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Abstract—Abnormal crops image data play crucial role in con-
trolling crop diseases and pest for smart agriculture. However, cur-
rent agricultural image acquisition methods suffer from low-value
data. This article presents a new strategy for collect high-quality im-
age data for abnormal crops. First, a novel agricultural Internet of
Things (IoT) image acquisition system is proposed, that integrates
edge intelligence, motion–static synergy, which enables both coarse
and fine crop image acquisition. To enhance image acquisition effi-
ciency and data value in the agricultural IoT, this article proposes
an image acquisition method based on edge intelligence and static
and motion collaboration, using banana plantations as the example
object. The method comprises three phases. In the first phase, the
edge server deploys the YOLO-FDAC target detection model to
detect abnormal crops from the images captured by static nodes.
In the second phase, the coordinate solution method of abnormal
crops and the quantification method of the degree of abnormality is
presented. In the third phase, based on the severity of abnormality
and the ant colony optimization, a path optimization algorithm
for the image acquisition robot is designed. Finally, this article
evaluates the performance of each level of the proposed method by
comparing it with traditional methods. The experimental results
demonstrate that the proposed image acquisition strategy has high
acquisition efficiency and high image data value.

Index Terms—Edge intelligence, image acquisition, motion
collaboration, path optimization target detection.
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I. INTRODUCTION

CROPS plays a crucial role in the national economy and
feeding world population [1]. To expedite the advance-

ment of agricultural informatization and modernization, re-
searchers have proposed the smart agriculture, unmanned farm
paradigm [2], which utilizing Internet of Things (IoT) and
artificial intelligence technologies. Specially, crop images data
are crucial data for these new agricultural framework [3]. These
image data can be used to visually monitor crop growth and
obtain detailed information about the crop, such as leaf area
[4], [5], plant nutritional status [6], pests diseases [7], [8], plant
height [9], [10], and fruit size [11]. Obviously, how to obtain
image data becomes a key link.

Recently, some researchers use cameras in the field or labo-
ratory to capture crop images [12], [13], [14], primarily to study
the feasibility of automatic detection or diagnostic algorithms in
detecting agricultural pests and diseases. Others use handheld
portable image capture devices to collect crop images [15], [16],
[17]. However, these methods are not suitable for capturing
images of crop pests and diseases in hard-to-reach locations,
and they lack real-time capabilities. To address this issue, some
researchers have installed network cameras in agricultural fields
based on IoT [18], [19], [20], [21], [22]. However, due to their
immobility, they can only capture images of crop canopies in
specific areas. Furthermore, some researchers have installed
image capture nodes on mobile platforms, such as unmanned
vehicles [23], [24], [25] or drones [26], [27], [28].

A synergistic approach to image acquisition in both motion
and static can provide more comprehensive, accurate, and real-
time agricultural monitoring and management. Furthermore, the
utilization of edge servers for integrating and processing sensed
data from end devices can alleviate the burden of data processing
in the cloud. Deploying webcams in farmland provides overall
crop growth, while mobile robots can perform individualized
monitoring and management. By combining the two image
acquisition methods, a real-time monitoring and early warning
system based on edge intelligence can be established. This
system can enable refined agricultural management, improve
crop growth efficiency and yield, and reduce resource waste.

This article presents a case study of a banana plantation as an
entry point, focusing on abnormal banana trees (e.g., a banana
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tree with a change in appearance due to disease), edge computing
is utilized to decrease the expense of image transmission and
improve the effectiveness of the data, and robot is used to getting
more finer crop images. Finally, a strategy for acquiring high-
quality image data of abnormal crops based on edge intelligence
and motion–static synergy is proposed. The main contributions
of this article are as follows.

1) The traditional single-form image acquisition method,
usually by a robot or a surveillance camera to take pictures
at a fixed time, not only generates a large amount of
image data, but also the availability of data is extremely
low. Therefore, this article proposes an image acquisition
framework based on edge intelligence and dynamic and
static collaboration to obtain fine images that can reflect
more crop details, while reducing the acquisition of images
that are not interesting to users. This method improves the
efficiency and data value density of agricultural IoT image
acquisition.

2) A fast detection method for abnormal crop based on
YOLOv7 (YOLOV7-FDAC) was proposed to screen the
images collected by static acquisition nodes (fixed cam-
eras) and retain the image data of abnormal crop. This
method not only reduces the data transmission, but also
provides the target for the robot to carry out the fine image
acquisition task.

3) Aiming at the problems that binocular stereo vision, depth
camera, laser ranging, and other positioning methods are
faced with, such as large calculation amount, easy to be
affected by light, and high hardware cost, a method of
abnormal crop location based on monocular vision RGB
images is proposed to quickly calculate the actual location
of abnormal plants in farmland, and provide basic support
for robot work.

4) In order to enable the mobile image acquisition node
(robot) to acquire fine images of abnormal crops effi-
ciently, reduce the path length and time in the acquisition
process, and reduce the collection of useless data, this
article proposes a heuristic path optimization algorithm
based on the severity of abnormal crops, so that the robot
can quickly and accurately reach the location of abnormal
crops. The robot path planning method balances the re-
lationship between path length and abnormal crops, and
obtains an efficient data acquisition path.

The rest of this article is organized as follows. Section II
provides an overview of relevant research on image data in
agricultural IoT, while Section III explains the overall frame-
work of the proposed image acquisition method and the metrics
used to evaluate the system’s performance. Section IV proposes
a fast method for detecting and localizing abnormal crops, as
well as an intelligent scheduling method for robots. Section V
presents experiments and analysis of the proposed method.
Finally, Section VI concludes this article.

II. RELATED WORKS

This section briefly introduces representative image acquisi-
tion methods and applications in agricultural IoT.

A. Task-Oriented Image Acquisition Method

Literature [29] describes a modern farm prototype based on
IoT and image processing technologies using multiple cameras
to capture images and assess crop growth. Literature [20] de-
scribes a high-quality image acquisition system for the farm
environment based on a DSLR camera for remote camera ac-
cess, shooting control, and image transmission. Literature [30]
develops an automated image acquisition system for grape yield
prediction to provide a solution for automated grape yield pre-
diction. An image acquisition method for kiwifruit picking robot
is discussed in [31], which proposes a look-up capture method to
acquire fruit images. Literature [32] uses RGB images acquired
by UAV imaging system and divides the images into different
blocks for weed detection. Literature [33] describes an image
acquisition system for pig pens and also gives the process of
analyzing the images. Literature [34] reviewed the application
of small UAS in precision agriculture and emphasized on UAV
imagery as a low-cost alternative to high-resolution satellite
imagery.

B. Banana Plant Detection Methods

Literature [35] discussed the detection and prevention meth-
ods of banana streak virus disease in banana plants and proposed
an economic threshold level algorithm to detect banana streak
virus disease. Literature [36] introduced an artificial intelligence
banana pest and disease detection system based on deep convo-
lutional neural network and transfer learning, and developed
six different models for comparison. Literature [37] proposed
a deep learning model for banana wilt detection. Literature
[38] discussed a banana disease detection and classification
method based on local binary pattern and support vector machine
(SVM) and successfully classified leaf spot disease. Literature
[39] combined deep learning models for banana classification
and disease detection by using multispectral and RGB image
data, while class activation maps were used to understand the
prediction results of the classification models. Literature [40]
combined machine learning and deep learning techniques for
banana disease detection in two parts, CNN for feature extraction
of images through convolutional layers and pooling operations
and then classification by SVM classifier.

C. Data Processing Methods for Edge Intelligence

Literature [41] proposes a hierarchical data processing ar-
chitecture that reduces communication bottlenecks and energy
consumption, applies edge computing to sensor data process-
ing and analysis in precision agriculture, and aggregates and
reconstructs data through fog computing nodes. Literature [42]
explores the application of intelligent edge computing in satellite
IoT image target detection, which performs data processing
and analysis at the edge of the satellite to achieve real-time
target detection, reduces data transmission delay and bandwidth
consumption, and improves processing efficiency. Literature
[43] uses lightweight edge mining algorithms to compress agri-
cultural data within WSNs to address the challenges of poor
Internet connectivity and memory constraints of WSNs devices
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Fig. 1. High-quality image data acquisition model for abnormal crops based on edge intelligence and motion–static synergy.

in agricultural environments. Literature [44] proposed an edge
computing framework for collaborative video processing in
multimedia IoT systems that leverages the computational and
communication capabilities of resource-rich mobile devices to
extract features from videos and avoid bandwidth constraints.
Literature [45] proposed an edge computing based target de-
tection architecture for distributed and efficient target detection
over wireless communication. Literature [46] proposed a data
filter based on edge intelligence to solve the problem of large
amount of useless data causing congestion in the communication
link. Literature [47] combines edge computing and IoT to build
a lightweight crop lifecycle data sensing framework for multi-
parameter and mobile sensing, and proposes a data-driven algo-
rithm to optimize the sensing parameters, reduce redundancy,
and improve the correlation between the sensed data and crop
growth stages.

III. SYSTEM MODEL

This section describes the methodology for acquiring high-
quality image data of abnormal crops and then explains the
methodology used to assess the degree of crop abnormality and
the density of image value acquisition.

A. Design of Image Data Acquisition Framework

The architecture of the image data acquisition system pro-
posed in this article is shown in Fig. 1, taking banana abnormal
plants as an example. The workflow is as follows: first, the
static nodes are used to collect the whole image of the field, and
then the edge server uses the improved YOLOv7-FDAC target
detection model to quickly detect the abnormal crops that require
focused attention, and then solves the geographical location from
the image information and camera parameters. At the same time,
the severity of each abnormal plant is quantified based on the data
generated by the target detection model, such as the confidence
level and abnormal area. Finally, the edge server will send the
path to the robot so that it can move next to the abnormal banana,

collect a fine image containing the details of the banana disease,
and transmit it to the user or the cloud so that the user can
further analyze the specific condition of the abnormal banana
plant (such as what disease is present) and adjust the planting
strategy in time.

B. Acquisition Methods for Fine Images

In order to quickly acquire fine-grained images with crop
details, this article uses a mobile robot carrying a camera to
capture images. The traditional method of using robots to acquire
images generally adopts a patrolling approach, where the robot
acquires images of all crops in its path and transmits them to
the user. Not only is the acquisition process very inefficient, but
it also generates a large amount of data traffic, placing a heavy
burden on edge devices and networks. In addition, only some of
the images captured by the robot are needed by the user, such as
images of abnormal banana tree.

This article proposes a solution. When abnormal crops are
detected in the images collected by static nodes, the edge server
calculates their coordinates and plans the robot’s moving path,
and the robot collects images of abnormal crops along the
path. In the path planning process, it is assumed that X is the
ensemble of crops that the robot needs to observe, namely,
X = {X1, X2, . . . , Xi, . . . , Xn}. To enable the robot to observe
the crops Xi with relatively high severity as soon as possible,
a heuristic path optimization algorithm based on the severity of
the abnormal crops is proposed to obtain an optimal acquisition
path and improve the efficiency of image acquisition.

C. Methods for Quantifying the Severity of Abnormal Crops

Since the severity of anomalous crops directly affects the order
of destination selection by the path planning method proposed
in this article, which ultimately affects the efficiency of image
acquisition, the crop anomaly degree index (CADI) is proposed.

Definition 1: CADI is the result of combining the size of
the area occupied by each abnormal crop in the image with its
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corresponding confidence level, and its result is proportional to
the area and the confidence level, reflecting the severity of the
abnormal crop.

Specifically, if an image contains n abnormal banana trees, and
i is the number of one of the banana trees, its CADI expression
is

Ki = P × Si ×Wi ,W ∈ [Wmin, 1] (1)

where W denotes the confidence level of the target detection
result. Wmin is the confidence threshold, the crops with con-
fidence lower than the threshold are considered normal, and
the default confidence threshold in this paper is Wmin = 0.3.
P denotes the accuracy of the target detection model, i.e., the
performance evaluation index of the target detection model
with 0.5 intersection average accuracy (AP@0.5). S is the area
occupied by the abnormal crop in the image, which is calculated
by the pixel length (dx) and width (dy) of the image, and the
number of pixels occupied by the crop. The number of pixels c
is calculated and obtained as follows:

S = c× (dx× dy). (2)

D. Image Data Value Analysis

Among the image data acquired by the robot, the images of
abnormal crops are the main target of interest, and in order
to evaluate the acquisition efficiency of the image acquisition
method proposed in this paper for the images of abnormal crops,
the image value acquisition density (IVAD) is proposed.

Definition 2: The ratio of the image data value acquired by
the robot to the amount of data in a unit of time, the result of
which depends on the total data value, the total amount of data,
and the execution time of the image acquisition task performed
by the robot.

Specifically, the robot performs an image acquisition task
where images of n banana trees need to be captured, and i denotes
the number of one of the banana trees. The value of the image
corresponding to banana tree i is denoted as G(Ki), the time for
the image to be transmitted to the user is Ts(i), the size of the
data volume of the image is Qi, and the total time taken by the
robot to perform one image acquisition task is denoted as Tm.
Then, the expression of IVAD is

M = Tm
−1

n∑
i=1

(
Ti ×Qi

−1 ×G(Ki)
)

(3)

where G(Ki)∝K, i.e., the higher the CADI score of the crop,
the higher the value of its corresponding image.

Furthermore, assuming that the shooting time of the image of
crop i isTp(i),Ts(i) is the elapsed time of the image transmission
to the cloud, and the walking time of moving from crop i to
crop i+ 1 is Tw(i). Considering that the robot, after capturing
a set of images, can simultaneously transmit images during the
process of moving to the next target point, and that the image
transmission time is much smaller than the robot moving time,
i.e., Ts(i)⊆Tw(i). In this case, Ts(i) does not need to be counted

in elapsed time, then Tm can be further expressed as

Tm =
n∑

i=1

Tw(i) +
n∑

i=1

Tp(i). (4)

The final expression for IVAD is

M (Tw(i), Tp(i), Qi, G(Ki))

=

(
N∑
i=1

Tw(i) +

N∑
i=1

Tp(i)

)−1 N∑
i=1

(
Qi
−1 ×G(Ki)

)
. (5)

Considering the methodology defined in this article for acquiring
high-quality image data of abnormal crops, the ultimate goal is
to maximize the IVAD, which can be expressed as

Max
G(Ki)

M (Tw(i), Tp(i), Qi, G(Ki)) (6)

N∑
i=1

Tw(i) +

N∑
i=1

Tp(i) ≤ T (6b)

where the constraint T in (6b) is the maximum operating time
that the battery carried by the robot can support, within which
the robot must complete the image acquisition task.

IV. HIGH-QUALITY IMAGE DATA ACQUISITION METHOD FOR

ABNORMAL CROPS BASED ON EDGE INTELLIGENCE AND

KINETIC COLLABORATION

The maximization of IVAD needs to be achieved by two
aspects. First, accurately detecting the abnormal crop and ob-
taining its position information. Second, taking the value of the
image as the starting point, optimizing the path for image acqui-
sition by the ground robot. This section focuses on the specific
implementation methods, first introducing the construction of
fast detection model based on lightweight neural network, then
explaining the crop position mapping method based on image
and coordinate system transformation, and finally giving the
heuristic path optimization algorithm based on the degree of
crop abnormality. The specific process is shown in the Fig. 2.

A. Construction of YOLOv7-FDAC Target Detection Model

YOLOv7-tiny is a simplified network model based on the
structure of YOLOv7 [48], which mainly consists of backbone,
neck, and head. In the backbone, the more concise ELAN [49] is
used instead of E-ELAN. The convolution operation in MPConv
is eliminated and only pooling is used for downsampled. The
optimized SPP structure is retained for inputting richer feature
maps for the neck. In the neck, the PANet structure is still used
for feature aggregation. In the head, the standard convolution
(SConv) is used instead of REPConv for channel number adjust-
ment. YOLOv7-tiny has some advantages in terms of speed and
lightness, but it sacrifices some accuracy. However, the network
still has some shortcomings: First, due to the use of a large
number of ELAN modules in the backbone, which results in
too many network parameters and too much computation, there
is still room for optimization of the detection speed. Second,
the choice of using the LeakyRelu activation function, which
is less effective when the model hierarchy is deeper, resulting
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Fig. 2. Process for maximizing the IVAD.

Fig. 3. Network structure of YOLOv7-FDAC.

in the classification accuracy is affected. Third, in the neck
for feature fusion, the ELAN module is also overused, which
is easy to cause feature redundancy. Therefore, in this article,
based on YOLOv7-tiny, the YOLOv7-FDAC model is obtained
after lightweight improvement, which reduces the number of
parameters and computation of the model under the premise of
guaranteeing the accuracy, so as to run in the edge server.

The network structure of the improved YOLOv7-FDAC
model is shown in Fig. 3. In the backbone, YOLOv7-FDAC
adopts the basic modules of ShuffleNet v1 [50] network, i.e.,
Unit_a with step size of 1 and Unit_b with step size of 2, to
minimize the dense connectivity and reduce the computation of
the network, and at the same time, combines multiple units to
increase the network depth and ensure feature richness [51]. In
the improvement of Neck, the lightweight module GSConv [52]

is used to fuse the features, while the improved ELAN-GS is used
to further reduce the parameters and computation of the model.
WIoUv3 is selected to replace the original IoU metric to achieve
high-precision detection of abnormal banana trees in complex
environments, and a more efficient activation function Mish [53]
is introduced to replace the LeakyRelu function to ensure that
the features can be efficiently executed in the backward transfer
process. Finally, the WIoUv3 position loss function is used to
improve the model localization accuracy.

ShuffleNet v1: Fig. 4 shows the basic module of ShuffleNet v1,
which consists of Unit_a with step size 1 and Unit_b with step
size 2 stacked on top of each other. Unit_a is divided into two
branches, where the left branch is not processed, the right branch
is subjected to group convolution (GC) and depth-separable
convolution, normalization and channel mixing, and the feature
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Fig. 4. Architecture of the ShuffleNet v1 module.

maps of the two branches are summed. Unit_b is also divided
into also branches, both downsampled, the left branch halves the
size of the feature map using an average pooling operation, the
right branch performs a convolution operation with a step size
of 2, and finally latitude doubling is performed using a splicing
operation.

The number of parameters resulting from each convolution
operation is calculated as follows. Assume that the input feature
map has a width of Wi, a height of Hi, the number of channels
is Ci, the number of output channels is Co, and the size of
the convolution kernel is K ×K. Therefore, the number of
parameters under SConv is

Psc = Ci × Co ×K ×K. (7)

GC is based on the Sconv, the convolution kernel and the number
of input channels are grouped, the number of groups is g. Each
group of convolution kernel is individually convolved on the
feature map, so the number of parameters is

Pgc =
Ci

g
× Co ×K ×K (8)

Depth-wise (DW) Separable Convolution is a channel-by-
channel convolution operation on the input feature map with
the number of convolution kernels equal to the number of
input channels, so the number of parameters for depth-separable
convolution is

Pdw = Ci ×K ×K. (9)

Therefore, among the three convolution operations, the SConv
has the largest number of parameters, and the GC is 1/g. The
depth-separable convolution has the smallest number of param-
eters, which is only 1/Co of the SConv, so the combination
of GC and depth-separable convolution can greatly reduce the
number of parameters of the network and reduce the amount of
computation.

GSConv and ELAN-GS: The structure of GSConv is shown in
Fig. 5. Let the number of input channels beC1 and the number of

Fig. 5. GSConv module.

Fig. 6. Improved ELAN module (ELAN-GS).

output channels beC2. The input image first undergoes a SConv,
the number of channels becomes C2/2, and then undergoes a
depth-separable convolution, the number of channels remains
unchanged, and finally the results of the two convolutions are
spliced and mixed, and finally C2 is obtained.

GSConv is introduced into the ELAN module for improve-
ment, as shown in Fig. 6. The two convolutions before the Concat
layer use the GSConv, which reduces the number of parameters
of the model while maintaining the detection accuracy, and
achieves a slight improvement of the ELAN.

WIoUv3 loss function: The loss function is an important part
of the target detection model, and the detection performance of
the model depends on the design of the loss function, and a good
bounding box loss function will bring significant performance
improvement for the target detection model. The bounding box
loss of YOLOv7-tiny is calculated by CIoU_Loss function, and
the classification loss and confidence loss are calculated by
BEC_Loss function. The agricultural environment is complex
and variable, and banana trees often have branches and leaves
that shade each other, which makes the model detection difficult.

Therefore, WIoUv3 with dynamic nonmonotonic focusing
mechanism is chosen instead of CIoU_Loss as the bounding box
loss calculation function of the improved algorithm model in this
article. Positive and negative sample imbalance is unavoidable
in the training dataset, which inevitably leads to the emergence
of low-quality samples, and the previous loss function will exac-
erbate the punishment of low-quality samples, thus reducing the
generalization ability of the model. The dynamic nonmonotonic
focusing mechanism in WIoUv3 can effectively avoid the neg-
ative impact of low-quality samples during the training process
by balancing the proportion of high- and low-quality samples,
focusing the results of bounding box regression on the target
object, and solving the problem that banana leaves are difficult
to detect due to occlusion between them. WIoUv3 is based on
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the addition of the dynamic nonmonotonic focusing mechanism
to WIoUv1, and the specific computational expression is

LWioUv1 = RWIoULIoU (10)

RWIoU = exp

(
(x− xgt)

2 + (y − ygt)
2

(W 2
g +H2

g )
∗

)
(11)

where Wg and Hg are the width and height of the minimally
closed region of the predicted and true frames, and * denotes the
separation of Wg and Hg from the graph and the localization
of constants to prevent the creation of gradients that prevent
convergence

LWIoUv3 = rLWIoUv1 (12)

r =
β

δαβ−δ (13)

where the mapping of nonmonotonic focusing coefficients r and
outliers β is controlled by hyperparameters α, δ, and δ.

Mish activation function: To ensure the accuracy of the feature
extraction network, the Mish activation function is chosen as an
alternative to the LeakeyReLU activation function because it
has a minimum value at the zero point, which can effectively
buffer the weights and maintain the stability of the network.
Compared to LeakeyReLU, the Mish function exhibits smoother
and stronger derivability near the zero point, which is helpful
for gradient computation and updating, and speeds up the con-
vergence of the model. In addition, Mish adds more nonlinear
expressions, which improves model generalization. The specific
formulas for the LeakeyReLU and Mish activation functions as
follows:

LeakeyReLU(x) =

{
x, x > 0
αx, x ≤ 0

(14)

RWIoU = exp

(
(x− xgt)

2 + (y − ygt)
2

(W 2
g +H2

g )
∗

)
. (15)

B. Abnormal Crops Location Mapping Method

Accurately locating the position of abnormal crops is the
key to planning the robot path, which is related to whether the
robot can successfully reach the crops for image acquisition
operations. To realize the perception of the environment, the
vision sensing system mainly acquires the image information
of the environment by carrying a camera. For the localization
of abnormal crops, it is necessary to meet the conditions of
3-D perception. At present, there are two main forms of stereo
vision systems, the first is a binocular vision system based on
optical geometry. The 3-D position of the target is obtained by
traditional optical principles and optimization algorithms. The
second is an RGB-D camera based on the time-of-flight method,
which uses an infrared sensor to obtain the depth information
of the target. However, the binocular vision system needs to go
through a complicated calibration process, while stereo match-
ing consumes a lot of computational resources, and the RGB-D
camera is affected under strong illumination, leading to errors
in the results.

Fig. 7. Transformation of image coordinate system and pixel coordinate
system. (a) uov in pixel coordinate system. (b) Image coordinate system xoy.

Based on this, this article proposes an abnormal crop loca-
tion mapping method based on camera imaging principle and
coordinate system transformation principle. First, a coordinate
system for the orchard is established, then a reference is set
in the orchard, and finally the camera imaging principle and
the coordinate system transformation principle are combined to
locate the abnormal crop. Since the positions of the reference
and the camera are known, only the direction and distance of the
abnormal crop relative to the reference in the image need to be
calculated, and then its position can be mapped.

The camera model describes the process of mapping an object
from 3-D space to a 2-D image plane, and the camera-internal
reference describes the key parameters in the camera model.
The relationship between the actual 3-D space points and the
2-D image plane is usually calculated using the principle of
small-hole imaging. In practice, the image data are calculated
in terms of pixel points, as shown in Fig. 7(a), and the pixel
coordinates (ui, vi) are usually read in terms of the uov plane
under the pixel coordinate system, which can directly correspond
to the position in the image. To facilitate the calculation, the
image coordinate system xoy is introduced, as shown in Fig. 7(b).
Where the image center at o is the center of the image coordinate
system, and the x- and y-axes are parallel to the u- and v-axes,
respectively.

Each camera has a fixed image size for pixels, each pixel
size length and width are dx and dy. Assuming that the pixel
corresponding to the origin o of the image coordinate system is
(uo, vo), its specific coordinates in the image coordinate system
can be computed by the given specific pixel coordinates (u,v)[

x
y

]
=

[
dx 0
0 dy

] [
u
v

]
+

[ −u0dx
−v0dx

]
. (16)

The mapping from a 2-D pixel coordinate system to a 2-D image
coordinate system can be realized by the above formulas, and
further the conversion from a 2-D image to 3-D coordinates in
space can be realized by the spatial depth information.

The crop localization calculation model is shown in Fig. 8.
Assuming that point P and point I in the Fig. 8 are the positions of
the reference and the anomalous crop in 3-D space, respectively,
point p and point i are the positions of both mapped in the image.
p(xp, yp) and i(xi, yi) can be calculated by (16), P(Xp, Yp, Zp)
are the known coordinates of the reference relative to the cam-
era, and f is the focal length of the camera. According to the
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Fig. 8. Crop positioning model.

properties of similar triangles, there are

ZP

f
=

Yp − YI

yp − yi
=

Xp −XI

xp − xi
(17)

Xp

xi
=

ZI

f
. (18)

The realistic 3-D coordinates of the anomalous crop I are
solved for ⎧⎪⎨

⎪⎩
XI = XP − ZP (xp−xi)

f

YI = YP − ZP (yp−yi)
f

ZI = XIf
xi

.

(19)

The pseudocode shown in Algorithm 1 summarizes the detection
and localization process of the proposed anomalous crop.

C. Improved Heuristic Path Optimization (IHO) Based on
Abnormal Crop Severity

Path planning, as one of the most fundamental and important
steps in the execution of image acquisition tasks by mobile
robots, determines the efficiency of robots in performing image
acquisition tasks. Ant colony optimization (ACO) [54] has been
widely used in multiobjective path planning research due to its
strong robustness and adaptability, but the algorithm has poor
convergence and tends to fall into local optimum when searching
for the optimal path. In addition, its path planning approach
based on the traveler problem cannot meet the requirement of
efficient image acquisition in this study. Therefore, this article
proposes an IHO algorithm based on abnormal crop severity and
ACO, which solves the optimal traversal order by combining
CADI to obtain the optimal working path of the robot.

Environment modeling: This article studies the robot path
planning problem in a known environment. In order to simplify
the computational process, the grid method is used to abstract
and discretize the robot working environment. First, the environ-
ment is divided into several identical grids according to its scale
and requirements, and then the conditions of obstacles in the grid

Fig. 9. Schematic diagram of the conversion between the actual environment
and the raster map.

are set according to the actual environment, and the correspond-
ing matrix G is constructed, which is finally transformed into a
grid map. The 0 and 1 in the matrix denote the passable nodes
and obstacle nodes, respectively, which are denoted as white
grid and black grid in the grid map. The conversion scheme of
the actual environment and the grid map is shown in Fig. 9.

Each grid in the grid map has a corresponding label and corre-
sponding position coordinates, and the relationship between the
grid label and the position coordinates is expressed as follows:{

x = mod(Ni

N ) + c

y = ceil(Ni

N )− c
(20)

where x and y are the horizontal and vertical coordinates of
the grid position, mod() is the remainder operation, ceil() is the
rounding operation, N is the number of grids in each column, and
Ni is the label of the ith grid node. c = 0.5, which represents the
offset of the center of the grid with respect to the grid boundary.

Base transfer probability: The direction, in which ant k(k =
1, 2, . . . ,m) transfers at moment t is determined by the
pheromone concentration on each to-be-selected path. The prob-
ability that an ant selects the next position j from position i at
moment t is determined as follows:

Pij(t) =

⎧⎨
⎩

[τij(t)]
α×[ηij(t)]

β

∑

j∈allowedk
[τij(t)]

α×[ηij(t)]
β , if j ∈ allowed k

0 , else

(21)
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Algorithm 1: Detection of Abnormal Crops and Solution of
Their Severity and Coordinates.

Input: Image A acquired by static node
Output: CADI and location coordinates of abnormal
banana tree Xi

1: procedure INFORMATION EXTRACTION(A)
2: YOLO-FDAC detects abnormal banana trees X1, X2,
· · · , Xi, · · · , Xn and confidence W1, W2, · · · , Wi,
· · · , Wn

3: for i = 1 to n do
4: if Wi ≥ 0.3 then
5: Si ← ci × (dx× dy)

\\ Calculate the anomalous area Si by Equation
(2)

6: Ki ← P × Si ×Wi

\\ Calculate the anomaly index Ki of crop Xi by
Equation (1) using Wi and Si

7: Read the camera’s internal reference and reference
P coordinates P (XP , YP , ZP )

8: Get coordinates x(xi, yi) and p(xp, yp) by (16)
\\ Calculate the coordinates of crop Xi and

reference P in the image according to equation (16)
9: Xi ← XP − ZP (xp−xi)

f

10: Yi ← YP − ZP (yp−yi)
f

11: Zi ← Xif
xi\\ Calculate the position coordinates of crop Xi

relative to the camera by equation (19)
12: else
13: break
14: end if
15: end for
16: K ← {K1,K2, · · · ,Ki, · · · ,Kn}

\\ K is the anomaly index of all banana trees
17: X ←{X1(X1, Y1, Z1), X2(X2, Y2, Z2), · · · , Xi(Xi, Yi,

Zi), · · · , Xn(Xn, Yn, Zn)}
\\ X is the set of coordinates of all abnormal banana

trees
18: return K, X
19: end procedure

where τij(t) is the pheromone on the path between position i
and position j at moment t. ηij(t) is the heuristic function factor,
which indicates the expected degree of the ant’s transfer from
position i to position j at moment t, and is usually taken to be
ηij(t)=1/dij . dij is the Euclidean distance between position
i and position j. α is the information heuristic factor, β is the
expectation heuristic factor, both α and β are constants, and
allowed k denotes the ensemble of unvisited target points.

In this study, the path planning behavior of the ants is adjusted
according to the severity of the crop, so that the ants are more
likely to be attracted to the abnormal crop and can select the
optimal image acquisition path in a more targeted way.

CADI-based pheromone initialization: Under the initial con-
dition, the pheromone content on each path is equal, at this

time, the ant colony is in the stage of blind search, with poor
optimization seeking effect and low search efficiency. In this
article, combining ACO and crop severity, CADI is introduced
as a weight in the initial pheromone, which guides the ants to
prioritize the crop with higher severity as the destination. The
improved initial pheromone distribution is

τij(0) = Kj + f(j) (22)

f(j) =
Kj

dij + 1
(23)

where Kj is the CADI score of the targe crop j, i.e., the higher
the severity of the crop, the larger the value of K, the higher the
attraction of the target for the ants, and vice versa, the smaller
it is. dij is the distance between the current grid and the target
grid, the closer the current grid is to the target grid, the larger the
initial pheromone on the route, and vice versa, the smaller it is.
According to such positional relationship, the initial pheromone
with uneven distribution is set to avoid blind searching of ants
in the initial stage and to improve the searching efficiency of ant
colony on abnormal crops in the initial stage.

Oriented heuristic function: The heuristic function of ACO
generally takes the inverse of the distance of neighboring grid,
so the ants tend to choose the optional grid closer to the current
grid, but this situation will cause the ants to have a circuitous
path or to get stuck when choosing, resulting in inefficient and
ineffective search. In this article, we design a heuristic function
oriented to abnormal crops, forcing the ants to be more inclined
to choose the grid closer to the abnormal crops each time, so
that the final path obtained will be closer to the shortest path,
and the improved distance heuristic function formula is

ηij(t) =

(
die
dej

)
Kcos θ

j (24)

where die is the Euclidean distance from the current grid to the
middle grid, dej is the Euclidean distance from the middle grid
to the target grid, Kj is the CADI score of the crop j, and θ

denotes the angle between
−→
ie and

−→
ij .

Improved pheromone update method: Pheromone update is a
crucial part of ant colony algorithm. It simulates the behavior
of ants and guides the search process to the direction of better
solutions. At the same time, the search diversity is maintained,
so that the algorithm can effectively search in the solution space
and find high-quality solutions. As the number of iterations
increases, the pheromone differences on several optimal paths
become less and less obvious, and the ant colony pays less and
less attention to abnormal crops. In order to make the ant colony
continue to pay attention to abnormal crops, combined with
CADI, this article adopted a global pheromone update method
to improve the pheromone update rule of the ant colony. After
all ants complete one iteration, the pheromone on all paths is
updated. The formula is as follows:

τij(t+ 1) = (1−)× τij(t) + Δτij , 0 < ρ ≤ 1 (25)

Δτij =
∑m

k=1
Δτkij (26)
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Algorithm 2: Robot Path Planning for Fine Image Data
Collection.

Input: The value K of CADI and position coordinate X of
all abnormal banana trees

Output: Ground robot working path
1: while receives K, X do
2: procedure PATH PLANNING(K, X)
3: Initialize the robot working environment,

converting map coordinate X to grid coordinates
by equation (20)

4: for i = 1 to n do
5: Calculate the initial pheromone concentration

of abnormal banana tree i by equation (22)
6: Calculate the heuristics of abnormal banana

tree i by (24)
7: end for
8: for e = 1 to b do

\\ b is the total number of ant colony iterations
9: for i = 1 to n do

10: Calculate the transition probability Pi of
banana tree i by (21)

11: end for
12: P ← {P1, P2, · · · , Pi, · · · , Pn}
13: Plan the robot acquisition path Re according to

P
14: Update the pheromone by (25)
15: end for
16: From {R1, R2, · · · , Pe, · · · , Rb} choose an

optimal path as the final path R
17: end procedure
18: end while

Δτkij =
Kj

Lk
(27)

where ρ represents the evaporation rate of pheromone; Δτij
represents the sum of pheromone concentrations released by
all ants along the path connecting location i to target j; Δτkij
represents the pheromone concentration released by ant k on
the path connecting location i to target j. Lk is the distance
traversed by ant k from location i to target j.

The pseudocode of the proposed path planning method is
summarized in Algorithm 2.

V. EXPERIMENTS AND ANALYSIS

This section focuses on the prerequisites and results of the
experiments. First, the effectiveness of each improvement of
YOLOv7-FDAC is evaluated and its performance is compared
with other state-of-the-art models. Subsequently, the effective-
ness of the position mapping method based on RGB images
is verified. Then, the effectiveness of IHO in image efficient
acquisition strategies is evaluated. Finally, the image-efficient
acquisition strategy proposed in this article and the conventional
image acquisition strategy are compared to evaluate the perfor-
mance of the image-efficient acquisition strategy.

TABLE I
PARAMETERIZATION OF THE TRAINING PROCESS

TABLE II
IMAGE VALUES CORRESPONDING TO CROPS OF DIFFERENT SEVERITY LEVELS

A. Experimental Conditions and Parameter Settings

The model training platform of YOLOv7-FDAC is built on
Ubuntu 20.04 system with one Intel Xeon Gold 5218 CPU and
two NVIDIA TITAN RTX GPUs, and the parameters of its
training process are shown in Table I.

The performance analysis of YOLOv7-FDAC is conducted
on an edge server equipped with one Intel Core i9-10920X CPU
and NVIDIA GeForce RTX3090 GPU to simulate real-world
application performance. The data set used in this article is the
banana tree image dataset collected in the field, including more
than 7000 images collected under different weather conditions,
different brightness, backlight, fairing, and other conditions, and
the data was cleaned, and the final dataset contains 1680 images.
It is divided in a ratio of 7:2:1, in which 1176 images are the
training set, 840 are the test set, and 168 are the verification set.

Based on the image acquisition framework proposed in this
article, an experiment was designed to evaluate the image acqui-
sition performance of the IHO-based robot. In the experiment,
assuming that the robot moves and acquires images on a path
at a speed of 0.5 m/s, each image of an abnormal banana tree
takes 2 min to capture. To facilitate the calculation, this paper
categorizes the severity into six levels, I–VI, based on the CADI
scores, and defines the image values according to their severity
levels, as shown in Table II. Among them, class I is normal and
the highest severity is class VI.

B. Results and Analysis

1) Validation of the Improved YOLOv7-FDAC: In order to
verify that each improvement proposed in this article is effective,
a series of ablation experiments will be designed for comparative
analysis, using the same parameters in the training process to
ensure the accuracy of the experiments. For experiment A, the
ShuffleNetv1 network is used as the new backbone network.
In experiment B, GSConv module was introduced into the
neck of the model for optimization. Experiment C replaces the
LeakyRelu activation function at the neck of the model with
the Mish activation function. Experiment D uses WIoUv3 as
a loss function. To evaluate the effectiveness of ShuffleNetv1,
GSConv, Mish function, and WIoUv3, the number of parame-
ters, computational complexity, i.e., floating point operations
(FLOPs), and AP0.5 are utilized as metrics to measure the
performance of the models, where AP@0.5 is a widely used
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TABLE III
COMPARISON OF ABLATION EXPERIMENT RESULTS

TABLE IV
EXPERIMENTAL COMPARISON OF YOLOV7-FDAC WITH OTHER MODELS

evaluation criterion in object detection, higher values indicate
better model performance.

The results of the ablation experiments are shown in
Table III, Experiment A verifies that ShuffleNetv1 can signifi-
cantly reduce the number of parameters and computation amount
of YOLOv7-tiny, but its accuracy also slightly decreases. Exper-
iment B adopts the improvement of GSConv, which significantly
reduces the computation amount of the model, and its accuracy
is also basically the same as that of the original model, which
proves the validity of GSConv. Experiments C and D, which
do not increase the computation amount, the accuracy of the
model is slightly improved, and the validity of the Mish function
and WIoUv3 is verified. Finally, the combined improvement of
YOLOv7-tiny with experiments A, B, C, and D reduces the
amount of model parameters by 14.7%, the amount of com-
putation is reduced by 22.6%, and the accuracy of the model
is improved by 1.87%. Overall, the improved YOLOv7-FDAC
network improves model accuracy while reducing model weight,
effectively balancing accuracy, and weight, and providing fea-
sibility for deployment in edge terminals.

To verify the effectiveness of the proposed model in this
article, this section compares the proposed YOLOv7-FDAC
model with other common lightweight target detection mod-
els. All algorithms use the same hardware devices, training
parameters, and datasets to ensure the reliability and fairness
of the experimental results. The Params, FLOPs, mAP@0.5%,
mAP@0.5%:0.95%, and the execution speed are taken as the
evaluation indexes, and the specific experimental results are
shown in Table IV, Figs. 10 and 11.

As can be seen from Table IV and Fig. 9, YOLOv7-FDAC
also reduces the number of parameters by 8.7% compared to the
smallest YOLOv4-tiny model, while the computation is reduced
by 37.2%, the detection speed is improved by 114.8%, and the
mAP@0.5 and mAP@0.5:0.95 accuracies are improved by 40%

Fig. 10. Execution speed comparison of YOLOv7-FDAC with other models.

Fig. 11. Verify sets of P-R curves on different models.

TABLE V
EXPERIMENTAL COMPARISON OF YOLOV7-FDAC WITH OTHER MODELS

and 59.3%, respectively, when comparing YOLOv7-FDAC with
the existing mainstream lightweight networks. Compared to
YOLOX-s, YOLOv7-FDAC reduces the number of parameters
by 35.8% and the computation by 55.2%, while the mAP@0.5
and AP@0.5:0.95 accuracies are slightly improved by 1.67%
and 4.1%, respectively, and the detection speed is improved by
17.3%. Overall, YOLOv7-FDAC is not weaker than other mod-
els in the results of all five types of indicators, which indicates
that the lightweight model proposed in this article even has a
certain degree of accuracy improvement under the conditions of
fewer number of parameters, smaller computational volume, and
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Fig. 12. Comparison of detection results for each model.

smaller model volume, which proves the validity and progress
of the algorithm in this article.

To more intuitively compare the detection performance of the
model in this article with other models, images from three dif-
ferent directions of angle in the same planting area are captured
for detection. Some of the results are shown in Fig. 12. Due to
poor generalization ability, YOLOv3-tiny and other models are
unable to identify abnormal crops when faced with new com-
plex scenarios. The improved YOLOv7-FDAC model greatly
improves the model generalization ability, reduces the missed
detection rate, and detects more targets. Although YOLOX-s
can also detect abnormal banana plants relatively completely,
there are more false detections in some heavily shielded areas.
In summary, the detection accuracy of the improved YOLOv7-
FDAC in this article is generally higher than that of other models,
and the detection effect is improved on the whole, which further
verifies the effectiveness of the improved model.

2) Calculation of Crop Location Based on RGB Images:
In order to evaluate the reliability of the crop position solv-
ing method proposed in this article, we manually placed and
recorded the position of a simulated tree and a reference for

Fig. 13. Comparison of detection results for each model.

modeling the position of an abnormal banana tree in an agricul-
tural field, which is schematically shown in Fig. 13. One image
was taken at each location of 5, 10, 15, 20, 25, and 30 m from
the simulated tree at an angle of 60° from the top view angle,
and its coordinates were solved by the crop position mapping
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Fig. 14. Simulated robot working environment. (a) Robot working environ-
ment simulation. (b) Simplified simulation of a robot’s working environment.
Note: The darker the red, the higher the severity.

Fig. 15. Comparison of detection results for each model.

method presented in this article and compared with the recorded
position information.

The results as shown in the Table V, the position of the
tree can be solved if the distance between the crop and the
camera is between 5 and 25 m. Due to the large size of the
tree, a clustering method is used to calculate its position, and
the center point of the cluster is considered as the tree position,
and the change of the center point position leads to the error.
In addition, the systematic error of the camera is also partly

Fig. 16. Comparison of detection results for each model.

Fig. 17. Simulated robot working environment. (a) Distance and time required
for robots to complete tasks using different path planning algorithms. (b) Total
value of images captured by robots using different path planning algorithms.

responsible for the error. However, the robot needs to be at a
certain distance from the target to capture the complete image
of the target, so a reasonable error is considered acceptable. If
the distance between the tree and the camera is greater than
25 m, the tree location is in the infinite focus range, and it is not
possible to calculate the tree location from the image and the
camera’s internal reference.

3) Simulation Test of Robot Image Acquisition Based on IHO:
To verify the effectiveness of the IHO proposed in this article, we
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TABLE VI
EXPERIMENTAL COMPARISON OF YOLOV7-FDAC WITH OTHER MODELS

simulated the robot working environment as shown in Fig. 14(a)
with reference to the planting situation of banana plants in real
environment, and randomly generated five abnormal banana
trees in the environment. The simulation experiment was con-
ducted in MATLAB 2023a, and the environment shown in Fig.
14(a) was further simplified into Fig. 14(b), where green circles
indicate normal banana trees, red circles indicate abnormal
banana trees, and the color depth indicates its severity, and the
darker the color, the higher the severity.

We used traditional ACO and traditional particle swarm opti-
mization (PSO) as a comparison, and conducted ten trials under
the same environment and configuration to select the optimum
among them. The main process is that the robot starts from the
starting point, goes through all the targets to collect images, and
finally returns to the starting point. The results are shown in
Figs. 15 and 16, the traditional ACO and PSO are more likely
to fall into the local optimum solution, converge slowly, plan
paths that are not smooth enough, have redundant turning points,
and increase the path length and danger of the robot. The IHO
proposed in this article converges to the optimal solution after 39
iterations, which significantly improves the convergence speed,
while the path is smoother.

Although the path length planned by IHO is not the short-
est, it considers the urgency of pest control in agriculture and
prioritizes the acquisition of images of abnormal crops. For this
reason, this section proposes a method of scoring the value of the
collected data per unit of time, where the higher the value of the
image data collected by the robot within a certain period of time,
the higher the relevance of its target, which is more consistent
with the high-quality image collection method proposed in this
article. As shown in Fig. 14(b), the severity of abnormal trees
is classified into six levels, I–VI, based on the CADI score. The
value of images corresponding to abnormal crops was scored
according to Table II.

We made the three robots R1, R2, and R3 use ACO, PSO,
and IHO for path planning, respectively, and made robot R4 use
patrolling for image acquisition tasks. Timing was done from
the start of the robots’ operation, and statistics were performed
every 10 min to calculate the image value score, and the results
are shown in Fig. 17.

The robot performed the image acquisition task with 1.1%
less path length and 1.9% less elapsed time for IHO compared
to the unimproved ACO. Because the IHO first selects distant
targets and high crops rather than closer crops, its average path
length increases by only 0.5% and elapsed time by only 0.04%
compared to the PSO. Similarly, no anomalous crop images were
captured by robot R3 during the first 10 min, giving it a score of 0.
However, for the 20th, 30th, and 40th min of the statistics, robot
R3 obtains image value scores of 120, 220, and 280, respectively,
which are much higher than those of R1 and R2. In summary,

it is shown that IHO is able to find a better path solution for
solving a multiobjective problem, obtain a better traversal order,
and thus plan a path that is more consistent with the strategy of
high-quality image acquisition.

4) Comparison of Image Efficient Acquisition Strategy With
Traditional Image Acquisition Methods: To evaluate the impact
of the image acquisition method proposed in this article on
the image acquisition efficiency and data volume, we compare
it with a traditional patrol-type image acquisition robot. The
patrol-type image acquisition robot cannot determine the loca-
tion of the abnormal crop, so it acquires images of the crop
regardless of whether it is normal or not. The experiment was
conducted in an environment based on Fig. 14, and the operation
routes of both are shown in Fig. 16. The total distance traveled
to perform an acquisition task, the total time spent, the amount
of image data, and the IVAD score were used as evaluation
metrics, where the IVAD score was obtained by calculating (5).
The results are shown in Table VI.

The results showed that although the total data value score
obtained by the traditional image acquisition method was as
high as 670, a large number of images of normal banana trees
were acquired, resulting in data redundancy, and thus the IVAD
score was only 2.5. In addition, the increased amount of data also
put great pressure on network transmission. Compared with the
traditional acquisition method, the image acquisition method
proposed in this article saves 34.9% and 62.1% in the distance
traveled and time consumed in performing the acquisition task,
respectively, which greatly improves the acquisition efficiency,
while the IVAD is improved by 7.76 times. In summary, the
present method proposed in this paper can effectively reduce
data redundancy, improve data value density, relieve network
pressure, and improve image acquisition efficiency.

VI. CONCLUSION

This article focuses on the problem of how to efficiently
manage crops in agricultural production, and focuses on a
high-quality image acquisition method for crops to ensure that
crop abnormalities can be detected in time. An abnormal crop
image data acquisition method based on edge intelligence and
motion–static cooperation is proposed, which integrates the
respective advantages of static acquisition nodes and motion
acquisition nodes to optimize the image acquisition process, and
at the same time proposes a heuristic path optimization algorithm
based on the severity of the abnormal crop to improve the
operation efficiency of the robot. Compared with the traditional
method, the method exhibits superior performance in terms of
the time to perform the acquisition task, the cost of image data
transmission, and the value of image data, providing potential
benefits for precise and real-time agricultural monitoring and
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management. The study helps to improve the level of intelligent
and precise management of agriculture, reduce labor cost, and is
of great significance in promoting the accelerated development
of intelligent agriculture.
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