respectively. For better local and nonlocal feature fu-
sion, we design a joint modality module that combines these
two. Through comprehensive evaluations of multiple satellite
benchmark datasets, the proposed method demonstrates superior
performance compared to state-of-the-art methods. It highlights
the potential applications of deep learning in the field of envi-
ronmental monitoring and assessment. By employing a RNN
design with a parameter-sharing mechanism, joint-modality as-
sociation network (JMAN) significantly reduces the number of
model parameters. This makes the network more efficient and
portable. The efficient design of the proposed method allows for
better utilization of hardware resources and battery life, which is
particularly beneficial for mobile applications in remote sensing.

We summarize the contribution of this article as follows:
1) We introduced a parameter-sharing mechanism, where the

same module is repeatedly used in RNNs to construct a
deep network, effectively reducing the number and com-
plexity of model parameters, and thereby improving the
model’s efficiency and portability.

2) We designed a unified multimodal module that combines
CNNs and visual transformers. By employing the local
receptive fields of CNNs and the nonlocal characteristics
of transformers, we aim to extract and fuse both local and
global information from the source images.

3) We introduced two modality knowledge association mech-
anisms, namely, intramodal knowledge association and
cross-modal knowledge association, to enhance the fea-
ture complementarity and distinctiveness between differ-
ent modalities through mutual referencing and interactive
learning.

II. RELATED WORK

A. Deep Learning-Based Pansharpening Methods

With the development of CNNs [23], the deep-learning
methods have achieved dominant performance in pansharpen-
ing. In general, deep learning-based pansharpening methods
can be categorized into two principal classes, namely, CNN-
based methods and generative adversarial network (GAN)-
based methods. The pioneering utilization of a CNN in the
domain of pansharpening is exemplified by a convolutional
neural network for PNN [15]. PNN adopts streamlined net-
work architectures while achieving commendable performance
benchmarks. Inspired by PNN, many CNN-based methods have
been subsequently formulated and presented. For example,
Liu et al. [24] introduced TFNet, which formulates an encoder-
decoder network to execute a comprehensive process encom-
passing feature extraction, fusion, and reconstruction within the
CNN framework. Yang et al. [25] built a dual-stream network
architecture for amplifying residual information, facilitating the
transfer of inter-resolution information. The GAN-based meth-
ods consist of a generator component and a discriminator com-
ponent. By adversarial game, the GAN-based approaches can
synthesize images of elevated quality, thereby effectively cheat-
ing discriminators of the framework. For example, the pioneer
of the GAN-based pansharpening approach is pansharpening by
the generative adversarial network (PSGAN) [20], which incor-
porates both the synthesized image and the ground truth as input
to the discriminator component. Subsequently, Shao et al. [26]
built a residual architecture, termed residual encoder-decoder
conditional generative adversarial network (RED-cGAN). The
discriminator within this framework is devised to enhance spa-
tial information within the ultimate outcomes. Moreover, Ma
et al. [21] built a dual-discriminator architecture. This unsuper-
vised method operates in the absence of ground truth, where
the two discriminators promote the output to contain the spatial
attributes of the PAN image and the spectral characteristics of
the LMS image. Although the aforementioned methods have
achieved visually favorable results, these methods are unable to
effectively utilize global and local information.

B. Transformer

The transformer model has gained extensive prominence in
the domain of natural language processing (NLP) [27]. Ben-
efiting from its potent aptitude for comprehensive contextual
feature exploration, a plethora of methods rooted in transformer
architecture have emerged, specifically tailored to address di-
verse computer vision (CV) challenges. In the work conducted
by Zheng et al. [28], a transformer architecture is utilized to
address the semantic segmentation task. In this context, the
semantic segmentation task was reformulated as a sequence-
to-sequence prediction problem. Concurrently, Wang et al. [29]
introduced the pyramid vision transformer, an innovative frame-
work tailored for a spectrum of dense prediction tasks. Recently,
transformer-based pansharpening methods have emerged in the
research landscape. Inspired by the vision transformer (ViT) in
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image classification, Meng et al. [30] proposed a transformer-
based model for pansharpening. Su et al. [31] introduced an
architecture named DR-NET, based on a transformer regression
framework. It consists of three stages, i.e., feature extraction to
capture spectral and spatial details, feature fusion to integrate the
extracted features, and image reconstruction to yield images with
balanced spectral distribution and comprehensive spatial details.
Zhu et al. [32] proposed a method named MHATP-Net, which
combined different levels of attention and a special loss function
to address the challenges of spectral distortion and insufficient
spatial detail from remote sensing. The Transformer model has
strong global information capture capability. Therefore, this
work employs the Transformer model to capture the global
information of the source image.

C. Lightweight Network

To meet the requirements of practical engineering, light-
weight model has been explored by many scholars [33], [34],
[35]. These models are expected to apply fewer parameters to
get a satisfactory result. The MobileNet series has pioneered
the concept of leveraging depthwise separable convolutions for
lightweight networks. Howard et al. [36] introduced MobileNet
V1, decomposing standard convolutions into depthwise and
pointwise convolutions, effectively curtailing parameter count
and computational overhead. Subsequently, Sandler et al. [37]
proposed MobileNet V2, which incorporates residual struc-
tures and linear bottlenecks to enhance performance. MobileNet
V3 [38] introduced adaptive width and activation function de-
sign, yielding improved efficiency and effectiveness. Besides,
efficientNet [39] has presented a scaling approach, achieving
enhanced performance by harmonizing network depth, width,
and resolution. This technique has propelled models to achieve
superior efficiency without imposing additional computational
burdens. Beyond architectural design, quantization and pruning
constitute pivotal techniques for enhancing lightweight network
efficiency. Quantization reduces parameter representation to
fewer bits, mitigating memory and computation demands. On the
other hand, it reduces model size and computational complexity
by eliminating nonessential connections and parameters [40].
Lightweight networks reduce the need for processing power
by reducing model parameters and simplifying computation.
This allows them to run on devices with lower computa-
tional power, such as smartphones, embedded systems, and IoT
devices.

D. Recursive Neural Network

RNNs were introduced as an attempt to capture hierarchical
structures in NLP. They aimed to address the limitations of
standard RNNs and feedforward neural networks in handling
structured data like syntax trees. Socher et al. [41] introduced
the recursive neural tensor network (RNTN), a prominent early
work in NLP utilizing recursive structures. RNTN extended
the recursive autoencoder model to capture compositional se-
mantics by representing phrases as binary-branching trees. The
model employed tensor-based composition functions to compute

phrase representations. RNNs found success in sentiment anal-
ysis tasks. Socher et al. [41] demonstrated that RNTNs could ef-
fectively capture sentiment information through compositional
representations, improving the sentiment classification accuracy
of phrases and sentences. This opened up new possibilities for
handling syntactic and semantic nuances in text analysis.

RNNs have been extended to the field of CV in recent decades.
For example, Sadr et al. [42] proposed a method that integrates
CNNs with RNNs for sentiment analysis. In this study, a RNN
is employed, leveraging its tree-like structure to substitute the
pooling layer in convolutional networks. This results in a per-
formance surpassing that of both the conventional CNN and
RNN with fewer parameters. Mclaughlin et al. [43] combined
CNN and RNN architectures to propose a network to identify
individuals in videos. The incorporation of RNN into CNN’s
foundation enables the network to process video sequences. Fur-
thermore, the inclusion of a temporal pooling layer over the RNN
layer facilitates the handling of videos with arbitrary lengths.
This alleviates the strong discriminative state shift of RNN
toward previous frames and addresses the multiscale challenges
within video sequences [44]. The structure of RNN facilitates
the reduction of the number of model parameters, therefore,
the proposed method uses the RNN structure to implement a
parameter-sharing network.

III. PROPOSED METHOD

A. Overview

The objective of pansharpening is to improve the spatial reso-
lution of the LMS images with guidance from the corresponding
PAN images, which has higher spatial resolution. This process
is expected to be achieved by a learnable mapping function fθ,
where θ is the parameter optimized by supervised training. In this
work, we proposed JMAN to enhance the feature discrimination
by exploring the synergy of different feature modalities with two
types of knowledge associations, and enable the network to be
parameter-efficient by recursive training.

The overview of the proposed JMAN is shown in Fig. 1.
Given an LMS image M ∈ RC×H

4 ×W
4 and the corresponding

high-resolution PAN image P ∈ R1×H×W , we align the spatial
resolution of M and P and upsample with LMS by a scale of
4, and denote the upsampled MS image as M↑. We follow the
conventional residual learning diagram to focus on modeling
missed high-frequency detail texture in the MS image. We
eliminate the low-frequency from the upsampled MS image by
differentiating it with the PAN image as x = M↑ � P , where�
is the broadcasted subtraction operator. Consecutively, x is fed
into a head module to extract low-level features, as follows:

Flow = Hhead(x) (1)

where the head moduleHhead consists of two convolution layers.
Next, the low-level features Flow are passed to the main body
module, composed by the associated multimodal blocks, to
extract and fuse the hierarchical intermediate representations
learned jointly by two encoders, namely, the conventional CNN
for local information and the recent ViT for global information.
We abstract this process in (2) and provide a detailed illustration
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Fig. 1. Framework of the proposed method. The network is designed as a recurrent neural network for parameter efficiency. The multimodal blocks, including
a transformer block and a CNN block, are interactive with each other by the proposed inter-modality knowledge association. Further complemented by the
intermodality knowledge association, the learned representation is informative for reconstructing a HMS image. ⊕ is the broadcasted concatenation operator.

in Section III-B.

Fhigh = Hbody(Flow) + Flow (2)

where Hbody is the function of the body module and Fhigh is
the extracted high-level feature, which encodes semantic infor-
mation of the input image pair. Subsequently, a tail module is
designed to reconstruct the missed high-frequency component
to the MS image and produce a super-resolved MS image as
follows:

M̂ = Htail(Fhigh)

Ms = M ↑ +M̂ (3)

where Ms is the super-resolved image that has both merits of
rich spectral information and high-spatial resolution.

B. Multimodality Joint Learning

We designed the body part as a joint modality module to
incorporate both CNN layers and transformer blocks module,
to benefit from the dedicated local receptive field of CNN,
and the nonlocal property of the transformer. The feature rep-
resentations extracted by both blocks are mutually fused for
exploring the local-global synergy. To build a deeper network
that is capable of extracting hierarchical intermediate activation
while maintaining the network parameter-efficient, inspired by
the recent progress on RNNs, we designed the foldable joint-
modality module by sharing the parameters in different steps.
Assuming there are S steps in total, our design enables the
number of learnable parameters to be one-quarter compared
with that of conventional design. The proposed method leverages
complementary information from multiple modalities in the pan-
sharpening process by efficiently utilizing the complementary
information from different networks, including transformer and
CNN blocks. The proposed model extracts global and local
information through the interaction of CNN and Transformer
modules and performs multistep transmission to extract features
of different depths. This allows JMAN to effectively fuse local

and global features, enhancing the spectral fidelity and spatial
resolution of the fused images.

Global perception by Transformer: Considering that the usage
of the recursive pattern of input images makes the feature extrac-
tion more efficient, we employ transformer blocks for nonlocal
information exploring to model the contextual correlations. As
illustrated in Fig. 1, the transformer block is composed of
cascaded layers, including a multihead self-attention (MHSA)
layer, two feed-forward networks (FFN), and a grouped mul-
tihead cross-attention (GMCA) layer. The MHSA layer is de-
signed to model nonlocal correlations from the tokenized input
Ft

Tok. The GMCA layer consists of two paralleled multihead
cross-attention (MHCA) blocks, which is designed to explore
the intramodality knowledge by mutual-referenced attentive
learning. The FFNs following both attention layers are used
for feature refinement and dimension alignment. Finally, the
output of the transformer block is decoded as the CNN feature
to perform intermodality knowledge interaction. Given the input
feature Fs

T at step s, the process of Transformer block can be
mathematically formulated as follows:

Fs
tok = Htok(F

s
T)

Fs
out = Htsfm(F

s
Tok), Fs+1

T = Hdec(F
s
out) (4)

where Htok(·) and Hdec(·) are the tokenizer and the reversed
decoder,Fs+1

T is the decoded representation yielded by the trans-
former block, which has the same dimension as the CNN feature.
Hs

tsfm(·) is the operator of the transformer block, including the
attention layers and the FFNs.

Local concentration by CNN: In contrast to the nonlocal
awarded transformers, CNN layers concentrate on specific re-
gions using 2-D kernels. To explore the complementary knowl-
edge offered by local attentive learning, we design the CNN-
based cascaded residual channel attention blocks, which is
shown in Fig. 1. Similar to the Transformer branch, the CNN
branch is unfolded into S steps, and the feature activation is
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Fig. 2. Illustration of intramodality knowledge association. It is achieved by
mutually referring to the other counterpart as the query (Q), key (K), and value
(V) in MHCA.

progressively refined as follows:

Fs+1
C = HCNN(F

s
C) (5)

where HCNN(·) denotes the function of the CNN block, Fs
C and

Fs+1
C are the feature maps extracted by the CNN block at s step

and (s+ 1) step.
The combination of transformer and CNN architectures is

used to leverage the strengths of both. Transformers are good at
capturing long-range dependencies in data, whereas CNNs excel
at extracting local features. This dual approach can enhance the
model’s understanding of complex patterns and improve overall
performance.

C. Intramodality Knowledge Association

We introduce the intramodality knowledge association mech-
anism to explore the feature interaction within the same modal-
ity. For the transformer block at each step, as illustrated in
Fig. 2, the nonlocal feature extracted by the MHSA block is
sliced evenly into two separate parts and, respectively, fed into
a GMCS module, which consists of two parallel MHCS blocks.
The intramodality interaction is achieved by mutually referring
the input to another. Assuming a feature map Fs

TF from the first
FFN, we omit the step-index s for notion simplicity, it is sliced
into two parts across the channel dimension and mapped into
query (Q), key (K), and value (V) spaces by the corresponding
projector as follows:{

F1
TF,F

2
TF

}
= Hsplit(FTF){

q1, k1, v1
}

=
{
Hq1(F

1
TF), Hk1(F

1
TF), Hv1(F

1
TF)

}
{
q2, k2, v2

}
=

{
Hq2(F

2
TF), Hk2(F

2
TF), Hv2(F

2
TF)

}
(6)

where Hq, Hk, and Hv are the projectors. Recall the cross-
attention operation is formulated as follows:

Cross-Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V. (7)

We perform the intradomain knowledge association by mutually
referring each to the other as follows:

F1←2
TF = Cross-Attention(q1, k2, v2) + F1

TF

F2←1
TF = Cross-Attention(q2, k1, v1) + F2

TF (8)

where F1←2
TF and F2←1

TF are the associated intermediate represen-
tations, where are then concatenated and followed by an FFN to
produce the transformer output Fs

out as follows:

Fs
out = HFFN

(
Hcat

(
F1←2

TF ,F2←1
TF

))
(9)

where HFFN(·) and Hcat(·) refer to the operation of FFN and the
concatenation.

Fig. 3. Illustration of intermodality knowledge association. The features ex-
tracted by the network in different modalities are cross-referenced by each other
for feature augmentation.

D. Intermodality Knowledge Association

In contrast to intermodal knowledge association, we explore
the global information provided by the transformer block, and
the local information provided by the CNN block through ad-
ditively aggregating them to augment the discrimination ability
of the representation of learned features. The diagram of the
intermodality knowledge association module is shown in Fig. 3.

Specifically, given the output {Fs
T,F

s
C}, respectively, from

the transformer block and the CNN block before step s, we
explore the synergy through an adaptive fusion block, which
takes the concatenated representations as the input, and perform
local-global association to produce the output. The process is
denoted as follows:

Fs = Hcat(F
s
T,F

s
C), Fs

fuse = Hfuse(F
s) + Fs (10)

where Fs
fuse is the fused representation, and Hfuse(·) is the fusion

block composed of a 3-layer CNN. In order to utilize the com-
plementary information in Fs

fuse, we inject the cross-modality
knowledge into the corresponding block to enhance unimodality
representation as follows:

{Fs
C←T,F

s
T←C} = Hsplit (F

s
fuse)

Fs
C = HC_ref (F

s
C←T) + Fs

C

Fs
T = HT_ref (F

s
T←C) + Fs

T (11)

where HC_ref and HT_ref(·) are 1-layer CNN for feature refine-
ment. Then, the output Fs

T and Fs
C will be used as the input for

the next step.

E. Model Training

We take FS
fuse, which is the output of the last step, as the

high-level featureFhigh to produce the super-resolved MS image
by (3). Since all the designed modules are differentiable, the pro-
posed JMAN model can be trained end-to-end by conventional
gradient update. We use the mean squared error (mse) loss to
supervise the training, and set the high-resolution HMS as the
ground truth. The loss function is formulated as follows:

L =

N∑
i=1

|Ms −MGT|2 (12)

where N is the number of training samples, and MGT is the
HMS image. ||2 denotesL2 norm (Euclidean norm) of the vector
difference.
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IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we first introduce the benchmark details and
evaluation metrics. Qualitative and quantitative experiments are
then conducted to elucidate the superiority of the proposed
method. Finally, we conduct ablation experiments to validate
the necessity of certain structural designs.

A. Benchmark Details

To validate the performance of different methods in pan-
sharpening, this experiment is conducted using three bench-
mark datasets, i.e., WorldView 3 (WV3), Gaofen 2 (GF2), and
QuickBird (QB). The WV3 dataset is a high-resolution and
multispectral remote sensing data with eight bands. The QB
dataset is a reliable high-resolution remote sensing data with
four bands. The GF2 dataset also has four bands but with a
larger spatial sampling interval compared to QB. The benchmark
information for this experiment is based on the performance of
PAN sharpening on the datasets. Therefore, 20 simulated data
and 20 real data are selected from each dataset, containing rep-
resentative objects, for comparison. The best method is selected
based on various quantification metrics.

B. Evaluation Metrics

To measure the pansharpening images, the current design
employed different quantitative metrics to assess simulation
data and real data. For the simulated data, this study utilizes
a reduced-resolution approach to validate its synthesis perfor-
mance. In this scenario, the quality of fused images can be
evaluated using four commonly used pansharpening metrics,
named spectral angle mapper (SAM), relative dimensionless
global error in synthesis (ERGAS), universal image quality
index (Q2n), and spatial correlation coefficient (SCC). Q2n as a
metric used for evaluating the quality of fused 2n-band images.
It is employed to measure the quality of the fused images.
Higher values indicate better visual consistency with the ground
truth. SAM is used to assess the spectral similarity of the fused
images to the ground truth. Lower values are better. ERGAS
evaluates the spectral distortion and spatial distortion of fused
images. Lower values indicate less error. SCC reflects the spatial
consistency of the fused images. Higher values denote better
correlation with the reference.

C. Comparison With State-of-the-Art Methods

In this section, we conducted qualitative and quantita-
tive experiments on three publicly available datasets, i.e.,
GaoFen2 (GF2), QuickBird (QB), and WorldView III (WV3)
datasets, and compared the proposed method with eight state-
of-the-art methods, e.g., BT-H [45], BDSD-PC [46], MTF-
GLP-HPM-R [47], C-GSA [48], MSDCNN [49], BDPN [22],
DiCNN [50], MTF-GLP-FS [51], SFITNet [52], and LAG-
Conv [53]. The hyperparameter s for the time step was set to
2 for this test.

1) Qualitative Evaluation: To qualitatively assess the per-
formance of various methods in remote sensing image fusion
tasks, we compared the fusion results of the JMAN method

TABLE I
COMPARE WITH SOTA METHODS ON WV3 DATASET

with eight other methods on three publicly available datasets
and visualized them in Figs. 4–6. Although all experimental
methods yielded satisfactory fusion results on the GaoFen-2
dataset, our method retained better spatial and spectral effects
compared to other methods, as depicted in the red box in Fig. 4.
For comparison, Fig. 6 displays the pansharpening results on the
WV3 dataset. It can be observed that the results generated by
BT-H, BDSD, MSDCNN, and MTF-GLP-FS exhibit significant
blurriness and fail to effectively enhance the spatial resolution
of MS images. While C-GSA, BDPN, MTF-GLP-HPM-R, and
DICNN produced clear and sharp images but introduced severe
spectral distortions. In contrast, the proposed method effectively
balanced spectral and spatial information. Qualitative results
on the QB dataset are shown in Fig. 5. The majority of the
QB dataset comprises densely populated urban areas, which
consequently render sharpened images susceptible to spectral
distortions. BT-H, BDSD, MTF-GLP-HPM-R, C-GSA, and
MTF-GLP-FS all exhibit pronounced spectral distortions over
extensive regions, whereas our method demonstrated the ability
to consistently match the spectral characteristics of the ground
truth.

2) Quantitative Evaluation: For quantitative evaluation, four
metrics, i.e., the Q2n, SAM, ERGAS, and the SCC were em-
ployed to evaluate the fusion performance of the proposed
method and competitors. Table I reveals the quantitative results
of the proposed method and eight comparison methods on the
WV3 dataset. It proves that our method performs best in Q8 and
SCC. This demonstrates that our method can effectively enhance
the spectral similarity and spatial consistency of fused images.
Overall, our method demonstrates excellent performance on
the WV3 dataset and can generate high-quality fused images.
Table II shows that the proposed method ranks first in Q8, SAM,
ERGAS, and SCC on the GF2 dataset. The results exhibiting
the highest Q4 and lowest ERGAS signify a higher visual
consistency with the ground truth. This demonstrates that our
method can effectively enhance the spectral similarity, spatial
consistency, and spatial resolution of fused images while also
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Fig. 4. Pansharpening results obtained by different models on GF2 dataset.

TABLE II
COMPARE WITH SOTA METHODS ON GF2 DATASET

effectively reducing the spectral distortion and spatial distortion
of fused images.

Table III illustrates that the proposed method performs best
in the SAM, ERGAS, and SCC on the QB dataset. This demon-
strates that the proposed method can effectively reduce the
spectral distortion and spatial distortion of fused images while si-
multaneously enhancing the spatial consistency of fused images.

TABLE III
COMPARE WITH SOTA METHODS ON QB DATASET

Although our method did not reach the highest value in the Q4
metric, it still exhibits a significant advantage compared to other
methods. This indicates that the proposed method can effectively
enhance the spectral similarity of fused images. In conclusion,
the proposed method demonstrates excellent performance on the
QB dataset.
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Fig. 5. Pansharpening results obtained by different models on QB dataset.

TABLE IV
QUANTITATIVE ABLATION RESULTS OF INTRAMODALITY KNOWLEDGE

ASSOCIATION AND INTERMODALITY KNOWLEDGE ASSOCIATION ON THE QB
DATASET

V. ABLATION STUDY

To investigate the contributions and necessity of different
components in our proposed method, we conducted a series of
ablation experiments. We examined the impact of intramodality
knowledge association, intermodality knowledge association,
and multistep recursive training on model performance, respec-
tively.

A. Multimodality Knowledge Association Ablation Experiment

We designed four different configurations to evaluate the
roles of intermodality knowledge association and intramodality
knowledge association. Table IV presents the quantitative re-
sults on the QB dataset. From the table, it can be seen that when
both intermodality knowledge association and intramodality

TABLE V
QUANTITATIVE ABLATION RESULTS OF MULTISTEP ON THE QB DATASET

knowledge association are used simultaneously, our approach
achieves the best results in four metrics, i.e., Q4, SAM, ERGAS,
and SCC. This indicates that both of these knowledge association
mechanisms are effective and beneficial. Furthermore, we found
that intermodality knowledge association has a significant im-
pact on improving the Q4 and SCC metrics, whereas intramodal-
ity knowledge association has a significant impact on reducing
the SAM and ERGAS metrics, which suggests that the internal
modality knowledge association can enhance the complementar-
ity and distinctiveness of features between different modalities,
while the cross-modality knowledge association can enhance
feature fusion and coordination among different modalities.

B. Multistep Ablation Experiment

We ablated different numbers of steps to evaluate the impact
of multistep recursive training on model performance. Table V
shows the quantitative results on the QB dataset. It can be seen
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Fig. 6. Pansharpening results obtained by different models on WV3 dataset.

that when the number of steps is set to 2, our method achieves
relatively ideal results in four metrics, indicating that a two-step
recursive training is sufficient to extract and fuse effective feature
information. When the number of steps increases to 3 and 4, there
is a significant increase in the computational resources required
for training. Therefore, considering both model performance and
computational resource requirements, we choose a step number
of 2 as the optimal configuration. Therefore, our method requires
only a half of the parameters compared with the traditional CNN
counterpart.

VI. CONCLUSION

In this work, we introduced a parameter-efficient pansharp-
ening model inspired by recent advances in recurrent neural
networks. We effectively leverage complementary information
from different modalities to create a distinctive and informative
representation. Specifically, we employed the transformer block
to explore the nonlocal global knowledge, and the CNN block
for local information. By associating the two complementary
knowledge, our method outperformed existing benchmarks, and
produced faithful pansharpening multispectral images with en-
hanced spectral and spatial resolution. Hence, this work ad-
dressed a critical challenge in remote sensing systems and
offered a practical solution for LMS data.

However, the effectiveness of the proposed method largely
depends on high-quality, labeled training data. In the field of
remote sensing, acquiring such data is both expensive and time-
consuming. This limits the training and generalizability of the
model, especially in situations where data is scarce. Moreover,
the model may be sensitive to noisy inputs, necessitating com-
plex preprocessing steps to reduce errors and increase accuracy.
Therefore, future research will primarily explore how to utilize
semisupervised learning, transfer learning, or GANs to reduce
the need for large amounts of labeled data or to develop more ef-
fective data augmentation techniques to improve the robustness
and adaptability of the model.
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