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Abstract—Satellite-based monitoring is a key tool for support-
ing global food security and natural resource management but is
challenged by cloud corruption and lack of labeled training data.
To address these issues, self-supervised learning (SSL) techniques
have been developed that first learn representations from almost
limitless available unlabeled data, before using labeled samples for
a specific downstream task. As the learned representations detect,
integrate, and compress information in the dataset in a fully unsu-
pervised manner, the downstream tasks require only small labeled
datasets. In this study, we present spectral–temporal Barlow Twins
(ST-BT), a new pixelwise SSL architecture that generates useful
representations designed to be invariant to extensive cloudiness. We
demonstrate that ST-BT representations enable stable and high F1
scores on the downstream task of crop classification even with cloud
cover reaching 50% of available dates and using only a few labeled
samples. The ST-BT representations achieve maximum F1 scores
of 0.94 and 0.90 on the two benchmark classification datasets used.
These results indicate that ST-BT can create useful representations
of pixelwise multispectral Sentinel-2 timeseries despite cloud cor-
ruption.

Index Terms—Crops, remote sensing, self-supervised learning,
time series analysis.

I. INTRODUCTION

SATELLITE-BASED remote sensing offers low-cost, global
land surface data that allow monitoring of agricultural land-

scapes and natural resources with spatial resolution ranging from
decimeters to kilometers [1]. In the agricultural context, remote
sensing, with its high revisit frequency, can inform important
agricultural decisions, including crop yield estimates, crop area
measurements, and disease and pest tracking, which are at the
foundation of global food security.

The huge potential of remote sensing for agricultural ap-
plications is still underutilized [2] largely for two reasons.
First, the presence of clouds interrupts the otherwise regular
sensing of land surface spectral signatures, “corrupting” the
data. Many existing classification algorithms are intolerant of
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heterogeneous temporal sampling, making them unusable for
cloud-corrupted data without complex preprocessing steps for
corruption management. Second, labeling remotely sensed data
can be costly and sparse, which impedes supervised machine
learning approaches.

The main existing approaches for handling corrupted data are
1) modifying the data to minimize the impact of corruption and
2) building models invariant to corruption. Data modification is
more common and includes hand-selecting data [3], applying
gap-filling [1], [4], [5], fusing sensors [6], and deriving tem-
poral metrics [7]. Corruption invariance is less common and
was historically solved using curve fitting approaches [8]. In
newer approaches, corruption invariance is handled using ML
approaches [9], [10], [11].

As demonstrated in the fields of computer vision and speech
recognition, self-supervised learning (SSL) has the potential to
address data corruption, while the subsequent downstream (e.g.,
classification) tasks require fewer labels as compared to models
trained directly on the original data [12], [13]. SSL methods
work by extracting meaningful representations of input data by
optimizing a surrogate objective [14]. The extracted represen-
tations are leveraged in downstream tasks using only a small
amount of labeled data. Seen through a compressed sensing and
redundancy reduction framework, SSL aims to create broadly
useful, informationally dense representations. Versions of SSL
for image data have been used since the 1990s [15] but have
only gained popularity in recent years. Recent work applying
SSL to remote sensing contexts has found that SSL methods
can outperform supervised models [16].

Different approaches, such as RankMe [17], have been devel-
oped to assess the quality of the derived representations. In the
remote sensing context, a good candidate downstream task to
help understand the usefulness of SSL-derived representations
is crop-type classification. For one, precise crop-type classifica-
tions are essential for agricultural statistics, production forecasts,
and food security issues. Second, crops are often grown in cloudy
areas and have unstable crop-type specific spectral–temporal
fingerprints impeding their identification across seasons and
ecoregions. This traditionally requires intensive and costly la-
beling procedures, which SSL approaches could partly alleviate.

As we show in Section II, proposed SSL methods for time
series analysis are complex, do not use the full range of
spectral information, or use spatial contextual data (making
them unsuitable for small fields). To address this research gap,
we demonstrate the use of a novel self-supervised machine
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learning approach for learning information-rich representations:
spectral–temporal Barlow Twins (ST-BT). We demonstrate the
quality of the derived representations in the context of crop
type classification. Specifically, we show that on two publicly
available remote sensing datasets, our method can reach an F1
score of up to 0.94, and that this F1 score is stable even with
cloudiness reaching 50% of available dates.

II. RELATED WORK

There is little literature on SSL applied to crop classification
using spectral time series data [18].

Yuan and Lin [19] proposed an SSL method (SITS-BERT)
for satellite time series representation generation for crop-type
classification based on bidirectional encoder representations
from a BERT architecture [20]. They prepare spectral–temporal
data using Sentinel-2 remote sensing images from the Central
Valley of California, United States, but restrict analysis to cloud-
free images. SITS-BERT creates representations by learning to
fill artificially noised time series observations. The pretrained
SITS-BERT plus a shallow neural network (NN) are afterward
finetuned using a small, labeled dataset to leverage representa-
tions for landcover classification. The greatest limitation of this
work is that, while the authors report an up to 3.5% boost in
representation performance with their finetuning compared to
without finetuning, the published code does not show a similar
increase.

Yuan et al. [21] also proposed SITS-Former, a method for
learning useful representations from patch (spatial–spectral–
temporal) Sentinel-2 time series data. As in SITS-BERT [19],
only cloud-free images are used. SITS-Former learns to create
representations by filling artificially masked subpatches. As
in Yuan and Lin’s work [19], the authors assumed that the
learning task of identifying masked or artificially corrupted
data is sufficient for building representations that capture the
spatial–spectral–temporal structure of data. The biggest chal-
lenge with that work is that a 5 × 5 pixel patch is required to
learn from or classify each pixel making it unsuitable for small
fields. In addition, it remains unclear to what extent this method
is successful for patches containing several (crop-type) classes,
as the authors used for evaluation only patches with at least 50%
of pixels matching the class of the center target pixel.

Wang et al. [22] proposed a crop classification oriented SSL
framework. Pixelwise time series Sentinel-2 imagery in red,
green, and blue, and NIR spectral bands are formed into 3-D ten-
sors. These tensors are passed into the Sim-SCAN SSL model,
a combination of SimCLR [23] and semantic clustering [24].
Sim-SCAN works by learning to create useful representations
from clustering and denoising positive and negative sample pairs
as a pretext task. The authors find that this method performs
similarly or slightly better than ResNet18, although it takes three
times longer to run per sample. The greatest drawbacks to this
approach are its run time, the use of limited spectral bands, and
the need for negative samples.

Zheng et al. [25] presented a model for remote sensing data for
use in a diverse array of tasks, named SkySense. It incorporates

SAR and multispectral data across spectral, spatial, and temporal
dimensions. Cloudy images are omitted from the multispectral
datasets used using sensor-provided data. They propose a learn-
ing task of multigranularity contrastive learning, which allows
the model to generate useful representations. After pretraining,
SkySense is evaluated as a foundation model on a variety of
downstream tasks with finetuning, including crop-type classi-
fication. The main drawback of SkySense is its architectural
complexity.

Our review of prior work suggests that SSL approaches for
EO time series analysis are still in its infancy, and that the
challenge of crop classification can potentially benefit from
useful representations generated with SSL.

III. METHODS AND DATA

A. Barlow Twins (BT)

In this work, we propose a novel SSL approach. Our approach
is based on BT ([26]), an SSL architecture that generates repre-
sentations from multispectral time series (see Fig. 1). BT learns
by passing two augmentations of spectral–temporal data through
an encoder, which produces two representations, and then a pro-
jector, which creates embeddings from the representations. The
augmentations are sparse random temporal samples of the spec-
tral signatures of a given pixel location but excluding cloudy ob-
servations. The loss function pushes the model to generate rep-
resentations of the two distorted inputs more closely in the mul-
tidimensional space, building invariance to the distortions in the
augmentation. The loss also encourages redundancy reduction.

To leverage the rich spectral and temporal information pro-
vided by modern satellite sensors, such as Sentinel-2, and to
avoid spatial convolutions, we use 2-D arrays of spectral signa-
tures for all datetimes as inputs to the BT instead of the classical
3-band image data used in the original BT. We label this data
structure as “d-pixel” (see Fig. 1). In a d-pixel, data are organized
as an array with spectral bands as columns and datetimes d as
rows.

Given the relative simplicity of the 2-D d-pixel compared
to a RGB image, we use an architecturally simpler encoder; the
original BT uses a ResNet-50 network. We use a four-layer fully
connected NN with rectified linear units following the first three
layers (see Table II).

B. Data Augmentations

To build ST-BT invariance to cloudy dates when using the
d-pixel structure, sparse random temporal sampling is used:
two sets of randomly selected spectral observations are sam-
pled from the available cloud-free datetimes in the original
d-pixel, each representing a sparse subset of the original; this
corresponds to selecting a random subset of rows of the d-pixel
(see Fig. 1). These two subsets of cloud-free spectral temporal
data create augmentations of the original d-pixel, forcing the
algorithm to learn the intrinsic spectral–temporal structure of the
observed pixel. Through the use of sparse temporal sampling as
the augmentation for d-pixels, invariance to irregular datetime
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Fig. 1. ST-BT architecture. The corrupted d-pixel and two extracted augmentations are on the left, with datetimes in rows and spectral bands in columns. ST-BT
generates representations from d-pixels instead of images. (Visualization adapted from Zbontar et al. [26].)

TABLE I
DATASET DETAILS

availability is created, essential for the representation learning
from cloud corrupted time series.

C. ST-BT Loss

ST-BT pushes together the two embeddings through the loss
term, which is directly adopted from the original BT and defined
as

Loss =
∑
i
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where C is the cross-correlation matrix calculated between
embeddings. An example of the Cij calculation is
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In each batch b, as indexed by zb, each pair of embedding
dimensions is indexed by i and j.

The first term of the loss function is considered the “invariance
term” and is calculated between corresponding dimensions of
the two embeddings. This term is minimized when the sum of the
cross-correlation for each corresponding embedding dimension
approaches one, pushing the model to generate embeddings that
are more similar in each epoch. Meanwhile, the second term of
the loss is considered the “redundancy reduction term,” and is

calculated between noncorresponding dimensions of the embed-
ding pair, for all pairs in the batch. This term is minimized when
the sum of all cross-correlations between noncorresponding
embedding dimensions approaches zero, which encourages the
model to reduce redundancy in the embeddings. The redundancy
reduction term is weighted with the λ parameter. Once the model
is trained, representations are expected to cluster by similarities
in a multidimensional space, and compresses the core spectral
time series into a meaning-dense form. It can therefore be seen
as an implementation of compressive sensing and redundancy
reduction for diverse downstream applications.

IV. RESULTS

A. Datasets

We test ST-BT representation creating using two publicly
available datasets: D1 and D2 (see Table I). In both cases, ST-BT
is first trained without any labels. Only after completion of
the SSL training, labels are used to assess the quality of the
representations within a crop-type classification task.

The first dataset (D1) is from Pelletier et al. [27]. It contains
1600 pixelwise, labeled, and class-balanced, 10-band Sentinel-2
spectra, across 73 dates in Australia for 2017–2018. One spectral
signature is recorded every five days, and eight classes are distin-
guished. Cloudy dates are gap-filled by using a linear temporal
interpolation [27]. This dataset is ideal for experimenting with
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Fig. 2. Downstream classification pipeline. Other results may be calculated
from the unlabeled representations.

model architectures and for sensitivity analysis with respect to
(artificial) cloud corruption.

The second dataset (D2) is from Yuan et al. [21]. The pix-
elwise dataset comprises 1.66 million unlabeled samples and
145 000 labeled samples, each of a single geographic point with
ten Sentinel-2 spectral bands. The time series extends across
one year in the Central Valley of California (2018–2019) and
includes 13 classes. Cloudy data are masked. This dataset is
appropriate as a larger, more challenging dataset for bench-
marking work.

B. Evaluation Details

SSL approaches are trained on unlabeled data, which are
abundant. Task-oriented labeled dataset are required only for
evaluation tasks. We first train ST-BT using unlabeled data (see
Fig. 2). The data used for this step are specified in Table I.
Using the two benchmark datasets (D1 and D2), we investigate
different use cases and conditions.

1) Impact of cloudiness on classification accuracy (D1).
2) Impact of the number of sparse temporal samples per

augmentation on classification F1 score (D1).
3) Stability of the derived representations for different num-

bers of sparse temporal samples (D1).
4) Suitability of representations for supervised classification

and comparison against composite-based baseline classi-
fier (D1) and SITS-BERT (D2).

5) Benefits in using more labeled samples (D2).
As a baseline for comparison, a random forest (RF) is trained

and evaluated with classical seasonal composites [4], [28]. Here,
three-month season windows are composited, pixelwise and
bandwise. For occasional cases where no valid (cloud-free)
observations are available within a season, the neighboring
composited seasonal values are used, prioritizing the preceding
season, and if this is not feasible, the subsequent season. The four
seasonal composites for each pixel are flattened and used to train

TABLE II
SETTINGS AND HYPERPARAMETERS ASSUMED UNLESS OTHERWISE NOTED

the random forest for classifying unseen data. The validation set
is used to optimize the RF hyperparameter “number of trees.”

For cases where we emulate cloudiness impacts on ST-BT, we
mask a fixed number of randomly selected dates by removing
random rows from the d-pixels. We then generate representations
of the labeled d-pixels using the trained ST-BT model. To assess
the importance of the number of sparse temporal samples, we
create two datasets with zero and 50% cloudiness, and calculate
the F-score using 5, 10, 15, and 25 sparse temporal samples,
respectively.

Parameters for ST-BT, downstream methods, and baseline are
provided in Table II. Parameters for the downstream RF and the
baseline RF are the same.

To evaluate the representation stability, we randomly sam-
ple unlabeled data with different numbers of sparse temporal
samples (5 and 25) and calculate the coefficient of variation
(CV) over five augmentations for 0% and 50% cloudiness. In
evaluating the representations using the downstream task of crop
classification, we divide the labeled representations into train–
test–validate sets and use an RF classifier for the supervised
training (parameters for the downstream RF and the baseline
RF are the same). Using this off-the-shelf method allows us to
evaluate the usefulness of the representations without modifi-
cation, and directly compare to the RF baseline. The randomly
sampled training set is used for RF training and the validation
set is used to select the number of trees. Classifications of each
d-pixel are based on the majority vote across the classifications of
all representations. We evaluate performance using the standard
F1, balanced accuracy and overall accuracy metrics on the test
set. Parameters for ST-BT, downstream methods, and baseline
are provided in Table II.

C. Performance on Dataset D1

All results presented are for ST-BT pretrained on 50% of D1
data (labels removed).

1) Impact of Cloudiness: We find that ST-BT representations
lead to a consistently higher F1 score than the baseline compos-
ites even as the number of emulated cloudy days increases from
0% to 50% (see Fig. 3). The Kolmogorov–Smirnov (KS) test
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Fig. 3. ST-BT consistently outperforms the baseline even with 50% cloudy
days. ST-BT performance on D1 with RF used for downstream classification.
F1 scores ±1 standard deviation (SD) from 50 runs are shown with varying
percentages of cloudy days. The broken black line shows the p-value of the KS
significance test between ST-BT and the baseline F1 scores (right y-axis). The
broken gray line shows the significance bound of 0.05.

Fig. 4. ST-BT has higher F1 scores with increasing number of sparse temporal
samples. This effect saturates when the number of samples approaches the
number of available noncloudy dates. The average ST-BT F1 score ±1 SD for
50 runs is shown for two cases: No cloudiness and 50% emulated cloudiness, as
the number of sparse samples used per augmentation varies.

confirms the statistical significance between the two classifi-
cations; the KS test offers a nonparametric comparison of the
cumulative distributions of two datasets with the null hypothesis
that both came from the same distribution. Notably, the ST-BT
representations achieve a maximum F1 score of 0.94, given that
the baseline has an already high F1 score of 0.93.

2) Impact of Number of Sparse Temporal Samples: For both
cloud-free conditions and 50% cloudiness (see Fig. 4), the
performance of ST-BT representations increases with increasing
number of temporal samples used per augmentation. The F1
scores for ST-BT representations derived from data with 0% and
50% cloudiness, respectively, are not statistically significantly
different (using the KS test), demonstrating that ST-BT is stable

Fig. 5. Stability of representations increases when more sparse temporal
samples are used per augmentation. Boxplots of the coefficient of variation for
each dimension of 20-dimension representations from all d-pixels of D1 ordered
by magnitude, comparing representations from five sparse temporal samples per
augmentation (top) with 25 sparse temporal samples per augmentation (bottom).

even under highly cloudy conditions. ST-BT representations
stop benefiting from increasing number of sparse temporal sam-
ples once the number of sparse temporal samples used in each
augmentation approaches the number of available (noncloudy)
dates. When the number of sparse temporal samples approaches
the number of cloud free observations, the augmentations are
not sufficiently different, inhibiting the learning process.

3) Representation Stability: With a greater number of
sparse temporal samples per augmentation—and if cloudiness
conditions permit—the stability of the output representations
increases. We quantify representation stability by the coefficient
of variation (CV) calculated for each of the 20 representations
per d-pixel in D1, for five runs of ST-BT. The CV permits
quantification and comparison of the stability of representations
independent of the downstream task. The CV of each represen-
tation dimension for all d-pixels is visualized in Fig. 5.

With a larger number of sparse temporal samples used per
augmentation, the representations across all dimensions have
less dispersion on average, and are thus more stable. Given
that intra-d-pixel variability remains and that the number of
sparse temporal samples is limited by the overall cloudiness
conditions in a study area, this motivates aggregating more than
one pair of augmentations per d-pixel. Overall, our results for
D1 demonstrate that the ST-BT representations are effective in
crop-type classification despite using cloud corrupted data for
training.

D. Performance on Dataset D2

D2 is a much more challenging dataset, with more class
overlap. The dataset allows us to study the impact of the quantity
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Fig. 6. ST-BT always has higher F1 scores than the baseline, regardless of
downstream labeled training samples used on D2. F1 scores ±1 SD across
five runs with increasing number of labeled samples used for downstream task
training, and the greatest improvement happens as the % of labeled samples used
increases to ∼10%.

TABLE III
OVERALL ACCURACY BY % OF LABELED TRAINING SAMPLES USED FOR

DOWNSTREAM TRAINING (D2)

of labeled samples on the F1 score. All results presented are for
ST-BT pretrained on unlabeled D2 data. The downstream tasks
splits the labeled data into train, test, and validation sets.

1) Impact of Number of Labeled Samples and Downstream
Method: We find that the F1 score of ST-BT representations
increases as the number of training samples used for the down-
stream training increases, and remains statistically significantly
above the baseline composites (see Fig. 6).

With about 9% of the labeled data used for downstream task
training, ST-BT outperforms the reported performance of SITS-
BERT [19], which is the closest related work (see Table III). We
are unable to evaluate SITS-BERT performance when trained
with more than the reported 2600 labeled samples (2% of labeled
data) because their work is unreproducible.

V. DISCUSSION AND CONCLUSION

Our work addresses the potential usefulness of representations
derived from multispectral Earth Observation timeseries using
the example downstream task of crop type classification. The
research specifically takes into account the presence of clouds
and the lack of adequate quantities of labeled data.

Using a relatively simple architecture, ST-BT is a promising
SSL approach to creating a foundation model for environmental
remote sensing. Our algorithm is relatively insensitive to ex-
tensive cloudiness and works on pixel level without any spatial

convolution. When the derived representations are used for clas-
sification purposes, the method requires fewer labels compared
to the baseline RF classifier based on seasonal composites to
reach the same classification accuracy.

We show that ST-BT offers a best-in-class approach to gen-
erating representations for crop-type classification with cloud-
corrupted time series data. Using a sufficient number of sparse
temporal samples, within the limits of available cloud-free data,
it creates stable representations and has high F1 scores even
with cloud cover reaching 50% of available dates, achieving a
maximum F1 score of 0.94 on D1 and 0.90 on D2.

Our work can be extended in several ways. First, a fine-tuning
step could further boost the performance of the representations
on downstream classification. In this article, we have frozen
ST-BT after pretraining and only optimized the downstream
classifier in downstream task training. Second, we only used a
single augmentation type—sparse temporal sampling—for ST-
BT to learn invariance to missing data due to cloud corruption.
Other augmentations could be tested to explore the extent to
which the model might learn additional types of invariance and
further compress information implicit in the data. Third, future
work could explore the impact of leaving cloud corruption in
the data entirely to understand the extent to which ST-BT can
learn to identify and ignore corruption. Fourth, ST-BT, as evident
from its naming of spectral–temporal, does not consider spatial
contextual data. The impact of spatial data can be analyzed for
model performance, especially when considering varying field
sizes. Finally, additional methods for evaluating SSL separately
from downstream task performance can be explored.
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