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Abstract—Crop mapping is crucial for agricultural management
and yield prediction. Currently, remote sensing-based crop map-
ping over a large region is still challenging due to the requirement
of sufficient in-season crop samples, which is commonly costly and
time-consuming. To address this challenge, a spatial and temporal
sample migration method was proposed and evaluated in three
typical agricultural counties in Heilongjiang province, Northeast
China. On one hand, ground crop samples collected from the previ-
ous two years (2020 and 2021) in Nenjiang County were temporally
migrated to the target year (2022). On the other hand, ground crop
samples collected from the year 2022 in Fujin County were spatially
migrated to the adjacent Tongjiang County for mapping crops for
the same year. This enabled crop mapping in the absence of current
crop samples. In the proposed method, the Sentinel-2 data were
primarily used to obtain target curves and reference curves for
crop samples. In addition, by balancing the quantity and quality of
migrated samples, an optimal migration rule was designed to obtain
migrated samples using the dynamic time-warping algorithm over
the study area. Finally, the migrated crop samples were used to
mapping crop distribution for the target year and region. The
results indicated that the overall accuracy can reach 95.7% with
the temporal migration in Nenjiang, whereas the spatial migration
from Fujin to Tongjiang was approximately 75.6%. The proposed
approach reveals significant potential for crop mapping without
the knowledge of in-season crop samples, especially for the use of
historical crop samples for temporal migration.

Index Terms—Crop mapping, historical crop samples, Sentinel-
2, spatiotemporal migration.

I. INTRODUCTION

W ITH the implementation of numerous remote sensing
monitoring projects, agricultural remote sensing has

been greatly promoted, leading to significant advancements in
the extraction of spatial distribution information of crops in
terms of theory, methodology, and applications [1], [2], [3].
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Compared to traditional manual field survey, the use of remote
sensing technology was considered an effective tool for mapping
crop spatial distribution and estimating crop area [4]. Nowadays,
with the development and application of machine learning, an in-
creasing number of researchers were combining machine learn-
ing with remote sensing for crops mapping, achieving significant
progress in various disciplines, and providing unprecedented
capabilities for understanding and managing the Earth’s surface.
The integration of machine learning can automatically generate
high-resolution maps and perform complex land cover classi-
fication tasks faster and more accurately than traditional man-
ual methods [5], [6]. Machine learning algorithms, particularly
deep learning models such as convolutional neural networks,
have shown significant performance in extracting features from
remote sensing images and distinguishing different land cover
categories. By analyzing multispectral and hyperspectral data,
these algorithms can detect subtle patterns and spectral features
that may not be discernible to the human eye, thereby creating
detailed and rich information maps [7], [8]. In addition, many
scholars integrated auxiliary data sources such as terrain infor-
mation, climate data, or socioeconomic indicators into machine
learning models, which can better consider spatial variability
and temporal dynamics, thereby improving the accuracy and
robustness of land cover classification [9]. However, the sole use
of machine learning combined with remote sensing data requires
high demands on remote sensing data, necessitating high-quality
datasets as training support [10].

Due to the discrepancy in plant pigments, water content, leaf
cell structure, and varying growth seasons or regional planting
systems, the spectral characteristics of crops were evidently dif-
ferent. This often led to the use of spectral and vegetation index
temporal features for extracting spatial distribution information
of crops [11]. In cases where planting structures were complex
or imaging data were missing, crop classification, and mapping
become more difficult, especially for crops with similar spectral
characteristics, efficient utilization of historical data becomes
essential to compensate for data deficiencies and aid in crop
classification mapping. Many scholars employed various ap-
proaches to utilize temporal data to increase data utilization rates
and combined algorithms to achieve accurate crop mapping.
Some scholars focused on advanced data processing [12], [13],
[14], or fitting time series of remote sensing data over long peri-
ods and combining them with machine learning algorithms for
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precise classification [15]. In addition, another group of scholars
concentrated on improving algorithms [16], [17]. However, most
scholars only considered the temporal attributes of current data,
making it difficult to achieve crop mapping when there was a
lack of accurate data for the current year.

Transfer learning aimed to improve the performance of a
target learner in a target domain by transferring knowledge from
different but related source domains, which was an effective
way for fully using historical or spatially adjacent samples [18].
However, most of the existing literatures on transfer learning
mainly concerned land cover mapping. In contrast, due to the
effects of human activities on croplands, transfer learning-based
crop mapping received less attention. Currently, the Euclidean
distance, spectral angle distance, and dynamic time warping
(DTW) have been frequently used in transfer learning to ob-
tain target samples from historical information. Specifically,
Compared to traditional Euclidean distance methods, DTW
could match data that were inconsistent in time or length and
reduced the effects of noise such as cloud masking and weather
nudging [19], [20]. Meanwhile, the commonly used transfer
features for crop mapping mostly utilize vegetation indices, and
the transferred features included spectral, vegetation indices,
texture, and terrain [21], [22]. Through temporal migration of
historical samples, many scholars transferred invariant training
samples from a reference year to their specified target year,
then crop mapping with satisfactory accuracy for the target year
can be obtained by the migrated crop samples, making crop
mapping no longer rely on in-season crop samples. For instance,
by using the time-weighted dynamic time warping method to
measure the spectral-temporal discrepancies between labeled
samples from the source area and unlabeled samples from the
target area, labeled crop datasets can be automatically generated
over the target area. This can effectively solve the problem of
low inter-class similarity for crop mapping, making significant
progress in the field of crop migration mapping [23]. However,
compared to the temporal migration of crop samples, most
scholars have conducted limited exploration into spatial sample
migration. A portion of scholars have used specific models, such
as generating and updating corn and soybean distribution maps
in different regions through the image segmentation models
[24]. Nevertheless, most scholars have focused on improving
certain deep-learning methods. For instance, they have enhanced
convolutional neural networks to depict agricultural fields in
different regions using multimodal remote sensing data [25],
or improved deep learning models to study one [26], [27], or
two crops [28] by extracting specific features of these crops for
spatial migration, achieving relatively accurate mapping results.

So we defined crops as having not only temporal attributes
but also unique spatial attributes, especially for the regions with
similar planting patterns. The spatial and temporal migration
of crop samples provided a richer perspective for observing and
interpreting the dynamic nature of crops. Specifically, compared
to the temporal sample migration that normally occurs in a fixed
area, spatial sample migration was more expected because it may
provide an alternative for crop mapping across adjacent regions
with similar planting patterns, which can significantly decrease
the demand for crop mapping with sufficient local crop samples.

To this end, the present study will aim to investigate both tempo-
ral and spatial sample migrations for mapping crop without the
knowledge of current crop samples, which is especially feasible
for regions with similar planting patterns. Section II will present
the study area and data. Section III will describe the methods
used in this study. The results and discussion will be presented
in Sections IV and V, respectively, and Section VI concludes
this article.

II. STUDY AREA AND DATA

A. Study Region

In this article, three typical agricultural counties of Nenjiang,
Fujin, and Tongjiang in Heilongjiang Province, were selected as
the study area (see Fig. 1). Nenjiang County was geographically
located in the west of Heilongjiang Province, whereas Fujin and
Tongjiang were two adjacent counties located in the east of Hei-
longjiang Province. The primary reason for selecting the three
counties as study areas was that they were important commercial
grain bases of the Heilongjiang Province. Specifically, the major
corps in Nenjiang county were corn and soybean, whereas rice,
corn, and soybean were dominated in both Fujin county and
Tongjiang county. All three major crops were characterized by
an annual ripening system, and the growing seasons of the three
crops in the study areas were nearly the same. Concretely, corn
and soybean were generally sown at the middle to end of April,
and the harvest period was from late September to early October,
whereas rice was generally sown in the early to middle April,
and the harvest period was about the early October. Hence,
either for the temporal sample migration in Nenjiang County
or the spatial sample migration from Fujin County to Tongjiang
County, the planting patterns were nearly the same, which was
also an important reason for the selection of the study area.

B. Sentinel-2 Images

In order to conduct real-time monitoring of land, ocean,
natural disasters, and other natural phenomena, the European
Space Agency launched the Sentinel-2A and Sentinel-2B satel-
lites on 23 June 2015 and 7 March 2017, respectively. Both
Sentinel-2A and Sentinel-2B were equipped with a multispectral
instrument consisting of 13 channels for multispectral imaging.
Each satellite had a time resolution of ten days and was revisited
every five days. We used the level-2 product of Sentinel-2 data
on the Google Earth engine (GEE) platform, which contained
atmospherically corrected surface reflectance in the visible,
near-infrared, red-edge, water vapor, cirrus, and short-wave
infrared bands, with resolutions of 10, 20, and 60 m in each
band, respectively. The spectral curves of reflected light from
plants and other surfaces differ significantly in the visible and
near-infrared wavelengths, providing the basis for remote sens-
ing to identify and extract unique vegetation features. Compared
to using single-band information, features derived from multiple
bands were beneficial for crop identification [29]. Furthermore,
to avoid the influence of low-resolution bands on crop sample
migration, we discarded bands in the water vapor, cirrus cloud,
and visible light with a relatively coarse spatial resolution of 60
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Fig. 1. Study area of three typical agricultural counties in Heilongjiang Province. (a) Nenjiang. (b) Tongjiang. (c) Fujin.

TABLE I
DESCRIPTION OF SPECTRAL CHARACTERISTICS OF THE SENTINEL-2 DATA

m. Finally, we selected six bands-Band2 (Blue), Band3 (Green),
Band 4 (Red), Band 8 (NIR), Band 11 (SWIR1), and Band 12
(SWIR2)-with higher spatial resolution closely related to crops
in the present study, as shown in Table I.

C. Ground Survey Data

Ground field surveys were conducted in a period of three years
from 2020 to 2022. We recorded the crop types by taking pho-
tos with the camera and obtained specific coordinate locations
through OvitalMap software. The investigated ground features
included rice, corn, soybean, and others. It noted that various
other features were grouped into “Other” in the crop mapping
results because the concerned crops (rice, corn, and soybean)
account for a vast majority of the study region. Another reason
was that the present study mainly focused on the temporal and
spatial sample migration for crop mapping with the three major
crops. In the process of selecting the samples for each crop, we
tried to collect as many as possible in all ranges based on the
principles of randomness and uniformity. In Nenjiang County
(see Table II), there were 311 soybean samples and 357 corn

TABLE II
GROUND SAMPLES COLLECTED IN NENJIANG

TABLE III
GROUND SAMPLES COLLECTED IN FUJIN

samples in 2020, with an additional 20 samples for Other. In
2021, 358 soybean samples, 300 corn samples, and 21 other
samples were collected. Specifically, these samples will be used
for temporal sample migration. As for the Fujin County (see
Table III), 335 rice samples, 147 soybean samples, 145 corn
samples, and 28 other samples were collected in 2022. For
Tongjiang County, we utilized the randompoints function in the
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Fig. 2. Flowchart for crop mapping with temporal and spatial sample migra-
tion.

GEE platform to randomly generate 1000 unknown samples for
investigating spatial sample migration.

III. METHODOLOGY

A. Temporal and Spatial Sample Migrations

By using the temporal and spatial sample migration, the
method proposed in this article was expected to mapping crops
without the knowledge of current samples. Fig. 2 depicts the
flowchart of the present study. In general, the entire method
consisted of four steps in two parts. The first part was temporal
sample migration, in which ground crop samples collected from
the previous two years (2020 and 2021) in Nenjiang County
were primarily used to obtain reference curves for crops. Then,
the distance between the target curves of the migrated samples
and the reference curves was calculated through DTW, with
minimum distance regarded as indicative of the similarity be-
tween the two curves. Furthermore, to obtain migrated crop
samples for crop mapping in the target year (2022), a threshold
value was set by balancing the number of samples and accuracy
for crop mapping. Specifically, we considered the minimum
cumulative distance as favoring a particular crop type, and the
final successfully migrated crop samples were determined by the
determination of the consistency degree defined in the following
section. Finally, the successfully migrated crop samples were
used for crop mapping in the target year via random forest
(RF) algorithm. As for the second part of spatial migration,

following the similar procedure, ground crop samples collected
from the year 2022 in Fujin County were spatially migrated
to the adjacent Tongjiang County for mapping crops for the
same year. Specifically, the Sentinel-2 sample data constructed
in 2022 in Fujin County and the randomly generated sample
data in Tongjiang County were primarily conducted to obtain
feature sequences. Further, the distance between the two feature
sequences was calculated using the DTW algorithm for label
matching. Similar to temporal migration, a consistency degree
was determined to obtain the finally migrated crop samples from
Fujin County to Tongjiang County. The following sections will
illustrate the key steps of the proposed approach in detail.

B. Determination of Crop Features

In the proposed approach, optimal crop features were required
to distinguish various crops. To this end, we selected ten features
from multiple spectral bands sensitive to the growth response
of major crops using the advantage of high spatial and tem-
poral resolution and a large number of spectral bands of the
Sentinel-2 data, which was beneficial to minimize the effects
of soil background, atmospheric, and solar targeting sensors.
Specifically, some of these features were recognized as helpful
and advantageous for the migration identification of maize,
soybean, and rice [30], [31], [32], [33], [34], [35], [36]. The ten
features were enhanced vegetation index (EVI), renormalized
difference vegetation index, triangular vegetation index (TVI),
land surface water index (LSWI), soil-adjusted vegetation index
(SAVI), modified chlorophyll absorption ratio index (MCARI),
structure insensitive pigment index (SIPI), difference vegetation
index (DVI), enhanced vegetation index 2 (EVI2), and modified
soil-adjusted vegetation index 2 (MSAVI2), which can be written
as follows:

EVI = 2.5× ρnir − ρred

ρnir + 6× ρred − 7.5× ρblue + 1
(1)

RDVI =
ρnir − ρred√
ρnir + ρred

(2)

TVI=0.5× [120× (ρnir−ρgreen)]−200× (ρred − ρgreen)
(3)

LSWI =
ρnir − ρswir

ρnir + ρswir
(4)

SAVI = 1.5× ρnir − ρred

ρnir + ρred + 0.5
(5)

MCARI = [(ρnir − ρred)− 0.2× (ρnir − ρgreen)]× ρnir

ρred
(6)

SIPI =
ρnir − ρblue

ρnir − ρred
(7)

DVI = ρnir − ρred (8)

EVI2 = 2.5× ρnir − ρred

ρnir + 2.4× ρred + 1
(9)

MSAVI2=
2× ρnir+1−

√
(2× ρnir + 1)2−8× (ρnir−ρred)

2
(10)



14634 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

where ρblue, ρgreen, ρred, ρnir, and ρswir are reflectance of the
blue, green, red, near-infrared, and shortwave-infrared bands,
respectively.

C. Dynamic Time-Regularized Migration Decisions

The DTW was a powerful algorithm widely used for aligning
and comparing reference and target data, especially in cases
where traditional distance measurement methods failed to meet
requirements. Its core competency lies in handling time shifts,
speed changes, or nonlinear distortions that may occur within
sequences. The working principle of DTW involved dynamically
adjusting local time warping to find the optimal alignment path
between two feature sequences. The algorithm entailed con-
structing a cost matrix to capture dissimilarities between individ-
ual data points. Utilizing dynamic programming, it computed the
cumulative cost matrix and determined the best warping path by
minimizing the total accumulated cost. Local transformations
such as insertion, deletion, and substitution enabled DTW to
flexibly align sequences and captured subtle temporal variations.
In addition to conventional uses, DTW was also applied for
pixel-based or logic-based crop mapping, and it held particular
significance in temporal and spatial transfer analysis. Whether in
ecological studies or geographical trajectory analysis, the adapt-
ability of this algorithm to migration made it an indispensable
tool for capturing dynamic patterns in time-varying sequences.
In the present study, we applied DTW to remote sensing data
to investigate its effectiveness in temporal and spatial sample
migrations.

For temporal sample migration, we first obtained the reference
curves of known samples (including soybean, corn, and other)
from 2020 and 2021 in Nenjiang County. Further, the DTW
distance between the curves of unknown samples in 2022 and
the known samples were calculated, in which the minimum
DTW distance value was assigned to the corresponding crop
type. For spatial sample migration, the reference curves were
determined from Fujin County with the samples collected in
2022. Then, the DTW distance between the curves of samples
randomly generated in Tongjiang County and those of the Fujin
County was calculated. Similarly, as in temporal sample mi-
gration, the randomly generated sample was assigned a crop
type when the minimum DTW distance occurred. In the present
study, the consistency degree (Ω) was defined to represent the
agreement between all the reference curves and migrated curves.
Specifically, by calculating the distance between each feature
curve and the standard curve, we can determine which crop type
each feature in the sample was more inclined toward. Then,
the consistency degree can be obtained by taking the maximum
value of the proportion with the judgment for each feature. For
example, in a sample from Nenjiang, if seven out of the ten
features judged it as soybean and three features judged it as corn,
we considered its consistency degree to be 0.7. The consistency
degree was written as follows:

Ω =

⎧⎪⎪⎨
⎪⎪⎩

n∑
i=1

Φi(xj)

n

⎫⎪⎪⎬
⎪⎪⎭

max

(11)

where n is the total number of features selected, j indicates
different crop categories, and Φ(x) denotes the crop categories
judged by the particular feature.

D. Accuracy Assessment

In this study, the metrics of user accuracy (UA), producer
accuracy (PA), and overall accuracy (OA) were conducted to
assess the accuracy of the proposed approach for crop mapping
over the study area. Among these metrics, OA can adequately
reflect the comprehensive accuracy of the results, while PA and
UA can be used to evaluate the classification accuracy of specific
crop types. The three metrics can be written as follows:

PA =
TP

TP + FN
× 100% (12)

UA =
TP

TP + FP
× 100% (13)

OA =
TP+ TN

TP + FP + TN+ FN
× 100% (14)

where TP and TN represent true positive and true negative, re-
spectively; FP and FN represent false positive and false negative,
respectively.

IV. RESULTS

A. Correctly Migrated Samples With Varying Consistency
Degree

Due to the relatively similar growth cycles of corn and
soybean, and to differentiate them from other crops such as
rice, we utilized the DTW algorithm to quantify the similarities
and dissimilarities in migration patterns between different crop
types and consistency degrees. Another motivation was that the
consistency degree was commonly subjective, and it could affect
the number of correctly migrated samples and the accuracy of
crop mapping. This enabled a detailed understanding of the
migration results of soybean, corn, rice, and other crops at
different consistency degrees.

In temporal sample migration, as shown in Fig. 3, it can be
observed that at a lower consistency degree of 0.5, the migration
quantity for all crop types was relatively high, whereas with
increasing consistency degree, the migration quantity for all
crop types decreased. When the consistency degree was at a
higher level of 0.8, the migration sample quantities for both
corn and soybean fell into the single digits, indicating a very low
migration quantity, and with further an increase in consistency
degree, no migration samples meeting the requirements were
available. Similar phenomena can also be found in spatial sample
migration, suggesting that certain consistency degrees should be
set for balancing the number of correctly migrated samples and
the accuracy for crop identification, because fewer samples can
commonly lead to decreased accuracy of crop mapping [37]. As
for the spatial sample migration, at a lower consistency degree
of 0.5, rice revealed the highest correct migration, followed by
Other, corn, and soybean. This indicates significant success rate
of rice samples can be achieved across the two adjacent counties
of Fujin and Tongjiang. When the consistency degree was set
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Fig. 3. Temporal and spatial migration in the number of crops migrating under different consistency degree. (a) Temporal migration. (b) Spatial migration.

Fig. 4. Overall precision of temporal migration and UA and PA for each crop.

at a high level of 0.7, both corn and soybean experienced a sig-
nificant decrease in the quantity of correctly migrated samples,
indicating a higher failure rate under these circumstances.

B. Crop Mapping With Temporal Sample Migration

Changes in consistency degree led to differences in the
number of successfully migrated samples, which also affected
the subsequent crop mapping and accuracy assessment. After
obtaining migrated samples at different consistency degrees,
we used the RF classifier to obtain crop distribution over the
target year and region. Based on the migration quantity obtained
earlier, we considered four consistency degrees (0.5, 0.6, 0.7,
and 0.8) in temporal sample migration. Fig. 4 depicts the OA,
PA, and UA for migrated samples with the four consistency
degrees. It was evident that the OA ranges from about 88.4% to
95.7%, with the highest OA occurring at a consistency degree
of 0.7. This indicates that the accuracy of migrated samples
reached a relatively high degree, with a considerable proportion
of instances correctly migrated and identified. In addition, the
PA and UA varied from approximately 84.0% to 99.4% and

from 71.5% to 99.5%, respectively. Based on these results, it
was determined that a consistency degree of 0.7 was optimal in
the study area for temporal sample migration. In this situation,
the OA, PA, and UA for corn and soybean were generally better
than those with other consistency degrees.

With the determination of the consistency degree, crop
mapping in the target year of 2022 in Nenjiang County was
further conducted with the RF algorithm. Fig. 5 depicts the
spatial distribution of corn, soybean, and other using temporal
migrated samples with different consistency degrees. It was
obvious that the result with a consistency degree of 0.8 was
very different from the results obtained with other consistency
degrees. The PA was with a low level of 73.6%, resulting in
a noticeably lower accuracy. Furthermore, for the cases with
consistency degrees of 0.5 and 0.6, it can be observed that soy-
bean was significantly less than that with a consistency degree
of 0.7. The PA for soybean in both Fig. 5(a) and (b) was lower
than that in Fig. 5(c), indicating that (a) and (b) have a higher
number of misclassifications of soybean as corn compared to
(c). The lower OA in Fig. 5(b) was mainly due to the higher
number of misclassifications of soybean as corn compared to
other situations, with a PA of 84.0% for soybean, whereas in
other cases, the PA of soybean was significantly higher than
90%. With the increase of consistency degree, it was found that
the improvement of soybean identification was more significant
than that of corn. This may be attributed to the more correctly
migrated soybean samples than the corn samples. Combining the
results of OA and field inspection, a consistency degree of 0.7 in
temporal sample migration over the study area appears to be an
optimal one in the present study. Fig. 6 depicts the invariable rate
of migrated samples while changing the consistency degree from
one value to another. Taking a presupposed consistency degree
of 0.5 as an example, changing the consistency degree to higher
values (0.6, 0.7, or 0.8) implies more stringent requirements
for determining successfully migrated crop samples. This can
logically result in a decrease in the quantity of migrated samples.
Overall, we found that above 80% migrated soybean and corn
samples remain stable when the consistency degree improved
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Fig. 5. Crop mapping using temporal sample migration with different con-
sistency degree. (a) Consistency degree = 0.5. (b) Consistency degree = 0.6.
(c) Consistency degree = 0.7. (d) Consistency degree = 0.8.

Fig. 6. Percentage of the constant pixels when changing consistency in tem-
poral migration.

to 0.7 from 0.5. When the consistency degree was set as a high
value of 0.8, the significant rate of approximately 30.7% for corn
samples would change to another land cover type, which was
most likely to affect the stability of crop identification. Hence,
the determination of the consistency degree not only influenced
the quantity of migrated samples but also affected the accuracy of

Fig. 7. Crop mapping using spatial sample migration with different con-
sistency degree. (a) Consistency degree ≥0.5. (b) Consistency degree ≥0.6.
(c) Consistency degree ≥0.7.

crop mapping. These results further indicated that a consistency
degree of 0.7 was optimal for the temporal sample migration
over the study area.

C. Crop Mapping With Spatial Sample Migration

Spatial migration was similar to temporal migration, and
we used OA as the evaluation metric. Based on the migra-
tion amounts obtained earlier, we considered three degrees of
consistency (0.5, 0.6, and 0.7) in spatial sample migration. In
spatial migration, when the consistency degree was 0.5, the
OA was approximately 64.8%, while at a consistency degree
of 0.6, the highest OA was achieved at around 75.6%. How-
ever, after consistency increased to 0.7, the OA was less than
50%. This indicated that at a consistency of 0.6, the accuracy
of migrated samples reached a relatively good level, with a
sufficient proportion of instances being correctly migrated and
identified. Therefore, we determined a consistency degree of 0.6
as the optimal value for spatial sample migration in the study
area. Under this circumstance, corn, soybean, and rice can be
effectively identified through spatial sample migration.

After the determination of the consistency degree, the RF
algorithm was further used to map the crops in Tongjiang
County in 2022. Fig. 7 depicts the spatial distribution of corn,
soybean, rice, and other using spatially migrated samples with
different consistency degrees. It was evident that the results at a
consistency degree of 0.7 differ significantly from those at other
consistency degrees. The classification accuracy of soybean was
notably lower because many soybean samples have not been
successfully migrated over the study area, and some soybean
samples were incorrectly identified as rice. In addition, based on
the results of different consistency degrees in Fig. 7(a)–(c), it can
be observed that rice in the central part of the study region was
relatively stable compared to other areas, showing condensable
accuracy with the migrated samples under different conditions.
Considering the OA and field investigation results, a consistency
degree of 0.6 for spatial sample migration in the study seemed
to be optimal.
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Fig. 8. Percentage of the constant pixels when changing consistency in spatial
migration.

Furthermore, we visualized the changes in pixel counts of
corn, soybean, and rice under different consistency conditions.
Fig. 8 depicts the invariable rate of migrated samples when
change the consistency degree from one value to another. Taking
the three crops at a consistency degree of 0.5 as an example,
when changed the consistency degree to 0.7, although corn and
rice samples maintained a relatively stable status, it appeared a
dramatic decrease in the migrated soybean samples, indicating
that soybean samples would migrate to another crop type under
such conditions. By contrast, when enhancing the consistency
degree from 0.5 to 0.6, over 80% samples of corn and 85%
samples of soybean and rice remain unchanged, which can guar-
antee the stability of crop identification. These results further
confirmed that a consistency degree of 0.6 was optimal for the
spatial sample migration over the study area.

V. DISCUSSION

A. Advantages and Challenges

To date, most of the previous literature on sample migration
primarily focused on mapping land cover categories such as
wetlands and forests, rather than on crop mapping. One of
the main reasons was that intensive managements commonly
happen to croplands. Moreover, most of the existing meth-
ods mainly aimed at temporal migration to utilize historical
crop samples for in-season crop mapping. The present study
investigated both spatial and temporal crop sample migration
over the three typical agricultural counties with similar planting
patterns under the same climate conditions. In terms of temporal
migration, the present study revealed considerable accuracy with
OA of 95.7%, which was generally comparable or better than
most of the existing methods for mapping in-season crops with
the information from historical samples [38], [39]. Meanwhile,
although a decreased accuracy was obtained for spatial sam-
ple migration, the in-season maps of corn, soybean, and rice
over Tongjiang County were expected to reach an OA over
75% without the knowledge of local crop samples, indicating
significant potential for crop mapping when local crop samples
were insufficient. Compared to scholars using the DTW method

for sample migration mapping, the temporal migration accuracy
in our study is comparable or even better. What stands out
is our increased emphasis on spatial research, discussing the
feasibility of spatial migration mapping for various different
crops, and achieving comparatively satisfactory results. From
another perspective of the consistency degree, it was evident
that the optimal consistency degree for spatial migration was
lower than that in temporal migration, indicating that spatial
sample migration was more complicated. With the increase
of consistency degree, the quantity of successfully migrated
samples significantly decreased in theory, leading to imbalanced
sample proportions between crops. This was more obvious for
spatial migration, in which soybean samples were more likely to
be confused with other crops. Following the results at different
consistency degrees, it was found that OA would not conse-
quentially increase with a higher consistency degree; instead,
an optimal consistency degree existed for balancing the quantity
and quality of migrated samples. Specifically, we maximized the
utilization of limited crop samples by matching reference curves
of various features and decided on an adequate consistency
degree for migration. Nevertheless, the determination of the
consistency degree seemed a challenging task for migrating
samples, because it depended on specific conditions. Another
challenge of the proposed approach was the feasibility over
extended regions. It was evident that the two adjacent counties of
Fujin and Tongjiang were not only characterized with the same
climate patterns but also with similar planting patterns where
rice, corn, and soybean were the dominant crops. Specifically,
the planting areas for corn and soybean were close, and the plant-
ing area for rice was significantly more than the other two crops
in both Fujin and Tongjiang. When encountering complicated
planting patterns and natural conditions (e.g., more crop types,
different cropping intensity, fragmented parcels, and complex
terrain), the proposed approach may suffer from more challenges
because various factors should be considered, rather than the
features of crops. As a consequence, the determination of a
proper consistency degree is expected to be more difficult under
such circumstances, especially for the spatial sample migration.
Nevertheless, future work can investigate more in-depth for the
proposed approach with varying planting patterns and climate
conditions.

B. Uncertainty Analysis

Several sources of errors would constrain the performance of
the proposed method, especially for spatial sample migration.
First, migrated crop samples inherently faced issues such as
misclassification or decreased quantity, fostering internal un-
certainty and skewing classification outcomes [40]. This was
reasonable because no in-season ground crop sample truths were
collected in the target year for temporal migration and region for
spatial migration. However, this was also the primary motivation
of the present study. As for the decreased quantity of migrated
crop samples, it was inevitable because it followed the rule for
determining a successfully migrated sample based on the consis-
tency degree. However, increasing the quantity of historical (or
adjacent region) crop samples for temporal (or spatial) migration
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could be an adequate solution to this issue. Second, data quality
would significantly influence the performance of crop mapping.
A well-acknowledged issue in crop mapping includes sensor
noise, atmospheric effect, and cloud cover, especially for optical
data [41], [42]. Even with satellite images captured under low
cloud cover conditions, noise remained inevitable, particularly
when covering extensive geographic regions [43]. Typically,
remote sensing images captured during critical crop phenology
stages (such as July and August for migration studies) effectively
distinguished between crop types [44]. Moreover, the sensor and
cloud noise also hindered obtaining continuous and valid time
series data, potentially compromising subsequent image fusion
quality and the consistency of migrated results. Third, spectral
differences, stemming from varied climatic periods of crop
varieties, can also impact migration outcomes [45], [46]. For
the spatial sample migration, the reduced quantity of migrated
soybean samples when changing the consistency degree from
0.5 to 0.6 or from 0.6 to 0.7 would probably due to the fact
that they were easily confused with corn [47]. In addition, the
existence of mixed pixels and decentralized small land parcels
further complicated the effectiveness of crop mapping, because
multiple features inevitably appear under such circumstances
[48], [49].

VI. CONCLUSION

In this research, we have investigated crop mapping without
the knowledge of current crop samples, which was particu-
larly suitable for crop mapping when in-season or local crop
samples were insufficient. The method circumvented traditional
annual field crop sample collection, significantly reducing the
manual and time costs associated with continuous crop map-
ping. Specifically, the consistency degree was defined to eval-
uate the migrated crop samples with respect to both quality
and quantity. When we altered the sample size based on the
consistency degree, the quality of the samples also changed.
Normally, the contradiction between the increased consistence
degree and decreased correctly immigrated samples exists, and
we have explored the optimal consistency degree under various
conditions to ensure the accuracy of the mapping. Evaluation
of the proposed approach in three typical agricultural counties
in Heilongjiang Province, Northeast China showed satisfactory
accuracy, especially in Nenjiang County with an OA of 95.7%
for the temporal sample migration. This implied that historical
crop samples can be adequately used to obtain in-season crop
distribution with the proposed method. Although the results
with spatial sample migration revealed a decreased accuracy
compared to those with temporal sample migration, it was
still promising since the proposed method no longer relies on
in-season crop samples. Moreover, it was noted that the proposed
method was expected to be feasible with similar planting patterns
and climate conditions, which was also the basic hypothesis
for the proposed approach. Although that did not necessarily
mean the temporal and spatial sample migration method was
only feasible under such circumstances, it was predictable that
more difficulties existed for the proposed method across varying
planting patterns and climate conditions.
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