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Structure-Preserved and Weakly Redundant Band
Selection for Hyperspectral Imagery
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Abstract—In recent years, sparse self-representation has
achieved remarkable success in hyperspectral band selection. How-
ever, the traditional sparse self-representation-based band selec-
tion methods tend to neglect the spatial distribution differences
and spectral redundancy between heterogeneous regions. Con-
sequently, the uniform band subset obtained cannot accurately
express the key features of various region-specific objects. In this
context, this article proposes the structure-preserved and weakly
redundant (SPWR) band selection method for hyperspectral im-
agery (HSI). Initially, to preserve the spatial structure of HSI,
heterogeneous regions are generated by superpixel segmentation.
This process simulates the actual distribution of ground objects
and captures the spectral feature differences from heterogeneous
regions, thus adapting the sparse self-representation to diverse land
cover types. Subsequently, given that the different objects between
heterogeneous regions have different sensitive bands, a series of
region-specific multimetric hypergraphs are constructed to more
accurately express the multivariate adjacencies between bands
for each region. Significantly, a new spectral similarity measure
that integrates both the spectral distance and physical distance
is elaborately utilized to group bands into various hypergraphs.
Finally, a consensus matrix is designed to fuse multiple coefficient
matrices carrying the local spatial-spectral information of HSI,
thereby selecting the subset of bands for a unified characterization
of HSI and achieving the complementarity of multiple regions.
Extensive comparison experiments on four real-world datasets
demonstrate that the proposed method SPWR can efficiently
select representative bands and outperforms other comparison
methods.

Index Terms—Region-specific multimetric hypergraph, sparse
self-representation, spatial structure, unsupervised band selection,
weakly redundancy.
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I. INTRODUCTION

HYPERSPECTRAL image (HSI) with hundreds of narrow
spectral bands [1], [2], [3] can provide higher spectral

resolution than RGB image, which is more conducive to the
accurate identification of ground objects [4], [5]. However, the
nanoscale spectral resolution of HSI also brings some challenges
to data processing, such as high computational complexity and
information redundancy leading to wasted storage space [6]. To
solve these problems, dimensionality reduction is necessary [7],
[8], [9].

Feature extraction and band selection are common techniques
for dimensionality reduction [10]. Among them, feature extrac-
tion projects the original high-dimensional data into the low-
dimensional space, which changes the physical properties of the
original data and makes some key information corrupted [11],
[12]. Contrarily, band selection selects the most discriminative
subset of bands from HSI, which retains the information of the
original data better without changing the physical properties of
the bands, thus making the reduced data more interpretable and
usable [13].

Band selection techniques can be broadly classified into su-
pervised band selection and unsupervised band selection. Super-
vised band selection requires certain priori information, such as
training samples and associated labels, and its development is
somewhat hampered by the difficulty and expensive process of
collecting sample labels [14], [15], [16]. In contrast, unsuper-
vised band selection does not require explicit labels and solely
uses unlabeled data to develop learning models. It provides
a feasible solution for many band selection methods plagued
by labels and makes it more convenient in application. In the
past decade, the research on unsupervised band selection has
developed rapidly, and the methods such as maximum-variance
principal component analysis (MVPCA) [17], similarity-based
ranking method [18] and Boltzmann entropy-based band selec-
tion (BE) [19] all have achieved good effects.

Due to the high redundancy of bands selected by the afore-
mentioned ranking-based methods, it is challenging to further
enhance performance. Consequently, some researchers have
proposed clustering-based [20], [21] and subspace partition
strategy-based band selection methods [22], [23], [24] in order
to reduce the correlation of bands. For example, Jia et al.
[25] introduced the enhanced fast density-peak-based clustering,
which calculates the ranking score for each band by weighting
the local density and intracluster distance. In consideration of
the block diagonality of band similarity matrix, Li et al. [26]

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0002-5870-6343
https://orcid.org/0000-0002-0133-8447
mailto:fubaijia@qdu.edu.cn
mailto:cuichuanyu@qdu.edu.cn
mailto:shangxd@qdu.edu.cn
mailto:sxd@dlmu.edu.cn
mailto:zhangjh@radi.ac.cn
https://github.com/fbj1212/SPWR.git


FU et al.: STRUCTURE-PRESERVED AND WEAKLY REDUNDANT BAND SELECTION FOR HYPERSPECTRAL IMAGERY 12491

proposed a block-diagonal representation learning model that
utilizes a linear combination approach to assess the significance
of bands within each subblock matrix. Furthermore, Wang et al.
[27] developed a fast neighborhood grouping method, which
employs a coarse-fine strategy to partition the HSI into multiple
groups to obtain highly correlated and informative bands. Sub-
sequently, Li et al. [24] presented a hyperspectral band selection
method via difference between intergroups (DIG), which uses
a grouping and sorting strategy to reasonably divide bands and
obtain representative ones.

Recently, the application of sparse representation theory to
the hyperspectral fields has been proven to be reasonable [28].
Sparse representation-based hyperspectral band selection [29],
[30], [31] argues that arbitrary band vectors can be sparsely
expanded in the feature space made up of band vectors of the
entire HSI, which increases the interpretability of the model
and significantly reduces data redundancy. For instance, Sun
et al. [28] put forward a sparse self-representation model, which
first incorporates sparse representation into hyperspectral band
selection. After that, Sun et al. [29] proposed a dissimilarity
weighted sparse self-representation method, which integrates
the dissimilarity weighted regularization term with the sparse
self-representation model and effectively reduces the redun-
dancy of the band subset. To balance the error coefficient term
and the sparse constraint term in the sparse self-representation-
based band selection, Hu et al. [32] developed a multiobjective
optimization-based band selection to produce a set of optimal
solutions to construct the similarity matrix. In addition, Li et al.
[33] proposed the multidictionary sparse representation band
selection model, which subtly converts the band selection into
the sparse solutions of each band vector with its matching
dictionary, thereby significantly improving the computational
efficiency. The aforementioned researchers have extended the
functionality of the sparse self-representation-based band se-
lection to some extent, but they ignore two important issues.
First, the spatial information utilized insufficiently in the band
selection process. Second, the adjacency relationship between
the bands has not been fully considered.

The spectral features of ground objects in heterogeneous
regions vary widely, so a uniform subset of bands cannot
adequately summarize and express the essential features of the
ground objects in all regions. Therefore, intending to fully utilize
the spatial information to enhance the quality of the band subset,
Jia et al. [34] proposed the multiscale superpixel-level group
clustering framework for band selection based on the principle of
complementarity of different superpixel segmentation methods
and scale variability of different land cover types. Besides,
Yang et al. [35] proposed the spectral-spatial band selection
models (SML-AP and SRL-AP), which employ the superpixel
segmentation technique to generate several superpixels and take
the band criteria learned by relevant component analysis (RCA)
as input for spectral clustering to select bands.

In response to the problem of inadequate utilization of band
adjacency relationships, graphs can visually represent the adja-
cencies between data points, thereby effectively mining the man-
ifold structure of the data. The representatives are the regularized
sparse band selection via learned pairwise agreement [36], the

multiscale spectral features graph fusion [37], the scalable one-
pass self-representation learning [38], the marginalized graph
self-representation [39], and the graph-regularized subspace
clustering [40], etc. However, all of the above use simple graphs
constructed with pixels as vertices. On the one hand, sparse
self-representation-based band selection that relies on the graph
regularization term built from pixels for band selection only
indirectly constrains the relevance of bands, which somewhat
lessens the algorithm’s effectiveness. On the other hand, the
bands generally have complicated adjacencies to one another
and exhibit regional specificity. In this case, the simple graph
can only reflect the one-to-one correspondence among the bands
instead of the one-to-many adjacent features.

Hypergraph can describe the adjacencies of multivariate as-
sociative objects through flexible hyperedges, thus preventing
the loss of original information caused by forcibly converting
multivariate relationships into binary relationships [41], [42].
However, hypergraph usually uses a single metric, resulting in
inaccurate representation of local structure by their hyperedges,
so a comprehensive evaluation indicator is essential. Moreover,
the spectral features of ground objects exhibit considerable vari-
ation across regions, and thus the sensitive bands corresponding
to different classes of ground objects are not consistent. Entropy
rate superpixel (ERS) [43], [44], [45], [46] can delicately capture
the spatial distribution characteristics of various types of ground
objects, which helps to accurately delineate heterogeneous re-
gions and extract the spatial structure of HSI.

Inspired by this, this article proposes the SPWR band se-
lection model for hyperspectral imagery. First, ERS is used to
capture the differences in spectral features of ground objects in
heterogeneous regions. Second, from the spectral perspective, a
series of multimetric hypergraphs are constructed to express the
local multivariate adjacencies among bands in specific region.
The band adjacency structure is rationalized by introducing the
spectral similarity and spatial index of bands as indicator for
comprehensive evaluation of band similarity, thereby guiding the
optimization of sparse self-representation. Finally, a consensus
matrix is designed to fuse the band reconstruction informa-
tion of all heterogeneous regions to form a uniform subset
of bands. Specifically, the contributions of this article are as
follows:

1) SPWR can capture the differences of spectral features
in heterogeneous regions and model the multivariate
spectral-spatial adjacencies of bands within local area,
which is ultimately used to constrain the optimization of
sparse self-representation model and improve the quality
of band subset.

2) The incorporation of spatial constraints in sparse self-
representation ensures the maintenance of the manifold
structure among the pixels in homogeneous regions while
capturing the spectral differences between heterogeneous
regions.

3) The designed comprehensive indicator effectively avoids
the decision bias inherent in evaluating band similarity.
The multimetric hypergraph helps to simulate the real
multivariate correlation among bands, providing spectral
constraint for model and reducing band redundancy.
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Fig. 1. Flowchart of SPWR. First, ERS segments the original HSI into multiple superpixel cubes to capture the differences in spectral features of various ground
objects in heterogeneous regions. Second, spectral and physical distances are introduced as band similarity indicators to generate a series of multimetric hypergraphs
that represent the multiadjacency between bands in a specific region. Finally, the band multiadjacency constraint, sparsity constraint, and consensus matrix are
constructed to enable the sparse self-representation model to preserve image structural information and reduce band redundancy during the optimization process.
Furthermore, the most representative bands are selected by band ranking.

The rest of this article is organized as follows:
Section II introduces the proposed model SPWR. Section
III presents the employed datasets and parameters setting in
experiments, along with the analysis of results. Finally, Section
IV concludes the article.

II. PROPOSED METHOD

A. Overview of SPWR Model

The distribution of ground objects in heterogeneous regions of
HSI varies considerably, and the spectral features and sensitive
bands are also different among regions. Consequently, it is not
reasonable to represent the whole HSI with a uniform subset of
bands. Therefore, this article proposes a novel method, named
the structure-preserved and weakly redundant (SPWR), for hy-
perspectral band selection. As illustrated in Fig. 1, the HSI is
first segmented into multiple regions by the superpixel segmen-
tation technique ERS, thus exploring the spatial structure and
mining the spectral feature differences of ground objects. Then,
combining the spectral similarity and spatial index of bands,
a series of multimetric hypergraphs are constructed to learn the
region-specific band structures. Finally, the band multiadjacency
constraint is applied to the sparse self-representation model, and
a consensus matrix is introduced to integrate the spectral-spatial
information of each region, thus reducing band redundancy and
achieving the unification of the band subsets. In this way, SPWR

considers both the distribution feature of ground objects and
the local structure of bands during the optimization process,
which can effectively improve the quality of the band subset. The
design and optimization process are described in the following
section.

B. Heterogeneous Region Generation

The 3-D HSI data cube is denoted as X ∈ �W×H×L where
the 2-D plane stores W ×H pixels, and L is the number of
spectral bands. Actually, HSI covers many different kinds of
ground objects, and the pixels that are spatially located next to
each other, i.e., pixels in homogeneous regions, tend to have
similar spectral features. In contrast, the spectral features of
spatially distant pixels in heterogeneous regions exhibit large
differences. Due to the different distribution of ground objects, it
is reasonable that the corresponding characteristic bands should
vary between heterogeneous regions. Accordingly, a superpixel
segmentation technique, ERS, is employed in this model. Based
on the high similarity of ground objects within the homoge-
neous region and significant differences between heterogeneous
regions, ERS divides the original HSI into S nonoverlapping
superpixel cubes Xs, 1 ≤ s ≤ S, with similar spectral features
to represent different coverages of the same types of ground
objects. In this way, the sensitive bands of different ground
objects are selected by type.
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Fig. 2. Segmentation process of ERS. (a) Before segmentation. (b) After
segmentation.

Specifically, ERS maps the first principal component of HSI
to graph G(V ,E ), where V is the set of vertices vi. Besides, E
is the set of edges eij , which connects pairwise pixels vi and vj .
On this basis, the weight of eij can be represented as

w(eij) =

{
exp

(
−||vi−vj ||

2δ2

)
, vi, vj ∈ Gs

0, vi /∈ Gs orvj /∈ Gs

(1)

whereGs represents the sth superpixelXs obtained by ERS, i.e.,
G =

∑S
s=1 Gs. δ = 1/K

∑
vj∈eij ||vi − vj || is a kernel param-

eter. Here, the similarity between pixels in the same region is
calculated via exp(−||vi − vj ||/2δ2), and the similarity between
pixels in different regions is set to zero.

ERS aims to search a subset A from the edge set E so that
graph G̃(V ,A) contains all T connected subgraphs. In other
words, the segmentation is finally achieved by removing some
unnecessary edges from E . The objective function of ERS is

max
A

Tr{H (A) + βB(A)} s.t A ∈ E ,NA ≥ T (2)

Here, H (A) is the entropy rate of the random walk model on
G̃(V ,A), which allows that the vertices on each cluster are
compact and homogeneous. Besides, B(A) is an equilibrium
term describing the cluster distribution to ensure that each cluster
is similar in size. Moreover, the variable weight factor β is
introduced to coordinate the proportional relationship between
H (A) and B(A), and NA denotes the number of connected
subgraphs in G̃(V ,A). Fig. 2 describes the process of ERS.
As can be seen, the connectivity of the edges between clusters
can be eliminated by the objective function, thus achieving the
segmentation. Accordingly, the HSI X can be rerepresented as
X = [X1,X2, . . .Xs, . . .,XS ].

C. Region-Specific Multimetric Hypergraph Construction

In general, bands with similar spectra have comparable capa-
bilities for reconstructing HSI. However, the traditional metric
of band similarity is usually based on spectral distances alone. In
fact, the bands of hyperspectral image are arranged sequentially.
Due to the potential physical properties of the image, bands
at different wavelengths should not be grouped in the same
cluster, even if the spectra are extremely similar. Consequently,
such a one-sided metric fails to accurately express the complex

neighborhood structure of bands, thus easily leading to biased
decision-making.

Inspired by this, SPWR further considers the spectral infor-
mation of a specific region on top of the spatial information
extracted from the pixel perspective by ERS. In comparison to
simple graphs, hypergraph can capture the high-order relation-
ships among multiple data points, thus effectively modeling the
spectral-spatial joint structure of HSI [42]. As a result, given that
the spatial locations (wavelengths) of bands with similar spectral
characteristics may not be adjacent, we devise a comprehensive
evaluation indicator that combines the spectral similarity and
physical characteristics (i.e., band index) between the bands, and
construct the specific-region multimetric hypergraph to explore
a more rational local structure that adequately expresses the
adjacencies between bands both spectrally and spatially.

Accordingly, the mutimetric hypergraph GH
s = (V H

s , EH
s ) for

a specific region Xs is constructed to form the complete hyper-
graph structureGH = {GH

1 , G
H
2 , . . ., G

H
S} of HSI. Here, the band

vectorbi is viewed as a vertex, and thenV H
s = {b1,b2, . . .,bL}

can represent the vertex set consist of L bands of HSI. More-
over, EH

s is the set of hyperedges ei ∈ EH
s corresponding to a

hyperedge composed of the K-nearest neighbors of bi. On this
basis, the weight w(ei) of ei, i.e., adjacent relationship, between
K bands within the hyperedge ei can be calculated as

w(ei) =
∑
bj∈ei

exp

( ||f(bi)− f(bj)||2
2σ2

)
(3)

where σ is a kernel parameter, usually set to σ =
1/K

∑
bj∈ei ||f(bi)− f(bj)||. Besides, f(bi) denotes the in-

tegral function of bi, determined by bi and the remaining
vertices in hyperedge ei formed at the center of bi, i.e.,
f(bi) =

∑
bj∈ei f̃ijbj . Since the remaining vertices in the

hyperedge ei have different affinities with bi, f̃ij is set to
f̃ij = fij/

∑
bk∈ei fik. Here, fij combines both the spectral

similarity f spe
ij and the spatial proximity f spa

ij of the bands, i.e.,
fij = f spe

ij × f spa
ij with f spe

ij and f spa
ij is expressed as

f spe
ij = exp

(−||bi − bj ||2
2θ2

)
(4)

f spa
ij = exp

(−|Ibi
− Ibj

|2
2ω2

)
. (5)

Here, θ = 1/K
∑

bj∈ei ||bi − bj || and ω = 1/K
∑

bj∈ei |Ibi

− Ibj
| are equilibrium parameters. Ibi

and Ibj
represent the

spatial index of bi and bj , respectively. Combining f spe
ij and

f spa
ij , fij not only considers the spectral information between

adjacent bands in a hyperedge, but also further synthesizes the
physical positional relationship between the wavelengths of the
bands. This integration enables a more realistic modeling of the
local–global correlation of the bands, enhances the accuracy of
the similarity metric and reduces decision bias.

Finally, construct the incidence matrix Hs, the weight matrix
Ws, the vertex-degreeDv

s , and the hyperedge-degree matrixDe
s
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of each multimetric hypergraph GH
s as follows:

Hs(bj , ei) =

{
1, bj ∈ ei,

0, otherwise
(6)

Ws = diag(ws(e1), ws(e2). . .ws(eL)) (7)

Dv
s = diag(dvs(b1), d

v
s(b2). . .d

v
s(bL)) (8)

De
s = diag(des(e1), d

e
s(e2). . .d

e
s(eL)) (9)

where diag(·) is the diagonal matrix, dvs(bj) =
∑L

i=1 ws

(ei)hs(bj , ei) and des(ei) =
∑L

j=1 hs(bj , ei). At this point, the
Laplacian matrix Ls corresponding to GH

s is given by

Ls = I− (Dv
s)

1
2HsWs(D

e
s)

−1HT
s (D

v
s)

1
2 . (10)

Here, I is the identity matrix. Ls takes advantage of the dis-
tinctive spectral features of bands themselves and the spatial
distance between the band sequences, which helps to reflect
the adjacencies between bands in a more realistic manner and
reduces redundancy.

D. Structure Preserved and Weakly Redundant Sparse
Self-Representation for Band Selection

Sparse representation has been widely used in noise reduc-
tion, feature extraction, and pattern classification [29]. Sparse
self-representation-based band selection holds that each band
can be linearly represented by a few bands of HSI. Let X =
[b1,b2, . . .,bL] be a 2-D matrix of HSI composed of L bands
with N pixels, bl = (x1, x2, . . ., xN )T , 1 ≤ l ≤ L, then the
problem of band selection can be expressed as

min
A

||X−XA||2F + α||A||2,1 s.t.A ≥ 0, diag(A) = 0 (11)

where α denotes the regularization parameter, || · ||2,1 is the
l2,1-norm [23] that constrains the coefficient matrix A with
row sparsity in order to approximate the dataset using as few
bands, i.e., dictionary columns, as possible. || · ||F represents the
Frobenius norm specified as ||A||F = (

∑L
i=1

∑L
j=1 |aij |2)1/2.

A ≥ 0 is used to ensure the nonnegative characteristics of the
spectral response. diag(A) = 0 indicates that diagonal elements
of A are all zero, avoiding any band being represented by itself.
Similarly, the objective function of each Xs can be described as

min
As

||Xs −XsAs||2F + α||As||2,1

s.t.As ≥ 0, diag(As) = 0. (12)

Here, As is the coefficient matrix of Xs, indicating the contri-
bution of the band in reconstructingXs. In order to synthetically
evaluate the reconstruction capability of the bands for the whole
image X, a consensus matrix A is designed to integrate all the
coefficient matrices As for Xs to fuse all the local features as a
whole, making the band selection more accurate. On this basis,
the objective function is further defined as

min
As,A,ws

S∑
s=1

[||Xs −XsAs||2F + λ1ws||As −A||2F
]

+ α||A||2,1s.t.As ≥ 0, diag(As) = 0 (13)

where λ1 is a regularization parameter and ws is an adaptive
equilibrium factor to ensure that ||As −A||2F is overall mini-
mized. Specifically, if ||As −A||2F is large, then ws should be
reduced in order to minimize this term, and vice versa. Since the
correlations such as the spectral similarity between bands and
the similar reconstruction capability of the adjacent sequence
bands cannot be captured in (13), based on the definition of
the multimetric hypergraph in Section II-C, (13) can be further
optimized as

min
As,A,ws

S∑
s=1

[
LOSS(As, ws) + λ2Tr(A

T
s LsAs)

]
+ α||A||2,1 s.t.As ≥ 0, diag(As) = 0 (14)

where LOSS(As, ws)=||Xs −XsAs||2F+λ1ws||As −A||2F .
λ2 is a balance factor and Ls represents the Laplacian matrix
of region Xs. Tr(·) denotes the trace operator. Up to this point,
based on preserving pixel-level spatial structure, the model fur-
ther introduces the spectral-level band local–global constraints,
which enables sparse self-representation to simultaneously con-
sider multiple information in both spatial space and spectral
space during the optimization process, and effectively reduce
band redundancy. Subsequently, the iterative update algorithm
[47] is adopted to solve (14) and A, As, and ws are optimized
as follows:

1) Fix A and ws, optimize As. The objective function of As

can be converted to

L(As) =

S∑
s=1

[||Xs −XsAs||2F + λ1ws||As −A||2F

+λ2Tr(A
T
s LsAs)

]
s.t.As ≥ 0, diag(As) = 0. (15)

By taking the derivative of (15) to zero, the update of As

is obtained as

A(n+1)
s =

2XT
s Xs + 2λ1A

(n)w
(n)
s

2XT
s Xs + 2λ1w

(n)
s I+ λ2(LT

s + Ls)
. (16)

2) Fix As and ws, optimize A. The objective function of A
can be simplified as

L(A) =

S∑
s=1

λ1ws||As −A||2F + α||A||2,1. (17)

Let U = diag(u1, u2, . . ., uL) to be a L× L diagonal
matrix with ui = 1/[2(||ai||22 + ς)1/2], where ς is a min-
imal value to avoid zero-denominator. Then, (17) can be
rewritten as

L(A)=
S∑

s=1

λ1wsTr(As−A)T (As−A)+α(UT+U)A.

(18)
By taking the derivative of (18) to zero and letting∑S

s=1 wsAs = F, A can be updated as

A(n+1) =
2λ1F

α(UT +U) + 2λ1

∑S
s=1 w

(n)
s I

. (19)
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Algorithm 1: Framework of SPWR.
INPUT: HSI X, the number of segmentations S , the number
of neighbors in hyperedge K, the regularization parameter
λ1, λ2, α, and the number of selected bands nBS;
OUTPUT: the optimal band subset.

1. Heterogeneous Region Generation:
1.1 Extract the first principal component of HSI;
1.2 Use ERS to divide HSI into S heterogeneous regions,
and rephrase the HSI as X = [X1,X2, . . .,Xs, . . .,XS ];

2. Region-Specific Multimetric Hypergraph
Construction:

2.1 Obtain the weight w(ei) of hyperedge ei via (3) based
on the spectral similarity f spe and the spatial proximity
f spa defined in (4) and (5);

2.2 Construct the incidence matrix Hs, weight matrix Ws,
vertex-degree Dv

s , and hyperedge-degree matrix De
s of

each multimetric hypergraph GH
s by (6)–(9);

2.3 Calculate the Laplacian matrix Ls via (10) and
generate band multiadjacency constraint;

3. Band Selection:
3.1 Initialize n = 0, A(n) = 0, A(n)

s = 0, w(n)
s = 0,

ε = 1e−6 and nmax = 1e2;
3.2 Repeat
Update A

(n+1)
s by (16);

Update A(n+1) by (19);
Update w

(n+1)
s by (20);

3.3 Until |A(n+1) −A(n)| < ε or n > nmax;
3.4 Calculate the weight of the i th band via ri = ||ai||2;
3.5 Select optimal band subset of nBS bands with respect to
the nBS largest r.

3) Fix As and A, optimize ws. The optimization of ws is
given by

w(n+1)
s =

1

2||A(n)
s −A(n)||F

. (20)

When the iteration reaches the maximum number of itera-
tions nmax or ||A(n+1) −A(n)|| is less than the set threshold
ε, the algorithm stops. At this point, each element aij in the
learned consensus matrix A represents the ability of band bi

to reconstruct band bj , and the row vector ai can represent the
contribution ofbi in reconstructing all bands of the original data
X. Therefore, the total contribution of bi in reconstructing X
can be obtained by summing up the elements of ai. That is, the
larger ri = ||ai||2, the more important bi is. Therefore, the final
subset of bands can be selected by sorting the total contribution
of each band ri in descending order for subsequent classification.
Algorithm 1 provides the specific implementation process.

III. EXPERIMENTS

In this section, we conduct extensive experiments on four
public datasets to evaluate the performance of SPWR. First, the
experimental setup, including the datasets, comparison methods,
and evaluation metrics, is introduced. Second, the sensitivity
of parameters is analyzed, and the classification performance

Fig. 3. Indian Pines dataset. (a) False-color image. (b) Ground truth.

Fig. 4. University of Pavia dataset. (a) False-color image. (b) Ground truth.

of SPWR is compared with nine methods to demonstrate its
reliability. Finally, we further discuss the computational and
memory complexity.

A. Hyperspectral Datasets

1) Indian Pines: The Indian Pines dataset is sourced from
the experimental area of Indiana, USA, and was captured by
the Airborne Visible Infrared Imaging Spectrometer. It has 220
spectral bands with a range from 0.4 to 2.5 μm. Its size is
145 × 145 × 220 with a total of 10 249 target pixels and 10 776
background pixels, including 16 different categories of land
covers, such as corn-no-till, soybean-min-till, woods, etc. Fig. 3
shows its false-color image and ground truth, respectively.

2) University of Pavia: University of Pavia dataset was cap-
tured over the city of Pavia in northern Italy by the Reflective
Optics Spectrographic Imaging System (ROSIS-03), a German
airborne reflectance spectroscopy imager, with 115 bands. After
removing 12 bands with noise and water absorption, the actual
dataset used for training consisted of 103 bands and had a size
of 610×340 pixels, containing nine different categories of land
covers, including grassland and bricks, etc. The dataset includes
a total of 207 400 pixels, of which 42 776 are target pixels. The
false-color image, and ground truth map of the University of
Pavia are shown in Fig. 4(a) and (b), respectively.
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Fig. 5. Washington DC Mall dataset. (a) False-color image. (b) Ground truth.

Fig. 6. Hong Hu dataset. (a) False-color image. (b) Ground truth.

3) Washington DC Mall: The Washington DC Mall dataset
was captured by the hyperspectral digital imagery collection
experiment sensor in Washington, United States. The size of
this scene is 280×307 pixels with 191 bands. It contains six
different categories of land covers, including roof, grass, trees,
road, trail, and shadow, with a total of 10 190 labeled samples.
Fig. 5(a)–(b) displays the false-color image as well as ground
truth of it, respectively.

4) Hong Hu: The Hong Hu dataset was extracted from the
WHU-Hi-HongHu dataset and collected in 2017 in Honghu
City, Hubei Province, China, using the DJI Matrice 600 Pro
unmanned aerial vehicle platform equipped with Headwall
Nano-Hyperspec imaging sensors. Its image size is 441×475,
with 270 bands and 19 types of land covers. Fig. 6(a)–(b) shows
its false-color image and ground truth.

B. Comparators and Evaluation Metrics

Nine band selection methods are compared with the proposed
approach. Their main steps are described as follows.

1) MVPCA [17]: It sorts the bands by a loading factors
matrix, and selects the top-ranked bands to form the final
band subset.

2) OCF [46]: It constructs an optimal clustering framework
that adaptively selects a subset of bands while reducing
the data dimensionality.

3) ASPS [23]: It maximizes the ratio of interclass distance to
intraclass distance, and separates the HSI into subcubes,

choosing the least noisy band in each cube as the repre-
sentative band.

4) GRSC [40]: It uses superpixel segmentation technology
to extract potential features of regions and adaptively
learns the similarity between potential features. Finally, a
subspace clustering model is used to select valuable bands.

5) SOP-SRL [38]: It achieves band selection by dividing the
original HSI into subsets, and introducing a graph regular-
ization term to dynamically measure the local similarity
between the selected bands.

6) EGCSR [48]: It introduces graph convolution into self-
representation model to capture band structure informa-
tion. Thus, generating a more robust self-representation
coefficient matrix to select a subset of bands.

7) S4P [49]: It designs a multi-image fusion term to fuse sim-
ilar graphs from different regions, which is used to capture
the spatial structure in the self-representation space.

8) BSNet-Conv [50]: It constructs a band attention module
to calculate the weights of bands, and reconstructs the
weighted HSI via an autoencoder, and finally prioritizes
the bands.

9) DARecNet-BS [51]: It utilizes a self-attention mechanism
to learn the global–local relationship between the spectral-
spatial dimensions of the HSI and uses an autoencoder to
reconstruct the HSI. Finally, it ranks the importance of
each band and selects the top-ranked bands.

In the experiment, the support vector machine (SVM) [52]
and k-nearest neighbor (KNN) [53] are chosen as the classifier
to validate the effectiveness of our proposed model. For Indian
Pines, University of Pavia, Washington DC Mall and Hong Hu
datasets, we randomly selected 10%, 1%, 5%, and 1% of the
samples as the training set, respectively, and the rest were used
for testing. All band selection methods employ the same set of
randomly selected training samples for classification, and all
experiments are repeated five times and the average value is
recorded for final comparison. Overall accuracy (OA), average
accuracy (AA), and Kappa coefficient (Kappa) are used to assess
the quality of the band subset [54]. Specifically, OA is the
ratio of the number of correct predictions of the model to the
total number. In addition, AA is defined as the average of all
class accuracies [55], while the Kappa coefficient is a statistic
widely used to measure the consistency of classification results,
indicating the ratio of error reduction between classification and
completely random classification [27]. The calculation of OA,
AA, and Kappa are as follows:

OA =

∑C
i=1 ñi∑C
i=1 ni

(21)

AA =
1

C

∑C
i=1

ñi

ni
(22)

Kappa =
po − pe
1− pe

. (23)

Here, C represents the number of types of ground objects in the
HSI. ni is the total number of pixels in class i, and ñi donates the
number of pixels in class i that have been correctly classified. po
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Fig. 7. Sensitivity test of parameters in terms of OA by SVM on the Indian Pines dataset. (a) Regularization parameter λ1. (b) Regularization parameter λ2.
(c) Regularization parameter α. (d) Number of segmentations S . (e) Number of nearest neighbors K .

TABLE I
OPTIMAL PARAMETERS

is the relatively observed agreement and pe is the hypothetical
probability of chance agreement.

C. Parameters Setup and Sensitivity Analysis

SPWR contains a total of five parameters S , K, λ1, λ2, and
α. Concretely, the number of segmentations S varies within
{10, 50, 100} and the number of neighbors in hyperedge K
is chosen from {3, 5, 7, 9}. Besides, the regularization param-
eters λ1, λ2, and α are chosen from {1e−3, 1e−2, 1e−1, 1,
1e1, 1e2, 1e3}. In the experiments, voting is employed to select
the optimal parameters. The set of parameters with the most
occurrences is selected as the optimal parameters under the
different numbers of selected bands ranging from 5 to 50 with
step 5. The optimal parameters are listed in Table I. Notably,
although they do not reflect the best performance of SPWR,
they still work well and improve the usability of SPWR on a
variety of datasets.

Using the Indian Pines dataset as an example, we analyze
the effect of each parameter on SPWR based on the SVM
classification results of a subset of bands. The optimal values
of parameters S , K, λ1, λ2, and α are set to 100, 3, 1e−1,
1e−3, 1e−1, and 1e−1, respectively. The univariate form is used
to verify the effect of a parameter while keeping the other

parameters at their default values. Fig. 7 illustrates the variation
of OA values for different values of parameters at different
numbers of bands.

Fig. 7 demonstrates that the performance of SPWR remains
stable within the local parameter range of S . Specifically, excel-
lent and similar classification results are obtained for S=50 and
S=100 in all bands. Regarding parameter K , the classification
results are almost consistent across different values nBS. When
nBS is small (e.g., 10–30), SPWR’s performance is more sen-
sitive to changes in parameters λ1. However, as nBS increases,
this gap gradually decreases. Moreover, the dimensionality re-
duction effect of the hypergraph and sparse terms is controlled
by λ2 andα, and is more effective when the values of these terms
are small. However, their effectiveness deteriorates as the values
increase.

D. Results Analysis

To validate the effectiveness of SPWR, the experiments com-
pare SPWR with nine comparison methods using two classifiers
on four datasets. The OA, AA, and Kappa values obtained by the
band subset selected by the various band selection methods are
depicted in Figs. 8–10, respectively. In addition, the standard
deviation of five runs under each number of bands is also
calculated to demonstrate the stability of those methods.

As illustrated in Fig. 8, MVPCA performs poorly across all
datasets. OCF performed well on the Hong Hu dataset, but
poorly on the first three. ASPS and GRSC are only moderate.
In addition, the three sparse representation-based band selection
methods SOP-SRL, EGCSR, and S4P also fail to achieve sat-
isfactory performance on all datasets. For example, SOP-SRL
performs relatively poorly on the first two datasets and its OA



12498 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 8. OA values of SVM classifier with various band selection approaches on the four datasets. (a) Indian Pines. (b) University of Pavia. (c) Washington DC
Mall. (d) Hong Hu.

Fig. 9. AA values of SVM classifier with various band selection approaches on the four datasets. (a) Indian Pines. (b) University of Pavia. (c) Washington DC
Mall. (d) Hong Hu.

Fig. 10. Kappa values of SVM classifier with various band selection approaches on the four datasets. (a) Indian Pines. (b) University of Pavia. (c) Washington
DC Mall. (d) Hong Hu.

values are in the middle to lower range. Also, for the Washington
DC Mall and Hong Hu datasets, the performance of SOP-SRL in
the first half is unsatisfactory. However, as the number of bands
increases, the performance of SOP-SRL gradually stabilizes and
surpasses most methods. BSNet-Conv performs mediocrely on
the Indian Pines and Hong Hu datasets, but excels on the Univer-
sity of Pavia dataset. When nBS exceeds 10, its OA consistently
surpasses most comparative methods. DARecNet-BS does a
good job on the first three datasets, but it performs poorly on
the last dataset.

On the Indian Pines dataset, when nBS exceeds 15, the OA
of SPWR tends to stabilize and gradually surpasses all com-
parative methods. For the second dataset, SPWR outperforms
other comparative methods in the full band and holds the top
spot. On the third dataset, with 20 bands as the cutoff point, the
classification results of the subset of bands selected by SPWR

transcend most of the comparative methods in the first half of
the period, and gradually stabilize, while still maintaining the
leading position and even surpassing the full-band in the second
half. On the last dataset, with 30 bands as the dividing point, the
value of SPWR is only lower than OCF and S4P in most bands
in the first half. However, when the number of bands is greater
than 30, the value of SPWR gradually surpasses all comparison
methods and ranks first.

It is well known that OA is more favorable for evaluating
the overall classification performance, while AA and Kappa
values are more suitable for accessing how well large and
small classes are classified. As can be clearly observed from
Figs. 9 and 10, the AA and Kappa values of SPWR stand out
on the first three datasets. Especially, on the University of Pavia
dataset, the Kappa values of SPWR are higher than the others in
most bands. On the Hong Hu dataset, SPWR is only lower than
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Fig. 11. Classification maps of Indian Pines with SVM classifier using 10% of training samples at 25 bands. (a) MVPCA (68.69%). (b) OCF (58.06%).
(c) ASPS (75.56%). (d) GRSC (75.62%). (e) SOP-SRL (70.71%). (f) EGCSR (69.03%). (g) S4P (73.63%). (h) BSNet-Conv (63.75%). (i) DARecNet-BS (81.26%).
(j) SPWR (83.79%).

OCF and S4P in most bands, but it is worth noting that when the
number of bands is greater than 40, the value of SPWR begins to
surpass all comparison methods and is in a leading position. The
above experimental results prove that the band subsets selected
by SPWR have good classification results on both large and small
classes, which helps to improve the classification performance
across the board.

In order to provide a more understandable overview of the
performance of each method, Figs. 11 –14 illustrate the classi-
fication results and accompanying OA values for each method
on four datasets with 25 bands, respectively. It can be seen that
SPWR obtains the highest classification accuracy on the first
three datasets, which are 83.79%, 82.96%, and 94.14% in turn.
For the Indian Pines dataset, there is a large disparity in the
classification results of the various methods, with SPWR pulling
ahead of the worst OCF by over 25.73%. In addition, on the
second dataset, only the OA value of SPWR exceeds 80%, and
its classification accuracy is 3.65% higher than the second-place
BSNet-Conv. The classification performance of these methods
on the Washington DC Mall dataset is comparable, but it is worth
noting that SPWR is still the best. On the last dataset, SPWR
lagged behind OCF by only 1.43%, ranking second.

To further test the stability of SPWR, Fig. 15 displays the
average value of OA (AOA) of the compared methods on the
four datasets to compare the overall performance of each method
at the different number of bands. It shows that SPWR has the
highest AOA values on the first three datasets. Especially on
the University of Pavia dataset, the AOA value of SPWR is
significantly higher than the other methods. Fig. 15(a) shows
that multiple comparison methods are poorly stabilized on this
dataset, but SPWR still performs excellently with the highest
AOA value. From Fig. 15(b) and (c), the classification of band
subsets obtained by each method is relatively consistent on these

two datasets as compared to the Indian Pines dataset. SPWR both
ranks first, pulling away from the second-place BSNet-Conv by
3.06% and 0.2%, respectively. It can be seen from Fig. 15(d)
that only the AOA values of SPWR, OCF, and S4P exceed 70%,
and SPWR lags behind OCF by only 0.3%.

In addition, we incorporated a KNN classifier to reinforce the
effectiveness of SPWR. Fig. 16 shows the KNN classification
results for the band subsets selected by each method across
different numbers of bands. Among them, the parameters of
SPWR used here are the optimal parameters corresponding to the
four datasets under the SVM classifier, in order to demonstrate
the stability of SPWR. Fig. 16 reveals that SPWR performs
excellently despite not always achieving the best results with
the KNN classifier.

Furthermore, Fig. 17 also illustrates the AOA values of the
KNN classifier with various band selection methods across four
datasets. The results indicate that SPWR performs best on Indian
Pines and Washington DC Mall datasets. On the University
of Pavia dataset, SPWR lags behind EGCSR and OCF, yet
the discrepancy with the second-ranked OCF is merely 0.19%.
Furthermore, SPWR ranks second on the Hong Hu dataset, with
an AOA value 1.02% below S4P. It is worth noting that EGCSR
and OCF are unstable, as they are both downstream on the Indian
Pines dataset, while S4P does not perform well on any of the first
three datasets. The above also demonstrates the validity of the
proposed model.

The distribution of bands is an important indicator to evaluate
the quality of the band subset. In general, bands with a narrow
distribution are more redundant and contain less information,
while bands with a wider distribution are more informative
[23]. Accordingly, Table II displays the subset of 25 bands
selected by SPWR for the four datasets. It is evident that our
proposed method can select a wide range of bands for all four
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Fig. 12. Classification maps of University of Pavia with SVM classifier using 1% training samples at 25 bands. (a) MVPCA (77.12%). (b) OCF (73.81%).
(c) ASPS (77.38%). (d) GRSC (73.66%). (e) SOP-SRL (71.36%). (f) EGCSR (74.29%). (g) S4P (72.54%). (h) BSNet-Conv (79.31%). (i) DARecNet-BS (73.75%).
(j) SPWR (82.96%).

Fig. 13. Classification maps of Washington DC Mall with SVM classifier using 5% training samples at 25 bands. (a) MVPCA (89.23%). (b) OCF (90.72%).
(c) ASPS (93.41%). (d) GRSC (92.91%). (e) SOP-SRL (93.55%). (f) EGCSR (93.29%). (g) S4P (93.20%). (h) BSNet-Conv (93.94%). (i) DARecNet-BS (93.21%).
(j) SPWR (94.14%).
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Fig. 14. Classification maps of Hong Hu with SVM classifier using 1% training samples at 25 bands. (a) MVPCA (44.59%). (b) OCF (75.45%). (c) ASPS
(67.08%). (d) GRSC (66.01%). (e) SOP-SRL (70.92%). (f) EGCSR (64.18%). (g) S4P (72.62%). (h) BSNet-Conv (73.56%). (i) DARecNet-BS (43.75%).
(j) SPWR (74.02%).

Fig. 15. Average OA values of SVM classifier with various band selection approaches on the four datasets. (a) Indian Pines. (b) University of Pavia. (c) Washington
DC Mall. (d) Hong Hu.

Fig. 16. OA values of KNN classifier with various band selection approaches on the four datasets. (a) Indian Pines. (b) University of Pavia. (c) Washington DC
Mall. (d) Hong Hu.

TABLE II
BAND SUBSETS SELECTED BY SPWR FOR THE FOUR DATASETS
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Fig. 17. Average OA values of KNN classifier with various band selection approaches on the four datasets. (a) Indian Pines. (b) University of Pavia. (c) Washington
DC Mall. (d) Hong Hu.

TABLE III
RUNTIME (S) OF EIGHT BS METHODS FOR FOUR DATASETS

datasets. The band ranges for the Indian Pines, University of
Pavia, Washington DC Mall, and Hong Hu datasets are 6–183,
4–99, 4–191, and 4–167, respectively. Besides, the classification
maps (Figs. 11–14) of 25 bands for the four datasets show that,
except the Hong Hu dataset, the classification accuracy of the
band subset obtained by SPWR is higher than that of other
comparison methods, further confirming the higher quality of
the selected bands.

In conclusion, the above experimental results demonstrate
that the proposed method adopts the superpixel segmentation
technique and multiple metrics to construct the local spectral–
spatial hypergraph, which can effectively capture the spatial
information at the pixel level, more realistically portray the
correlation between bands, and enhance the quality of band
subsets so that to improve the classification result.

E. Complexity Analysis

1) Time Complexity: The contribution of the time complexity
of SPWR mainly comes from the calculation of the objective
function and two main variables, A and As in the iterative
process. ERS divides the hyperspectral imageX into S nonover-
lapping superpixels Xs withNs pixels, 1 ≤ s ≤ S. At each iter-
ation of SPWR, the calculation of coefficients matrixAs for each
superpixel Xs takes O(NsL

2 + L2) with the number of bands
L, so calculating all coefficient matrices requires the cost of
O(

∑S
s=1(NsL

2 + L2)). In addition, the time cost for updating
consensus matrix A is O(

∑S
s=1 L

2), and updating the objec-
tive function requires O(

∑S
s=1(NsL

2 + L3) + L3). In general,
the overall time complexity of SPWR is O(T (

∑S
s=1(NsL

2 +
L3) + L3)), whereT denotes the number of iterations. SinceNs

is less than the total number of pixelsN , the time complexity can

TABLE IV
TIME COMPLEXITY OF COMPARISON METHODS

also be re-expressed as O(T (
∑S

s=1(NL2 + L3) + L3)). The
time complexity of various band selection methods is listed in
Table III. Two deep learning-based methods, BSNet-Conv and
DARecNet-BS, are not listed here because they typically run
longer than machine learning-based methods due to their long
training time and large number of computations.

For an intuitive time comparison, Table IV lists the runtime (s)
of various band selection methods. The machine learning-based
band selection methods were executed on a computer equipped
with Intel Core i7-11700 K, 3.60 GHZ base frequency CPU,
and 64 GB memory, and implemented using MATLAB with
version 2022a. The deep learning-based band selection methods
were executed on a computer equipped with Nvidia RTX4090
GPU and implemented using the PyTorch framework based on
CDUA 10.7. It is evident that the runtime of deep learning-based
band selection methods BSNet-Conv and DARecNet-BS is sig-
nificantly longer than that of machine learning. Therefore, the
analysis of the runtime of deep learning methods is excluded.
It should be noted that MVPCA, SOP-SRL, EGCSR, and the
proposed method SPWR can generate the priority sequence
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of all bands in a single execution, and the band subset can
be obtained according to the required number of bands. In
contrast, several comparative band selection methods, such as
OCF, ASPS, GRSC, and S4P, require re-execution when the
number of bands changes. Therefore, even though SPWR has
a longer execution time, its results are comprehensive and can
promptly meet the demand for comparison of different band
numbers.

2) Memory Complexity: The memory consumption of
SPWR mainly comes from the storage of several main variables,
Xs,As,Ls,X, andA. In particularly, it takesO(

∑S
s=1 NsL) to

store superpixelsXs. Moreover, the memory cost of coefficients
matrix As and Laplacian matrix Ls both are O(

∑S
s=1 L

2). For
the matrices X and A, the storage requirements are O(NL) and
O(L2), respectively. Therefore, the whole memory consumption
of SPWR is O(

∑S
s=1 (NsL+ L2) +NL+ L2).

IV. CONCLUSION

In this article, we propose a SPWR model for unsupervised
hyperspectral band selection that fully takes into account the
differences in spectral features of heterogeneous regions. It uti-
lizes the superpixel segmentation technique ERS for generating
homogeneous regions to capture the spatial structure of local
views, while constructing a series of region-specific multimetric
hypergraphs to obtain the interband multivariate adjacencies of
the local views, thus improving the overall performance of the
sparse self-representation model. The results of SVM and KNN
classification on four publicly available datasets demonstrate
that SPWR is stable and effective, outperforming other com-
pared methods.

Currently, there are more experimental parameters of SPWR,
which restricts the model’s applicability in practical settings. In
the future, we will work on designing an automated parameter-
seeking algorithm, thereby enhancing the model’s usability.
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