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Abstract—Water hyacinth (WH) is a notorious invasive species
that significantly threatens ecosystems worldwide. Despite WH’s
well-documented threats and effects, its spatial distribution is not
yet fully understood, especially in complex environments such as
wetland systems. This knowledge gap is primarily due to the lack
of accurate techniques with high spatial resolution and reliable in
situ field data for quantification and monitoring. To address this
research gap, we conducted a study to map the spatiotemporal
distribution of invasive WH in Anzali International Wetland, Iran,
using Sentinel-2 Multispectral Instrument 2022 data. Specifically,
our study aimed to identify multispectral remote sensing variables
and in situ field data using machine learning (ML) methods to detect
and map WH growth cycles. In the first phase of our study, we
compared three ML models for detecting WH and discriminating
from other classes. Our results demonstrate that ML algorithms
can detect WH accurately. In the second phase, we used four images
dominated by four growth stages: early, mid, high, and decaying
stages to train our ML classifier. We used the random forest
algorithm for training our training samples achieving an overall
classification accuracy of over 98%. These findings were further
supported by statistical analysis, such as F1 (above 96%) and inter-
section over union (above 92%), indicating the high-performance
quality of the used algorithm. Our study provides valuable insights
into using ML algorithms for mapping WH growth cycles, which
can significantly contribute to effectively managing and monitoring
invasive species worldwide.

Index Terms—Anzali wetland, growth cycle, machine learning
(ML), random forest (RF), Sentinel-2 (S2) time series, water
hyacinth (WH).

NOMENCLATURE

Abbreviation Definition
AIW Anzali International Wetland.
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S2 Sentinel-2.
NDVI Normalized Difference Vegetation Index.
DA Discriminant analysis.
ML Machine learning.
RF Random forest.
MLP Multilayer perceptron.
SGD Stochastic gradient descent.
CNN Convolutional neural network.
OV Other aquatic vegetation.
SW Shallow water.
DW Deep water.
TV Terrestrial vegetation.
WH Water hyacinth.
WH1 WH in early stage.
WH2 WH in mid stage.
WH3 WH in high stage.
WH4 WH in decaying stage.
OA Overall classification accuracy.
AUC Area under the curve.
IoU Intersection over union.

I. INTRODUCTION

INVASIVE species can threaten biodiversity, ecological sta-
bility, and human well-being in natural ecosystems world-

wide [1], [2]. Among them, Eichhornia crassipes, commonly
known as WH, is one of the most notorious aquatic invaders due
to its rapid growth, high reproductive capacity, and ability to
form dense mats that impede water flow and reduces dissolved
oxygen levels [3].

WH can cause significant ecological and economic damage to
wetland ecosystems [4]. WH has been reported as a significant
problem in Iran in AIW, the largest and most important wetland
in the Caspian Sea region [5]. The AIW is a critical Ramsar
site and a major ecological hot spot in the Caspian Sea basin,
hosting a rich diversity of flora and fauna and providing various
ecosystem services to local communities [6]. However, the inva-
sion of WH has become a severe challenge to the conservation
and management of the AIW, threatening its biodiversity, water
quality, fishery, tourism, and other benefits [7]. Due to WH’s
rapid growth and spread, monitoring and mapping the growth
stages of WH in the wetland is crucial for developing effective
management strategies to mitigate its negative impacts.
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Manual surveys involve visually inspecting water bodies to
identify the presence and distribution of WH and other water
plants. These surveys are typically conducted by trained person-
nel who travel along the shoreline or in boats, visually inspecting
the water surface for signs of invasive species. The surveys can
be conducted regularly to monitor changes in the distribution
and density of water plants over time. Traditional methods for
monitoring WH, such as field surveys and aerial photography,
are time consuming, labor intensive, and expensive and may not
provide up-to-date or comprehensive information [8].

In recent years, remote sensing has emerged as a powerful
tool for monitoring invasive species in aquatic environments,
providing synoptic and repetitive coverage of large areas with
high spatial and spectral resolution [9]. To effectively manage
and control the spread of WH in AIW, accurate and timely
information on its distribution, growth, and dynamics is essen-
tial [10]. Therefore, there is a growing interest in using remote
sensing data and ML techniques to monitor invasive species in
wetlands, as they offer advantages in cost-effectiveness, spatial
and temporal coverage, and accuracy [11].

Remote sensing satellites can monitor WH and other water
plants through various sensors, including multispectral, hyper-
spectral, and radar sensors. Multispectral sensors capture data in
multiple wavelengths of the electromagnetic spectrum, allowing
for identifying different types of vegetation based on their spec-
tral signatures [12]. Hyperspectral sensors capture data in a more
significant number of narrow spectral bands, providing greater
detail on vegetation composition [13], [14]. Radar sensors can
penetrate vegetation canopies to capture information on plant
structure and biomass [15], [16].

Recently, ML algorithms have shown great potential for accu-
rately detecting and mapping WH in wetland ecosystems [17].
ML algorithms have been increasingly used for remote sensing
applications, including detecting and mapping vegetation cover
in wetland ecosystems [18], [19]. ML algorithms can be trained
using data from remote sensing satellites, which capture plant
distribution and density data. These data can be used to identify
patterns and relationships that can be used to accurately predict
the presence and growth of WH and other water plants. Various
ML techniques can be used for this purpose, including decision
trees, RFs, and neural networks [20].

Several studies have demonstrated the effectiveness of remote
sensing and ML for WH detection and mapping of different
wetlands around the world, including Lake Victoria in East
Africa [21], the Río de la Plata Turbid in Argentina [22], and
Lake Tana in Ethiopia [18]. Previous studies have demonstrated
the effectiveness of ML-based approaches for detecting WH in
other water bodies [23], [24].

Sibanda et al. [25] used the DA to classify WH in two dry
and wet seasons from Landsat 8 images. They achieved an
overall accuracy of 95% and highlighted the effectiveness of or
accurately detecting WH growth. In another study, Mukarugwiro
et al. [26] used an RF algorithm to map spatiotemporal changes
of WH in Rwandan water. They used time series of Landsat
images and achieved an overall accuracy of 87%. The study
highlighted the potential of RF for WH detection and provided
valuable information for effectively managing the weed.

Rodríguez-Garlito et al. [27] used a CNN model to detect WH
by S2; they found that a comprehensive training set of WH at
different stages of its biological life cycle could be collected
by visually interpreting the S2 images. They also demonstrated
that the CNN model only needed to be trained once using a
high-resolution image to extract the most representative samples
in the study area, allowing invasive plants to be separated from
other land cover surfaces. Also, in another work, they developed
a new CNN method for detecting invasive aquatic plants in S2
images using different spectral indices. The researchers found
that training the CNN model with spectral indices provided bet-
ter detection accuracy than training it with all available spectral
bands. The article suggests that this new method could lead to
more efficient and effective data processing [28].

No single ML algorithm can handle all pattern recognition
tasks due to differences in texture and spectral reflectance of the
ground features, and different algorithms often produce vari-
able results [29]. Moreover, the relative performance of various
classification methods will vary by season due to changes in
the physiological characteristics of plants and the life cycle
influence on spectral reflectance. However, accuracy is crucial
for evaluating the performance of a classifier. Although WH
threats and effects have been thoroughly documented, its spatial
distribution is still poorly understood. Researchers continue to
strive to identify WH, as previous research in this field has
yielded insufficient outcomes. This persistent pursuit is driven
by several compelling reasons, which are as follows.

1) Lack of in situ field data: One significant challenge in
mapping WH growth cycles is the lack of reliable in situ
field data. In many cases, inaccessible areas or insufficient
resources for access make it difficult to collect in situ field
data. Moreover, due to the rapid growth of WH, continuous
monitoring is required, which makes in situ field data
collection not cost-effective. The absence of in situ field
data can lead to inaccurate classification results, which
can affect the overall performance and reliability of the
algorithm.

2) Cloudy images: The presence of clouds in optical data is
another challenge in mapping the WH. Clouds can obstruct
the view of the earth’s surface, making it difficult for
satellites to accurately measure changes in WH that are
influenced by seasonal cycles. Cloud cover can also vary
spatially and temporally, leading to incomplete datasets
that can affect the accuracy of the classification results.

We implemented a systematic field observation approach to
overcome the limitations posed by cloud coverage in our study
area. This involved conducting weekly field visits to the area
of interest, which allowed us to collect supplementary data to
compensate for the lack of clear satellite images. The primary
objectives of these field observations were as follows:

1) to obtain in situ field data for the validation of remote
sensing results;

2) to identify potential discrepancies between satellite im-
ages and land surface conditions;

3) to ensure a continuous flow of information to support
our analysis, regardless of the availability of cloud-free
satellite images.
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During each field visit, we collected data on vegetation cover,
land use, and other relevant environmental parameters using a
combination of direct measurements, photographic documenta-
tion, and field notes. These field observations were then used
to augment the remote sensing data, allowing us to understand
the study area comprehensively despite the challenges posed by
cloud coverage.

Therefore, our primary objective is to prepare a spatial–
temporal distribution map of WH in AIW using the ML classi-
fier. The secondary goal is the identification of multispectral
remote sensing variables and in situ field data using ML to
detect and predict the growth stages of WH. While previous
studies have examined the use of remote sensing and other
technologies to monitor vegetation growth cycles, none have
specifically focused on using ML algorithms to map the growth
cycles of WH. Therefore, our study represents a novel approach
that can contribute to advancing scientific knowledge in this area
and has practical implications for management and planning.

This work contributes in two significant ways. First, we have
developed a novel approach that combines ML algorithms and
S2 satellite data to accurately detect and map the spatiotemporal
distribution of WH in a complex wetland environment. Our
approach offers a reliable and efficient solution for monitoring
WH, providing valuable insights for decision-making processes
and effective management strategies. Second, our research has
uncovered exciting findings regarding the spectral signature of
WH during different stages of its growth stage and its NDVI.
We demonstrated that the spectral signature of WH in each
growth stage has distinct differences, enabling the detection of
different growth cycles using a single image. We demonstrated
the effectiveness of the RF algorithm in detecting WH growth
stages with high accuracy. This finding highlights the potential of
ML techniques in accurately identifying and tracking the growth
stages of WH, enabling timely interventions and management
actions. Our study contributes to environmental monitoring and
management by providing a practical and reliable approach for
mapping WH spatial distribution and growth stages. The insights
gained from this research can support decision makers and
conservationists in implementing effective strategies to mitigate
the impact of invasive species on ecosystems.

The rest of this article is organized as follows. Section II
describes the study area, in situ field and satellite datasets,
data labeling, and methodology. Results and discussions are
presented in Section III. Finally, Section IV concludes this
article.

II. MATERIALS AND METHODS

A. Study Area

AIW (see Fig. 1), located in northern Iran, is one of the
most significant wetlands in the Middle East and a designated
UNESCO Biosphere Reserve. It covers an area of approximately
19 000 hectares and is a critical habitat for many endangered
species, including birds, fish, and reptiles. However, it is cur-
rently included in the Montreal List because the wetland faces
significant threats, including pollution, habitat loss, and the
invasive WH.

Fig. 1. Top: Our study area located in Guilan Province, Iran. Bottom: False
color composite of S2 imagery over AIW.

Fig. 2. Field observations of WH growth stages. From left to right: early stage,
mid stage, high stage, and decaying stage.

WH was first introduced to the AIW in 2013 and has since
spread rapidly, leading to significant ecological and economic
impacts. The plant forms dense mats on the water surface,
reducing light penetration and oxygen exchange, which can
result in the death of aquatic fauna and flora. The presence of WH
also impacts local fishing and agriculture industries, hindering
water transportation and irrigation activities. A study found that
parts of AIW with a stable presence of WH daily had a 0.2-cm
drop in water height, 2.5 times more than the areas without WH
cover [30].

B. In Situ Field Data and Satellite Datasets

To accurately map the spatial distribution of WH in the AIW,
we conducted regular visits to identify sites infested with WH
and observe different growth stages simultaneously. During
these visits, we collected data on different attributes of WH, in-
cluding its flowering condition, growth stage, vertical stem, and
corresponding S2 data with cloud percentage. Table I presents
the different attributes of WH and corresponding S2 data with
minimal cloud cover used for mapping WH growth stages. Fig. 2
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TABLE I
FIELD OBSERVATIONS OF WH GROWTH STAGES IN AIW WITH CLOUD PERCENTAGE OF S2 IMAGES AND CHOSEN S2 IMAGES WITH MINIMAL CLOUD COVER FOR

MAPPING WH GROWTH CYCLE

illustrates the progression of WH growth stages at various time
points.

C. Data Labeling

To accurately map the spatial distribution of WH in AIW, we
identified different classes inside and outside the wetland. The
classes identified were WH, OV, DW, SW, and TV. The classi-
fication system we used aimed to discriminate WH from other
classes. To achieve this, we used labeling data to train the classi-
fication system. The data labeling stage consisted of three parts.

First, a hand-held GPS was utilized to collect ground coordi-
nates from diverse classes, resulting in a total of 182 geograph-
ical coordinates. These coordinates served as reference points
for the different classes present in the study area.

Second, as shown in Fig. 3, manual identification and labeling
are conducted. By manually labeling the point samples, the clas-
sification system could learn the distinguishing characteristics
of each class. In total, 8250 labels were assigned, covering areas
with WH, OV, DW, SW, and TV. The manual labeling process
ensured that the classification system learned the distinguishing
characteristics of each class. Finally, the labeled areas were
cross-checked with the ground coordinates obtained in the first
stage. This step ensured that the classification system was trained
using precise and reliable data, aligning the labeled areas with
the corresponding in situ field data coordinates.

This approach of point sampling and manual labeling is a
reasonable way to label the data for several reasons. First, in
situ field data collection through GPS observations allows us
to gather information from specific locations within the study
area. This approach ensures that the labeled data represent the
actual classes present in the wetland environment, improving
the accuracy and reliability of the classification system.

Fig. 3. Example of point sampling inside AIW, where WH = water hyacinth,
OV = other aquatic vegetation, SW= shallow water, DW = deep water, and
TV= terrestrial vegetation.

Second, manual identification and labeling enable us to
visually discern and label different areas based on their char-
acteristics. This approach uses human expertise to distinguish
between classes, especially when dealing with complex and
heterogeneous environments like wetlands. Manual labeling
allows us to capture the subtle variations and patterns in the
imagery that other methods might miss, such as changes in
the plant growth cycle, water depth, and other characteristics,
resulting in more accurate classification results. By employ-
ing this data labeling process, we ensured that the classifica-
tion system was trained using precise and reliable data, en-
hancing its ability to classify the various classes in the data
accurately.
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Fig. 4. Flowchart of our method used for WH mapping, where WH1 = WH
in early stage; WH2 = WH in mid stage; WH3 = WH in high stage; and WH4
= WH in decaying stage.

D. Methodology

Fig. 4 graphically shows the workflow adopted in this re-
search. The process begins with acquiring multispectral images
over the AIW via the S2 satellite. We procured S2’s Multispectral
Instrument Level-2A data from the Copernicus Open Access
Hub.

Following the data acquisition, several preprocessing tech-
niques are applied to the images. These techniques include spec-
tral subsampling, atmospheric correction, spatial resampling,
and combining of the 10-m bands from the S2 data, comprising
the red (R), green (G), blue (B), and near-infrared (NIR) bands,
and masking land-water area.

Subsequently, the preprocessed images are then extracted
for the case study area. The data are then labeled according
to the protocol outlined in Fig. 3, which involves the manual
identification and point labeling of the various classes available
for the training and validation of the classification system.

In this research, we employ three classification algorithms,
i.e., RF, SGD, and MLP, chosen for their demonstrated ef-
ficacy in past studies [31], [32], [33]. The algorithm that
yields the highest performance is selected for the secondary
objective.

We then proceed to analyze the accuracy of the classification
results using diverse evaluation metrics, such as overall accuracy,
the Kappa coefficient, and F1-score, as well as recall, precision,
IoU, and the receiver operating characteristic (ROC) curve.
Subsequently, ML models are utilized to generate an automated
map of WH based on the classification results.

Simultaneously, we collect and analyze the spectral signatures
and NDVI at various growth stages as part of the secondary
objective. This analysis provides valuable insights into the
spectral characteristics and vegetation dynamics associated with
WH, which can be used for inference. In the final stage, an
automated map of WH growth stages is generated using the
chosen ML model. We evaluate the outputs by comparing them

TABLE II
CLASSIFICATION RESULTS OF MLP, SGD, AND RF CLASSIFIERS

with the in situ field data, using calculating different accuracy
measures. The methodology employed in this study has been
designed to be robust and adaptable under varying environmental
conditions and data availability.

III. RESULTS AND DISCUSSION

A. Phase I: WH Detection

The classification task in this phase was performed on a
single image containing five classes: WH, DW, SW, TV, and
OV. The workflow of the study is presented in Fig. 4. The
dataset used for this classification comprised 8250 samples,
with 6600 samples allocated for training the ML algorithms and
1650 samples for testing and validation. This dataset division
allowed for robust evaluation of the classification algorithms’
performance on unseen samples. Three ML algorithms were
evaluated, namely, RF, MLP, and SGD, which were found to
perform the best in classification outcome. The RF algorithm
was configured with 700 estimators and a depth of 5, while the
MLP algorithm was configured with six layers of neurons and
a batch size of 8. The SGD algorithm was configured with a
learning rate of alpha = 0.02; to enhance the performance of the
MLP and SGD algorithms, we applied min–max normalization
to the input data.

Based on their classification accuracy, the algorithms were
compared. The RF algorithm was found to be the most accu-
rate in detecting WH, achieving an overall accuracy of 91.5%.
The detailed results of the three algorithms evaluations and
accuracies of the different classes are presented in Table II.
The confusion matrix for the three algorithms is shown in
Fig. 5, which indicates the number of correctly and incorrectly
classified pixels for each class. The ROC curves for the three
algorithms are shown in Fig. 6, which demonstrate the tradeoff
between sensitivity and specificity for different classification
thresholds. The output models for the three algorithms are shown
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Fig. 5. Confusion matrix for WH mapping and discrimination, where WH = water hyacinth (target class); OV = Other aquatic vegetation; SW= shallow water;
DW = deep water; and TV= terrestrial vegetation. (Left) MLP. (Middle) SGD. (Right) RF.

Fig. 6. ROC curves of the three classifiers: (left) MLP, (middle) SGD, and (right) RF, represented as “one versus rest” for each class in the dataset. Numbers in
brackets are the AUC values. The ROC curve of the target class, i.e., WH, is shown in dark green.

in Fig. 7, which illustrate how each algorithm classifies the
different classes in the image.

The confusion matrix revealed that the RF algorithm could
correctly classify the WH class with a high accuracy of 90%.
The RF algorithm also performed well in classifying the other
classes, with accuracies of 94% for OV, 98% for SW, 84% for
DW, and 96% for TV. However, MLP and SGD algorithms
showed lower accuracy in detecting WH and distinguishing SW
and DW. As explained in Section I, accurate recognition and
separation of these areas are essential due to the impact of WH
on the water height of the wetland. The ROC curve analysis
demonstrated that the RF algorithm had the highest AUC value
of 0.99, indicating its superior performance in classification
accuracy. In contrast, the MLP and SGD algorithms had lower
AUC values of 0.987 and 0.983, respectively. Regarding the IoU
accuracy, WH had the highest IoU accuracy of 91%, while the
other classifications had the lowest IoU accuracy of 82.3% and
80.1%, respectively.

RF’s ability to avoid overfitting and be more robust to missing
data and outliers makes it a suitable algorithm for this task. MLP
and SGD did not perform as well as RF due to their respective
limitations, such as lower resistance to noise and missing data.
Although the training data and workflow were the same for all
three models, it is important to note that relying solely on results
may not provide a complete picture of the model’s performance.
In this case, despite using the same data and workflow, the SGD

algorithm showed errors in the TV in the southeast of AIW
compared to Fig. 7.

This highlights the importance of visually comparing the
classification maps with the RGB image and in situ field data. By
comparing them, we can gain a deeper understanding of their
strengths and limitations. This analysis allows us to identify
areas where the model may struggle. Overall, the results indicate
that the RF algorithm is the most effective ML algorithm for
accurately detecting and classifying WH and other vegetation
classes from remote sensing data. This matter can provide
valuable information for monitoring invasive species in aquatic
ecosystems.

B. Phase II: Modeling WH Growth Stages

1) Spectral Signature of WH Growth Stages: Our research
has yielded fascinating insights into the spectral signature of
WH during its various growth stages and its NDVI of sample
points of our field visits. Through spectral signature analysis
and NDVI calculations, we have confirmed that the data can
effectively detect the differences in WH growth stages depicted
in the image. This provides a solid foundation for utilizing
ML models to accurately identify and classify these variations.
Building upon this analysis, we proceeded to separate each stage
of WH growth by labeling them. As presented in Fig. 8(a),
our investigation into WH’s spectral signature revealed that
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Fig. 7. (a) RGB composite of S2 image acquired on 14 June 2022 over AIW and classification maps of three different ML classifiers: (b) MLP, (c) SGD, and
(d) RF.

Fig. 8. (a) Spectral signature of WH growth stages for S2 spectral bands (B2,
B3, B4, and B8). (b) Kernel density of NDVI plots of WH growth stages.

the plant exhibits higher chlorophyll content during the growth
phase, leading to increased reflectance in the NIR regions of the
electromagnetic spectrum.

We also computed the kernel density of the NDVI for the
sampling points. The probability distributions of the WH growth
stages for the NDVI values of sampling points are shown in
Fig. 8(b). The higher NDVI values are clearly observed during
the high stage. In contrast, during the decaying stage, the chloro-
phyll content decreases, resulting in reduced reflectance in these
regions and lower NDVI values, indicating the presence of a
decaying plant. The behavior of WH during the low stage, where
a greater difference in reflectance due to higher chlorophyll
content is expected, is associated with the plant’s youth. One
possible explanation for this is saline water. Salty water in the
AIW can impose stress on plants, including WH. Salt stress can
disrupt nutrient uptake, water balance, and metabolic processes,
leading to alterations in chlorophyll synthesis and reflectance
properties. The impact of saline water on WH during the low
stage can diminish the expected differences in chlorophyll con-
tent and reflectance, as the plant may allocate resources toward
coping with the salt stress rather than maximizing chlorophyll
production. Another possible explanation is the utilization of the
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Fig. 9. RGB composite of S2 images used in phase II on four different dates: (a) 31 March 2022, (b) 25 April 2022, (c) 14 July 2022, and (d) 26 November 2022.
Images (b) and (d) appear darker due to the sunrise capture time.

S2 Multispectral Instrument satellite data. Using a hyperspectral
sensor would be beneficial to analyze the spectral signature
in greater detail. Hyperspectral data provide a higher spectral
resolution, allowing for a more precise characterization of the
spectral properties of WH during different growth stages.

These findings highlight the potential of leveraging spectral
data and NDVI measurements to detect and infer WH growth
stages, which can have significant implications for managing
and controlling invasive species.

Moreover, the insights gained from our research shed light
on the physiological changes that occur during the growth cycle
of WH. In line with the previous phase results, which identified
the RF algorithm as the best choice for classification, in this
phase, we employed the RF for the detection and inference of
WH growth stages. Applying the RF algorithm enhances our
ability to classify and infer WH growth stages accurately.

In summary, our research demonstrates the importance of
spectral signature analysis, NDVI calculations, and classifica-
tion processing in detecting and separating the growth stages

of WH depicted in the image. These steps lay the ground-
work for further analysis and provide valuable insights into
the physiological dynamics of WH. By combining these tech-
niques, we achieve accurate classification and inference, con-
tributing to a deeper understanding of WH growth patterns
and supporting effective management strategies for invasive
species.

2) Detection and Inference: For the modeling of WH growth
stages, our study utilized a dataset consisting of four images,
as shown in Fig. 9, each representing at least two WH growth
stages at each time point. The dataset comprised a total of 5100
samples, with 4080 samples used for training the RF model and
1020 samples for testing and validation. This dataset division
allowed for accurate classification of the different growth stages
of WH and reliable evaluation of the model’s performance.
We trained a RF model with 500 estimators and a depth of
5 using spectral bands and corresponding labeled data. As
listed in Table III, the RF algorithm demonstrated an impres-
sive overall accuracy of 98.9%. In addition, the IoU accuracy
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TABLE III
CLASSIFICATION RESULTS OF RF CLASSIFIER

Fig. 10. RF confusion matrix of WH growth stages, where WH1 = WH
in early stage, WH2 = WH in mid stage, WH3 = WH in high stage, and
WH4 = WH in decaying stage.

Fig. 11. ROC curves of WH growth stages, represented as “one versus rest”
for each class. Numbers in brackets are the AUC values.

was consistently high for all classes, ranging from 92.4% to
98.0%. To evaluate the accuracy of the classification model, we
employed a confusion matrix and ROC curve analysis. Fig. 10
shows the confusion matrix demonstrated that the RF algorithm
accurately detected and classified each WH growth stage based
on their unique spectral signatures in a single image, with an
impressive accuracy of over 96% for each class. Fig. 11 displays

the ROC curve analysis provided a graphical representation of
the tradeoff between true positive and false positive rates for
different classification thresholds. The RF algorithm exhibited
exceptional performance, with an outstanding AUC value of
0.999, indicating its superior classification accuracy. Altogether,
the ML methodology employing RF algorithm achieved a high
classification accuracy in inference and classifying the different
growth stages of WH from S2. The predictive model can be used
to monitor the growth stages of WH to prevent early spread.

The analysis of the output maps in Fig. 12 illustrating the
growth stages of WH offers valuable insights into the signifi-
cance of these visual representations. To gain a deeper under-
standing of the importance of these output maps, we provide an
interpretation. In Fig. 12(a), we can clearly observe the presence
of both the low and the decaying stages. The decaying stage
signifies the remnants of plants from the previous year. Ideally,
effective mitigation efforts would have aimed to minimize the
extent of the decaying stage in this image, underscoring the sig-
nificance of implementing successful control measures against
WH to induce an alternative growth cycle. As can be seen in
Fig. 12(b), there are small patches of the mid growth stage in
the southern region of the wetland. This occurrence may be
attributed to the elevated humidity prevalent in the study area,
coupled with the influence of urban sewage, which accelerates
the growth of WH vegetation. The decaying stage has either
transitioned into the low stage or has been displaced by wind
to the southeast, outside the water area of AIW. It is plausible
that the remaining decaying stage has been consumed by avian
species due to the rich biodiversity of the AIW habitat herbivo-
rous fish. The low stage, which was initially observed in the first
image, has advanced to the mid stage. Certain portions have been
carried southeastward by the prevailing winds, while the rest
continues to persist in the northwest. It is of utmost importance
to implement prompt measures to prevent the progression of
the mid stage to the high stage, as a crucial component of an
effective WH management strategy. Consequently, the identifi-
cation and utilization of this specific stage in Fig. 12(b) become
increasingly significant.

In Fig. 12(c), which holds significant scientific value, we
can observe all four stages of WH growth. This comprehensive
representation underscores the potential for WH to permeate the
entire ecosystem when adequate control measures are lacking.
As WH reaches the flowering stage, its detrimental impact on
the aquatic indigenous wildlife becomes evident, resulting in
their demise due to the emission of mustard gas by the plant. It
is noteworthy that WH plays a substantial role in the desiccation
of AIW. Over the course of our year-long study, we observed a
significant decrease in the average wetland depth from 150 to
50 cm, with WH being one of the contributing factors to this
drying phenomenon. Fig. 12(d) showcases three stages of WH
growth, with the decaying stage being prominently present. The
decaying stage signifies the culmination of the WH growth cycle.
Without proper intervention, this cycle will persist, leading to
the destruction of AIW. Emphasizing the significance of taking
necessary measures to prevent the recurrence of this cycle, it is
imperative to implement effective strategies for the preservation
of AIW.
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Fig. 12. Detection of WH growth stages on (a) 31 March 2022, (b) 25 April 2022, (c) 14 July 2022, and (d) 26 November 2022 overlaid on false color composite
image (NIR, R, G).

IV. CONCLUSION

Invasive species such as WH can significantly impact aquatic
ecosystems, necessitating effective monitoring and control mea-
sures. Our study has demonstrated the potential of ML algo-
rithms and remote sensing data for accurately detecting and
monitoring the growth stages of WH in aquatic ecosystems.

Although CNN-based methods have demonstrated strong per-
formance in various computer vision tasks, we chose not to
incorporate them in this study due to several reasons. First, we
focused on exploring alternative approaches that could provide
complementary insights into WH growth stages. Second, CNN-
based methods are pixelwise, meaning that they operate at the
individual pixel level, which often requires a large amount of
labeled data for training. However, obtaining such labeled data
for WH growth stage analysis, especially when dealing with
different plant species coexisting, like AIW, can be challenging.
Therefore, we relied on in situ field data to ensure accurate
labeling. Finally, by adopting non-CNN techniques, we aimed to
explore the feasibility of simpler and more interpretable methods
for WH growth stage detection and inference.

We utilized freely available S2 imagery and the RF algorithm
to achieve high accuracy in classifying WH infestations and dis-
tinguishing them from other classes. Our methodology offers an

efficient and cost-effective technique for monitoring the spread
of WH, which can have significant ecological and economic
impacts on wetland ecosystems.

Our findings also highlight the importance of monitoring the
growth stages of WH. The early and mid-growth stages have
distinctive spectral signatures, which differ significantly from
the decaying stage. These spectral differences have allowed our
model to accurately predict the growth stage of WH in a given
image, providing crucial insights into the phenology and spread
of this invasive species.

One of the most significant contributions of our study is the
potential for proactive management and control measures. Our
model outputs maps of each growth stage separately, enabling
decision makers to take timely and targeted measures to prevent
the spread of WH before entering the flowering or high stage,
which is the most challenging stage to control.

Our approach provides a valuable environmental monitoring
and management tool, enabling more effective control and man-
agement of invasive species in aquatic ecosystems. Using ML
algorithms and remote sensing data provides a powerful ap-
proach for accurately detecting and monitoring invasive species,
which can aid in conserving aquatic ecosystems and protecting
their biodiversity.
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Several challenges emerged in the pursuit of operational
implementation. Notably, the growth speed of WH is linked
with pollution levels within the lake and other environmental
factors. Our data collection efforts were primarily concentrated
on a single study site and encompassed only one growth cycle.
Furthermore, cloud cover and unfavorable weather conditions
frequently obscure satellite imagery, leading to the unusabil-
ity of certain in situ data when combined with less cloudy
S2 data.

A concerted effort is required to expand our dataset to mit-
igate these challenges and enhance the accuracy of predictive
analyses. This expansion necessitates collecting additional in
situ data over multiple growth cycles, across diverse lakes
and wetlands, and under varying climate conditions. Such an
endeavor would fortify the reliability and generalizability of
our models, facilitating more effective operational monitoring
systems.

A limitation concerns the accessibility of certain WH pop-
ulations within the AIW. Instances where WH plants are lo-
cated distant from the wetland boundary present logistical
challenges for data collection endeavors. Despite our best ef-
forts, accessing these remote areas proved impractical, con-
straining our dataset’s breadth and representativeness. More-
over, the labor-intensive nature and associated costs of field
data collection present additional constraints. WH growth
dynamics exhibit rapid fluctuations, necessitating frequent
data collection to capture the full spectrum of growth stages
accurately. Addressing these limitations requires recognizing the
inherent tradeoffs between data comprehensiveness, practicality,
and cost-effectiveness. Future endeavors should navigate these
challenges effectively, leveraging methodologies to overcome
existing constraints and enhance the efficacy of WH monitoring
efforts.

In conclusion, our study provides valuable insights into using
ML algorithms and remote sensing data for accurate detection
and monitoring of the growth stages of WH in AIW. The devel-
oped methodology using S2 imagery and RF algorithm can be
applied to other areas and ecosystems for monitoring WH and
other invasive species. Our findings have exciting implications
for future research and for developing more effective monitoring
techniques for WH in aquatic ecosystems.
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