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Abstract—Spatiotemporal fusion (STF) has received widespread
attention as a cost-effective solution to the spatiotemporal conflicts
in remote sensing images. Massive efforts have been made in the
development of STF technology, and deep-learning methods have
shown great potential in obtaining state-of-the-art results in recent
years. However, it is still challenging to effectively fuse images with
land-cover changes. The main problem is that the fine-resolution
temporal changes are difficult to accurately model in the fusion
stage due to the complex mapping relationships of the temporal
features in different scale spaces. In this article, we propose a novel
STF method with a dual-perspective framework, where the core
idea is to predict the target information by discriminative learning
of the spatial and temporal modeling for estimating heterogeneous
temporal changes. Specifically, an encoder–decoder architecture
based on a Swin transformer is designed to extract the global
context information from the temporal change maps and predict
the target image by learning the temporal mapping at a fine scale.
A parallel subnetwork is further used to learn the spatial map-
ping across coarse-to-fine scales, considering the temporal changes.
Channel-spatial attention is introduced to guide the model to focus
on reconstructing the features delineating heterogeneous textures
and temporal changes. The estimation from the dual perspectives
is then fused to generate the final reconstructed image. Extensive
experiments on three public datasets verified the superiority of
the proposed method, compared with the mainstream STF algo-
rithms, especially on image pairs with land-cover and phenological
changes.

Index Terms—Deep learning, discriminative learning, remote
sensing, spatiotemporal fusion (STF), Swin transformer.
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I. INTRODUCTION

R EMOTE sensing images with high spatial and temporal
resolutions are generally desirable in a broad range of

applications, such as monitoring the fine-scale dynamics of
urban resources [1], natural disasters [2], crop growth [3], etc.
However, due to the technical limitations and cost constraints,
there is always a tradeoff between the spatial and temporal
resolutions of an individual satellite sensor. Therefore, the in-
tegration of observation information from multisource remote
sensing images is necessary for capturing dynamic changes over
heterogeneous land surfaces.

Spatiotemporal fusion (STF) of remote sensing images aims
to generate a dense time series of high spatial resolution images
by integrating the temporally sparse fine-resolution images and
temporally dense coarse-resolution images. With the develop-
ment of STF algorithms over the past decade, it has been
shown that STF is an effective solution to the spatiotemporal
conflicts in remote sensing images [4]. Massive efforts have
been made in the development of STF technology, where the
methods can be generally categorized as weight function-based
methods, unmixing-based methods, Bayesian-based methods,
learning-based methods, and hybrid methods [5].

In recent years, the booming development of deep-learning
methods has resulted in impressive achievements in the field
of STF [6], and these methods have shown great potential in
obtaining a state-of-the-art performance. However, it is still a
challenge to achieve the accurate estimation when the images
acquired on the reference and target dates have heterogeneous
land-cover changes. Until recently, the authors in [7], [8], [9],
[10], [11], and [12] have been devoted to proposing various
strategies to address the problem. For the deep-learning-based
STF framework, the mainstream solutions have been aimed at
improving the accuracy of the temporal feature mapping in
the different-scale spaces, e.g., through spatiotemporal–spectral
collaborative learning [7] or joint spatial and temporal modeling
[9]. However, due to the complex relationships of the temporal
changes across the different spatial scales, the fine-resolution
temporal changes can be difficult to accurately predict with-
out making full use of the inherent relevant information con-
tained among the input data sources. Moreover, the mainstream
convolutional neural network (CNN) based methods can only
acquire the local dependencies of the image features, which
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is not conducive to learning the real patterns of the temporal
changes. Therefore, the appropriate modeling of the comple-
mentary information among the images is the key to a potential
breakthrough.

In this article, we propose a dual-perspective STF method
to tackle the challenge of fusing remote sensing images with
abrupt land-cover changes. The core idea is to predict the target
information by estimating the heterogeneous temporal changes
from the dual perspectives of discriminative spatial and temporal
modeling. In this way, the temporal difference mapping and
the spatial mapping between coarse- and fine-scale space are
integrated to infer the target fine-resolution textural information
and improve the model performance to deal with images with
temporal changes. The estimation results from the dual perspec-
tives are then fused to generate the final reconstructed image.
Overall, the main contributions of this article can be summarized
as follows.

1) We propose a dual-perspective STF framework for remote
sensing images with land-cover changes, which discrimi-
natively learns the spatial mapping and temporal transfer
features across coarse-to-fine spatial scales for prediction
of the target image (referred to as STM-STFNet).

2) An encoder–decoder architecture is constructed based on
a Swin transformer with a hierarchical structure to extract
the global context information from the temporal change
map so as to represent the multiscale temporal differences.

3) A multidimensional attention module is introduced to
learn the spatial-channel weights, guiding the network to
focus on the spatial features with heterogeneous textures
and land-cover changes while establishing the spatial map-
ping for the target date considering the temporal changes
of the input images.

The rest of this article is organized as follows. Section II sum-
marizes the current approaches in the field of STF. Section III
details the network structure of the proposed method. Section IV
describes the experimental section, including the presentation
and analysis of the results. Section V is the discussion section
of the article. Finally, Section VI concludes this article.

II. RELATED WORKS

In this section, we introduce the main works related to STF
techniques. In this article, we refer to the STF methods that do
not use a learning-based mechanism as the traditional methods.
In particular, the algorithms designed for modeling land-cover
changes are analyzed.

A. Traditional Methods

Since the proposal of the spatial and temporal adaptive re-
flectance fusion model (STARFM) [13] in 2006, the weight
function-based STF techniques have gained increased atten-
tion. STARFM assumes that the reflectance changes between
two coarse images can represent the fine-resolution temporal
changes and uses the weighted sum of the spatially and spectrally
similar information to generate the fusion image. However,
this assumption is only valid for the pure pixels and fails in
heterogeneous landscapes. Inspired by the idea of STARFM,

advanced weight function-based STF algorithms were sub-
sequently proposed, e.g., the enhanced spatial and temporal
adaptive reflectance fusion model (ESTARFM) [14], the spatial
and temporal nonlocal filter-based fusion model [15], Fit-FC
[16], and other models, considering the physical characteristics
in geoscience-related applications [17], [18]. These modified
methods are designed to better process the heterogeneous areas
with land-cover changes. However, the weight function-based
methods construct a linear model for mapping the relationship
between the coarse and fine images, and the prediction results
are still unsatisfactory for scenes with complex landscapes and
heterogeneous temporal changes.

This problem is also an issue for the unmixing-based STF
methods. Although the coarse pixels are unmixed at the pre-
diction date to obtain the reflectance change of each land-cover
class, the linear mixing model commonly used for the unmixing-
based methods [e.g., the multisensor multiresolution technique
and the spatial–temporal data fusion approach] might not be well
adapted to scenes with nonlinear spectral mixing effects caused
by heterogeneous landscapes and distinct temporal changes [19].

The Bayesian-based methods [20], [21] use Bayesian theory
to fuse the images in a probabilistic manner. In the Bayesian
framework, STF can be considered as a maximum a posteriori
problem, where the goal is to estimate the fine image at the pre-
diction date by maximizing the conditional probability with the
input fine and coarse image series [22]. However, the prediction
accuracy of the Bayesian-based methods depends on the prior
constraint on the model.

To combine the advantages of the above methods, hybrid-
based methods have been introduced. For example, flexible
spatiotemporal data adaptive fusion (FSDAF) [23] integrates
the principles of the weighting and unmixing methods and
has achieved good results for images with heterogeneous land-
scapes. With rigorous mathematical theory, the Bayesian meth-
ods are popularly combined with the weight function-based and
unmixing-based methods [24]. The hybrid approaches enhance
the generalization ability of the model by combining multiple
methods to cope with the different land-cover changes, but
this also increases the complexity of the model, which is not
conducive to the large-scale application of the model.

B. Learning-Based Methods

Learning-based methods model the relationships among the
temporal coarse images and the known fine image from the
external training data samples, and thus predict the unknown
fine-resolution information on the target date. Early attempts
have been made to use dictionary pair learning [25], [26], regres-
sion algorithms [27], and traditional machine learning models
(e.g., random forest [28] and extreme learning machine [29])
for STF. Following the shallow learning models starting with
features manually extracted from the images, the deep-learning
methods have a powerful ability for adaptive feature represen-
tation and nonlinear relation mapping, and have advanced the
state-of-the-art performance of STF in recent years.

CNNs are the most popular framework used in STF, where the
earlier works include STF using deep CNNs [30] and the deep
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convolutional STF network [31]. Since then, researchers have
attempted to use various strategies to improve the performance of
STF methods based on CNNs, e.g., deeper networks, multiscale
feature extraction [32], [33], [34], and attention-aware mecha-
nisms [35], [36], [37]. However, the localized property of the
convolutional kernels causes CNNs to lack the ability to capture
global context information. As a result, the CNN-based models
can fail to establish the proper relationship between pixels in
local areas with spatially heterogeneous temporal changes. Gen-
erative adversarial networks (GANs) have also been introduced
in STF [38]. Although the GAN-based methods have achieved
good results in processing natural images, they are characterized
as being difficult to train and converge to the optimal status, and
result in visually pleasant but unrealistic texture details in the
reconstructed images.

With increasing popularity in computer vision tasks, trans-
former networks have also achieved great attention in remote
sensing image processing. In terms of STF modeling, Li et al.
[39] introduced the vision transformer (ViT) [40] to model the
temporal relationship between blocks within the coarse images.
In particular, the Swin transformer constructs a hierarchical
representation of the feature maps based on a self-attention
mechanism computed with shifted windows and has obtained
promising performances in various computer vision problems
[41]. Chen et al. [42] proposed the Swin spatiotemporal fusion
model (SwinSTFM) and conducted multilevel fusion of the
extracted features by integrating unmixing theory into the Swin
transformer model, which greatly improves the quality of the
generated images. Recently, researchers attempted to combine
a transformer and a CNN for remote sensing image STF. For
example, MSNet [39] is designed with a multistream structure.
It uses a transformer to learn the global temporal correlation
of the images and employs a CNN to establish the mapping
relationship between the input and the output. There are also
other works that combine a transformer and a CNN for remote
sensing image STF, e.g., STF-Trans [43], EMSNet [44], and
MSFusion [45].

In addition to the architecture of the backbone networks,
the other popular strategy is to manage the complex mapping
relationships with multistream models. Distinguished with the
above methods focusing on mapping the temporal [31], [33],
[35], [36], [37] or spatial [30], [46], [47] dependencies across
image pairs, Jia et al. [9] proposed a two-stream CNN-based STF
method that performs the temporal change-based and spatial
information-based mapping simultaneously. More recently, the
MTDL-STF methods in [48] proposed a novel multitask DL
framework that employs a super-resolution net and a fusion
net for the spatial information-based mapping and temporal
change-based mapping, respectively. The performance is over-
all promising; however, the methods are only tested on nor-
malized difference vegetation index (NDVI) data. Compared
with NDVI, the reflectance images are characterized by more
detailed textures and heterogeneous temporal changes. In this
method, both spatial and temporal mapping were learned using
the CNN-based modules, where the redundant information in
the extracted features might prevent efficient modeling on the
mapping relationships for the task of image STF [41].

III. METHODOLOGY

A. Overall Framework

The proposed STM-STFNet method is an end-to-end network
for fusing remote sensing images with heterogeneous land-cover
changes. The input of the proposed method is made up of five
images, i.e., the coarse image (C2) at the target moment (t2) and
two pairs of reference images [i.e., the coarse and fine images
at the neighboring moments (C1, F1, C3, and F3)]. The output
is the fine-resolution image (F2) at the target moment t2. The
overall structure of the network is shown in Fig. 1.

The basic assumption is that the fine-resolution details can be
predicted from two perspectives, i.e., spatial reconstruction of
the coarse image at the target date or temporal estimation using
the change maps from multiple coarse images. Accordingly,
STM-STFNet consists of two dual streams, which focus on tem-
poral modeling with a Swin transformer and spatial modeling
with a multidimensional attention mechanism. For the temporal
mapping, the Swin transformer-based encoder–decoder module
is utilized to learn the fine-resolution change map. The modeling
process can be expressed as follows:

̂F t,1
2 = Mt,Φt

(F1, C1, C2) + F1 (1)

where ̂F t,1
2 is the result estimated from the perspective of tem-

poral modeling through forward prediction with the aid of F1,
C1, and C2. Mt denotes the branch for mapping the temporal
relationships between imaging dates t1 and t2, and Φt is the
corresponding parameter set learned by the subnetwork.

The dual-branch structure is constructed from the perspective
of spatial modeling, which serves to reconstruct the spatial
details of the target image by learning the relationships between
the low-frequency and high-frequency feature space. The basic
assumption is that the spatial difference information at t2, which
is expressed as F2 − C2, can be inferred from the appropriate
modeling of the known prior from F1 − C1, as well as the
temporal difference C2 − C1. The process can be expressed as
follows:

̂F s,1
2 = Ms,Φs

(C2 − C1, F1 − C1, C2) + C2 (2)

where ̂F s,1
2 is the spatial modeling result. Ms and Φs denote

the mapping function and parameter set for the spatial mod-
eling branch, respectively. The ultimate goal is to reconstruct
the fine-resolution image details with full integration of the
reference information, considering the complex landscapes and
heterogeneous temporal differences among the input data. The
forward prediction with the reference images acquired on t1 is
obtained by combining the dual-branch estimations

F̂ 1
2 = Average

(
̂F t,1

2 ,̂F s,1
2

)
(3)

In the symmetric part of the network, similar strategies are
used to obtain the backward prediction with the reference images

acquired on t3, i.e., ̂F s,3
2 , ̂F t,3

2 , and F̂ 3
2 . The final reconstructed
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Fig. 1. Architecture of the proposed STM-STFNet method. For the temporal branch, the input is the stacked tensor of the reference images (i.e., F1, C1, and
C2 for the forward modeling and F3, C3, and C2 for the backward modeling). For the spatial branch, the inputs are the temporal difference between the target
moment and the reference moment (i.e., C2 −C1 and C2 −C3), the spatial difference between the coarse and fine images at the reference moment (i.e., F1 −C1

and F3 −C3), and the coarse image at the target moment (C2).

Fig. 2. Flowchart of the Swin transformer-based encoder. (a) Architecture of the encoder is made up of four stages, where each stage in (b) contains N Swin
transformer blocks (Niε[2, 6, 2, 2], i = 1, 2, 3, 4). (c) Structure of two successive Swin transformer blocks, where W-MSA and SW-MSA are alternately used.

image F̂2 is then calculated by

F̂2 = Average
(
F̂ 1
2 , F̂

3
2

)
. (4)

B. Swin Transformer-Based Encoder–Decoder for Temporal
Modeling

To deal with temporal changes, we designed a Swin
transformer-based encoder–decoder network(as shown in
Fig. 2) for modeling the temporal relationships between neigh-
boring dates across different spatial scales. As shown in (1),

the input for the forward and backward prediction module is
the feature set constructed from the three reference images (i.e.,
F1, C1, andC2 for the forward prediction andF3, C3, andC2 for
the backward prediction) concatenated along the channel dimen-
sion. With the powerful capability of the Swin transformer for
local-to-global modeling, the encoder–decoder network learns
the temporal transfer information from the input data, where no
additional modeling assumptions are required [49], [50].

Following the instructions in [41], the encoder consists of
four stages, where each stage is composed of an even number
of consecutive Swin transformer blocks, followed by a patch
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Fig. 3. Architecture of the CSAM module.

merging process. The Swin transformer block is mainly used to
calculate the self-attention, and the patch merging layer reduces
the resolution of the input feature map for downsampling. The
four stages constitute a hierarchical structure, which reduces the
feature resolution and increases the receptive field layer-by-layer
to obtain the global information.

The core component of the Swin transformer block is the
multihead self-attention (MSA) module, which adaptively learns
the relationships between different regions of the input. Specif-
ically, the whole image is divided into multiple nonoverlapping
windows in the self-attention calculation, where each window
contains M ×M patches (M = 8 here) with the size of 2× 2.
The image patches are then used as the input of several stacked
transformer blocks. The self-attention within the local window
is calculated by introducing the relative position information

Attention (Q,K, V ) = SoftMax

(
QKT

√
d

+B

)
V (5)

Q = XWQ K = XWK V = XWV

(6)

whereX ∈ Rn×d is the vector matrix of the input patches, while
n is the number of patches, and d is the feature dimension. The
query Q, key K, and value V matrices are obtained by multiply-
ing X and the parameter matrices WQ, WK , and WV ∈ Rd×d,
respectively. Q and K are then used to obtain the normalized
weights, and then multiplied with V to obtain the feature of
interest, as shown in (5). B is the relative position bias, which
denotes the relative position between patches within a single
window. While the window partitioning scheme of the Swin
transformer greatly reduces the computational complexity, com-
pared with the traditional ViT, the model adopts a shifted window
scheme to realize the cross-window fusion of patch features.
In the successive Swin transformer blocks, local window MSA
(W-MSA) and shifted window MSA (SW-MSA) are alternately
used in the successive Swin transformer blocks. In this way, the
self-attention computation in the new windows partitioned in

layer l + 1 crosses the boundaries of the previous windows in
layer l, and thus provides connections across the local windows.
Moreover, the patch merging layer is also applied to merge
adjacent patches and further increase the receptive field.

Each MSA module is followed by a two-layer multilayer per-
ceptron (MLP). Moreover, a LayerNorm (LN) layer is employed
before each MSA module and each MLP. The computation
process can be summarized as follows:

ẑl = W − MSA
(
LN

(
zl−1

))
+ zl−1 (7)

zl = MLP
(
LN

(
ẑl
))

+ ẑl (8)

ẑl+1 = SW − MSA
(
LN

(
zl
))

+ zl (9)

zl+1 = MLP
(
LN

(
ẑl+1

))
+ ẑl+1 (10)

where ẑl and zl denote the output features of the W-MSA module
and the MLP module for block l, respectively.

The Swin transformer decoder is the inverse process of the
Swin transformer encoder, which serves to recover the global
temporal difference features to the input resolution and fuse the
features at different scales from the encoder through a skip con-
nection. Differing from the encoder structure, patch merging is
replaced by a patch expanding layer. The Swin transformer block
in the decoder also helps to establish long-range dependencies
and global context connections during upsampling.

C. Multidimensional Attention Module for Spatial Modeling

The goal of spatial modeling for STF is to reconstruct the
spatial details of the target moment, where an attention-based
module (as shown in Fig. 3) is designed to tackle the challenge
of predicting the unknown high-frequency information in the
areas with complex image textures and abrupt changes between
the reference and target dates. For the spatial modeling, atrous
spatial pyramid pooling (ASPP) [51] is first used to extract
multiscale features from the input feature maps. Taking the
forward prediction as an example, the inputs for the spatial
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branch are three image maps, i.e., C2 − C1, F1 − C1, and C2

(2). To predict the unknownF2 − C2 using the prior information
from F1 − C1, the basic assumptions are as follows.

1) The changed areas between the reference and target dates
with significant textural differences should be paid more
attention.

2) In the regions with more detailed textures in the images,
the spatial differences can be more informative.

Accordingly, the features extracted from the temporal differ-
ence map C2 − C1 (i.e., ΔC ′) are input into the channel-spatial
attention module (CSAM) to obtain the attention weight, with
full consideration of the spatial and temporal importance. The
process can be expressed as follows:

Mcs

(
ΔC

′
)
= Mc

(
ΔC

′
)
⊗Ms

(
ΔC

′
)

(11)

where ⊗ denotes the elementwise multiplication, while Mc ∈
RC×1×1 and Ms ∈ R1×H×W denote the channel and spatial
attention maps, respectively. In this module, the input feature
maps are processed in parallel with the channel and spatial
attention calculation. Following the attention module introduced
in [52], the spatial attention map is calculated by

Ms

(
ΔC

′
)
= σ

(
f7×7

([
ΔCs

Avg; ΔCs
Max

]))
(12)

where σ denotes the sigmoid function, and f7×7 represents a
convolution operation with the filter size of 7× 7. [] repre-
sents the concatenation operation. ΔCs

Avg and ΔCs
Max denote

the average-pooled features and max-pooled features across the
channels, respectively. They are used to aggregate the channel
information of ΔC ′ and highlight the spatially heterogeneous
information. Furthermore, the incorporation of channel attention
is based on the fact that the surface changes can be distinct for
different spectral bands (e.g., phenological changes). For the
calculation of the channel attention map, the channelwise spatial
information is first aggregated using the average-pooling and
max-pooling operations, and the two spatial feature descriptors
are generated, i.e., ΔCc

Avg and ΔCc
Max. The two descriptors are

then fed into a shared MLP with one hidden layer, and the
channel attention map can be obtained by merging the output
feature vector using elementwise summation. The calculation
can be expressed as follows:

Mc

(
ΔC

′
)
= σ

(
MLP

(
ΔCc

Avg

)
+ MLP (ΔCc

Max)
)

(13)

After the channel and spatial attention maps are obtained,
the multidimensional map MCS ∈ RC×H×W can be obtained
with elementwise multiplication, and the refined features can
be obtained by multiplying the multiscale features extracted
from F1 − C1 (referring to ΔF1C

′
1) with MCS . The mapping

relationships are then established, as follows:

F2 = f
([

Mcs

(
ΔC

′
)
⊗
(
ΔF1C

′
1

)
;C

′
2

])
+ C2 (14)

where f represents the convolution operation. C ′
2 indicates the

feature set extracted from image C2 using ASPP, which it is
concatenated with ΔF1C

′
1 and refined with channel-spatial at-

tention to form the input of the convolutional mapping function.

D. Loss Function

The loss function consists of two loss terms for optimizing the
forward and backward modeling: a structural loss to preserve
the image textures and an edge loss focusing on enhancing the
high-frequency details in the reconstructed result. The Charbon-
nier loss function [53] is used for pixel-level image supervision.
Moreover, the structural similarity (SSIM) method [54] is intro-
duced for SSIM supervision. The specific formulae for the loss
function formula used in the proposed method are as follows:

Lstructure = 1− SSIM
(
F̂2, F2

)
(15)

Lpixel1 =
1

N

√
(F̂ 1

2 − F2)
2
+ ε2 (16)

Lpixel2 =
1

N

√
(F̂ 3

2 − F2)
2
+ ε2 (17)

Ledge =
1

N

√
(Sobel

(
F̂2

)
− Sobel (F2))

2

+ ε2 (18)

Ltotal = Lpixel1 + Lpixel2 + Lstructure + Ledge (19)

where F̂ 1
2 is the estimated fine-resolution image with forward

prediction using F1, C1, and C2, while F̂ 3
2 denotes the corre-

sponding backward prediction result. The parameter ε = 0.001
is used to stabilize the process of error backpropagation. N
denotes the total number of pixels in the image. The edge loss
is implemented on the edge information extracted by the Sobel
operator.

IV. EXPERIMENTS

A. Experimental Datasets

Three public datasets were used to validate the proposed
method: the lower Gwydir catchment (LGC) dataset [55], the
Coleambally irrigation area (CIA) dataset [55], and the Daxing
(DX) [4] dataset. The three datasets were collected from different
spatial regions and feature phenological and land-cover changes.
As such, they can be considered as representative to compare the
STF methods’ performance in different cases.

The LGC dataset was collected in southern New South
Wales (NSW) in Australia and consists of 14 pairs of cloud-
free Landsat–moderate resolution imaging spectroradiometer
(MODIS) images from 16 April 2004 to 3 April 2005, where
the size of each image is 3200 × 2720 × 6. The Landsat images
were acquired by the thematic mapper (TM) sensor of Landsat 5,
and the MODIS images were acquired by the Terra satellite. This
dataset is typically characterized by abrupt land-cover changes
due to flooding in the area in mid-December 2004.

The CIA dataset was collected in the northern part of NSW in
rice-growing areas with modern irrigation systems. It consists
of 17 cloud-free Landsat–MODIS data pairs acquired between
8 October 2001 and 4 May 2002. The Landsat images were
acquired by the enhanced thematic mapper plus (ETM+) sensor
onboard Landsat 7, and the MODIS images were acquired by
the Terra satellite. The image size is 1720 × 2040 × 6. There
was no significant land-cover change in this area during the data
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TABLE I
DETAILS OF THE TEST IMAGES FOR EACH DATASET

collection period; however, phenological change can be clearly
observed in the farmland regions.

The DX dataset collected in the DX area of Beijing in China
features both phenological and land-cover changes. This dataset
consists of 27 cloud-free Landsat–MODIS data pairs collected
during the period of September 01,2013 to November 05,2019.
Landsat 8 operational land imager and Terra MODIS images
were used, and the size of each image was 1640 × 1640 × 6.
Due to the obvious band noise in the fifth and sixth bands of this
dataset, only the first four bands of the DX dataset were selected.

B. Experimental Design and Evaluation

In the experiments, each dataset was divided into a training
set and a test set. The details of the test images for each dataset
are provided in Table I, while the remaining image pairs were
used for the model training. The proposed STM-STFNet method
uses two reference image pairs as the input.

We chose five representative STF methods for comparison:
ESTARFM [14], FSDAF [23], the GAN-based spatiotemporal
fusion model (GAN-STFM) [46], spatiotemporal fusion method
using a recurrent neural network (STFRNN) [7], and SwinSTFM
[42]. Among these methods, ESTARFM and FSDAF belong
to the traditional methods, while the other three methods are
based on deep-learning frameworks. Except for ESTARFM and
STFRNN, which require two reference image pairs as the input,
the other comparative methods use only one image pair as the
reference and obtain the fusion image in the manner of forward
prediction. We slightly modified the structure of the SwinSTFM
algorithm to support the input of two reference image pairs,
which is referred to here as SwinSTFM-B.

For a fair comparison, the hyperparameters of the methods
were empirically adjusted to achieve the optimal results. The
size of the sliding window for searching for similar pixels was
uniformly set to 41 × 41 for ESTARFM and FSDAF, while
the number of similar pixels was set to 20. For the deep-learning
methods, the patch size of GAN-STFM was set to 128×128 with
a stride length of 100. The other parameters were determined
following the original design. In terms of the proposed STM-
STFNet, the input patch size was 128 × 128, and the epochs
were set to 80. The initial learning rate was 1×10−4, and the
learning rate was dropped by half when the accuracy of the test
set no longer increased for three epochs.

In addition to the visual examination, the quantitative perfor-
mance of the methods is evaluated here through six evaluation
metrics: root-mean-square error (RMSE), SSIM [54], universal
image quality index (UIQI) [56], correlation coefficient (CC),
relative global synthesis error (ERGAS) [57], and spectral angle
mapper (SAM) [58]. The formulae for these metrics are as
follows:

RMSE =

√∑N
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2

N
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2μŷμy + a1
μ2
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where N denotes the total number of pixels in the image. yi is
the ith pixel in the reference image, and ŷi denotes the value
of the predicted image. Moreover, μŷ and μy denote the mean
value of the predicted image and real image, respectively. σŷy

denotes the covariance of the predicted and real image, and σŷ

and σy denote the variances of the predicted image and real
image, respectively. a1 and a2 are the constants used to maintain
stability. h and l denote the spatial resolution of the fine and
coarse image, respectively. NB denotes the number of bands. ui

denotes the mean of the ith band of the reference image. Larger
values of SSIM, UIQI, and CC, and smaller values of RMSE,
ERGAS, and SAM represent the better results.

C. Fusion Results for the LGC Dataset

Table II provides the quantitative comparison of the fusion re-
sults obtained by the different STF methods for the LGC dataset.
The target is to reconstruct the fine-resolution image from 12
December 2004, where the real Landsat image was used as the
ground truth. The main challenge was to model the dramatic
land-cover changes caused by the sudden flooding that occurred
during the period between the reference and target dates in this
area. Overall, the results show that the deep-learning methods
outperform the traditional methods. The proposed STM-STFNet
method achieves the best results in terms of all the indices in
this case. Among the comparative methods, SwinSTFM shows
a good performance, and SwinSTFM-B with two pairs of refer-
ence images as the input shows an improvement over the original
version. Although ESTARFM and STFRNN also include two
image pairs as the reference, the unsatisfactory results indicate
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TABLE II
QUANTITATIVE EVALUATION RESULTS OF THE DIFFERENT METHODS FOR THE LGC DATASET

Fig. 4. Fusion images for 12 December 2004 obtained by the different methods with the LGC dataset.

that the accurate modeling is the primary element required to
reconstruct a high-accuracy result.

The fusion results for the LGC dataset on 12 December
2004 were visually compared with the real reference image.
It can be clearly observed in Fig. 4 that GAN-STFM produces
serious spectral distortion in the results. Moreover, all the STF
methods are inevitably influenced by the textures on the ref-
erence dates and generate fake textures in the reconstructed
images, especially in flooded areas with dramatic land-cover
changes. However, the zoomed-in views of a typical flooded
region, as shown in Fig. 5, indicate that the comparative methods
show different performances in reconstructing the image details.
There are obvious artifacts and grid effects in the results of
ESTARFM, STFRNN, and GAN-STFM, which are probably
caused by the processing within local windows (or receptive
fields) in the modeling process. Compared with SwinSTFM
and SwinSTFM-B, the proposed STM-STFNet method is less
affected by the reference images and is capable of reconstructing
natural features in the fusion image. In Fig. 6, we present
the absolute differences between the fusion images and the

reference, where the error distribution maps show that large
errors generally exist in the results of ESTARFM, FSDAF,
GAN-STFM, and STFRNN. This is basically consistent with the
visual examination, where the fusion images are contaminated
with artifacts and blurring effects. The proposed STM-STFNet
obtains the best results among all the methods, especially over
the boundaries along the flooded fields.

D. Fusion Results for the CIA Dataset

Table III provides the quantitative evaluation results of the
different fusion methods for the CIA dataset. The target was to
reconstruct the fine image from 12 January 2002. Since no signif-
icant land-cover changes occurred in the CIA dataset, the quality
of the fusion images is much better than that for the LGC dataset.
However, the spectral distortion brought by the phenological
changes brings challenges to the STF methods. Similar to the
results for LGC dataset, the SwinSTFM-B achieves an overall
good performance. However, the proposed STM-STFNet again
obtains the best accuracy scores, which verifies the effectiveness
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Fig. 5. Subregions of the fusion images for 12 December 2004 obtained by the different methods with the LGC dataset.

Fig. 6. Average absolute difference maps of the subregions within the fusion images for 12 December 2004 with the LGC dataset.

TABLE III
QUANTITATIVE EVALUATION RESULTS OF THE DIFFERENT METHODS FOR THE CIA DATASET
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Fig. 7. Subregions of the fusion images of the different methods for 12 January 2002 with the CIA dataset.

Fig. 8. Average absolute difference maps of the subregions within the fusion images for 12 January 2002 with the CIA dataset.

of the proposed framework with a dual-perspective learning
mechanism.

We further present the visual images obtained by the STF
methods for a typical farmland region in Fig. 7, and the absolute
difference maps are shown in Fig. 8. The results show that
FSDAF shows the most significant spectral distortion, which
is consistent with the SAM values in Table III and the error
maps in Fig. 8. Moreover, ESTARFM and GAN-STFM also
introduce obvious spectral bias into the fusion results, which
can further influence the interpretation accuracy. The other four
deep-learning-based methods show a good performance in this
case. STM-STFNet achieves better results in terms of spectral
fidelity, compared with STFRNN, and outperforms SwinSTFM
and SwinSTFM-B when considering the reconstruction of fine-
scale spatial details. Overall, the fusion image obtained by the
proposed STM-STFNet method has the best quality from the per-
spective of both the spatial reconstruction and spectral fidelity.

The results also indicate that the proposed method performs well
in processing image scenes with phenological changes.

E. Fusion Results for the DX Dataset

The DX dataset is a relatively new dataset composed of
images collected during 2013–2017, where the time span is
much longer than that of the LGC and CIA datasets. As noted in
Section IV, the test images feature both phenological and land-
cover changes, which can effectively evaluate the generalization
ability of the proposed method. Table IV provides a comparison
of the quantitative results of the different fusion methods for the
DX dataset. The target was to reconstruct the fine image acquired
on 12 September 2017. The visual performance of the compar-
ative methods over a subregion containing DX airport is shown
in Figs. 9 and 10. The results show that STFRNN generates a
relatively dark image, where the spectral bias is also reflected in
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TABLE IV
QUANTITATIVE EVALUATION RESULTS OF THE DIFFERENT METHODS FOR THE DX DATASET

Fig. 9. Subregions of the fusion images of the different methods for 12 September 2017 with the DX dataset.

Fig. 10. Average absolute difference maps of the subregions within the fusion images for 12 September 2017 with the DX dataset.
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TABLE V
QUANTITATIVE EVALUATION RESULTS OF THE DIFFERENT METHODS FOR THE CIA AND DX DATASETS

Fig. 11. Fusion results of the different methods on the CIA dataset. (a) Subregion on 12 January 2004. (b) Subregion results of STM-STFNet w/o the spatial
branch. (c) Subregion results of STM-STFNet w/o the temporal branch. (d) Subregion results of STM-STFNet. (e) Average absolute difference map of STM-STFNet
w/o the spatial branch in the subregion. (f) Average absolute difference map of STM-STFNet w/o the temporal branch in the subregion. (g) Average absolute
difference map of STM-STFNet in the subregion.

the large SAM values in Table IV. Comparatively, ESTARFM
shows a good performance in this case and outperforms FSDAF
and GAN-STFM in terms of both the visual and quantitative
evaluation, especially over the bright artificial surface. These
results indicate that the STF methods perform distinctively for
different image datasets with various characteristics. However,
the proposed method has a robust performance over all the
datasets and achieves the best quantitative scores. The visual
maps in Figs. 9 and 10 also show that STM-STFNet achieves
a balance in processing image patches with diverse textures
(e.g., buildings, roads, and farmland), which results in the lowest
errors over the whole image.

V. DISCUSSION

A. Ablation Study

To verify the effectiveness of the proposed STM-STFNet
method, we conducted ablation experiments on the CIA and DX
datasets, which represent phenological and land-cover changes,
respectively. First, the core modules (i.e., the spatial model-
ing branch and temporal modeling branch) were subsequently
removed from the overall framework, and the corresponding

evaluation results are provided in Table V. The results show
that the absence of the modules has a negative impact on the
evaluation scores, but to different degrees. Both modules are
important, while the temporal modeling branch plays a critical
role in estimating the temporal changes and preserving the spec-
tral fidelity. Figs. 11 and 12 are the visual results of the ablation
experiments with the CIA and DX datasets, respectively, where
the overall quality of the reconstruction results is consistent with
the quantitative results.

In addition, we also conducted ablation experiments for the
loss terms, and the results obtained with the DX dataset are
presented in Table VI. Both the structure loss and edge loss
result in a certain improvement in the results, which proves the
effectiveness of the designed hybrid loss function. Between the
loss functions, the edge loss only pays attention to the high-
frequency details, and thus has relatively little impact on the
overall results.

B. Impact of the Spatial and Temporal Modeling

In this part, we describe the analysis conducted on the impact
of the spatial and temporal modeling on the STF performance.
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Fig. 12. Fusion results of the different methods on the DX dataset. (a) Subregion on 12 September 2017. (b) Subregion results of STM-STFNet w/o the spatial
branch. (c) Subregion results of STM-STFNet w/o the temporal branch. (d) Subregion results of STM-STFNet. (e) Average absolute difference map of STM-STFNet
w/o the spatial branch in the subregion. (f) Average absolute difference map of STM-STFNet w/o the temporal branch in the subregion. (g) Average absolute
difference map of STM-STFNet in the subregion.

TABLE VI
QUANTITATIVE EVALUATION RESULTS FOR THE DX DATASET WITH DIFFERENT LOSS FUNCTIONS

The results in Table V and Figs. 11 and 12 show that the temporal
modeling achieves results that are closer to those of the proposed
STM-STFNet method in the quantitative and visual results. This
indicates that temporal prediction plays a more critical role in
STF. In the highlighted regions in Fig. 11(b)–(d), it can be seen
that the spatial modeling has advantages in reconstructing the
spatial details. The visualization of the attention weight maps
of the spatial branch [referring to Mcs(ΔC ′) in (11)] in Fig. 13
also shows that the spatial modeling pays special attention to
the heterogeneous information related to the spatial details and
land-cover changes, which is consistent with the role of the
spatial modeling branch, as described in Section III. The spatial
modeling helps the model in dealing with land-cover changes
within the multitemporal images and serves to reconstruct the
fine-scale textures in the results.

However, significant prediction errors and spectral distortion
are the main problems in the case of abrupt land-cover changes,
as shown in Fig. 12. In this case, the spatial modeling has dif-
ficulty in achieving satisfactory results without the involvement
of the temporal modeling branch for change prediction.

C. Complexity Analysis

Table VII presents the frames per second (FPS) and parameter
size of different deep-learning methods on LGC dataset. All the

TABLE VII
COMPUTATIONAL EFFICIENCY AND PARAMETER SIZE OF DIFFERENT

DEEP-LEARNING METHODS ON LGC DATASET

codes were run on an NVIDIA GeForce RTX 4090 GPU and
13th Gen Intel Core i7-13700F CPU. The patch size for the
computational complexity experiments was set to 128×128 for
a fair comparison of FPS values.

The results show that GAN-STFM and STFRNN are rela-
tively light, in terms of both parameter size and FPS values.
However, the STM-STFNet has a considerable computational
complexity with SwinSTFM while achieving a better result.
Moreover, the trained STM-STFNet takes 134.28 s to generate
one target image with the size of 3200 × 2720 × 6 with two
reference image pairs. Compared with 13745.45 s required for
ESTARFM and 3416.25 s for FSDAF, the proposed method
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Fig. 13. (a) Image from 22 February 2002 in the CIA dataset. (b) Image from 12 January 2002 in the CIA dataset. (c) Attention weight map of the spatial branch
for the CIA dataset. (d) Image from 7 May 2017 in the DX dataset. (e) Image from 12 September 2017 in the DX dataset. (f) Attention weight map of the spatial
branch for the DX dataset.

shows a better efficiency. Overall, given the superior perfor-
mance and computational cost of the proposed method, the
proposed STM-STFNet can be a good candidate method for
STF task.

VI. CONCLUSION

In this article, we have proposed a dual-perspective STF
method by discriminative learning of spatial and temporal map-
ping to tackle the challenge of fusing remote sensing images with
abrupt land-cover changes. The extensive experiments showed
that the proposed method can achieve state-of-the-art results on
three datasets (i.e., the LGC, CIA, and DX datasets) for image
STF. These results show that the proposed STM-STFNet method
can adapt well to datasets characterized by land-cover changes,
phenological changes, and even both. Moreover, the ablation
experiments validated the effectiveness of the dual-perspective
modeling. The temporal modeling plays a vital role in the
accurate change prediction and spectral preservation, while the
spatial modeling helps to reconstruct the high-frequency compo-
nents and capture the change information between the reference
and target dates.

This article has provided a new solution for STF modeling
with complex temporal changes. In terms of the limitations, the
spatial modeling with significant temporal changes from STF is
still challenging. To further promote the reconstruction accuracy,
our future studies will focus on incorporating physical knowl-
edge related to the spatial, temporal, and spectral characteristics
into the learning-based STF framework, and we will attempt to

develop STF methods adapted to monitoring different terrestrial
processes (e.g., crop growth, urban construction, and the water
environment).
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