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Instance-Aware Contour Learning for Vectorized
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Abstract—Extraction of vectorized building instances from re-
mote sensing images has made significant progress in recent years.
The extraction of vectorized building maps enables rapid, large-
scale updates to geospatial databases. Recently, the contour-based
methods have achieved amazing success because their learning
goals are more compatible with vectorized polygons. However,
existing contour-based approaches achieve contour updates only
by learning the local features at each vertex, which can lead to a
contour smoothing problem. Besides, these methods achieve classi-
fication via features at the center point, which hinders the receptive
field at the instance level. Our primary motivation is to overcome
existing limitations introduced by local modeling during contour
regression while simultaneously improving the instance classifica-
tion performance. In this article, we utilize instance-level features
to guide the contour learning process. An instance-aware contour
regression (IACR) module is designed to update the local contour
features via cross attention on the instance-level features. Further-
more, based on the IACR module, we propose a novel vectorized
building extraction framework BuildingVec, which interacts be-
tween the contour regression branch and instance classification
branch through a well-designed cascade architecture. We also build
a vectorized building dataset with fine-grained categories, named
UBCv2 (vec), to benefit the study of vectorized extraction for fine-
grained buildings. Experiments on the UBCv2 (vec) dataset demon-
strate that BuildingVec achieves state-of-the-art performance com-
pared to both mask-based methods and contour-based methods.
When compared to other vectorized extraction methods on the
Crowd AI dataset, BuildingVec also achieves a state-of-the-art
performance with an AP50 of 93.1%.
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I. INTRODUCTION

AUTOMATIC building extraction provides important sup-
port for city mapping [1], [2], [3], [4], 3-D reconstruc-

tion [5], [6], and urban energy analysis [7], [8], [9]. Large-scale
extraction of buildings using remote sensing images provides
a low-cost solution to city-scale building mapping. Due to the
portability and flexibility, representing buildings in polygonal
format is widely adopted in geographic information system,
and vectorized building extraction has become a very popular
research direction [10], [11], [12], [13].

Vectorized building extraction methods can be divided into
two main categories: mask-based segmentation and contour-
based regression [13], [14], [15], [16], [17]. Some mask-based
segmentation methods [10], [11] first segment the building ar-
eas at the pixel level, then utilize postprocessing to derive the
instance-level building polygons. The authors in [10] and [11]
achieve vectorized building results by adding auxiliary supervi-
sion based on the pixel-level segmentation framework. The main
approach of this type of method is to add additional constraints
specific to the geometric characteristics of the building during
the training process to guide the segmentation model to learn
masks with polygonal shapes (i.e., clear edges and angles).
By introducing the concept of the frame field, the frame field
learning [10] proposes to align the predicted frame field to
building contours so that the model can learn more regularized
masks. The extracted masks show precise building boundaries
and corners, which can be postprocessed to derive polygons
using the active skeleton model [18]. HiSup [11] imposes ad-
ditional constraints on the edge lines of the learned masks by
introducing the attracted field maps (AFMs) proposed in [12].
The building masks learned by HiSup have clear edge lines
that can be converted into high-quality vectorized polygons.
Other mask-based methods [19], [20], [21] follow the instance
segmentation framework, which first generates box proposals
using region proposal network (RPN) [22] and following box
heads, then predicts the mask segmentations within these boxes.
These methods achieve good performance on instance-level
classification because the instance features are finely extracted
by the RoIPool [23] or RoIAlign [19].

A major drawback of mask-based methods [10], [11] is that
they heavily rely on cumbersome postprocessing to vectorize
the extracted mask results. This can be addressed in the contour-
based instance segmentation methods [14], [16], [24] since they
achieve vectorized results in an end-to-end manner. As shown in
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Fig. 1. General contour-based workflow of vectorized building extraction,
including three essential stages, i.e., contour initialization, contour refinement
and vertex reduction.

Fig. 1, contour-based methods achieve vectorized building ex-
traction through three main steps: contour initialization of each
individual building instance; contour refinement to map precise
building boundaries; and vertex reduction to produce compact
polygons. For example, BuildMapper [13] focuses on vectorized
building extraction using contour learning. It refines the initial
contours in three iterative stages and removes redundant vertices
in the last stage. Most contour-based methods [13], [16], [17],
[24], [25] replace the bounding box branch (four points) in
one-stage object detection frameworks [26], [27] with a contour
prediction branch (a sequence of points). These methods achieve
very fast inference speed, but show inferior classification per-
formance due to the lack of instance-level feature modeling.

Although current methods [13], [16], [17], [24] have achieved
good results on vectorized building extraction, there are still
some flaws that need to be further improved. As shown in
Fig. 2, first, existing contour-based methods often result in
smoothed contours due to local modeling strategies such as
1-D-convolution [17] and circular convolution [14], [16]. Such
local modeling makes it challenging to generate structured
polygonal vectors of buildings. Second, mask-based methods
have insufficient ability to fit building polygons due to the gap
between mask representation and polygon representation. Third,
existing modeling approaches encounter difficulties in simulta-
neously balancing between instance-level representation (e.g.,
mask-based methods) and contour regression (contour-based
methods).

Our primary motivation is to develop a contour-based ap-
proach that addresses the contour smoothing issue caused by
local modeling while simultaneously enhancing instance-level

representational modeling, thereby improving instance-level
classification performance. The main idea of our method is
illustrated in Fig. 2. In order to achieve high-quality contour re-
gression, we propose a novel approach that injects instance-level
features utilized in mask-based methods into the local vertex
features during contour learning. Specifically, we use instance-
level contexts to guide the local vertex features during the
contour learning process. An instance-aware contour regression
(IACR) module is designed to update the local contour features
via cross-attention on the instance-level features. Furthermore,
based on the IACR module, we propose a novel vectorized build-
ing extraction framework BuildingVec, which interacts between
the contour regression branch and instance classification branch
through a well-designed cascade architecture.

It is important to note that the lack of fine-grained vectorized
building dataset limits the development of fine-grained building
extraction algorithms. Most of the existing building extraction
datasets only provide annotations in the form of masks, which
are not vectorized. And there are also a few datasets designed for
vectorized building extraction. However, there is no vectorized
dataset that provides fine-grained categories of building classi-
fication. The UBCv2 dataset [28] provides fine-grained masks
for buildings. We propose a vectorized fine-grained building
extraction dataset based on the UBCv2 dataset, which we call
UBCv2 (vec). This dataset allows for the validation of vectorized
building extraction algorithms as well as building classification
methods.

We conduct plenty of experiments on UBCv2 (vec) [28]
and Crowd AI dataset [29], and the results show that the pro-
posed BuildingVec method, has both promising classification
and building contour regression performance.

The main contributions of this article are summarized as
follows.

1) We propose an IACR module to improve the contour
quality via the integration of instance-level contexts and
vertex-wise local features.

2) We propose a novel framework BuildingVec, which
achieves the vectorized building extraction and fine-
grained classification through a well-designed cascade
architecture.

3) To address the lack of fine-grained vectorized building
extraction dataset, we construct a new vector extraction
dataset with fine-grained categories called UBCv2 (vec).

II. RELATED WORK

In this section, we briefly review the related works focus-
ing on building extraction, including pixel-level segmentation,
instance-level segmentation, and contour-based methods.

A. Pixel-Level Segmentation

Pixel-level building extraction methods are mainly based on
semantic segmentation. A popular solution for vectorized build-
ing extraction is to add auxiliary constraints to the optimization
objectives to achieve the structured polygonal contours of build-
ings. A topography-aware loss is proposed in [30] to enhance the
preservation of building boundary by deep convolutional neural
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Fig. 2. Comparisons between mask-based instance segmentation methods, contour-based methods, and our proposed methods.

networks (CNNs). The frame field learning [10] proposes a
frame field-based pixel-level constraint to align the building con-
tours with the frame field, and obtains well-structured building
masks using multitask learning. HiSup [11] accomplishes polyg-
onal mapping of buildings with the help of AFMs [12] in the line
segment detection. Although the aforementioned methods based
on pixel-level segmentation have achieved promising building
segmentation, they still struggle to address the challenge of
separating individual building instances and optimization of
cumbersome hyperparameter settings.

B. Instance-Level Segmentation

Instance segmentation shows great advantages in detecting
and segmenting individual instances by referring to the paradigm
of object detection. Currently, prevailing instance segmentation
methods are mainly divided into one-stage and two-stage meth-
ods.

For single-stage methods, SOLO [31] and SOLOv2 [32]
learns the instance masks directly according to the location
and size of instances and does not depend on the bounding
boxes. In another one-stage method YOLACT [33], the instance
masks are calculated by weighting several prototype masks using
coefficients, which achieves efficient parameter sharing across
different instances.

Two-stage methods are designed with the “detect and seg-
ment” paradigm, which segment every instance using the fea-
tures within the detected bounding box. Mask R-CNN [19]
predicts the instance masks using a mask head, which is parallel
to the bounding box regression branch. Instance features are
first obtained by pooling methods such as RoIAlign [19] or
RoIPooling [23], then the instance masks are learned by fully
convolutional networks. PANet [34] improves the performance
of the segmentation by adding a bottom-up path to the feature
pyramid network (FPN). Cascade Mask R-CNN [20] is designed

with multiple detection heads to refine the bounding boxes and
masks of the instances in a cascade way, resulting in high-quality
detection results. The HTC [21] further improves the perfor-
mance by designing an interleaved cascade path and adding
information flow among different mask prediction heads.

The building boundaries predicted by instance segmentation
algorithms are often irregular and far from the vectorized anno-
tation. Further postprocessing is required to derive the contours
and eliminate redundant nodes. The Douglas–Peucker (DP) al-
gorithm [35] is a popular method to simplify polygonal contours
derived from building masks. In our proposed method, a corner
classification head is added at the last contour regression head to
select corner nodes. Such a method is fully end-to-end trainable
and more robust than manually designed postprocessing.

C. Contour-Based Methods

A few researchers have considered the instance segmentation
as a contour regression problem. For contour regression [13],
[16], [17], [24], [25], the mask is interpreted as a sequence of
vertices of the polygonal contour. Such methods have a great
advantage in modeling the vectorized building polygons since
the learning objective is more consistent with the manually anno-
tated building polygons. It also avoids redundant raster-to-vector
transformation and empirical postprocessing in the mask-based
methods [10], [11].

The traditional contour-based methods [18], [36] extract the
instance contours using an active contour model, which opti-
mizes an empirically designed energy function. With the devel-
opment of deep neural networks, CNNs are incorporated with
the active contour model [37], [38] to improve the quality of
generated contours. Another kind of methods [39], [40], [41],
[42], [43] adopt recurrent neural networks (RNNs) to predict the
vertex sequence of buildings in an autoregressive way. However,
they usually miss the corner vertices, resulting in rough contours.
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Fig. 3. Overview framework of BuildingVec. It produces the initial contours using the vertices sampled from the bounding boxes. Then, the IACR module refines
the contours using both the instance-level features derived from the bounding boxes and vertex features derived from the vertex coordinates. In final, a vertex
classification branch predicts the probability scores for each vertex to determine if it is a corner. In this framework, the contour branch and the bounding box branch
are jointly optimized in a cascading manner.

Recently, CNN-based methods have become the most popular
solution for contour regression problem. PolarMask [24] and
PolarMask++ [25] encode the instance contour as a sequence
of polar coordinates at multiple directions with fixed angular
intervals. Those polar coordinates can be efficiently converted
back to the instance mask. However, it can only roughly mimic
contours because complex contours may cross a single direction
multiple times. LSNet [44] solves this problem by directly
predicting uniformly sampled contours using a fixed number
of offsets. More recent contour-based methods are proposed,
such as Curve GCN [15], Deep Snake [16], DANCE [14], and
E2EC [17]. These methods have been improving the quality of
contours for recent years.

Contour-based methods have been applied in extracting the
buildings in remote sensing images. BuildMapper [13] is pro-
posed to extract vectorized building contours in an end-to-end
framework. PolyBuilding [45] directly decodes all building
polygons using an deformable transformer decoder [46]. They
have achieved promising vectorized contours in remote sensing
images. However, BuildMapper predicts the classification score
from the point feature in the center position, which lacks global
perceptive field of the building instance. And the vertex regres-
sion ability is limited by local operators such as 1-D convolution.
Besides, the contour refinement of different stages is still depen-
dent in these methods. We introduce a bounding box branch
parallel to the contour regression branch. The contours and
bounding boxes are jointly refined by the instance-level features
extracted by the boxes. Such an operation allows instance-level
perception for the classification and contour refinement branch,

respectively. And we add information flow among different
contour refinement stages to allow efficient contour learning.

III. ALGORITHM DESIGN

In this section, we first introduce the overview framework of
the BuildingVec in Section III-A. Then, a novel IACR module is
introduced in Section III-B. Next, three contour learning stages
including contour initialization (see Section III-C), contour re-
finement (see Section III-D), and vertex reduction (see Sec-
tion III-E) are described. In final, we introduce the information
flow and loss design in Sections III-F and III-G, respectively.

A. Overview

The proposed framework for building extraction is illustrated
in Fig. 3. The contour branch and the bounding box branch
are jointly optimized in a cascade manner. First, the initial
bounding boxes are predicted according to the instance-level
features obtained from the RPN [22]. Then, rough contours are
initialized from the uniformly sampled points from boxes. An
IACR head predicts the initial contours using the vertex features
and the instance-level features obtained by RoIAlign [19]. Next,
more accurate instance-level features can be obtained from the
refined bounding boxes, which generate instance-level features
for prediction in the next stage. In the contour refinement stage,
the IACR module takes the vertex features obtained by contour
coordinates in the previous stage as input, and predicts an offset
for each vertex. The instance-level features are also used to guide
this refine process. Finally, a vertex classification head is added
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Fig. 4. Detailed process of the IACR module. The vertex features are derived by interpolating on the bottom feature map of FPN. If vertex features from the
previous stage are available, the vertex features are fused by adding the current and previous vertex features. The instance-level features are obtained by the instance
bounding boxes through RoIAlign operation, and then be flattened to a sequential features. PEs are added to both vertex features and instance-level features. Then,
a transformer decoder predicts the revolved features of the vertex features by interacting vertex features and instance-level features. Finally, two FFNs predict the
vertex offsets and corner classification scores, respectively. The contour vertices are refined by adding the predicted offsets with their previous coordinates. In the
last stage, interpolated vertices are reduced by the predicted corner classification score.

to distinguish corner vertices in the final stage. The simplified
polygons are generated by removing noncorner vertices using
a threshold. The BuildingVec framework is fully end-to-end
trainable and can be optimized without postprocessing.

B. Instance-Aware Contour Regression (IACR)

We propose an IACR module to learn the high-quality con-
tours using the vertex features as well as the instance-level fea-
tures. The main motivation of this module is that contour features
are often distributed at the boundary regions with limited repre-
sentability. Instance-level features provide a global perspective
on the instance, which is crucial for contour learning, especially
for contour initialization. To fully couple the vertex features and
the instance-level features, a decoder-only structure based on the
transformer is designed to learn the contour refinement offsets.

As shown in Fig. 4, the IACR module learns the refined
contour according to the preliminary contour and instance-level
features. Specifically, given a preliminary contour C and a
corresponding bounding boxB, the contourC can be denoted as
a sequence of points on the image: {(xi, yi)|i = 1, 2, . . . , N}.
According to the box, the RoIAlign extracts the instance-level
features FI ∈ RM×M×Cp from the feature pyramid encoded
by the FPN [47], where M is the fixed spatial size and Cp is
the output dimension of the FPN. The feature pyramid consists
of feature maps with multiple strides, which are denoted as

Pi ∈ R
H
si

×W
si

×Cp , where H and W are the height and width
of the input image, si is the stride, and i indicates the order of
the level. The vertex features are obtained on the P2 with s2,
which is equal to 4 pixels.

A decoder-only structure based on the transformer [48] is
designed to combine the instance-level features and vertex fea-
tures. First, the instance-level features are flattened to a 1-D
sequence, denoted as F ′

I ∈ RMM×Cp . We use a linear layer to
project the dimension of the 1-D-sequence F ′

I from Cp to Cv ,
reducing the computational cost in the following transformer
decoder. In this article, Cv is empirically set to 128. Then, we
also down-dimension P2 to Cv to derive the vertex features.
Specifically, the vertex features are computed by interpolating
on the P2 using the vertex coordinates. The feature sequence is
denoted as Fv ∈ RN×Cv , where N is the number of vertices per
building. Next, the transformer takes the instance-level feature
sequence F ′

I and the vertex feature sequence Fv as inputs and
produces the refined vertex feature sequence Fr. A learnable
positional encoding (PE) is added to F ′

I and Fv before they
are fed into the Transformer decoder. Finally, a feed-forward
network (FFN) predicts the vertex offsets of the preliminary ver-
tices, denoted as {(Δxi,Δyi)|i = 1, 2, . . . , N} ∈ RN×2. The
final refined vertices are given by {(x′

i, y
′
i) = (xi +Δxi, yi +

Δyi)|i = 1, 2, . . . , N}. For the final stage, an additional FFN is
employed to predict the vertex corner classification score, which
is introduced in Section III-E.

C. Contour Initialization

In the contour initialization stage, the bounding boxes are
predicted according to proposals generated by the RPN in the
same manner as Faster R-CNN [22]. The instance-level features
are computed using RoIAlign [19] according to the bound-
ing boxes. Horizontal bounding boxes are used to identify all
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Fig. 5. Example of the vertex sampling process. Only one building instance
is illustrated.

buildings uniformly, including irregularly shapes or rotated
bounding boxes. To create a preliminary contour for the ini-
tialization stage, we first sample the bounding boxes uniformly,
treating them as polygons with four vertices. Fig. 5 shows an
example of sampling uniform vertices from a box. Given a
bounding box B with a size of height h and width w, N vertices
are sampled uniformly, starting from the upper left corner in a
clockwise direction. The sampling stride between two adjacent
vertices can be computed as follows:

ssample =
2(h+ w)

N
. (1)

We denote the sampled vertices from bounding boxes as
{(xsample

i , ysample
i )|i = 1, 2, . . . , N}.

The initial contours are generated based on the sampled
vertices from bounding boxes. Specifically, using the instance-
level features derived from bounding boxes and vertex features
derived from sampled vertices, the ICRA predicts the offsets for
the initial contours, which are denoted as{Δi = (Δxi,Δyi)|i =
1, 2, . . . , N}.

The supervision of vertices in all stages is calculated from the
ground truth polygons. Specifically, vectorized building dataset
provides polygonal annotations instead of masks. As the number
of vertices in the annotated polygons varies, sampling of the
polygon annotations is also essential. Fig. 5 shows an example
of sampling on the building contour. Generally, the number of
vertices in ground truth polygons differs from the sampled ver-
ticesN . Given a polygon withk number of vertices, we only need
to sample N − k vertices because we have preserved all corner
ones. The number of vertices sampled for each side of a polygon
is assigned proportionally based on the side length, following the
principle of integer assignment. The start vertex for the sampled
polygon is still the vertex in the upper left corner, and the final
polygon is arranged clockwise. The sampled polygons from the
ground truth are denoted as {(xgt

i , ygti )|i = 1, 2, . . . , N}.
To achieve scale invariance for buildings of varying sizes

during the coordinate regression at the initialization stage, we
normalize the target offsets by the size of the bounding boxes as
follows:

txi =
xgt
i − xsample

i

wi
, tyi =

ygt
i − ysample

i

hi
. (2)

The target for all vertices can be described as {ti = (txi , t
y
i ), i =

1, 2, . . . , N}. The loss calculation for contour initialization can

be defined as

Linit =
1

N

N∑
i=1

l1 (ti −Δi) (3)

where l1 indicates the smooth L1 loss proposed in [23].

D. Contour Refinement

In the contour refinement stage, the IACR takes into the
vertex features in the previous stage and instance-level fea-
tures computed in the current stage. Similar to the contour
initialization process, given the contour {ppre

i = (xpre
i , ypre

i )|i =
1, 2, . . . , N} from the previous stage, it predicts the offsets
{Δi = (Δxi,Δyi|i = 1, 2, . . . , N}. The main distinction is that
the target offsets are encoded using absolute positions, instead
of normalization by the bounding boxes. Since the initialized
contours have already been close to the ground truth, such an
operation will bring more accurate regression. Therefore, the
loss for refinement stage can be described as follows:

Lrefine =
1

N

N∑
i=1

l1

(
Δi + ppre

i − pgt
i

)
(4)

where pgt
i denotes {(xgt

i , y
gt
i )|i = 1, 2, . . . , N}.

E. Vertex Reduction

In the final stage, an additional FFN is employed to predict
the vertex corner classification score. The corner classification
score is supervised by the ground truth label using cross-entropy
loss:

Lcnr =
1

N

N∑
i=1

(
−cgt

i log ci −
(
1− cgt

i

)
log(1− ci)

)
(5)

where cgt
i ∈ [0, 1] denotes the ground-truth corner label and ci

denotes the predicted corner classification score. During in-
ference, a corner threshold Scnr is used to remove redundant
vertices. In this article, we set Scnr as 0.1.

F. Information Flow Among Vector Features

We find that the vertex features of all stages are indepen-
dent. This dependence presents challenges for the optimization
process since it cannot directly propagate the gradients from
later stages to the parameters in prior stages. Fig. 6 depicts the
comparison of with/without information flow in vertex features
across various stages. In existing contour-based methods, the
features used to learn vertex offsets are extracted independently
from the backbone feature map. The connection between two
adjacent stages is only at the coordinate addition. We add a
feature addition branch in parallel to the coordinate addition
branch by adding the vertex features from the previous stage to
the vertex features in the current stage. This operation allows the
refinement process to be linked across all stages at the feature
level, not just at the coordinate level.
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Fig. 6. Information flow in vertex features across all stages. The red arrows
indicate the information flow in vertex features. (a) Without information flow in
vertex features. (b) With information flow (red arrow) in vertex features.

G. Training Losses

Besides losses for the contour initialization and contour re-
finement, the bounding boxes and building classification scores
are also jointly optimized in the whole framework. We adopt the
smooth L1 loss [23] for the bounding box learning, denoted as
Lbox. And the cross entropy loss is adopted as the classification
loss for every building instance

Lcls =
1

C

C−1∑
i=0

(−yi log pi − (1− yi) log(1− pi)) (6)

where y = [y0, y1, . . . , yC−1] denotes the one-hot representa-
tion of a category label. If it belongs to the ith class, then yi = 1
and yj = 0 for j �= i. And yi denotes the probability that the
instance belongs to the ith class as predicted by the model. C
denotes the number of classes.

During training, all the modules, including the bounding box
head, classification head, and contour prediction head, can be
jointly optimized using the following formulation:

L = λboxLbox + λclsLcls + λinitLinit + λrefineLrefine (7)

where λbox, λcls, λinit, and λrefine are weights to balance the losses,
set to 1.0, 1.0, 20, and 0.02, respectively.

IV. EXPERIMENTS

A. Datasets

It is important to note that the lack of fine-grained vectorized
building dataset limits the development of fine-grained building
extraction algorithms. Most of the existing building extraction

Fig. 7. Quantitative distribution of building instances per category in the
UBCv2 (vec) dataset. The categories are defined according to the rooftop
structure, e.g., flag, gable, hipped, and others.

datasets only provide annotations in the form of masks, which
are not vectorized. And there are also a few datasets designed for
vectorized building extraction. However, there is no vectorized
dataset that provides fine-grained categories of building classi-
fication. The UBCv2 dataset [28] provides fine-grained masks
for buildings. We propose a vectorized fine-grained building
extraction dataset based on the UBCv2 dataset, which we call
UBCv2 (vec). This dataset allows for the validation of vectorized
building extraction algorithm as well as building classification
methods.

We evaluate the performance of BuildingVec and state-of-the-
art baselines on two datasets, i.e., the UBCv2 (vec) dataset and
Crowd AI mapping challenge dataset [29]. We first introduce
the details of the UBCv2 (vec) dataset, because UBCv2 (vec)
is a vectorized dataset with requirements for the fine-grained
building classification, which is an important motivation of the
proposed method. Then, we introduce the Crowd AI dataset,
which is commonly adopted in other state-of-the-art methods
focusing on vectorized building extraction.

1) UBCv2 (vec) Building Extraction Dataset: The UBCv2
dataset [28] is a large-scale dataset for building extraction that
requires the prediction of fine-grained rooftop categories. It is
a novel dataset that focuses on building classification in remote
sensing images. Buildings in the UBCv2 dataset are catego-
rized into 12 classes according to the roof structures, i.e., flat,
gable, hipped, pyramid, etc. However, the building instances
are only provided in the format of masks, which do not satisfy
the requirements of vectorized building extraction. Thus, we
propose a vectorized version of the UBCv2 dataset, referred to
as UBCv2 (vec) dataset, by recovering the corner vertices in the
vectorized polygons. The number of instances per category in the
UBCv2 (vec) dataset is given in Fig. 7. The long-tail distribution
in UBCv2 (vec) dataset poses a significant challenge for the
classification capability of algorithms. Overall, there are 508 277
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vectorized building instances annotated from 10 460 remote
sensing images in the UBCv2 (vec) dataset. These images are
divided into 6112 for training, 2255 for validation, and 2093
for testing. The vectorized dataset is built and organized into
shapefiles, which can be readily converted into MS-COCO [49]
format. The UBCv2 (vec) dataset is publicly available online1

for download.
2) Crowd AI Dataset: The Crowd AI dataset [29] is a build-

ing extraction dataset comprising large amount of samples, but
those samples lack diversity and category labels. Considering
this dataset is a commonly used dataset and has been reported
by several related building extraction studies. We also evaluate
our model on this dataset. The crowd AI dataset contains 280 741
images for training and 60 317 images for testing. It provides
images with RGB bands, which has a size of 300 × 300 pixels.
The building instances are annotated in the MS-COCO [49] for-
mat, and represented in polygons, which can be used to evaluate
the performance of vectorized building extraction models.

B. Evaluation Metrics

In this article, the standard COCO [49] metrics are used to
measure the quality of predicted results. To compare with both
mask-based methods and contour-based methods, we choose
the average precision (AP) of the mask and boundary as the
main metrics, denoted as APmask and APboundary, respectively.
The proportion of true positives correctly detected by the model
is also quantified by the average recall (AR) metric. Specifi-
cally, APmask is measured by the intersection of union (IoU)
between the predicted masks and ground-truth masks. In terms
of boundary-level metric, the IoU between the predicted bound-
aries and ground-truth boundaries is measured by a specific
width as described in [50]. If the IoU between a prediction and
a ground truth is greater than a specific threshold (i.e., 0.5), the
prediction can be treated as a true positive. Both the APmask and
APboundary are computed by the ratio of true positives and the
sum of true positives and false positives over ten IoU thresholds
ranging from 0.5 to 0.95, with a step of 0.05. For the overall AP
of all classes, mAP is calculated as follows:

mAP =
1

C

C∑
i=1

APi (8)

where C denotes the number of classes and i denotes the class
index.

In addition to evaluating the performance of the models,
several metrics are employed to assess the efficiency of the com-
pared models. These include floating point operation (FLOP),
frames per second (FPS), and parameters. The FLOP denotes
the number of floating-point operations and is understood to
be the computational cost. It can be used to measure the com-
plexity of models. The FPS indicates the number of frames per
second that can be processed by the model during inference.
Furthermore, the number of parameters included in the model is
reported.

1[Online]. Available: https://github.com/AICyberTeam/UBC-dataset/tree/
UBCv2

C. Implementation Details

We implement different resize strategies for the two datasets.
For the UBCv2 (vec) dataset, multiscale training and random
flipping are implemented. Specifically, training images are ran-
domly resized to scales ranging from 800× 800 pixels to 1344×
1344 pixels. And all test images are resized to 1024 × 1024 pix-
els. For the Crowd AI dataset, all images, including training
and testing, are rescaled to 320 × 320 pixels. During training,
images of both datasets are randomly rescaled horizontally and
vertically.

We implement BuildingVec using the MMDetection [51]
toolbox as it has integrated many baselines. All experiments
are conducted on 4 × NVIDIA A40 48-GB graphics processing
unit (GPU) with a batch size of 2 on every GPU. The AdamW
optimizer is used to optimize the entire model. The learning rate
is set to 0.0001 with a weight decay of 0.0001. For both datasets,
we train BuildingVec for 24 epochs and decay the learning rate
by 0.1 at the 18th epoch. In order to assess the running efficiency
metrics of the models, we conducted tests on a single A40 GPU
with an input image size of 1024 × 1024 pixels for all models.

D. Results

In this section, we first compare BuildingVec with other
related state-of-the-art methods focusing on building extraction
on the UBCv2 (vec) dataset and Crowd AI dataset. Then, we
conduct our ablation study on the UBCv2 (vec) dataset.

1) Quantitative Comparison With State-of-The-Art Meth-
ods: We first report results on the UBCv2 (vec) dataset. We
compare related methods including mask-based methods (i.e.,
SOLOv2 [32], QueryInst [52], Mask R-CNN [19], Cascade
Mask R-CNN [20], and HTC [21]) and contour-based methods
(i.e., PolarMask [24], Deep Snake [16], and E2EC [17]) for mAP,
AP50, and AP per category in both mask- and boundary level.
In experiments, all models adopt ResNet-50 [53] with FPN [47]
as the backbone network.

The quantitative results evaluated by APmask and APboundary

are given in Tables I and II, respectively. BuildingVec achieves
highest APmask performance on most classes, with a score of
21.2 % mAPmask and 35.5 % APmask

50 , which outperforms the
second-best method HTC by 1.3% in mAPmask and 4.1 % in
APmask

50 . The HTC [21] is a cascade method that learns the bound-
ing boxes and masks in a hybrid manner. It has been validated
on various datasets as state-of-the-art instance segmentation
method for a while. However, it cannot achieve reliable results
on building extraction dataset, because mask-based methods
have limitations in representing building polygons with regular
shapes. BuildingVec is able to achieve this gain because the idea
of contour-based learning allows direct regression on key ver-
tices of polygons. Compared to one-stage instance segmentation
method SOLOv2 [32], BuildingVec outperforms it by 7.1% in
mAPmask and 9.9% in APmask

50 . SOLOv2 has achieved a good
tradeoff between accuracy and efficiency as described in [32].
However, it exhibits a significant performance drop on the
UBCv2 (vec) dataset. A potential reason for this phenomenon is
the dense distribution of buildings in street blocks. SOLOv2
shows worse performance on these samples, particularly in

https://github.com/AICyberTeam/UBC-dataset/tree/UBCv2
https://github.com/AICyberTeam/UBC-dataset/tree/UBCv2
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TABLE I
COMPARISON OF STATE-OF-THE-ART METHODS FOR BOTH MASK-BASED AND CONTOUR-BASED BRANCHES

TABLE II
COMPARISON OF STATE-OF-THE-ART METHODS FOR BOTH MASK-BASED AND CONTOUR-BASED BRANCHES

remote sensing images. In terms of boundary-based metrics
given in Table II, BuildingVec also achieves competitive results
compared to other methods. It achieves highest APboundary perfor-
mance on most classes, with a score of 19.9 % mAPboundary and
34.8 % APboundary

50 , which outperforms the second-best method
HTC by 1.4 % in mAPboundary and 4.1 % in APboundary

50 . Compared
to SOLOv2, BuildingVec outperforms it by 6.9% in mAPboundary

and 11.0 % in APboundary
50 .

As given in Table I, BuildingVec outperforms other state-
of-the-art contour-based methods on the UBCv2 (vec) test set.
BuildingVec substantially outperforms contour-based methods
such as Deep Snake [16], PolarMask [24], E2EC [17], and
DANCE [14]. Deep Snake is a classic contour-based method,
which learns the offsets of initial contours using circular convo-
lutions. PolarMask treats the contour of an object as a sequence
of points encoded by polar coordinates. The contour ground
truth is encoded by uniformly sampling (i.e., 36 points) around
the circumference. E2EC is also a multistage contour learning
method that adopts 1-D-convolution to learn the deformation
of contour points. DANCE utilizes the bounding boxes of the
instances to initialize contours and achieves good performance
on many datasets. BuildingVec outperforms DANCE by 6.4
% in mAPmask, which is a great gap. In terms of boundary-
based metrics given in Table II, BuildingVec also achieves
competitive results compared to other methods. It also outper-
forms DANCE by 6.0 % in mAPboundary. This illustrates the

effectiveness of BuildingVec’s instance-aware contour learning
framework.

2) Qualitative Comparison With State-of-the-Art Methods on
the UBCv2 (vec) Dataset: Fig. 8 shows the mask results of
BuildingVec and mask-based methods on the UBCv2 (vec) test
images. BuildingVec can predict regular polygons, which are
essential for vectorized building extraction. Specifically, in the
first row of Fig. 8, BuildingVec achieved accurate predictions for
buildings densely arranged with an inclined rectangular distribu-
tion. However, other mask-based methods (e.g., SOLOv2 [32]
and HTC [21]) achieve relatively rough masks. In the bottom
row (white rectangle) of Fig. 8, BuildingVec produces more
robust building masks while maintaining accurate fine-grained
categorization of buildings. The visualized masks, which are
converted using contour predictions of BuildingVec, demon-
strate its compatibility with tasks that require mask predictions.

Fig. 9 shows the contour results of contour-based methods
and BuildingVec on the UBCv2 (vec) test images. Contour-
based methods show good performance on densely distributed
buildings (first row in Fig. 9). However, DeepSnake [16] and
E2EC [17] both show worse classification performance than
BuildingVec (e.g., the gable roof in the first row of Fig. 9). For
other scenarios, BuildingVec shows promising contour results
with less false positives. E2EC [17] also shows good contour
results in many examples, but it has limitations in predicting
the categories of building roofs. BuildingVec is able to learn the
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Fig. 8. Visualized results of BuildingVec and state-of-the-art mask-based methods on the UBCv2 (vec) test images.

regularized contours of the buildings while maintaining a strong
classification performance on the roofs. This is made possible
through our use of instance-level features in the cascade learning
of BuildingVec framework.

In addition, Table I presents the running efficiency of the
compared models. It can be observed that BuildingVec maintains
a similar FPS to models such as HTC [21], while exhibiting
a minimal increase in computational cost. E2EC [17], as a
real-time one-stage detection algorithm, offers a significant ad-
vantage in terms of running speed and other aspects.

3) Quantitative Comparison With State-of-the-Art Methods
on the Crowd AI Dataset: Table III gives the performance
of BuildingVec and other state-of-the-art methods focusing
on vectorized building extraction. We report the AP and AR
metrics of these methods evaluated on masks. BuildingVec
shows a state-of-the-art performance on the Crowd AI test
set. For mask-based methods (HTC-DP [54] and Frame Field
Learning [10]), BuildingVec outperforms them by 25.8% and
8.9% in mAP, respectively. For RNN-based methods (Building
Outline Delineation [42] and PolyMapper [43]), BuildingVec
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Fig. 9. Visualized results of BuildingVec and state-of-the-art contour-based methods on the UBCv2 (vec) test images.

outperforms them by 22.8% and 14.5% in mAP, respectively.
For contour-based methods (BuildMapper [13]), BuildingVec
outperforms it by 6.3% and 3.0% in mAP and AP50, respectively.
These quantitative results indicate that BuildingVec is capable
of generating more accurate and refined building polygons,
accompanied by enhanced vectorization performance.

4) Ablation Study: To validate the effectiveness of the pro-
posed IACR module and other methods, comprehensive abla-
tion experiments are conducted on the UBCv2 (vec) dataset.
Limited by the computing resources and time, we train models

for 12 epochs in this section. All results are validated on the
test set.

a) Validation on the effectiveness of IACR module: To
validate the effectiveness of our IACR design, we com-
pare the proposed IACR module with other local modeling
methods (e.g., MLP and 1-D-convolution) . We also compare
the performance with and without the instance-level guidance
in the IACR module. Specifically, the MLPs employ the same
input feature dimensions as the IACR module, which are all
128. It comprises three layers of feedforward neural networks,
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Fig. 10. One visualized example detected by variants with different number of contour refinement stages. (a) Stage = 1. (b) Stage = 2. (c) Stage = 3. (d) Stage
= 4. (e) Stage = 5. (f) Stage = 6.

TABLE III
QUANTITATIVE RESULTS OF BUILDINGVEC AND OTHER STATE-OF-THE-ART

BUILDING EXTRACTION METHODS EVALUATED USING MASK AP ON THE

CROWDAI DATASET

TABLE IV
ABALATION STUDY ON THE MODELING METHODS OF CONTOUR REGRESSION

TABLE V
ABALATION STUDY OF DIFFERENT REFINEMENT STAGES (FROM 1 TO 6)

with hidden layer dimensions of 512. As given in Table IV,
MLP achieves worse performance than 1-D-convolution. This
is because the receptive field of the MLP is limited to a single
vertex and cannot perceive features of neighboring nodes. Since
the proposed IACR module has global modeling capability, it
outperforms the 1-D-convolution method that only performs
local convolution. The IACR module with the cross attention
on the instance features achieves better performance (1.6 %
mAPmask) than that without instance-aware ability. This further
demonstrates the effectiveness of the proposed instance-aware
module.

TABLE VI
ABALATION STUDY ON THE VERTEX REDUCTION THRESHOLD SCNR

b) Ablation study on the number of contour refinement
stages: We performed ablation experiments on the stages of the
contour refinement process. As shown in Table V, we train six
models with the number of contour refinement stages from 1
to 6. As the number of stages increases, the performance of
the model peaks at a stage number of 3. Further increase in
the number of stages for contour refinement makes it difficult
to improve the performance of the model any further. Fig. 10
shows an instance detected by models with different stages.
We observe that good results can already be achieved using
three-stage contour refinements.

c) Ablation study on the vertex sampling threshold Scnr:
We examine the impact of varying vertex reduction thresholds
Scnr on the results. As illustrated in Table VI, the thresholds
Scnr = {0.05, 0.1, 0.2, 0.3} are employed for vertex reduc-
tion, respectively. The model’s performance peaks at 0.1 as
the threshold increases. This suggests that the elimination of
redundant vertices from the predicted polygon results may yield
more regular building results. As the threshold Scnr increases,
some valid vertices are eliminated, resulting in a reduction in the
performance of the model. This pattern can also be observed in
Fig. 11. In Fig. 11(d), some of the results change from quadri-
laterals to triangles. This indicates that the appropriate threshold
value is crucial for determining the degree of vectorization of
the extracted results.

d) Ablation study on the PE: Table VII displays the ab-
lation experiments of the PE, primarily in the first and second
rows, as well as the third and last rows. By incorporating the
position encoding, the model’s performance can be greatly
improved by 5.1% and 7.3% in mAPmask, respectively. This
is due to the Transformer’s self-attention mechanism, which
is characterized by permutation invariance. Without PE, the
model is not able to learn the sequential relationship among the
vertices of the contour, and can only learn the coordinate offsets
roughly.
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Fig. 11. Visualized results under different vertex reduction threshold Scnr. (a) Scnr = 0.05. (b) Scnr = 0.1. (c) Scnr = 0.2. (d) Scnr = 0.3.

TABLE VII
ABALATION STUDY OF INFORMATION FLOW AND PE ON UBCV2 (VEC) TEST SET

Fig. 12. Loss curve for models trained with and without the information flow
on vector features.

e) Validation on the effectiveness of information flow: Ta-
ble VII illustrates the ablation experiments of the information
flow in vector features, primarily in the first and third rows,
and second and last rows. By incorporating the information
flow among vector features among different stages, the model’s
performance is improved by 0.7% and 2.9% in mAPmask, re-
spectively. Fig. 12 also demonstrates that the incorporation of
information flow has a beneficial effect on the model’s loss
optimization. These results indicate that the additional branch
connecting the vertex features at different stages can improve
the learning efficiency of the contour refinement process.

V. CONCLUSION

In this article, we have proposed BuildingVec, which is an
instance-aware vectorized building extraction framework from

remote sensing imagery. A high-performance IACR module is
proposed to achieve contour feature learning via cross-attention
on the instance-level features. Based on the IACR module,
the proposed BuildingVec framework focuses on improving
the classification capability and vertex learning efficiency by
interacting between the contour regression branch and instance
classification branch through a well-designed cascade archi-
tecture. There is no cumbersome postprocessing required to
eliminate redundant vertices in the proposed framework. To
comprehensively validate the performance of BuildingVec, we
build a vectorized building dataset, named UBCv2 (vec), by edit-
ing the UBCv2 dataset, which is a large-scale building dataset
with fine-grained categorical information. The proposed method
offers novel insights into end-to-end vectorized extraction, while
also incorporating instance-level categorization representation.
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