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Abstract—With the advent of the era of high-resolution remote
sensing, semantic segmentation methods for solving pixel-level clas-
sification have been widely studied. Deep learning has significantly
advanced deep feature extraction methods, becoming widely em-
ployed in remote sensing image analysis. Deep feature fusion meth-
ods are able to effectively combine features from different sources.
Optical and synthetic aperture radar (SAR) images stand out as
primary data sources in remote sensing, offering complementary
and consistent information. Fusion of deep semantic features of op-
tical and SAR images can alleviate the limitations of single-source
images in application and improve semantic segmentation accu-
racy. Therefore, this article reviews the research on deep fusion of
optical and SAR images in semantic segmentation tasks from four
aspects. First, we provide a summary of challenges and research
methods pertinent to semantic segmentation of remote sensing
images. Then the challenges and urgent needs of deep feature fusion
of optical and SAR images are analyzed, and current research is
summarized from the perspective of structural design by studying
various feature fusion strategies. In addition, the compilation and
in-depth analysis of open-source optical and SAR datasets suitable
for semantic segmentation are undertaken, serving as fundamental
resources for future research endeavors. Finally, the article identi-
fies the major challenges summarized from the literature review in
this field, outlining expectations and potential future directions for
researchers.

Index Terms—Deep feature fusion, optical images, review,
semantic segmentation, synthetic aperture radar (SAR) images.

I. INTRODUCTION

S EMANTIC segmentation in remote sensing imagery is to
classify geographic spatial data at the pixel level, thereby

enhancing the understanding and analysis of the observed land-
scape [1], [2], [3]. Semantic segmentation extensively applied
in various fields of remote sensing, encompassing tasks such as
land use and land cover [4], [5], [6], building extraction [7], [8],
[9], impervious surface mapping [10], [11], [12], [13], landslide
mapping [14], [15], and others. We counted the proportion of
these tasks in semantic segmentation, as shown in Fig. 1.
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Fig. 1. Distribution of image segmentation study purpose in examined papers.

Remote sensing systems observe image elements across var-
ious frequency bands of the electromagnetic spectrum. Optical
and synthetic aperture radar (SAR) images are two extensively
utilized remote sensing data sources with distinct imaging
modalities and representations [16], [17]. Semantic segmenta-
tion of remote sensing images heavily relies on the spatial and
semantic information embedded in the images. However, the
limitations of individual sensors, influenced by factors such as
operating environment, wavelength range, and imaging modes,
can result in biased scene characterization. Optical sensors pas-
sively detect solar radiation reflected from the ground, yielding
rich spectral and texture information alongside high spatial
resolution. However, they are vulnerable to climatic and lighting
effects. SAR, as an active sensor, employs radar waves to pene-
trate cloud cover, enabling data collection all day and all weather
[18], [19], [20], [21]. Nevertheless, SAR is characterized by
consistent spot noise and a low signal-to-noise ratio. Fig. 2 shows
an example diagram of a pair of optical and SAR images in the
same scene [22]. Due to the limitations of information derived
from a single source image, it is impractical to comprehensively,
accurately, and consistently describe the true state of the scene.
Therefore, it becomes imperative to fuse effective information
from both optical and SAR images [23], [24], [25], [26]. We
collected the number of relevant publications based on the Web
of Science and Google Scholar. As depicted in Fig. 3, the number
of publications on semantic segmentation for optical and SAR
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Fig. 2. Example diagram of optical and SAR image pairs. (a) Optical image.
(b) SAR image.

Fig. 3. Number of publications on optical and SAR image segmentation from
2000 to 2023.

image fusion has experienced rapid growth in recent years,
attracting widespread attention from researchers.

Multisource data fusion aims to mitigate the heterogeneous
differences between modalities while preserving the specific
semantic integrity of each modality [27], [28], [29], [30]. One
of the critical steps in the data fusion process is image reg-
istration, which ensures that the images to be compared are
geometrically aligned. This step is particularly challenging and
essential for SAR images due to their unique characteristics,
such as speckle noise, geometric distortions, and varying ac-
quisition conditions [31], [32], [33], [34]. Xiang et al. [33]
proposed a two-stage registration method for large-distortion
SAR images based on superpixel segmentation, which can ef-
fectively alleviate the difficulty of registration of SAR images
with large geometric distortion. Zhang et al.[32] studied the
optical flow technology for pixel-by-pixel dense registration of
high-resolution optical and SAR images, which can significantly
improve the registration accuracy of optical and SAR images.
The substantial disparities between optical and SAR images
pose challenges in image fusion, and different fusion methods
require different registration accuracy. Feature fusion, as a data
fusion approach, combines advantageous features from different

Fig. 4. Number of three image fusion strategies related publications from 2000
to 2023.

modalities, which has gained considerable attention in recent
years, as shown in Fig. 4. Moreover, the requirement of feature
fusion for image registration accuracy is not as high as that of
pixel fusion method. Feature fusion method employing diverse
fusion strategies to acquire complementary and consistent fea-
tures from optical and SAR images helps alleviate the effects
of inhomogeneity in remote sensing images and addresses the
limitations of single-source data. Since the image structure is
invariant to the imaging mode and is insensitive to noise, illumi-
nation, and other interference factors, the structural consistency
of optics and SAR is also widely used in multisource image
feature fusion, polarimetric SAR change detection, multisource
image change detection, and other tasks [35], [36], [37], [38].

Traditional methods for extracting image features involve
manual design or semiautomated approaches, relying heavily on
expert knowledge. However, with the exponential increase in the
number of high-resolution remote sensing images resulting from
advancements in earth observation technology, manual feature
extraction methods struggle to capture the complex features
contained in these images. As a result, traditional methods
typically extract shallow features and fail to bridge the semantic
gap between optical and SAR images. They also lack efficiency
in extracting and incorporating advanced semantic information
from both categories of images. Consequently, these traditional
methods are becoming less suitable for the current era marked
by abundant data and advanced remote sensing technology [39],
[40], [41], [42]. In response to current demands, remote sensing
semantic segmentation techniques based on deep feature fusion
continue to evolve. This method can use massive data to drive
the model to learn effective features in multimodal images
end-to-end, significantly reducing time and labor costs [43],
[44], [45]. However, the heterogeneity between optical and SAR
images introduces different nonlinear radiometric properties that
can impact the extraction and learning of unimodal dominant
features. Recent research suggests that modeling the semantic
associations between optical and SAR images can enhance
semantic segmentation accuracy by learning complementary and
coherent features [46], [47].
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The articles [48], [49], [50], [51] provide a comprehensive
overview of advancements in deep learning for semantic seg-
mentation, specifically summarizing the development of se-
mantic segmentation techniques for natural optical images. In
addition, deep learning-based semantic segmentation in remote
sensing images is thoroughly reviewed in [52], [53], [54], [55],
[56], and [57], with a focus on highlighting the applications of
these techniques. The article [28], [58], [59], [60] reviews image
fusion and discusses the progress of deep learning methods in
this field. However, our survey reveals a gap in the literature
regarding advances in fusing SAR and optical image deep
features for semantic segmentation. Given the evolving era of
multisource big data, our work cannot be delayed. Instead of
merely presenting a basic compilation of methods, we delve
into the issues and difficulties of image fusion and semantic
segmentation to offer a comprehensive overview of the applica-
tion of optical and SAR image deep feature fusion in semantic
segmentation. Our primary contributions are outlined as follows.

1) We synthesized the challenges and methodologies as-
sociated with semantic segmentation of remote sensing
images, categorizing them based on different core archi-
tectures of neural networks.

2) We analyze the challenges and urgent needs of deep fea-
ture fusion in optical and SAR images, and meticulously
examined the design of feature fusion strategies, present-
ing a comprehensive compilation of methods for fusing
optical and SAR image features in semantic segmentation.

3) We compiled open-source datasets encompassing optical
and SAR images for semantic segmentation and conducted
a thorough analysis of various datasets.

In this comprehensive review, we present the latest advance-
ments in semantic segmentation utilizing optical and SAR im-
ages based on an extensive literature survey. We condense a
myriad of technical approaches, laying a robust foundation
for future applications of multisource information in semantic
segmentation. This review serves as a valuable resource for
scholars and practitioners, offering a holistic perspective and
identifying open challenges in semantic segmentation of remote
sensing images.

The rest of this article is organized as follows. In Section II, we
introduce the semantic segmentation method of remote sensing
images. First, we introduce the difficulties of semantic segmen-
tation, and comprehensively introduce the semantic segmenta-
tion method from four aspects: Convolutional neural network
(CNN), fully convolutional network (FCN), recurrent neural
network (RNN), and other model architectures. Section III
introduces the concept of image fusion, mainly introduces the
advantages and disadvantages of pixel-level fusion, feature-level
fusion, and decision-level fusion, and discusses the reasons for
using feature-level fusion for optical and SAR semantic segmen-
tation. Section IV summarizes the semantic segmentation meth-
ods based on optical and SAR feature fusion and categorizes
them according to the fusion strategy. In Section V, we collect
existing publicly available optical and SAR image datasets
for semantic segmentation. Section VI exemplifies commonly
used semantic segmentation evaluation indicators. Section VII
summarizes the current difficulties and development trends

Fig. 5. Examples of image segmentation of optical and SAR images.
(a) Optical image. (b) SAR image. (c) Ground truth. The first row is the
segmentation example for the land use classification task. The second row is a
segmentation example image of building extraction. The third row is an example
of IS segmentation.

faced by optical and SAR images. Finally, Section VIII con-
cludes this article.

II. REMOTE SENSING IMAGE SEMANTIC SEGMENTATION

METHODS

With the continuous improvement of the resolution of remote
sensing images, the images contain a large amount of informa-
tion with high spatial, spectral, and temporal resolution, retain-
ing complex spatial texture details. As shown in Example 5,
we exemplify three semantic segmentation example images,
among which the first row is the segmentation example image
for the land use classification task [61]. The second row is a
segmentation example image of building extraction [62]. The
third row is an example image of IS segmentation [13]. From
left to right are optical images, SAR images, and segmentation
ground truth examples. The features of remote sensing image
objects undergo changes over time and in response to climate
variations. Objects of the same type often exhibit heterogeneity
across different scenes, leading to overlapping features and
unclear object edges when viewed. In summary, the distribution
characteristics of remote sensing images can be encapsulated in
the following three key points.

1) Complexity of object class types in remote sensing images:
Due to the elevated imaging height, expansive coverage
area, and large image width, remote sensing images en-
compass a diverse array of object types.
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2) Variability in remote sensing image object categories
sizes: Similar objects within the same scene exhibit sub-
stantial scale variations.

3) Heterogeneity of remote sensing image classes: The imag-
ing mechanism complexity results in distinct appearances
of object classes at different moments, creating strong
variability within the same class. In addition, intercate-
gory similarity occurs, where different categories present
indistinguishable appearances due to spectral similarity
and other factors, such as various types of buildings
or crops.

Based on the complex characteristics of remote sensing image
scenes, the main difficulties faced in semantic segmentation of
remote sensing images lie in the following points.

1) How to segment the same object at different scales in large
scene images.

2) How to overcome the situation of foreign objects in the
image having the same spectrum, and at the same time
alleviate the confusion and blurred boundaries between
different objects.

3) How to solve the segmentation difficulties caused by sim-
ilarities between classes and differences within classes in
remote sensing images.

Before the advent of deep learning, semantic segmentation
primarily relied on manually designed features and traditional
machine learning classification methods. Manually designed
methods included texture, structural, spectral, and scattering
features [63], [64], [65], [66], [67]. Machine learning meth-
ods involved random forests, support vector machines (SVMs),
decision trees, and Bayesian classifiers [68], [69], [70], [71],
[72]. The wavelet energy is a good feature to describe the
texture of objects in images. Akbarizadeh et al.[65] proposed
skewness wavelet energy utilizes the local statistical intensity
information of each region. Therefore, it can solve the nonlinear
intensity nonuniformity existing in SAR images. Akbarizadeh
[66] proposed a new energy kurtosis wavelet energy as the
texture discriminant feature of each region based on the seg-
mentation of wavelet coefficient energy kurtosis values. The
kurtosis value of the wavelet energy feature of the SAR image
forms a feature vector, which can extract more texture statistical
information and segment the SAR image. Tirandaz et al. [67]
proposed a two-stage SAR image segmentation technology. In
the first and second stages, a new parameter estimation algorithm
based on curvelet coefficient energy to design the optimal kernel
function and an unsupervised spectral regression method were
proposed, respectively, for SAR image segmentation. Tirandaz
et al. [71] proposed a polarization synthetic aperture radar
(PolSAR) image segmentation method that does not require
any parameter initialization based on lossy minimum descrip-
tion length, zero-fill weighted neighborhood filter bank, and
hidden Markov random field expectation maximization. This
method has efficient and good performance in the detection
of different regions and boundaries. However, traditional meth-
ods required expert knowledge to design classification features
based on task requirements, making the process time consuming,
labor-intensive, and lacking in generalization and robustness.

Consequently, any replacement of test data or external interfer-
ence noise could impact classification performance.

In recent years, the continuous development of deep learning
has significantly enhanced the performance of semantic segmen-
tation. Deep CNNs prove effective in extracting image features,
thereby improving the accuracy of semantic segmentation. In
the current era of big data remote sensing, we are able to obtain
a large number of remote sensing images. Traditional manual
feature extraction methods fail to efficiently process such a
large amount of remote sensing data. At the same time, the
features of the same object in remote sensing images may also
be different. Traditional methods are not only time consuming
and labor-intensive in designing features, but also have weak
generalization and robustness. Deep learning methods can fully
and automatically extract features of a large number of im-
ages end-to-end, which not only saves manpower and material
resources, but also achieves better robustness and generaliza-
tion. This section provides a comprehensive overview of their
application in the semantic segmentation of remote sensing
images.

A. Convolutional Neural Network Methods for Remote
Sensing Image Semantic Segmentation

The sliding window method is a common approach in CNN-
based semantic segmentation, where the network classifies each
image block, considering the classification result as the classifi-
cation result for the pixel at the center of the block. Fig. 6 illus-
trates the basic sequence of CNN image classification. The final
segmentation result is obtained by annotating the classification
results of each pixel with the original image. Längkvist et al. [73]
employed a CNN-based sliding window classification strategy
for image patch segmentation, utilizing the classification results
to enhance advanced segmentation results. Alshehhi et al. [74]
introduced a CNN for classifying features in high-resolution
remote sensing images using single image patches, demonstrat-
ing the effectiveness of CNN feature extraction in segmenta-
tion tasks. For the extraction of road and building data, Saito
et al. [75] introduced a CNN-based model that automatically
creates a feature extractor and classifier. This approach can
extract numerous object features by training a single CNN. Yu
et al. [76] achieved high-precision segmentation of hyperspectral
remote sensing images by incorporating techniques such as
data augmentation and adjusting the convolution kernel size.
Paisitkriangkrai et al. [77] combined conditional random fields
with a CNN classification framework to improve segmentation
accuracy. Addressing the heterogeneity of remote sensing im-
ages, Feng et al. [78] introduced a CNN framework with two
branches, incorporating a decision-based regionalization strat-
egy to effectively differentiate between homogeneous and het-
erogeneous regions. Different architectures were developed to
learn region-specific spectral features, improving segmentation
accuracy. Kampffmeyer et al. [79] introduced a CNN for image
segmentation, addressing the issue of feature class imbalance by
measuring pixel-level uncertainty, thereby improving segmenta-
tion accuracy. Sharifzadeh et al. [80] proposed a neural network
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Fig. 6. Simple chart form of CNN architecture for image classification.

Fig. 7. Simple chart form of FCN architecture for image segmentation.

that combines CNN and multilayer perceptron (CNN-MLP) for
SAR ship image pixel classification.

However, the sliding window method has limitations, as it
may lead to the repeated use of some pixels and may lose spatial
context association information between pixels. In addition,
it cannot process images end-to-end, which can impact seg-
mentation speed. Researchers are exploring alternative methods
to overcome these limitations and enhance the efficiency of
semantic segmentation in CNN-based approaches.

B. Fully Convolutional Network Methods for Semantic
Segmentation

The FCN method [81] was proposed as a solution to address
the challenges faced by traditional CNN in achieving end-to-end
semantic segmentation of images, while also improving seg-
mentation accuracy and speed. FCN extends the architecture
of CNN into an encoder–decoder framework and replaces the
last fully connected layer of CNN with a convolutional layer,
enabling it to learn visual features in an end-to-end manner.
The encoder mainly includes pooling and convolution modules,
which continuously reduce the spatial size of feature maps to
capture high-level semantic information. During the decoding
process, an upsampling strategy is used to map the classification
results to the size of the original image, generate pixel-level
labels and obtain the segmentation results at the original pixel
size of the input image. This design enables the network to
comprehensively learn image features from beginning to end,

thereby facilitating the task of assigning semantic labels to every
pixel in the image. The key to the network architecture is to
strategically build the encoder and decoder structures to maxi-
mize the receptive field, learn multiscale features, and prevent
the reduction of feature map resolution during upsampling. Fig.
7 illustrates the basic sequence of FCN image segmentation.

In the context of remote sensing image segmentation, FCN
plays a crucial role in extracting spatial context information
between pixels, learning multiscale features, improving seg-
mentation accuracy, and refining segmentation boundaries. Zhao
and Du [82] proposed a multiscale convolutional neural network
using a pyramid structure to extract deep spatial features from
remote sensing images. This method leverages the multiscale
spatial spectral information to obtain different levels of contex-
tual information, enhancing the accuracy of classification. Zheng
et al. [83] verified the use of convolution and pooling in the FCN
encoding stage in remote sensing image segmentation, as well
as the role of deconvolution and upsampling in the decoding
stage. They used three variants of FCN (FCN-32s, FCN-16s,
and FCN-8s) for semantic segmentation on unmanned aerial
vehicle (UAV)-borne remote sensing images, demonstrating the
significant efficiency improvement brought by FCN. Henry et al.
[84] evaluated the effectiveness of three segmentation network
structures—FCN, UNet [85], and DeepLabv3+ [86] in road seg-
mentation of SAR images. This study provides a reliable method
for road feature extraction in SAR images and demonstrates that
modifying the regression loss function can improve category
balance and segmentation accuracy.
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Fig. 8. Flowchart of RNN-based remote sensing image semantic segmentation method.

Niu et al. [87] utilized the capabilities of DeepLab to extract
complex remote sensing features at different levels, avoiding
spatial resolution decrease during the decoding process. Li
et al. [88] extended the functionality of UNet by integrating
specific convolutional layers, linking the ReLU layer module of
downblock in UNet and the convolutional layers of the sampling
layer module of upblock in the expansion path. This modification
resulted in improved segmentation accuracy for remote sensing
images. Marmanis et al. [89] enhanced the clarity of class
boundaries by combining semantic segmentation with edge de-
tection. The integration of boundary detection into SegNet [90]
architecture and FCN-type models significantly improved the
segmentation accuracy of remote sensing images. Diakogiannis
et al. [91] proposed ResUnet network to segment high-resolution
remote sensing images. The network can effectively learn multi-
scale contextual features by combining residual blocks, astrous
convolution, and pyramid pooling modules, and combined with
the improved loss function can solve the problem of category
imbalance in remote sensing images. Li et al. [92] proposed
an attention mechanism network MANet for semantic segmen-
tation of remote sensing images. The network uses ResNet
as a feature extractor and embeds the dot product attention
mechanism into the network model. Finally, upsampling is used
to obtain more refined segmentation results. Ghara et al.[93]
used UNet and DeeplabV3 neural networks to segment SAR
images with the smallest possible number of images and the
highest accuracy respectively. Aghaei et al. [94] proposed an
end-to-end SAR image segmentation network. They introduce
ShuffleNet network block in SAR image segmentation, which
is able to effectively suppress the phenomena of speckle noise,
heterogeneous background, and edge blur in SAR image seg-
mentation.

These studies collectively highlight the versatility and ef-
fectiveness of FCN in remote sensing image segmentation,
showcasing their capability to enhance accuracy and handle

complex spatial features. These methods have proven that the
semantic segmentation network can achieve better accuracy on
SAR images and optical images, respectively, but it is still very
difficult to face situations such as the same object in optics hav-
ing different color features. At the same time, when segmenting
SAR images, problems such as coherent speckle noise and edge
blur still cannot be well solved. It can be seen that the mechanical
defects of single source data are difficult to solve through the
design of network structure. Multisource data fusion is able to
make up for the regrets of single-source data, so it is crucial to
make full use of the information from multisource data to solve
the difficulties faced by single-source data.

C. RNNs for Remote Sensing Image Semantic Segmentation

Since the RNN can process the temporal information of the
image, this architecture is used to process temporal remote
sensing image segmentation. However, in remote sensing im-
age processing, the RNN model in natural optical images is
improved so that it can learn the spatial, temporal, and spectral
information of remote sensing images. Fig. 8 shows the semantic
segmentation method of remote sensing images based on RNN.

Wu and Prasad [95] used a convolutional RNN to obtain
the combined features of hyperspectral data, and uses the re-
current layer to extract spectral context information from the
multiscale features generated by the convolutional layer. Ienco
et al. [96] evaluated the effectiveness of RNN and LSTM
[97] models in remote sensing multitemporal image feature
classification, and experimentally demonstrated that RNN and
LSTM networks are more effective in both pixel-based and
object-based classification methods. Campos-Taberner et al.
[98] evaluated the effectiveness of deep recurrent network-based
methods for classifying time series features in Sentinel-2 data.
The bidirectional LSTM network achieved an overall accuracy
of 98.7%, exceeding the performance of all tested classification
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techniques. Sun et al. [99] built a hybrid LSTM-RNN model to
improve accuracy and reduce model complexity by leveraging
the multitemporal properties of features in image time series. Lin
et al. [100] introduced LSTM-MTL, a multitask spatiotemporal
deep learning model, for large-scale rice mapping by leveraging
time series Sentinel-1 SAR data. The model is able to learn
multiple timing consistency features and region-specific fea-
tures simultaneously, significantly improving the performance
of SAR feature classification. Chen et al. [101] designed a novel
interpolation BiLSTM model, Im-BiLSTM, to effectively solve
the interaction between interpolation and classification tasks and
minimize the errors and uncertainties caused by the separation
process between interpolation and classification.

The RNN network is able to process time series data well
and use multiscale time information to improve the accuracy of
remote sensing image segmentation. The core module of RNN
can make full use of contextual information, but it is still difficult
to solve the stubborn problems caused by single-source data.

D. Other Models for Remote Sensing Image Semantic
Segmentation

In recent years, the transformer architecture, originally pro-
posed for natural language processing tasks, has gained signifi-
cant attention and demonstrated remarkable performance across
various domains. By leveraging the self-attention mechanism,
transformers can effectively capture long-range dependencies
within remote sensing images, enabling them to grasp intricate
spatial relationships and context information crucial for accurate
semantic segmentation. The forefront methods of transformer-
based semantic segmentation now relies on vision transformer
[102] or Swin transformer [103] for feature extraction as the
backbone. Zhang et al. [104] proposed an encoder-decoder
structure by using Swin-transformer to extract features and
CNN-based models strategies to upsample features. Dong et al.
[105] introduced a cross-model knowledge distillation frame-
work designed to boost the segmentation performance of both
CNN-based and transformer-based segmenters by incorporating
and distilling their complementary strengths. Liu et al. [106] an-
alyzed some limitations of existing transformer-based semantic
segmentation methods for remote sensing images and proposed
a global local transformer framework to obtain consistent feature
representation by using transformers for both encoding and
decoding.

However, the transformer model requires high computational
complexity, especially when faced with the task of semantic
segmentation of high-resolution remote sensing images. The
high complexity brings about the problem of large memory
requirements, causing certain difficulties. Gu and Dao [107]
built upon the state space model [108] is a network model
that establishes long-distance dependencies while maintaining
linear computational complexity. Liu et al. [109] and Zhu
et al. [110] used Mamba to process computer vision tasks and
achieve superior results, proving the potential of the Mamba
architecture for image processing. He et al. [111] introduced
Mamba into the pan-sharpening task of remote sensing images
and implemented it by designing a channel swapping Mamba

module and a cross-modal Mamba module. Chen et al. [112]
designed the RSMamba network based on the Mamba model,
which combines the advantages of global receptive field and
linear modeling complexity, and is used in remote sensing image
scene classification. Ma et al. [113] combined Mamba with a
dual-branch structure for the task of semantic segmentation of
remote sensing images. This was the first attempt of Mamba
in the semantic segmentation task of remote sensing images,
proving the effectiveness and potential of Mamba for semantic
segmentation of remote sensing images.

In the realm of machine learning, large models represent a
paradigm shift towards handling vast amounts of data and in-
tricate tasks. Characterized by their extensive parameter counts
and complex architectures, these models have become key to
advancing the field. Initially rooted in the foundations of deep
neural networks, large models have evolved over the years to
accommodate the growing demands of diverse applications.
The design purpose of large models is to improve the expressive
ability and predictive performance of the model, and to be able
to handle more complex tasks and data. The research on large
models has become the current development trend of image
processing. However, there are still relatively few applications
in semantic segmentation of remote sensing images. Wang et al.
[114] first proposed a large-scale basic vision model suitable
for remote sensing image processing tasks, including remote
sensing object detection, remote sensing scene classification,
remote sensing semantic segmentation. Hong et al. [115] intro-
duce SpectralGPT, a universal RS foundation model tailored for
processing spectral RS images, utilizing a novel 3-D generative
pretrained transformer (GPT). SpectralGPT has demonstrated
superior performance in downstream tasks such as change de-
tection and semantic segmentation.

The development of large models has also brought conve-
nience to semantic segmentation of remote sensing images.
However, the disadvantages of large models are that they con-
sume huge amounts of memory and calculations, and require
a huge amount of data. At the same time, the inherent short-
comings of single source data cannot be well compensated.
Multisource data fusion is still a development trend. Effective
use of multisource data information is of guiding significance in
solving the inherent defects of single-source data and effectively
improves accuracy.

III. IMAGE FUSION STRATEGY

Although semantic segmentation methods develop rapidly,
most of them are based on single-source remote sensing images.
It is difficult to distinguish areas with similar characteristics
using only single-source remote sensing image data. With the ad-
vent of the era of multisource big data, multisource remote sens-
ing images can provide richer and more complete information.
Image fusion strategies can effectively utilize the information
of multisource remote sensing images to improve the accuracy
of semantic segmentation. According to the different fusion
levels, image fusion strategies can be divided into three types: 1)
pixel-level fusion; 2) decision-level fusion; and 3) feature-level
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TABLE I
IMAGE FUSION STRATEGIES, THEIR STRENGTHS AND WEAKNESS AND APPLICATION EXAMPLES

Fig. 9. Structure of pixel-level fusion method.

fusion. We summarize the three image fusion methods as shown
in Table I.

A. Pixel-level Fusion Strategy

The pixel-level fusion structure diagram is shown in Fig. 9.
The original input pixels are directly processed and analyzed,
which requires the input multisource images to undergo fine
registration. This method has little loss of information and
retains the rich detailed information in the image scene to a
great extent. However, it processes a large amount of data and
has high requirements on memory and equipment. For tasks
such as ground object classification and fire monitoring, image
preprocessing such as image augmentation and noise reduction
must be performed before real-time processing. Kussul et al.
[116] performed classified crop classification using spectral and
spatial features of Landsat-8 and Sentinel-1A images by fusing
them at pixel level as inputs to 1D-CNN and 2D-CNN models,
respectively. Lin et al. [117] presents a method to classify optical,
SAR, and LIDAR data using a sparse representation dictionary
to improve classification accuracy by integrating SAR data and
airborne LIDAR data.

Pixel-level fusion methods perform fusion on the input side
and cannot overcome the semantic differences between multi-
source images. Therefore, the pixel-level fusion method cannot
effectively extract the complementary and consistent informa-
tion of multisource images, and it is easy to obtain image
features that are irrelevant to the ground object classification
task, resulting in a decrease in classification performance.

B. Decision-level Fusion Strategy

The decision-level fusion method represents the highest-
level fusion strategy, fusing single-modal segmentation re-
sults through different decision-making criteria, as depicted in

Fig. 10. Structure of decision-level fusion method.

Fig. 10. This approach demands minimal accuracy in image
registration, exhibits commendable real-time performance, and
boasts robust fault tolerance and openness. Paisitkriangkrai et al.
[118] combined CNN and Random Forest results by multiplying
their posterior probabilities. Chen et al. [119] applied Bayes
rule, while Kahou et al. [120] integrated outcomes from various
unimodalities identified by CNN. In a different vein, Audebert
et al. [121] utilized a residual network to derive coefficients
for rectifying the average fusion outcomes for multimodal data.
Maggiolo et al. [122] introduced a Bayesian decision fusion
strategy for classifying optical and SAR images, incorporating
a swift version of the iterative conditional mode Markov opti-
mization algorithm, relying on convolutional operations. This
method demonstrating the scalability and effectiveness in han-
dling large-scale applications. Moreover, Waske and Benedikts-
son [123] categorized each data source using SVMs, utilized
the initial output of each SVM discriminant function in the
subsequent fusion procedure, and then employed a new SVM
to fuse the segmentation results. In addition, Vohra and Tiwari
[124] introduced a technique enhancing the accuracy of feature
classification by integrating classifier decisions with auxiliary
information obtained from spectral and spatial data.

However, a drawback of decision-level fusion is its exclu-
sive focus on output results rather than features, limiting the
exchange of radiation information between single-source data
and resulting in a significant loss of information. Furthermore,
it impedes the synergy and consistency between optical and SAR
images.

C. Feature-level Fusion Strategy

The feature-level fusion technique involves extracting feature
information from the original image. Multisource images of
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Fig. 11. Structure of feature-level fusion method.

the same scene are then subjected to feature extraction, asso-
ciation, and fusion processing using various feature associa-
tion methods, as illustrated in Fig. 11. This strategy is able
to reduce data dimensions, compress information, as well as
analyze and fuse multimodal data features from different per-
spectives. In addition, it can convert multidimensional features
into 1-D representations. Feature-level fusion method enhances
the resilience and stability of the network structure, improving
model interpretability by fusing different source features based
on task requirements. In the context of feature classification
tasks, diverse fusion strategies should be designed for different
scenarios. The primary objective is to minimize semantic differ-
ences between optical and SAR images, extract complementary
and consistent features from both image types, and ultimately
enhance classification performance. The feature fusion methods
of optical and SAR images are introduced in detail in Section IV.

IV. OPTICAL AND SAR IMAGE FUSION FOR REMOTE SENSING

IMAGE SEGMENTATION

A. Difficulties in Optical and SAR Image Feature Fusion

Within the realm of remote sensing, multisource images refer
to images of the same scene or object captured by various
sensors. Optical images are collected by passive sensors, which
mainly rely on solar radiation reflected by ground objects to
obtain image information. As a result, they exhibit rich textures,
colors, and other radiant properties. However, optical sensors are
susceptible to climate and lighting constraints when acquiring
images. SAR is an active sensor whose imaging band is mi-
crowave. SAR image information is formed by backscattering
from ground objects and is sensitive to building facades. SAR
images offer extensive structural details and can be obtained
at any time of the day. SAR images therefore produce clearer
contour information than optical images. The purpose of optical
and SAR feature fusion is to use complementary information
in optical and SAR images to make up for the respective
deficiencies of optical and SAR images in image expression.
For example, there are problems such as the situation of same
objects with different spectra and different objects with the same
spectrum in optics, the lack of detailed texture information in
SAR images, and poor image quality. And this complementarity
has been confirmed in the literature [126], [127], [128], [129],
[130]. At the same time, the structural consistency information
of optical and SAR images is used to effectively correlate the
optical and SAR images, which can fully improve the segmen-
tation accuracy. The studies [18], [62], [131] have confirmed
the robust structural coherence present in both optical and SAR
images.

The purpose of optical and SAR feature fusion is to com-
bine complementary and structurally consistent information in
optical and SAR images, thereby improving segmentation accu-
racy. When training the network to extract fusion features, the
heterogeneous nonlinear radiation information between optical
images and SAR images destroys the relevant complementary
information. This ultimately greatly reduces the effectiveness of
the fusion features and decreases classification accuracy. At the
same time, many studies focus too much on the learning of com-
plementary information and ignore the role of structural consis-
tency, leading to the loss or discarding of associated information
and degradation of classification performance. Therefore, the
key to fusion of optical and SAR image features lies in how
to learn complementary information and structural consistency
information that is beneficial to the classification task without
destroying the integrity of the semantic information of each
modality. Another problem that has come to the fore in the field
of multisource image feature categorization is the lack of large
publicly available optical SAR datasets. The fusion methods of
optical and SAR image features based on feature classification
face the following three main challenges.

1) How to effectively learn the complementary information
and consistency information of multisource images.

2) How to eliminate the impact of feature shifts caused by
appearance differences in multisource images.

3) Lack of publicly available datasets.
Based on these problems, we summarized relevant solu-
tions in a large number of literature, and classified them
into the following four design methods according to the
module design perspective:

a) linear fusion module;
b) attention mechanism fusion module;
c) gated fusion module;
d) feature alignment module.
At the same time, we summarize the advantages and disad-

vantages of these methods, as shown in Table II.

B. Optical and SAR Fusion Strategies for Remote Sensing
Image Semantic Segmentation

To address the aforementioned challenges pertaining to the
fusion of optical and SAR images, numerous approaches have
been suggested to resolve these issues. Prior to using various
fusion algorithms, the two-branch network architecture is uti-
lized to independently extract optical and SAR image features.
This approach helps transfer the issue of feature extraction bias
caused by the disparate radiometric information of the images
prior to fusion. Various fusion algorithms are developed based
on the distinctive characteristics of optical and SAR images,
as well as the specific task requirements. The objective is to
get valuable and coherent features that effectively address the
challenge of image fusion.

1) Linear feature fusion strategy: The linear fusion model is
a widely used approach for combining features from several
sources. It employs linear fusion algorithms such as feature
concatenating, as shown in Fig. 12, feature summation, as shown
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TABLE II
FEATURE FUSION STRATEGIES, THEIR KEY TECHNOLOGIES, CHARACTERISTICS, AND APPLICATION EXAMPLES

Fig. 12. Structure of feature concatenating method.

Fig. 13. Structure of feature summation method.

in Fig. 13, and feature dot product shown in Fig. 14 to merge
the distinct data features.

Xu et al. [132] achieved feature fusion by linking radiation
and structural features obtained from a two-branch CNN, they
proved that the dual-branch network structure can learn mul-
tisource remote sensing image features better than the single-
branch structure. Hughes et al. [133] adopted a two-branch

Fig. 14. Structure of feature dot product method.

pseudo-siamese CNN to independently learn the characteristics
of optical and SAR images, and then linear fusion methods are
used to concate the obtained optical features and SAR features.
Zhang et al. [129] introduced a block-based deep convolutional
network to extract features from optical and polarization SAR
images as input to the model. Guo et al. [134] adopted the fusion
method of linear layered superposition to fuse the features of
SAR and optical images, and inputted the fused features into the
decision tree for feature extraction. Several other scholars have
also contributed to feature extraction using optical and SAR
image fusion, following the linear fusion methods [135], [136].

Although linear fusion is simple and convenient to operate,
its ability to fully integrate the interaction of multisource infor-
mation and the importance of different modes in classification
is limited. This limitation stems from the fact that the method
fuses data from different modalities using the same weights.
Therefore, linear fusion methods have inherent limitations in
practical applications.
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Fig. 15. Simple form of channel attention structure.

Fig. 16. Simple form of spatial attention structure.

Fig. 17. Simple form of mixed attention structure.

2) Attention-based feature fusion strategy: The attention
mechanism in computer vision mimics the visual attention
mechanism of the human brain. It comprehensively scans the
input image and allocates different attention resources to differ-
ent areas, and selects key areas to collect more detailed informa-
tion while suppressing attention to nonkey areas. The attention
mechanism in multisource feature learning mainly includes
channel attention mechanism, spatial attention mechanism, and
self-attention mechanism.

The channel attention mechanism achieves fusion by calculat-
ing the importance of each channel, as shown in Fig. 15. SENet
[149] selectively enhances important features by explicitly mod-
eling relationships between channels, dynamically adjusting
channel feature responses, and collecting overall statistics for
each channel through average pooling.

The channel attention mechanism aims to quantify the impor-
tance level of each channel, while the spatial attention mecha-
nism allows the model to dynamically learn the attention weights
of various regions by incorporating attention modules, as shown
in Fig. 16. In this approach, the model can focus more on key
image areas and ignore uninteresting parts. The convolutional
block attention module (CBAM) [150] uses a combination of
channel attention and spatial attention to improve the attention
capability of the convolutional neural network, as shown in
Fig. 17. It captures the overall statistics of each channel by
utilizing global average pooling and global max pooling, and
then learns channel weights through two fully connected layers.

Fig. 18. Structural diagram of DDHRNet fusion module MSE.

The two results generated by the processing are then added
together and adjusted for each channel by using the sigmoid
function to normalize the weights to a range of 0 to 1. Finally,
the scaled channel features are ultimately multiplied with the
original features to enhance the importance of each channel
within the features.

Multisource fusion approaches utilize the attention mecha-
nism to assign weights to the attention region, allowing the
network model to acquire additional information from several
data sources. Fu et al. [137] concurrently incorporated spatial
and channel attention, merging the results of both attention
methods to augment feature representation. This method proves
that the dual attention module can effectively capture long-
range contextual information and give more accurate segmen-
tation results. Ren et al. [151] proposed a dual-stream deep
high-resolution network (DDHRNet) to deeply fuse SAR and
optical data at the feature level of each branch. The network
designs a multimodal extrusion and excitation (MSE) module.
As shown in Fig. 18, MSE uses the channel attention mech-
anism to integrate model features and can effectively utilize
complementary information in heterogeneous images. Li et al.
[138] introduced CHGFNet, a hierarchical fusion network that
combines optical and SAR information for land cover clas-
sification using a collaborative attention-based heterogeneous
gated fusion method. This method automatically realizes the
weighted fusion of optical and SAR features, proving that
the collaborative attention mechanism is able to effectively learn
the complementary features of optical and SAR images. Yang
et al. [139] introduced AFNet, a hybrid attention fusion network,
the block diagram of the network is shown in Fig. 19. This
method utilizes a channel attention module to calculate feature
weights along the channel dimension, and a spatial attention
module to calculate feature weights along the spatial dimension.
It effectively fuse different types of features and allow the
network to learn effective information in different types of data
to improve the segmentation accuracy of high-resolution remote
sensing images. Li et al. [130] proposed a multimodal bilinear
fusion network (MBFNet) to learn complementary features of
optical and SAR images to enhance feature classification. This
method proposes the second-order attention-based channel se-
lection module (SACSM) module for feature fusion, and the
SACSM structure is shown in the Fig. 20. The SACAM attention
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Fig. 19. Main encoder–decoder structure block diagram in AFNet.

Fig. 20. Structural diagram of MBFNet fusion module SACSM.

module in this network model can effectively utilize the relation-
ship between channels of the feature map, automatically empha-
size important channels in the feature map, and reconfigure the
compact feature map, thereby enhancing the representation of
the network and improving its discriminative performance. Li
et al. [62] utilized knowledge of phase coherence to guide the
acquisition of structural coherence properties from optical and
SAR images. They designed a multistage progressive feature
fusion framework that utilizes structural consistency informa-
tion to correlate optical and SAR image features, and learn
complementary features of optical and SAR images through
a channel attention mechanism. This method proves that con-
sistency information can effectively correlate optical and SAR
image information, improving the accuracy and robustness of
the model. Liu et al. [152] designed a multimodal dual-attention
fusion module, which enables the network to more reasonably
fuse the heterogeneous features of optical and SAR images,
thereby enhancing the robustness of the model.

The self-attention mechanism seeks to form connections be-
tween input vectors, enabling the network to learn associations
between distinct components of the input. The crucial aspect of
self-attention is that the internal parameters are all structurally
similar and finally acquire knowledge about the fundamental
connections between different locations inside the image. Zhou
et al. [140] introduced a three-branch self-attention module that
consists of two input branches with different characteristics
and a cross-modal distillation branch. This module utilizes
self-attention blocks to merge features from different modalities.
Li et al. [61] introduced a multimodal cross-attention network
called MCANet. This network incorporates a multimodal cross-
attention module that utilizes a self-attention mechanism to cap-
ture positional relationships among feature maps from different

Fig. 21. Simple form of self-attention structure in MCANet.

data sources, as shown in Fig. 21. This module enables effective
interaction between optical and SAR image features in a 2-D
space.

In general, the attention mechanism can assign higher weights
to the features that one wants to focus on, and by designing
the corresponding attention module, complementary features of
optical and SAR images can be learnt in image fusion. However,
the attention mechanism method cannot filter redundant infor-
mation in real time and is easily affected by the difference in
appearance of optical and SAR images.

3) Gated-based feature fusion strategy: Gating mechanisms
are frequently employed in recurrent neural networks to address
challenges related to multitemporal features. These mechanisms
possess a strong capability to selectively filter features, enabling
them to regulate the transmission of valuable information from
many modalities. Gated fusion mechanisms have the ability to
selectively combine information from different levels. They are
commonly employed for the purpose of screening and fusing
features from several sources, with the aim of enhancing the
performance of classification, this approach has been supported
by studies [153], [154], [155], [156]. The gating fusion methods
can be classified into three types: 1) independent gates shown
in Fig. 22; 2) complementary gates shown in Fig. 23; and 3)
interactive gates shown in Fig. 24 [9]. The independent gating
mechanism is a network with two branches that extract features
individually. Each modal image is screened independently for
relevant characteristics, and then the screened features are fused
together. However, this fusion approach lacks information shar-
ing, making it challenging to acquire meaningful complemen-
tary and coherent features. The complementary gate integrates
the optical and SAR images by initially fusing them at the
input. It then selects complementary characteristics from both
modalities for fusion by configuring the gate function. However,
the limitation of using only a single gate module hinders the
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Fig. 22. Structure of independent gating method.

Fig. 23. Structure of complementary gating method.

Fig. 24. Structure of interactive gating method.

utilization of shared features in a logical manner. The interaction
gate establishes two gate modules that acquire features from dis-
tinct modalities and mutually regulate the selection of features
from the other modality.

Zhang et al. [157] introduced a novel adaptive collaborative at-
tention network that employs a gated multimodal fusion module
to combine textual and visual data. This approach demonstrates
the ability of the gating mechanism to adaptively adjust the
amount of multimodal information to be considered at each
time step. Cheng et al. [153] introduced a locally sensitive
DecovNet that incorporates a novel gated fusion layer to effec-
tively merge spectral and depth information. Wang et al. [154]
introduced three novel dynamic fusion techniques to enhance
multimodal word representations. These techniques involve
utilizing modality-specific gates, category-specific gates, and
sample-specific gates to determine distinct weights for each
input modal representation.

Fig. 25. Structural diagram of CHGFNet fusion module GHFM.

Fig. 26. Structural diagram of CMGFNet fusion module GFM.

Image feature fusion involves the adaptive learning of dis-
criminative features by including a gated fusion module to assign
weights to each modality and eliminate irrelevant components.
Nevertheless, the task of effectively combining complementary
information for the purpose of resolving scenes in multimodal
remote sensing images continues to be a challenge. Reducing
the resolution of the feature map using neural networks might
cause a loss of spatial information, perhaps leading to blurred
object borders and incorrect classification of small objects. Fur-
thermore, the sizes of objects in remote sensing images exhibit
significant variability, resulting in a decline in categorization
accuracy.

Li et al. [138] introduced CHGFNet, which incorporates a
gated heterogeneous fusion module (GHFM) in the form of
complementary gates, as shown in Fig. 25. This module enables
adaptive weighted fusion of optical and SAR information, result-
ing in enhanced segmentation accuracy. Hosseinpour et al. [141]
introduced the gated fusion module (GFM) as a method to learn
cross-modal features using complementary gates. The GFM then
combines high-level semantic features with underlying features
using a multilevel feature fusion strategy. This method is able
to combine information from different modalities based on the
functional quality of each region of interest. Zhou et al. [142]
introduced the CEGFNet, an end-to-end network that combines
conventional extraction and gate fusion techniques to effectively
collect both high-level semantic characteristics and low-level
spatial data for scene parsing of remote sensing images. This
network proposes a complementary gating fusion module GFM,
the structure of GFM is shown in Fig. 26. The gating module
can eliminate redundant features in the data by setting gating
thresholds and extract complementary features from the data
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Fig. 27. Simple form of feature space alignment structure.

to enhance multimodal feature fusion. Furthermore, the global
context module and the multilayer aggregation decoder, respec-
tively, address the issues of scale differences between objects
and spatial feature loss caused by downsampling. Kang et al. [9]
introduced a cross-modal interaction gating method that enables
the extraction of optical and SAR image features by utilizing
a two-branch network topology with bidirectional information
flow. Simultaneously, the network establishes a cross-modal
transmission gate to enable independent feature learning while
facilitating bidirectional information flow between optical and
SAR images. This allows for comprehensive learning of com-
plementary information and structural consistency, resulting in
enhanced segmentation accuracy. Huang et al. [143] introduced
GRRNet, a gated residual refinement network that integrates
raw data from several modalities into numerous channels. The
encoder unit of GRRNet incorporates an enhanced residual
network, and employs gated feature labeling to enhance the
accuracy of segmentation outcomes. Geng et al. [144] utilized
the complementary gate module to fully explore the interaction
patterns between heterogeneous features, effectively integrating
information from different sources. They also emphasize the
significance of high-level information interaction across data
sources.

The gating mechanism can effectively screen the redundant
information in optical and SAR images. By designing the tricks
of different gating modules, the complementary and consistent
features of optical and SAR images can be effectively learned.
However, the connection between the specific categories of
optical and SAR images is still easily overlooked, and the
feature learning process is still easily affected by the appearance
differences between optical and SAR images.

4) Optical and SAR image feature space alignment methods:
Due to the substantial appearance differences, multisource data
may experience semantic misalignment during feature fusion.
This causes the network to excessively concentrate on the ap-
pearance differences, which in turn leads to the loss and cor-
ruption of semantic information. Spatial alignment eliminates
the noticeable variations in the data by aligning the feature
distributions of distinct modalities, the structure is shown in
Fig. 27.

Hong et al. [145] employed mathematical models, including
CoSpace [158] and L1 CoSpace [159], to integrate multimodal
data aspects. Zhang et al. [146] utilized the image transfer tech-
nique in the preprocessing stage of image alignment to enhance

the issue of inter-image disparity. They then aligned the im-
ages using the scale-invariant feature transform algorithm [160],
which was employed for spatial alignment between multimodal
image pairings. Quan et al. [147] introduced a two-channel
convolutional neural network with distinct parameters to extract
potential correlation features from multimodal image pairings.
The objective was to determine if these pairs are a match or not,
in order to accomplish spatial alignment between optical and
SAR image pairs. Li et al. [62] proposed a progressive fusion
learning framework that utilizes modality-invariant features to
correlate optical and SAR image features to address the im-
pact of appearance variations in building extraction. Li et al.
[148] introduced a spatially-aware circular module to generate
cross-modal receptive fields. In addition, they utilized a feature
transformation technique to map the optical and SAR high-level
features extracted by the network into a shared latent space,
thereby mitigating the impact of modal appearance disparities.
The approach enhances segmentation accuracy by aligning the
semantic distribution of complimentary information from each
modality.

The feature alignment method is the most effective method
to solve the difficulty in feature extraction caused by the
difference in appearance of optical and SAR images. How-
ever, redundant features cannot be filtered and are easily af-
fected by image heterogeneity, resulting in the inability to
effectively obtain complementary features of optical and SAR
images.

In summary, each module has its corresponding advantages
and disadvantages. In the semantic segmentation task, the char-
acteristics of the features required for downstream tasks should
be analyzed, and different feature modules can be mixed and
used to achieve the purpose of effective feature learning.

V. DATASETS

Deep learning methods rely heavily on data, and having a
high-quality dataset that is closely related to the current task is
crucial to effectively train the model. Simultaneously, having
a unified and large-scale dataset is extremely important for
advancing subject research. However, in the field of remote
sensing, data annotation is challenging, and remote sensing
data are iteratively updated very quickly. Due to the incon-
sistent data requirements of different segmentation tasks and
significant variations in ground feature characteristics across
different areas, constructing a unified large-scale dataset poses
a substantial challenge. This section summarizes the currently
proposed open-source optical and SAR-registered datasets suit-
able for semantic segmentation of multisource remote sensing
images in the context of feature classification, as shown in
Table III.

SEN12MS dataset consisting of 180 662 triplets of SAR
image patches, multispectral image patches, and MODIS land
cover maps, covering all meteorological seasons. It is suitable
for the tasks of scene classification or semantic segmentation
for land cover mapping. This dataset can be downloaded from
https://mediatum.ub.tum.de/1474000.

MS-SAR LCZ dataset consisting of multispectral data
and dual-polarimetric SAR data, it contains ten categories.

https://mediatum.ub.tum.de/1474000
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TABLE III
OPTICAL AND SAR DATASETS IN SEMANTIC SEGMENTATION

This dataset can be downloaded from https://github.com/
danfenghong/IEEE_TGRS_MDL-RS.

LandCoverNet dataset covers all images from Africa, with
main categories including water, two types of bare ground, and
three types of vegetation. This dataset can be downloaded from
www.landcover.net.

MSAW dataset collects very high-resolution optical and SAR
data from the port of Rotterdam, the Netherlands, features
buildings, vehicles, and boats of various sizes. This dataset can
be downloaded from www.spacenet.ai.

GFB dataset is a building segmentation dataset, which cover
nine cities from seven countries. The dataset can be accessed in:
10.11878/db.202104.000008.

Ren et al. [151] proposed an optical-SAR multimodal dataset
for land cover classification, which covers three areas from two
countries: Xi’an city in Shanxi Province, China; Dongying city
in Shandong Province, China; and Pohang city in South Korea.
This dataset can be accessed in: https://github.com/XD-MG/
DDHRNet.

WHU-OPT-SAR dataset covers 100 pairs of optical images
and SAR images from Hubei province, China. This dataset
mainly contains seven types of land objects suitable for land
use classification: Water, farmland, city, village, forest, road,
and others. The dataset can be downloaded from https://github.
com/AmberHen/WHU-OPT-SAR-dataset.git.

Hunan dataset covers optical and SAR images from Hu-
nan province, China. This dataset mainly contains seven types
of land objects suitable for land cover classification: Water,
cropland, built-up area, grassland, forest, wetland, and unused
land. The dataset can be downloaded from https://github.com/
LauraChow/HunanMultimodalDataset.

MDAS dataset has five modalities remote sensing data: SAR
data, multispectral image, hyperspectral image, DSM, and GIS
data. This dataset mainly contains six types of land objects
suitable for land cover classification: pavement, soil, roof, low
vegetation, tree, and water. The dataset can be downloaded from
https://doi.org/10.14459/2022mp1657312.

YYX-OPT-SAR dataset comprises 150 pairs of optical and
SAR images covering urban, suburban, and mountain set-
tings. The dataset can be downloaded from https://github.com/
yeyuanxin110/YYX-OPT-SAR.

The datasets we have collected fall into two categories:
1) spaceborne data; and 2) airborne data. Among them, there

are four satellite-borne datasets and two SAR image datasets
acquired by UAVs. The satellite sources primarily include the
Sentinel-1 and Sentinel-2 series, as well as the Gaofen-1 and
Gaofen-3 series. However, a resolution issue arises: The resolu-
tion of the Sentinel series datasets is typically only 10 m, whereas
the resolution of the Gaofen series datasets is 5 m. There-
fore, very high-resolution (< 1 m) optical and SAR datasets are
currently lacking. At the same time, the field of multisource
remote sensing has always lacked a large-scale and high-quality
dataset that can be used as a benchmark dataset for semantic
segmentation methods in remote sensing tasks. This is very
important and will promote the development of multisource
remote sensing image research in the future.

VI. EVALUATION INDICATORS FOR SEMANTIC SEGMENTATION

In the field of semantic segmentation, the main evaluation
indicators of algorithm performance can be summarized as:
Running time, running memory, and accuracy.

A. Running Time

Running speed is a very important indicator that reflects the
performance of an algorithm, and is usually reflected by running
time. With the continuous development of deep learning, model
complexity continues to increase, network levels continue to
deepen, and many algorithm structures are overly dependent
on hardware and time. In some cases, the accuracy provided
by the algorithm is not enough. Therefore, the running time
can be used as an evaluation criterion for the algorithm in
practical applications, and it can be tested which algorithm is
more efficient under the same conditions.

In the semantic segmentation network, the timeliness of the
network can be described by the speed of processing the number
of images per second, which is usually expressed by frames per
second.

B. Running Memory

Memory usage is one of the important indicators for eval-
uating algorithms. Many algorithms achieve faster time and
improved accuracy by continuously expanding memory capac-
ity. However, in practical applications, ideal memory condi-
tions are often difficult to achieve, and high-performance GPUs
generally cannot be equipped with large memories. Therefore,

https://github.com/danfenghong/IEEE_TGRS_MDL-RS
https://github.com/danfenghong/IEEE_TGRS_MDL-RS
www.landcover.net
www.spacenet.ai
https://github.com/XD-MG/DDHRNet
https://github.com/XD-MG/DDHRNet
https://github.com/AmberHen/WHU-OPT-SAR-dataset.git
https://github.com/AmberHen/WHU-OPT-SAR-dataset.git
https://github.com/LauraChow/HunanMultimodalDataset
https://github.com/LauraChow/HunanMultimodalDataset
https://doi.org/10.14459/2022mp1657312
https://github.com/yeyuanxin110/YYX-OPT-SAR
https://github.com/yeyuanxin110/YYX-OPT-SAR
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memory usage can also be used as one of the evaluation criteria
for algorithm performance.

Floating-point operations (FLOPs) can represent the calcu-
lation amount of forward propagation in CNNs, and is used
to estimate the computing resource usage of the segmentation
network, thereby measuring the complexity of the algorithm.
Multiply-accumulate operations (MACs) can also be used to
represent the amount of operation. 1 MAC usually corresponds
to two FLOPs. In addition, the most direct indicator of memory
usage is to look at the number of network parameters and storage
space usage. The number of network parameters is represented
by parameters, and the memory space occupied unit is generally
MB. Statistics on the amount of operations and the number
of parameters can indicate the complexity of the network. The
higher the values of these parameters, the more complex these
network models are.

C. Accuracy

The evaluation indicators used in semantic segmentation of
remote sensing images generally include pixel accuracy (PA),
mean pixel accuracy (MPA), intersection over union (IoU),
mean Intersection over union (MIoU), and frequency weighted
intersection over union (FWIoU). For ease of understanding,
we define the specific parameters as follows: K represents the
category of pixels, ti represents the total number of pixels
in the ith category, nii represents the total number of pixels
actually predicted to be ith category and is also ith category, nij

represents the total number of pixels actually predicted to be jth
category for the ith category.

PA: PA is an evaluation criterion for the accuracy of predicting
pixels.

PA =

K∑
i=1

nii/

K∑
i=1

ti. (1)

MPA: MPA represents the average PA of image pixels across
all categories.

MPA =

(
K∑
i=1

nii/

K∑
i=1

ti

)/
K. (2)

IoU: IoU represents the degree of coincidence between the
segmented image and the true value of the original image, and
the value range is between 0–1.

IoU =

K∑
i=1

nii

ti +
∑K

j=1 nji − nii

. (3)

MIoU: MIoU represents the average IoU of image pixels
across all categories.

MIoU =

(
K∑
i=1

nii

ti +
∑K

j=1 nji − nii

)/
K. (4)

FWIoU: FWIoU aims to weight the category of each pixel
according to its frequency of occurrence.

FWIoU =
1∑K
i=1 ti

K∑
i=1

∑K
j=1 nijnii∑K

j=1 nij +
∑K

j=1 nji − nii

. (5)

VII. CHALLENGES AND FUTURE DIRECTIONS

Semantic segmentation problems typically manifest in two
forms: 1) oversegmentation; and 2) undersegmentation. Over-
segmentation involves segmenting the same object into differ-
ent categories, while undersegmentation involves segmenting
multiple objects into a single category. The challenge of remote
sensing image segmentation stems from the inherent heterogene-
ity of remote sensing images, which significantly increases the
complexity of semantic segmentation and leads to problems such
as confusing image categories and unclear boundaries.

Optical and SAR images are complementary, and the com-
plementary properties of multisource images can be used to
make up for the shortcomings of single-source data. At the
same time, optical and SAR images have structural consistency,
and the consistency can be used to build correlations between
heterogeneous data. Many methods have been proposed to learn
and exploit the complementarity and structural consistency of
optical and SAR images, but the following difficulties still exist.

1) Feature fusion contribution challenge: The disparities in
imaging mechanisms lead to complementary and consis-
tent representations of optical and SAR images across
various object categories. Current research on feature
fusion primarily emphasizes overall accuracy, resulting in
high accuracy for some categories and very low accuracy
for others. This is mainly due to the fact that the model
does not adaptively adjust the weights of optical and SAR
images for different categories. In addition, there is a
failure to analyze the relationship between utilization and
object categories.

2) Data demand challenge: Despite the abundance of remote
sensing image data today, the availability of effective data
suitable for training is limited. This constraint arises from
challenges in labeling remote sensing images and the
necessity for preprocessing operations such as alignment
before feature fusion. The absence of benchmark datasets
introduces a bias in evaluating modeling algorithms.

The above challenges can serve as future research priorities
and development trends.

1) Dynamic assignment of feature contribution: Among the
strategies for designing feature fusion networks, a critical
aspect requiring exploration is the construction of a model
training network capable of assigning distinct weights to
optical and SAR images in different feature categories.
There are semantic correlations between different cate-
gories, and at the same time, the contribution of measuring
multimodal features includes assigning high weights to the
dominant modes in various feature categories and guiding
the weak modes to learn complementary features. This
technique stands as a key aspect of optical SAR feature
learning that warrants further investigation.

2) Development of large-scale benchmark datasets: Creating
large-scale, high-quality benchmark datasets comparable
to those in natural optical images is imperative. These
datasets can be made available to researchers for com-
paring model algorithms, thereby expediting the research
process in remote sensing image segmentation.
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3) Feature fusion in small samples or low-quality data: Al-
though small-sample algorithms have attracted attention
in target recognition in optical and SAR images, there are
currently very few relevant studies in the field of remote
sensing image segmentation. Since segmentation has rel-
atively low real-time requirements, historical data can be
used to train the model to extract features. Consequently, a
pressing question arises concerning the optimal utilization
of low-quality, unlabeled historical data. Therefore, train-
ing models to extract effective features from low-quality
data remains a pivotal focus for future research.

4) Research on large models based on semantic segmentation
of multisource remote sensing images: The development
of large models is the mainstream trend in current re-
search. How to make large model learning fully utilize
multisource information to improve the task performance
of downstream remote sensing image processing is also a
hot topic to be studied.

VIII. CONCLUSION

Deep neural network extraction of features for semantic seg-
mentation has achieved great success in the field of computer
vision. These findings have inspired researchers to apply it to
the field of remote sensing image segmentation. The complexity,
heterogeneity, and scale differences of remote sensing images
pose many problems for semantic segmentation. Due to the
differences in imaging modalities, single-source images have
certain limitations. Optical and SAR, as commonly used data
sources in remote sensing, have complementarity and consis-
tency. How to effectively fuse the features of optical and SAR
images has always been a research hot spot and a research
difficulty. In this article, we summarize the research progress
in semantic segmentation of remote sensing images for deep
feature fusion of optical and SAR images. We also outline the
challenges of the topic and provide a comprehensive overview
for scholars and practitioners from the technical point of view of
network module design. Specifically, we summarize the research
progress in semantic segmentation of remote sensing in detail,
and then summarize the technical approaches of optical and
SAR image feature fusion in semantic segmentation from the
perspective of feature fusion module design.
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