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Abstract—Accurate and timely monitoring of functional urban
impervious surfaces (FUISs), such as ports, roads, and buildings,
is essential yet challenging for complex coastal cities due to their
cloudy weather and diverse land surfaces. Synthetic aperture radar
(SAR) provides unique all-weather observation capabilities for
prompt and regular urban mapping. However, SAR scattering in-
formation is limited to distinguish impervious surfaces with similar
scattering responses but different functions. This study develops a
scattering–compactness fusion network (SCFN), which integrates
SAR polarimetric scattering and object compactness character-
istics for enhanced FUIS recognition. Central to our approach
is the scattering object compactness index, which is specifically
designed to capture the distinct spatial patterns and compactness
of scattering objects and complement their intrinsic scattering
signatures. The dual-branch SCFN concurrently extracts and fuses
object-scale scattering and compactness features using tailored
network architectures. Experiments on L-band and C-band fully
polarimetric ALOS-2 and GF-3 data in Hong Kong, as well as
L-band dual-polarized ALOS-2 data, are undertaken to verify
SCFN’s effectiveness, achieving up to 8% improvement in the over-
all FUIS classification accuracy over baselines. The transferability
of SCFN is further validated using fully polarimetric ALOS-2
data in Shenzhen, where consistent performance improvements are
observed. The successful application of SCFN in both coastal cities
highlights the potential of joint scattering–compactness modeling
for advanced SAR-based urban mapping and its robustness across
different urban landscapes.

Index Terms—Impervious surface, scattering, scattering–
compactness fusion network (SCFN), synthetic aperture radar
(SAR), urban function.
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I. INTRODUCTION

C ITIES are major hubs of human activity and play a crucial
role in studying global social, economic, and environmen-

tal trends. With over half of the world’s population concentrated
in urban areas, understanding cities is key to tackling issues, such
as poverty, sustainability, and quality of life. Coastal cities, par-
ticularly those with high density and urbanization levels, require
close study as they connect inland areas to maritime trade and
have undergone explosive growth in recent decades [1]. Rapid
development of transportation, tourism, port facilities, and hous-
ing in coastal cities also impacts fragile coastal ecosystems [2].

Monitoring the distribution of functional urban impervious
surfaces (FUISs), such as roads, buildings, and ports, is vital for
coastal city research. FUIS differentiates between impervious
surfaces that support various urban functions, such as roads,
buildings, and port operations, thereby providing more detailed
information on impervious surfaces in urban environments.
FUIS mapping allows us to quantify urban expansion, analyze
economic development patterns, and identify threats to natural
habitats [3]. Detailed FUIS data facilitate urban planning and
growth management to balance economic prosperity with res-
idents’ well-being and environmental protection. FUIS extent
also indicates the potential for flooding, urban heat islands,
and other hazards amplified by impervious surfaces. There-
fore, accurate and up-to-date FUIS mapping in dynamic coastal
settings is essential. Although optical data enable reliable UIS
identification in cloud-free scenarios, the performance degrades
under cloud cover due to obstruction of surface information.
Studies have shown that optical images struggle with accurate
urban classification in cloudy regions [4]. In contrast, synthetic
aperture radar (SAR) imagery provides all-weather, day-and-
night imaging capabilities unaffected by cloud cover.

Polarimetric SAR (PolSAR) satellites operating at different
wavelengths exhibit distinct scattering characteristics when in-
teracting with the Earth’s surface. L-band SAR, with its longer
wavelength, demonstrates superior penetration capabilities com-
pared with shorter wavelengths, such as C-band and X-band [5],
[6], which allows L-band SAR to effectively capture informa-
tion from beneath vegetation canopies and penetrate through
building structures, while C-band and X-band SAR are more
sensitive to surface roughness and primarily capture scattering
information from the top of the canopy. Polarization also plays
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a crucial role in SAR data interpretation. Different polarization
configurations, such as dual polarization and fully polarimetric
data, provide varying levels of information about the scattering
properties of the Earth’s surface [7].

PolSAR has shown promise for various applications [8], [9].
Polarimetric scattering features describe the scattering mecha-
nisms of the target. To analyze and interpret PolSAR imagery,
incoherent target decomposition methods are commonly em-
ployed to derive these scattering characteristics [10]. These
methods are categorized into eigenvalue-based decompositions
[11], [12] and model-based decomposition [13], [14]. The
eigenvalue-based decomposition techniques utilize the eigen-
values and eigenvectors of either the coherency or covariance
matrix to elucidate the scattering mechanisms. Among these,
the Cloude decomposition method is particularly notable [11],
which utilizes four independent polarization parameters that
define the polarization space, along with scattering entropy and
anisotropy, to interpret PolSAR images. On the other hand,
the Freeman–Durden three-component decomposition is a well-
known model-based approach [13], which investigates scatter-
ing characteristics using scattering models with clear physical
meaning. Another powerful tool for interpreting PolSAR images
is polarimetric signatures [15]. By varying the polarization basis,
these methods extract detailed scattering characteristics and
visualize them in a 3-D plane [16]. This approach provides a
comprehensive understanding of the geometrical and physical
properties of targets [17]. Numerous studies have focused on
land surface mapping using various PolSAR features, includ-
ing Freeman, Yamaguchi, Cloude–Pottier, and H/A/alpha de-
compositions [18], [19]. Different classification methods were
employed to conduct the land surface classification, such as the
maximum likelihood-based methods, support vector machines,
and random forests [20], [21].

Despite recent advances in PolSAR technology, compared
with the rich spectral information from optical imagery, SAR
scattering mechanics are more complex and the scattering sig-
natures of different land cover types are not yet fully under-
stood [22], [23]. While impervious surface classification using
PolSAR has been extensively studied at the pixel level using
features, such as scattering matrix parameters and polarimetric
features [23], [24], [25], research at the object level has gained
some attention by exploiting PolSARs advantages in speckle
suppression and information preservation. Wang et al. [26]
utilized object-based image classification of multitemporal SAR
images to map permafrost landscape features. Habibi et al. [27]
performed a classification of PolSAR data based on object-based
multiple classifiers for urban land cover. Liu et al. [28] integrated
convolutional neural networks and object-based postclassifica-
tion refinement for land use and land cover mapping. Unlike
pixel-based methods, which classify each pixel individually,
object-oriented approaches first segment the image into ob-
jects representing meaningful real-world features. This helps
reduce local speckle noise while preserving shape information.
Object-level features can then be extracted to better charac-
terize different land cover classes. However, object-oriented
approaches segment objects without clarifying what scattering

characteristics distinguish the FUIS objects in PolSAR, unlike
in optical imagery where different surface objects often have
distinct spectral signatures [29]. This is attributed to the rich
spectral data from optical sensors that enable the differentiation
of various land covers based on their distinct spectral response
patterns. But in PolSAR, the scattering mechanisms of different
surfaces are complex and variable, as SAR scattering is sensitive
to surface properties, such as geometry, roughness, and dielectric
constant [30]. Further investigation on the scattering mecha-
nisms of different surfaces and the scattering characteristics that
determine the division of objects is required.

Moreover, detailed FUIS mapping poses greater recognition
challenges but has received little focus [31]. This is challeng-
ing since SAR provides limited scattering information while
different FUIS types can have similar backscatter signatures.
Therefore, apart from the scattering characteristics of the land
surfaces, other potential information that might help distinguish
the FUIS types from nonimpervious surfaces (NISs) warrants
further study. Spatial features are widely used in optical imagery
for classification improvement [32], [33], but their efficacy in
SARs distinct imaging modality is unclear due to its distinct
imaging mechanics compared with optical modalities. How to
measure the spatial characteristics of objects in scattering images
and whether object spatial information contains discriminative
information in distinguishing between FUIS and NISs in SAR
imagery requires further study.

This study focuses on the identification of FUIS in
high-density coastal urban environments using SAR data under
different scenarios. These cities often experience complex land
surface changes due to factors, such as fast-paced urbanization,
intricate urban planning, and diverse land use patterns. The
high concentration of population and infrastructure in these
areas necessitates detailed and accurate FUIS information for
effective urban management and planning. Moreover, the coastal
location of these cities, often characterized by humid climates
and frequent cloud cover, emphasizes the need for alternative
data sources, such as SAR, that can penetrate through clouds and
provide reliable data for monitoring urban impervious surfaces.
The complexity of urban microwave scattering mechanisms
and the scattering differences among SAR data with different
wavelengths and polarizations add to the challenges of FUIS
identification. This study also aims to investigate the scattering
characteristics of urban impervious surfaces under different
SAR configurations and develop robust and adaptable methods
for accurate FUIS mapping applicable to various SAR datasets.
Considering the aforementioned issues of limited SAR scatter-
ing information and unclear mechanisms of scattering spatial
information for FUIS objects, this study makes the following
three contributions through in-depth PolSAR scattering
analysis: First, we propose a scattering object compactness
index (SOCI) that characterizes the compactness properties of
different FUIS and NIS objects on scattering feature images. The
SOCI provides supplementary information to SAR backscatter
for distinguishing between FUIS and NIS objects. Second, we
develop a scattering–compactness fusion network (SCFN) to
integrate scattering and compactness clues for FUIS recognition.
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The SCFN is innovatively designed to fit the UIS scattering
object patch and support deep convolution and fusion for com-
pactness and scattering features. Third, different from existing
pixel-based networks, the SCFN operates on FUIS-level object
patches as input and is designed to effectively extract object
spatial contextual details for FUIS characterization. To validate
the effectiveness and robustness of the proposed methods, we
conducted extensive experiments using L-band and C-band
fully polarimetric ALOS-2 and GF-3 data, and dual-polarization
SAR data in two representative coastal cities, Hong Kong (HK)
and Shenzhen. The diverse datasets and urban environments
allowed us to comprehensively assess the performance and
transferability of the SCFN approach. This research provides
new insights into SAR-based urban mapping by developing an
interpretable SOCI and an advanced object-oriented deep model.
The integration of scattering and compactness information in a
tailored network structure overcomes the limitations of previous
approaches and contributes to expanding the capabilities of
SAR systems for all-weather FUIS mapping. The frameworks
established could be extended to other PolSAR urban
applications.

II. STUDY AREA AND DATASET

This study focuses on two major coastal cities in southern
China: HK and Shenzhen. Both cities are situated in the Pearl
River Delta region and are known for their rapid urbanization,
high population density, and significant roles in international
trade and finance.

HK is one of the world’s most densely populated cities with
over 7 million residents crammed into just 1100 km2 of land
area. As a major Asian financial center and global transportation
hub, HK plays a pivotal role in international trade and finance.
The Kwai Chung Port of HK is strategically located on the
far east trade routes and is the geographical center of the now
fast-developing Aisa–Pacific Basin. Its uninterrupted operation,
especially during global crises, such as the COVID-19 pan-
demic, is, thus, of great socioeconomic importance. Shenzhen
is another thriving metropolis in the Pearl River Delta. It has
experienced phenomenal growth since its designation as China’s
first special economic zone in 1980, transforming from a small
fishing village to a global technology and innovation hub. With
a population of over 17 million and a land area of 1997 km2,
Shenzhen is also one of the most densely populated cities in
China. Shenzhen’s rapid urbanization has led to the expansion
of impervious surfaces, including dense residential buildings
and extensive road networks.

Both HK and Shenzhen’s extensive functional impervious
surfaces, such as ports, buildings, roads, and railways, are cen-
tral to its position as a thriving international metropolis and
regional economic hub. Timely monitoring and management of
critical FUIS infrastructure is, thus, essential for maintaining
operational flows and managing the urbanization process in
these cities. However, frequent heavy rain and persistent cloud
cover pose a major obstacle, often obstructing optical satellite
monitoring during critical periods as satellite optical sensors are
unable to penetrate thick clouds.

In contrast, SAR provides all-weather day-and-night imaging
capabilities unaffected by clouds or rain. SAR has shown high
potential for frequent monitoring of HKs FUIS, including ports,
buildings, roads, and railways, overcoming limitations of optical
data [22]. SARs unique sensitivity to surface properties, such as
structure, material, and moisture, further aids the classification
and mapping of different impervious surface types. Therefore,
HK and Shenzhen’s cloudy climate, the economic importance,
and SARs all-weather imaging advantages make them ideal
study sites for investigating SAR-based FUIS mapping, which
can provide timely and reliable information for urban manage-
ment. The methods developed in this challenging environment
could also be applied to other coastal cities with similar climate
conditions and FUIS mapping needs. An illustrative map of the
geographic location and the optical and SAR images of the study
areas are shown in Fig. 1.

Three sets of fully PolSAR data were utilized in this research:
two L-band ALOS-2 PALSAR-2 fully polarimetric scenes with
a 5-m resolution, covering HK and Shenzhen, respectively, and
one C-band Gaofen-3 (GF-3) fully polarimetric scene with an
8-m resolution, covering HK. Both ALOS-2 and GF-3 were
obtained in quad-polarization mode, which transmits and re-
ceives signals in two orthogonal polarizations—vertical (V) and
horizontal (H)—measuring the complete scattering matrix with
all four combinations (HH, HV, VH, and VV). In addition to the
fully polarimetric data, the feasibility of using dual-polarization
data for FUIS classification was explored. For this purpose,
we extracted the dual-polarization (HH and HV) data from
the ALOS-2 data of HK. The dual-polarization data offer a
reduced set of polarimetric information compared with the fully
polarimetric data. The inclusion of both HK and Shenzhen study
areas, as well as the utilization of data from different SAR
sensors (ALOS-2 and GF-3) and polarization settings (fully
polarimetric and dual polarization), enables a robust evaluation
of the transferability and adaptability of the proposed method
under diverse data conditions and urban landscapes. The SAR
datasets underwent preprocessing, including radiometric cali-
bration, speckle noise filter, and polarimetric decomposition.
The processed data were then geocoded into WGS84 UTM 49N
projection using a digital elevation model for terrain correction.
In addition, WorldView-2 multispectral optical images with
1.6-m resolution were used as reference for visual interpretation
and manual annotation of the SAR data. Unlike optical data,
SAR imagery has distinct imaging mechanics and scattering
characteristics that make visual analysis challenging. The fine
details discernible in the high-resolution optical image aided the
accurate ground truth labeling of different functional impervious
surfaces for algorithm training and evaluation.

III. METHODOLOGY

Based on the scattering characteristics of the land surfaces,
this study first proposes a UIS SOCI, which measures the
specific shape compactness of artificial and natural land covers
in PolSAR scattering. We then develop an SCFN to integrate
the scattering and object compactness information for FUIS
recognition.
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Fig. 1. (a) Geographic location, (b) optical image, and (c) ALOS-2 image of Shenzhen, and (d) optical image, (e) ALOS-2 image, and (f) GF-3 image of HK.

A. PolSAR Scattering

PolSAR data contain abundant scattering information through
the polarimetric scattering matrix [S], which characterizes the
complex electromagnetic interactions

[S] =

[
SHH SHV

SV H SV V

]
(1)

where SXY denotes the scattering coefficient for X-polarization
transmission and Y-polarization reception. Based on the recip-
rocal assumption between cross polarizations, the coherence
matrix T containing full polarimetric information can be derived
(2) shown at the bottom of this page, where T ij is the (i,j)th
element. Diagonals T11, T22, and T 33 represent the surface,
double-bounce, and volume scattering, respectively.

Multiple PolSAR features were extracted, including T11, T22,
T33, and backscatter coefficients (HH, HV, VH, and VV) to
fully characterize scattering properties. Polarimetric decom-
position methods, including Freeman–Durden decomposition
[13], Cloude–Pottier decomposition [11], H/A/α decomposition
[34], and Yamaguchi four-component decomposition [14], were

applied to further analyze scattering mechanisms of different
land covers. These techniques have proven effective in previous
PolSAR classification studies [24].

Fig. 2 shows false color composites of the derived PolSAR
features from the ALOS-2 data in HK. In Fig. 2(b) and (c),
Freeman and Yamaguchi features representing double-bounce,
volume, and surface scattering are mapped to R, G, and B chan-
nels, respectively. Urban structures, such as buildings, appear red
due to double bounce, while vegetation is green from volume
scattering. Smooth surfaces, such as water, are blue because of
surface scattering. Entropy, anisotropy, and alpha (R, G, and B
channels, respectively) in the Cloude and H/A/α decomposition
[see Fig. 2(a) and (d)] provide complementary scattering infor-
mation. Entropy represents scattering randomness. Anisotropy
describes the relative importance of the secondary scattering
mechanisms. The alpha angle relates to the type of scattering
mechanism. Surfaces, such as vegetation, have high entropy and
appear red. Alpha indicates the dominant scattering type—high
alpha corresponds to double-bounce scattering from dihedral
structures, such as buildings, which appear blue. Backscattering
coefficients in Fig. 2(e) show the intensities of HV, VV, and HH,

T =

⎡
⎣T11 T12 T13

T21 T22 T23

T31 T32 T33

⎤
⎦ =

1

2

⎡
⎢⎢⎢⎣

〈
|SHH + SVV|2

〉
〈(SHH + SVV) (SHH − SVV)

∗〉 〈2 (SHH + SVV)S
∗
HV〉

〈(SHH − SVV) (SHH + SVV)
∗〉

〈
|SHH − SVV|2

〉
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∗
HV〉

〈2SHV(SHH + SVV)
∗〉 〈2SHV(SHH − SVV)

∗〉
〈
4|SHV|2

〉

⎤
⎥⎥⎥⎦ (2)
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Fig. 2. PolSAR scattering features. (a) Cloude decomposition feature. (b) Freeman decomposition feature. (c) Yamaguchi decomposition feature. (d) H-A-Alpha
decomposition feature. (e) Backscattering coefficient feature. (f) Coherence matrix feature from the ALOS-2 data in HK.

displayed in RGB channels, respectively. Smooth surfaces show-
ing surface scattering with weak backscatter, such as calm water
and smooth roads, appear dark. Rough surfaces, such as trees,
have weaker HH and VV but stronger cross-polarizations HV
and VH, thus appearing reddish. The scattering matrix diagonal
in Fig. 2(f), (R, G, B: T33, T11, T22), related to volume scattering,
surface scattering, and double-bounce scattering, respectively,
provides similar complementary information.

In general, different features provide consistent but comple-
mentary scattering clues. Land covers, such as vegetation, water,
and built-up areas, can be roughly identified. For detailed classi-
fication, combining multiple features helps distinguish different
functional impervious surfaces based on their unique scattering
signatures [10]. However, confusion exists between complex
urban classes, motivating more advanced techniques to fully
exploit PolSARs rich scattering information.

In general, there is an agreement between the different scat-
tering features, but each provides complementary information.
Different functional impervious surfaces demonstrate distinct
scattering characteristics in the PolSAR imagery. Port areas ap-
pear bright across all feature images, owing to strong backscatter
from their metallic structures and dielectric properties. Roads
exhibit darker tones due to predominant surface scattering from
their relatively smoother surfaces. Residential buildings with
complex roof shapes produce more volume scattering, while
nonresidential buildings favor double-bounce scattering. There-
fore, the combination of multiple complementary PolSAR fea-
tures aids the differentiation of detailed FUIS classes based on
their scattering signatures. However, the mixing of scattering

types is commonly observed in complex urban environments.
Although PolSAR data enable coarse discrimination between
impervious and NISs, uncertainties remain in finer level FUIS
classification. Advanced techniques are required to fully exploit
the rich scattering information for improved FUIS recognition.

B. Scattering Object Compactness Index

PolSAR features exhibit distinct scattering characteristics for
certain functional impervious surfaces, aiding in their separation
from other land covers. Buildings and other man-made
structures favor double-bounce scattering. However, ports
appear brighter due to the strong reflections from abundant
metallic elements [22]. In contrast, the relatively smoother
surfaces of roads primarily cause surface scattering, leading to
weaker backscatter and showing darker tones [35]. Vegetation
is dominated by volume scattering from its nonuniform canopy
structures. Water bodies act as specular reflectors resulting in
very low backscatter. Moreover, due to the high conductivity of
water, radar signals can penetrate deep into the water body and
be strongly attenuated and absorbed [36]. Therefore, the echo
intensity of the water body might be weak. Soil demonstrates
medium intensity surface or volume scattering depending on
roughness and moisture content [37].

The distinct scattering signatures of different land cover types
result in clear delineations between FUIS and NIS, such as
vegetation and water in the SAR imagery. For instance, the
strong double bounce and metallic reflections from man-made
structures, such as buildings and ports, cause them to exhibit
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Fig. 3. Proposed SCFN architecture.

high radar double-bounce backscatter contrasts with surround-
ing low-scattering vegetation and water. Therefore, the dif-
ferent electromagnetic scattering behaviors of various urban
land covers enable their scattering boundaries and, thus, can
be segmented into distinct image objects. Moreover, owing to
their artificial regular materials, FUIS objects usually show dis-
tinct scattering–compactness with more narrow and rectangular-
related shapes. Different FUIS types also display unique com-
pactness characteristics. For instance, long narrow roads can
be distinguished from the regular rectangular shapes of ports
and buildings. In contrast, homogeneous natural covers, such as
water, might show more round shapes rather than narrow shapes.

Scattering information of individual samples is usually used
to identify the land cover in PolSAR classification, where the
spatial relationships and contextual connections of land covers
are often ignored. Based on the above-mentioned analysis, this
work introduces the spatial compactness of scattering to aid
FUIS classification using scattering signatures. The image is
first segmented into objects delineated by the combined Pol-
SAR scattering contrasts between land covers by multiresolu-
tion segmentation [38]. Then, combining the scattering spatial
compactness information, we propose an SOCI that measures
the spatial compactness of image objects to complement the
scattering features to better distinguish UIS and NIS samples
with similar scattering behavior. The SOCI is shown as follows:

SOCI =

√
Ao

bo
(3)

where SOCI is the scattering object compactness index, Ao is
the area of the scattering object, and bo is the border length
of the scattering object. An object with a more narrow and
not compact shape (UIS) will have a lower compactness index
value, while a compact object (circle or almost circle) (NIS)
will have a higher SOCI value. The SOCI provides a new object
compactness perspective to identify detailed UIS types from
their scattering signatures.

C. Scattering–Compactness Fusion Network

To integrate the complementary scattering and object com-
pactness characteristics for optimal FUIS identification, we
develop an SCFN, as illustrated in Fig. 3.

EfficientNet is selected as the SCFN backbone for its state-
of-the-art accuracy and efficiency over other CNN architectures
[39]. Several innovative modifications are incorporated into
SCFN tailored for FUIS classification based on the unique
PolSAR scattering and compactness features.

First, to fit the spatial scale of urban land cover objects and
provide essential contextual information, a 7×7 PolSAR patch
centered on each pixel is extracted as input to SCFN. Unlike
general natural image classification tasks, impervious surfaces
in urban environments are typically smaller targets. Using large
input sizes, such as 224×224, poses several challenges. First, it is
difficult to obtain large homogeneous patches for these small tar-
gets. Second, severe overlap between adjacent image patches can
degrade the model’s performance. Previous research in remote
sensing image classification has demonstrated the superiority of
small patch sizes, such as 7×7, for detecting smaller objects
[40], [41], [42], [43], [44], [45]. Considering these findings, a
small 7×7 patch size is adopted in this study, as it provides suffi-
cient neighborhood context while avoiding contamination from
adjacent land cover types. Consequently, the model architecture
is adapted to accommodate the chosen input patch size.

Second, pooling layers are typically utilized to reduce feature
map dimensions for overfitting control in CNNs. However, for
the small object patch input size, pooling leads to insufficient fea-
ture resolution for subsequent convolutional operations, restrict-
ing network depth. Therefore, considering the reduced input
scale conforming to urban object size, convolutional and pooling
layers as well as MBConv blocks are customized with stride 1 to
maintain feature dimensions. This enables constructing a deeper
network capable of extracting multiscale features despite the
small input patches.

Third, given the complementary information provided by
the scattering and compactness characteristics of land surfaces
for differentiating both UIS versus NIS and detailed FUIS
subclasses, the initial scattering layer and derived scattering–
compactness index layer from the land surface patches are
fused and then fed into subsequent deep networks in SCFN for
extracting high-dimensional information and identifying FUIS
categories.

The end-to-end training process enables adaptive learning of
the scattering and compactness feature fusion and classifica-
tion in a unified framework. By leveraging SARs distinctive
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Fig. 4. (a) Whole SOCI features from the ALOS-2 data in HK, zoomed-in
views of the (b1) green and (b2) red boxed regions in (a).

sensitivity to both scattering mechanisms and spatial structures,
SCFN can effectively identify detailed FUIS categories from
complex urban environments. Implemented in PyTorch 1.10.2,
SCFN adopts EfficientNet-B0 as the backbone architecture. Key
training hyperparameters include a batch size of 128, 50 iteration
epochs, and an initial learning rate of 0.0001.

Experimental samples of different land cover types are care-
fully collected with the aid of high-resolution optical imagery
and field surveys. The labeled samples are split into balanced
training and testing sets with a 1:1 ratio. Functional impervious
surface subclasses include port (POR), road (ROA), residen-
tial building (RES), and nonresidential building (NRE) defined
based on urban planning criteria. NIS types comprise vegetation
(VEG), vacant (VAC), and water (WAT).

IV. EXPERIMENTS AND RESULTS

A. Evaluation of Object Compactness Information

The derived SOCI from the ALOS-2 data in HK provides in-
tuitive visualization and quantification of compactness patterns
for different land cover types (see Fig. 4). In the SOCI map,
lower values are displayed in yellow indicating more narrow
and not compact shape, while higher values in blue denote more
compact shape (circle or almost circle).

Fig. 4(a) shows the whole SOCI results. To better visualize the
compactness patterns, Fig. 4(b1) and (b2) provides zoomed-in
views of the green and red boxed regions in Fig. 4(a), respec-
tively. NISs, such as vegetation and water, in the green box
of Fig. 4(b1) exhibit notably higher SOCI values portrayed in
blue, corresponding to their concentrated and rounded scattering
shape. In contrast, UISs, such as roads and buildings, in the
red box of Fig. 4(b2) possess lower SOCI characterized by
yellow colors, owing to their elongated and regular scattering
patterns. The zoomed examples demonstrate how the SOCI com-
plements scattering signatures by quantifying spatial context and
compactness differences between land surface types. This com-
plements the polarization scattering signatures by quantifying
the spatial compactness distinctions between urban land surface
types.

Fig. 5. Separability between different land covers using solely scattering
features and jointly scattering and SOCI features from the ALOS-2 data in
HK.

To validate the ability of SOCI to discriminate challenging
surface classes, we further evaluated the separability between
different land covers using solely scattering features and jointly
using scattering and SOCI features from the ALOS-2 data in HK.
The results are presented in Fig. 5 using the Jeffries–Matusita
distance, a widely applied separability measure [46]. It can be
observed that combining compactness information improves
the separability for all land cover pairs to varying degrees. In
particular, residential (RES) and nonresidential (NRE) buildings
exhibit the lowest separability with scattering features alone, as
both share similar urban constructions. However, fusing spatial
cues significantly enhances their distinction, demonstrating the
value of spatial context and compactness for differentiating these
confused FUIS subclasses. Furthermore, compactness provides
noticeable benefits in separating other impervious pairs, such as
roads (ROA) versus nonresidential (NRE), as well as impervious
versus nonimpervious classes, such as vegetation (VEG) versus
roads. In contrast, ports (POR) are already well separated from
other nonimpervious classes, owing to their distinct metallic
scattering properties; thus, the enhancement from compactness
is more marginal.

In summary, the quantitative separability analysis highlights
that complementing polarimetric scattering with scattering–
compactness information leads to improved delineation of both
FUIS subtypes and between impervious and nonimpervious land
covers. This validates the capability of SOCI for characterizing
scattering spatial patterns to aid SAR classification.

B. Quantitative Assessment of Classification Accuracy

To validate the effectiveness of the proposed model, exper-
iments were conducted on several datasets: fully polarimetric
ALOS-2, fully polarimetric GF-3, and dual-polarized ALOS-2
data in HK. The Shenzhen area was additionally included in this
study to further validate the effectiveness and transferability of
the proposed SCFN method. Due to the difficulty and exten-
sive effort required for fully polarimetric data acquisition and
labeling, the experiments in Shenzhen were carried out using
the L-band fully polarimetric ALOS-2 data.
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TABLE I
COMPARISON OF THE OA, THE PA, AND THE UA OF SCON AND SCFN ON FULLY POLARIMETRIC ALOS-2, FULLY POLARIMETRIC GF-3, AND DUAL-POLARIZED

ALOS-2 DATA IN HK AND SHENZHEN

Quantitative accuracy metrics, including overall accuracy
(OA), producer’s accuracy (PA), and user’s accuracy (UA),
are utilized to evaluate the FUIS identification performance
of SCFN. OA assesses the proportion of correctly classified
samples across all categories, providing a general measure of
the classification performance. It is computed as the ratio of
the sum of correctly classified samples to the total number
of reference samples. PA, also known as completeness, refers
to the probability that a reference sample in a given class is
correctly classified. It is calculated by dividing the number of
correctly classified samples in a particular class by the total
number of reference samples in that class. UA, also known as
reliability, measures the probability that a sample assigned to a
specific class truly belongs to that class. UA is determined by
computing the ratio of correctly classified samples to the total
number of samples predicted to be in a particular class.

The results are presented in Table I. In addition to customized
object patch-based inputs and pooling structure, SCFN inte-
grates a fusion structure combining initial scattering features
and derived SOCI features. To assess the impact of compact-
ness information, the single scattering object network (SCON)
variant of SCFN without compactness information is compared
with SCFN. As exhibited in Table I, promising classification
performance is achieved by the proposed SCFN model.

On the ALOS-2 fully polarimetric data of HK, SCFN achieved
an OA of 79.99%, surpassing the SCON by 3.08%. Similarly,
for the ALOS-2 data of Shenzhen, SCFN improved the OA
by 2.64% compared with SCON. These results demonstrate

the effectiveness of incorporating compactness information for
FUIS mapping in different coastal cities. For the GF-3 fully
polarimetric data of HK, SCFN attained an OA of 69.66%,
outperforming SCON by 4.4%. Even with the dual-polarization
ALOS-2 data, SCFN exceeded SCON by 4.78%. The consistent
improvements brought by SCFN across various SAR platforms,
wavelengths, and polarization settings underscore the robustness
and transferability of the proposed method.

The classification accuracy on GF-3 data in HK was lower
than that of ALOS-2 fully polarimetric data, possibly due to
the lower spatial resolution of GF-3 and its data quality, as
evident from Fig. 1, which may have affected the effectiveness
of scattering information. On the ALOS-2 dual-polarized data
of HK, both methods exhibited relatively lower performance,
attributed to the limited polarimetric information provided by
only two polarization channels, leading to reduced discrimina-
tive power. However, SCFN still surpassed SCON by 4.78% in
terms of OA, with varying degrees of improvement in PA and
UA. Nevertheless, for the challenging task of FUIS classification
in complex urban environments, dual-polarized data are not
recommended as effective accuracy may not be achieved.

The results in Shenzhen generally exhibited similar trends to
those in HK, validating the effectiveness of the SCFN method
in different urban settings. Although the Shenzhen dataset did
not include the port category, it still encompassed six main land
cover types and the major FUIS classes. The OA differences
between the two cities were not substantial. At the category level,
water and vegetation were among the most accurately classified
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Fig. 6. (a) Labeled ground truth, (d) optical image for reference, and (b) and (c) and (e) and (f) are the classification results of SCON and SCFN from the ALOS-2
and GF-3 data in HK, respectively.

classes in both HK and Shenzhen, owing to their distinct scat-
tering properties in SAR imagery. The accuracies of roads and
vacant land were notably higher in Shenzhen compared with HK.
This could be explained by the wider roads and more extensive
vacant areas in Shenzhen, resulting in less confusion with other
land cover types. In both cities, SCFN generally demonstrated
higher PA and UA compared with SCON. Incorporating spatial
context via the scattering–compactness index in SCFN notably
reduced classification confusion between not only the FUIS
types but also UIS and NIS, compared with using only polari-
metric scattering. Roads and nonresidential buildings showed
improved PA and UA exceeding 7%, indicating the value of
compactness for differentiating confused impervious surfaces.

Water consistently achieved the highest classification accu-
racy across all three datasets, owing to its distinctive backscat-
tering characteristics in SAR imagery. The relatively higher
accuracy of vegetation in ALOS-2 fully polarimetric data may
be attributed to the penetration capability of the L-band, pro-
viding richer scattering information. In contrast, the C-band
GF-3 is more sensitive to surface roughness, primarily captur-
ing scattering information from the canopy surface, potentially
reducing its sensitivity to internal vegetation features. Vacant
land demonstrated notably lower accuracy compared with other
categories, likely due to the complex and variable scattering
conditions of undeveloped urban surfaces related to moisture,
roughness, and ground coverings. Among FUIS classes, ports
were most accurately identified due to the dielectric properties of
metal containers. Roads, nonresidential buildings, and residen-
tial buildings exhibited higher mutual confusion due to similar
construction materials and scattering characteristics. Greater

confusion existed between FUIS subtypes compared with FUIS
and NIS pairs. This is reasonable since functional differences
between impervious structures are more subtle to discern from
scattering signatures alone.

In summary, SCFN, leveraging joint scattering and compact-
ness, achieved promising FUIS identification results. The pro-
posed SCFN consistently outperformed SCON across different
datasets, demonstrating its robustness and generalization ability,
and validating the benefits of integrating structural and spatial
compactness information for SAR-based urban mapping.

C. FUIS Mapping

To intuitively analyze the classification results, the generated
classification maps from the fully polarimetric L-band ALOS-2
and C-band GF-3 data in HK are presented in Fig. 6. Seven
classes are delineated, including port (POR), road (ROA), res-
idential building (RES), nonresidential building (NRE), vege-
tation (VEG), vacant (VAC), and water (WAT), each denoted
by a unique color. Fig. 6(b) and (c) and (e) and (f) illustrates
the maps produced by SCON and SCFN from the ALOS-2
and GF-3 data, respectively, while Fig. 6(a) depicts the manual
ground truth annotation, and Fig. 6(d) shows the high-resolution
WorldView-2 optical image as visual reference.

It can be observed that the complex urban landscape contains
intricate networks of roads, mixed distributions of residential
and nonresidential buildings. The classification results on the
ALOS-2 dataset are generally better than those on GF-3, as
shown in Table I. From Fig. 6, we can also notice that the GF-3
results contain more speckle noise, and the road identification
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is less precise compared with ALOS-2. However, both datasets
achieve relatively consistent and largely accurate classification
results.

On both datasets, SCFN achieves promising classification
closely matching the reference, with ports mostly successfully
extracted, roads reasonably delineated, and a considerable por-
tion of nonresidential structures differentiated from residential
houses. However, the inherent scattering similarity poses chal-
lenges in separating residential and nonresidential buildings,
resulting in confusion. Vacant lands are also largely accurately
identified. In vegetated hills, some trees are misclassified as
buildings due to mixing, while vegetation is reasonably mapped
overall.

In comparison, SCON produces significantly inferior results.
It greatly underestimates nonresidential structures by mislabel-
ing them as other FUIS types. Road extraction is less accurate
with fragmented outputs, and even some hills are mistaken as
roads on ALOS-2. Residential buildings are detected in a frag-
mented manner, failing to delineate complete structures. Even
for the more distinctive ports, SCON misses certain regions,
such as the large area on the bottom right on ALOS-2 and over-
estimates ports on GF-3. Confusions between vegetation and
FUIS are more prevalent. Overall, SCON yields more spatially
scattered and patchy classification with poorer delineation of
integral buildings.

Notably, owing to the time gap between the optical and SAR
data, ship locations may differ in the water areas. The ground
truth does not label ships. And the small spots on the water in
the classification results of SCON and SCFN likely correspond
to vessels.

It is also worth noting that the imaging errors inherent to
SAR, such as shadow, foreshortening, and layover, do have an
impact on the identification of land surfaces, as shown in Fig. 6.
For instance, in Fig. 2, which presents the PolSAR scattering
images, we can observe the presence of shadows and some
foreshortening phenomena in the mountainous areas on the right
side on ALOS-2. These imaging issues also exist between the
cross-sea bridge and the sea surface. Consequently, as evident
in Fig. 6, these factors indeed interfere with the recognition of
land surfaces. For example, the vegetation in the mountainous
areas might be misclassified as roads or buildings due to these
effects. The results indicate that the existing methods still have
limitations, and further improvements are necessary to address
the imaging issues specific to SAR.

More detailed classification maps from SCON and SCFN
are presented in Fig. 7. It can be clearly observed that SCFN
achieves noticeably superior identification of FUIS subtypes that
are challenging to differentiate based on scattering alone, such as
nonresidential versus residential buildings, ports versus roads,
and roads versus residential buildings. The compactness infor-
mation effectively complements the polarimetric scattering to
reduce confusion between these impervious surfaces with sim-
ilar scattering characteristics. In addition, SCFN demonstrates
higher accuracy in classifying nonimpervious covers, such as
vacant land and vegetation compared with SCON. Moreover,
heavy speckle noise can be observed in the SCON maps due to
the lack of spatial compactness. In contrast, by incorporating the

Fig. 7. Detailed classification results of SCON and SCFN.

scattering–compactness index, SCFN exhibits improved spatial
continuity and overall outperforms SCON in distinguishing
different FUIS and also NIS types from the complex urban
environments.

In summary, the overall classification maps and zoomed sub-
sets highlight the advantages of fusing scattering and compact-
ness cues in SCFN to enhance FUIS identification accuracy.
The spatial context aids the classification of impervious surfaces
with subtle functional differences and reduces spatially hetero-
geneous errors. This demonstrates the value of combining po-
larimetric scattering and scattering–compactness for improved
SAR-based urban mapping.

V. DISCUSSION

The proposed SCFN integrates polarimetric scattering fea-
tures with a novel SOCI for improved FUIS mapping. It in-
troduces key advancements compared with previous studies on
PolSAR-based urban mapping. While existing PolSAR-based
urban mapping methods primarily rely on pixel-level scattering
information [23], [24], [25], our approach introduces an object-
based perspective by deriving the SOCI to characterize the
spatial compactness properties of urban land covers, providing
complementary information to the scattering features. SCFN
is tailored to operate on small object-level patches. It demon-
strates the effectiveness of using a small 7×7 patch size for
classifying impervious surfaces with PolSAR data. The adoption
of a smaller patch size is in line with the findings of previous
studies in remote sensing image classification [40], [41], [42],
[43], [44], [45]. The use of small patch sizes allows for a more
focused analysis of the target objects, as smaller patches are more
likely to contain homogeneous land cover types. This research
advances the understanding of PolSAR scattering mechanisms
for FUIS mapping. However, it is important to acknowledge the
limitations of SOCI, particularly in handling certain challenging
scenarios. For instance, in the case of highly circular impervious
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surfaces, SOCI may not always provide optimal performance.
Exploring additional contextual information or investigating the
use of complementary data sources that can further improve
the discrimination of IS and NIS could help to overcome the
limitations of SOCI in challenging scenarios.

Experiments validate the proposed method on both C-band
and L-band fully polarimetric data from GF-3 and ALOS-2, as
well as dual-polarized data in HK and Shenzhen. Although the
two fully polarimetric datasets exhibit differences in accuracy
due to variations in wavelength, resolution, and data quality, the
effectiveness and applicability of the proposed SOCI and SCFN
are demonstrated in both datasets. The method also shows gener-
alizability on dual-polarized data. However, due to the relatively
limited information carried by dual-polarized data, it remains
challenging to distinguish different urban functional surfaces.
There is still room for improvement, particularly in handling
challenging scenarios and effectively utilizing dual-polarized
data.

In addition, similar to other land use classification studies,
the discrimination of certain building types, such as residential
and nonresidential buildings, remains challenging due to their
similar scattering characteristics [47], [48]. As demonstrated in
our results, confusion between these two classes is relatively
high. To further improve the separation of these building types,
the integration of ancillary data, such as points of interest infor-
mation, could be explored in future research. Moreover, as re-
ported in other SAR classification studies, the inherent imaging
issues of SAR, such as speckle noise, shadow, foreshortening,
and layover, can lead to misclassifications [49], [50]. These
factors contribute to the uncertainties and errors observed in
the classification results. Dedicated techniques for addressing
SAR-specific imaging issues could enhance the robustness of
the classification results. Furthermore, the complex urban envi-
ronment poses significant challenges for accurate land cover
mapping, particularly in high-density areas with interleaved
vegetation and buildings [51]. The presence of occlusions in
these regions can hinder the discrimination of different land
cover types. Our study also encountered these difficulties, as
evident from the confusion between vegetation and buildings in
the mountain areas. The incorporation of multiaspect SAR data
and the fusion of SAR and optical imagery could potentially
alleviate these issues and improve the classification performance
in complex urban scenarios.

It is important to acknowledge the limitations of this study.
Our intention is to provide a new perspective and method for
FUIS mapping in coastal cities and lay the foundation for future
applications in other cities. Considering the acquisition cost and
processing difficulty of fully PolSAR data, it may not be possible
to exhaustively cover all scenarios in a single study. Future
research could strive to incorporate more diverse SAR datasets
and other urban areas for a more comprehensive analysis.

The improved mapping capability of FUIS using our pro-
posed method has significant implications for urban planning
and management. The accurate and detailed representation of
urban land cover can help urban planners better understand the
spatial distribution of different urban land cover types, guiding

informed decision making related to urban development, re-
source allocation, and environmental management. Moreover,
the ability to monitor changes in urban land cover over time
enables urban planners to track urban expansion, identify areas
of rapid growth, and assess the effectiveness of urban develop-
ment policies, ensuring sustainable development. Furthermore,
detailed FUIS maps can support urban infrastructure planning
by providing information on the location and extent of existing
impervious surfaces, helping planners identify areas in need of
infrastructure upgrades and optimizing the placement of new in-
frastructure. It also helps urban planners identify areas with high
impervious surface coverage, which may be more susceptible to
environmental issues, such as urban heat islands, air and water
pollution, and stormwater management. This information can
inform targeted interventions to mitigate the negative impacts
of urbanization on the environment.

VI. CONCLUSION

This study proposes a scattering–compactness index to ex-
tract spatial context information of land surface scattering and
develops an SCFN for integrating complementary scattering and
compactness cues to enhance FUIS identification in high-density
coastal urban environments. Through quantitative and qualita-
tive experiments using C-band and L-band fully polarimetric
GF-3 and ALOS-2 data, as well as dual-polarized SAR data
in HK and Shenzhen, the effectiveness and generalizability of
the proposed scattering–compactness index and joint scattering–
compactness modeling using deep networks are validated. Com-
pared with baselines, over 4% improvement in OA is achieved
along with up to 8% increase in PA and UA for detailed FUIS
subclass mapping. The proposed algorithm, which exploits the
scattering and compactness information derived from SAR data,
overcomes limitations in differentiating impervious surfaces
with similar scattering responses but distinct spatial contexts,
providing a valuable framework for future research on FUIS
mapping. Moving forward, further performance gains may be
achieved by exploring more advanced SAR imaging techniques
and data fusion architectures.
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