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Using Structural Class Pairing to Address the Spatial
Mismatch Between GEDI Measurements

and NFI Plots
Nikola Besic , Sylvie Durrieu , Anouk Schleich , and Cédric Vega

Abstract—The Global Ecosystem Dynamics Investigation
(GEDI) mission can significantly enhance multisource national
forest inventories (MSNFI) by improving the spatio-temporal reso-
lution of forest attributes while preserving the statistical relevance
of the design-based inference approach. The main challenge is
the lack of systematic spatial alignment between GEDI footprints
and National Forest Inventory (NFI) plots, which is necessary
to accurately link in situ forest measurements with GEDI data.
In this study, we aim to tackle the aforementioned issue by in-
troducing a methodology for interpolating GEDI measurements
to NFI plots, enabling the calibration of GEDI data using local-
ized NFI estimates. Our proposed method incorporates clustering,
classification, and regression techniques, and utilizes GEDI and
NFI data, along with Sentinel-2 images, land-use information,
and topographic data. Beginning with the prediction of profile
structural classes and shapes on NFI plots, the proposed method
ultimately projects actual measurements onto the NFI plot sites
through profile pairing within the predicted structural classes. The
method is conceived and validated using the data acquired across
the mountainous area of ∼500 kha, covered by >500 NFI plots.
Our validation framework shows that the method is able to project
relative height profiles at NFI plots, allowing to partly interpolate
the lower part of the profile and not only the canopy top height.
This enables the construction of models that efficiently relate GEDI
profiles and wood volume, demonstrating the importance of incor-
porating lower relative height values when linking forest attributes
and lidar measurements (R2 = 0.65, MBE = 2.31 m3/ha).

Index Terms—Global Ecosystem Dynamics Investigation
(GEDI), machine learning, modeling, National Forest Inventory
(NFI), Sentinel-2, wood volume.

I. INTRODUCTION

A COMPREHENSIVE and systematic observation of
forests is of utmost importance for a variety of reasons,
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ranging from ecological to economic and societal concerns,
especially in light of the rapidly evolving climate emergency [1].
The scope and speed of the climate crisis, along with its impacts
on public policies, make it undeniably necessary to monitor
forest attributes on a large scale with higher spatial accuracy
and temporal frequency.

The design-based inferential approach is by far the most
established framework for forest observation and serves as the
backbone of National Forest Inventories (NFIs) [2]. In its con-
ventional form this approach principally relies on the ground
measurements, i.e., the inventory plots, and allows to infer
without bias both quantitative and qualitative forest attributes.
The inference is performed following a beforehand defined
stratification pattern across a particular territory, and in the time
frame spanning typically over several years. The classical NFI
approach indeed represents a way to ensure a comprehensive
and systematic forest observation at a broad scale, but it does not
respond to the previously mentioned and increasingly important
requirement concerning the higher spatial accuracy. The latter
can be addressed only by involving remote sensing data [3], [4],
[5], [6].

When ground measurements are enhanced with auxiliary
remote sensing data within an inferential framework, this ap-
proach is referred to as the multisource national forest inventory
(MSNFI) [7]. There are several ways of introducing remote
sensing data into a design-based inferential approach, with
all of them requiring to first establish a model able to link
ground measurements and remote sensing data [8]. The former
is true whether we deal with the model-assisted methods, where
ground measurements are still driving the estimation, or with the
model-based methods, where the role of ground measurements
ends with establishing the model and the estimation is somehow
principally driven by remote sensing data.

To construct a model that links ground measurements with
remote sensing data, the remote sensing data must have the
physical capability to replicate some of the variance observed in
the in situ measured or locally estimated forest attributes. The
optimal remote sensing dataset is chosen based on the complex-
ity of the forest, considering both its composition and structure.
Optical and radar images cover repeatedly large surfaces at high
to medium spatial resolution, but do not contain an elaborated
vertically resolved information about the forest stand, making
them less suitable to face a more complex forested environment.
The airborne lidar and to a degree photogrammetric sensors [9],
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Fig. 1. Diagram presenting the organization of the central part of the manuscript.

[10] acquire a vertically resolved information and have thus
the potential to tell on quite a bit of parameters describing a
more complex environment, but do not cover large areas on
a regular basis. The high energy spaceborne lidar data, as the
one acquired by the Global Ecosystem Dynamics Investigation
(GEDI) mission, represents a sort of compromise. It namely
offers broad and repeated coverage, coupled with slightly less
vertical resolution compared to airborne lidar, but lack the spatial
continuity characterizing optical and radar imagers.

From aboard the International Space Station (ISS), the GEDI
mission [11] is densely sampling, through the acquisition of
full-waveform lidar data, a big part of world’s forests, and
has therefore the remarkable potential to contribute achieving
MSNFI ambitions of countries situated between 51.6◦N and
51.6◦S latitudes. However, despite the high resolution and the
dense sampling strategy, as suggested above, GEDI remains
a nonimaging sensor, and thus, does not allow to provide the
wall-to-wall coverage of entire forest areas. There has been
hence an intense development of techniques aiming at inter-
polating/extrapolating spatially and temporally forest attributes
derived from GEDI measurements [12]. Most of these address
the interpolation or extrapolation of the canopy height [13], [14],
[15], [16], [17], [18], without necessarily involving the field
information.

Since the primary goal of the GEDI mission is above-
ground biomass (AGB) estimation [19], it is essential to have
at least some collocated lidar footprint acquisitions and in situ
measurements [20] to parameterize the GEDI waveform-AGB
models [21]. The same condition must be fulfilled to allow the
integration of GEDI waveforms into the MSNFI framework.
Nearly all the methods allowing to respond to this requirement
assume the simulation of the GEDI relative height profile at the
plot starting from the coinciding airborne lidar point cloud [22],
[23], [24]. The exception is the method recently proposed
by [25], which is based on a spatial model for waveform pre-
diction using the principal components of the GEDI relative
height (RH) metrics space. Adhering to a similar approach and
building upon the matching strategies introduced by [26], [27],
we propose an alternative method for the interpolation of the
GEDI measurements to the French NFI plots. This method also

does not require simulation from locally acquired airborne lidar
data, and aims to interpolate the entire relative height profile to
the NFI plots and not only the canopy height.

The method presented in this article relies on using Sentinel-2,
the forest stand type map and the digital terrain model as
auxiliary input data. It combines the machine learning rou-
tines of time series K-means clustering, multilayer perceptron
(MLP) classification and MLP regression in a way that allows
to project at every considered NFI plot, through the profile
pairing effectuated by structural classes, GEDI RH vegetation
cumulative energy profiles issued from the corresponding GEDI
full-waveforms. The proposed pairing routine stands out for its
focus on balancing geographical space (distance between NFI
plots and GEDI footprints) and feature space (similarity between
GEDI RH vegetation cumulative energy profiles predicted at
NFI plots and GEDI footprint locations). A model, based on the
random forest regressor, is then used to link projected GEDI
RH vegetation cumulative energy profiles and locally estimated
wood volume stocks. The originality of the approach relies also
on its scalability and flexibility: while classification alone could
be used for poststratification purposes, regression and pairing
could be used for downscaling further estimates though model
assisted estimation.

The rest of this article is organized as follows. In Section II,
we describe the study area, introduce the employed data, and
describe the transformation of GEDI waveforms leading to the
vegetation cumulative energy profiles used in the method devel-
opment. In Section III, we provide a detailed explanation of the
main steps of the method (see Fig. 2): clustering, classification,
and regression (collectively referred to as Step I), along with the
concept of profile pairing (referred to as Step II) and the volume
model. Section IV provides the description of the validation
framework, and the results of the validation both in terms of the
profile matching and the wood volume estimation. Section V
discusses the content. Finally, Section VI concludes this article.

II. STUDY AREA AND DATA

The area chosen for the development and the validation of the
method principally corresponds to the French sylvo-ecological
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Fig. 2. Schemes presenting (a) Step I and (b) Step II of the proposed method.

region named “Central Vosges Mountains,” located in the eastern
part of the continental metropolitan France. Up to 75% of this
mountainous area is covered by forest, which is broad-leaved
below 500 m of altitude—mostly the European beech (Fagus
sylvatica), toward the geographical limits of the study area; and
coniferous above 500 m—mostly silver fir (Abies alba) and the
European spruce (Picea abies), toward the center of the depicted
study area. The area is known for the important wood industry
and trade, which have been seriously affected by the bark-beetle
epidemic driven by climate change [28], making this region
a representative example of the need for forest monitoring at
higher spatio-temporal resolution, in the light of the climate
crisis.

A. NFI Data

The French NFI is continuous in both space and time, em-
ploying a two-phase stratified sampling design [29], [30]. This
design uses a 1 km grid defined for a 10-year period, with 1/10
of the grid surveyed each year. In the first phase, one point is
randomly selected from the yearly grid sample (approximately
100 000 points total). The land use and land cover around these
points are photo-interpreted using aerial photographs to estimate
forest area. The second phase involves a subsample of the first
phase’s forest points (around 7000 points), which are surveyed
in the field to estimate forest attributes. Field measurements are
conducted in four circular concentric plots with radii of 6, 9, 15,
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and 25m, allowing to derive among a number of NFI attributes
the two parameters used in this study.

1) The maximum height (HNFI)—defined as the maximum
height at the NFI plot. Since height is measured for only a
sample of trees (one per diameter class and species), miss-
ing values were imputed using a random forest method
(MissForest [31]). This method was applied separately
for each species and sylvo-ecological region, utilizing
species, diameter at breast height, height, and plot-level
variables (density, basal area, and volume). The impu-
tation was validated using older data and resulted in a
relative root-mean-square error (RMSE) of 13%.

2) Wood volume per hectare (VNFI)—estimated from the cir-
cumference at breast height, the height, the timber height,
and the tree inclusion probability, by accounting for trees
having a circumference at breast height greater than
7.5 cm.

The fundamental NFI measurements, such as wood volume
per hectare, are subsequently poststratified based on an external
criterion (the forest stand type map). This approach enables
the estimation of wood volume per hectare values for specific
areas over a five-year period. As discussed in the introduction,
our overall goal is to reduce both this surface and the 5-year
time span, without compromising the estimation accuracy, by
incorporating remote sensing measurements. This article specif-
ically focuses on the objective of projecting GEDI profiles to the
NFI plots, an essential step in order to be able to utilize GEDI
measurements to achieve this goal.

In the presented study, we therefore use HNFI and VNFI esti-
mations from 529 NFI plots across the study region, acquired
between 2017 and 2020.

B. GEDI Data

GEDI contains three lasers, two operating in the full power
mode (one beam per laser) and one operating in the coverage
mode (split into two beams) [11]. These four beams, operating
at 1064 nm wavelength, produce footprints averaging 25 m in
diameter on the ground, which are separated by 600 m across
track and by 60 m along track.

We are using GEDI level 2 A products, providing: ground el-
evation, canopy top height, and relative height metrics. Relative
height metrics indicate the height at which a specific percentile
of returned energy is reached relative to the detected ground,
specifically from the center of the ground peak. These metrics
describe the shape of the normalized cumulative return energy,
starting from the bottom of the ground return (with the center
of the ground peak normalized to zero) to the top of the canopy
(normalized to one).

The original GEDI relative height (RH) profiles, apart from
the vegetation segment, also include the ground echo compo-
nent. Since the latter was deemed irrelevant to the objectives
of this article, we opted to remove it and base our method on
profiles intended to solely capture the above-ground vegetation
portion. To remove bad quality data both quality and degrade
flags available in GEDI products were used [11]. Footprints with
a quality flag of one (according to the L2A criterion, although the

stricter L4A threshold could be applied if necessary, which was
not the case for the ecosystems under study) and a degrade flag of
zero were selected. GEDI RH profiles were further transformed
into vegetation cumulative energy profiles, addressed as vegeta-
tion profiles across this manuscript (RHv). The latter represent
the relative height metrics at 1% intervals for the vegetation
component of the backscattered signal. To that aim, a simplified
waveform was reconstructed from RH values and the ground
component of the signal was removed by adjusting a Gaussian
function to the ground return before subtracting this function
from the waveform. Finally, the resulting vegetation waveform
was back transformed into an RH type of profile. An assessment
of the cover rate was obtained through the comparison of original
GEDI RH profiles and corresponding vegetation profiles.

In this study, after filtering, we have access to 185 725 GEDI
footprints, each accompanied by vegetation profiles, obtained
from areas designated as forest according to the forest stand
type map [32]. 100 750 out of these are issued from “Full Power”
beams and 84 975 are acquired in the “Coverage” mode, in the
period ranging from 2019 to 2021.

C. Other Data

Aside from NFI and GEDI data, the study uses multispectral
Sentinel-2 summer and winter acquisitions (year 2021), as well
as the digital terrain model (DTM) mean elevation, slope and
aspect. Regarding Sentinel-2 data, we used Theia level 3 A
products. These products, generated using the weighted average
synthesis processor (WASP) [33], offer monthly cloud-free syn-
theses of the Sentinel level 2 A product. The employed DTM
is generated at a 1 m resolution using a triangulated irregular
network algorithm applied on the airborne laser scanning (ALS)
data acquired by the French National Mapping Agency over the
study area in 2014 [34].

As previously mentioned, we also included the vector forest
stand type map, which is used in both the development of the
method (partially relying on polygon surfaces) and the validation
framework (utilizing polygon classes) [32].

All three mentioned auxiliary datasets cover both NFI plots
and GEDI footprints.

III. METHOD

When a GEDI footprint that corresponds geographically to
an NFI plot location is absent, it becomes necessary to identify
an alternative representative GEDI footprint. According to the
criteria discussed in Section IV-A, this applies to 94% of the
NFI data used in this study. This task is achieved by training an
encoder model to predict a structural class and to map predictor
variables into a 10-D feature space consisting of RH metrics [see
Fig. 2(a)]. Within this feature space and a specific class, samples
demonstrating similarity (i.e., forests with similar structures) are
positioned close to each other [see Fig. 2(b)]. Subsequently, we
can encode the predictor data at the NFI plot location into the
feature space and conduct a search for nearby GEDI samples
based on both feature similarity and geographical proximity.
This methodology has been developed in two steps.
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Fig. 3. Defining the structural class of the vegetation profile through the clustering of its subsample. The vegetation profiles are depicted in gray, while the mean
vegetation profiles representing different clusters/structural classes are traced in nongray nuances.

A. Step I

This part of the method, depicted in Fig. 2(a), starts by
defining vegetation profile structural classes (Section III-A1). It
further relies on the auxiliary datasets introduced in the previous
section to predict the class among the beforehand defined ones
(Section III-A2) at locations corresponding to every NFI plot in
the area, as well as at locations corresponding to every footprint
of a subsample of vegetation profiles. Aside from the structural
class, we as well predict at the very same locations the shape
of the vegetation profile (Section III-A3)—consisting of 10 RH
values (RHv = [RHv10, RHv20, · · · RHv100]).

1) Clustering: Defining Profile Structural Classes: The veg-
etation profile structural classes are defined through the unsuper-
vised clustering of randomly selected vegetation profiles—the
subsample “training n◦1” (see Fig. 3). The method we apply is
the time series k-means clustering based on the dynamic time
warping (DTW) principle [35], [36], [37]. We basically treat the
vegetation profile composed of ten relative height values as the
time series, with the idea of the DTW being to align profiles
such that their Euclidean distance (|| · ||) is minimal.

If two considered vegetation profiles are annotated as

RH(1)
v =

[
RH(1)

v 10, RH(1)
v 20, · · · RHv(1)100

]

with [10, 20, · · · 100] being n1, and

RH(2)
v =

[
RH(2)

v 10, RH(2)
v 20, · · · RHv(2)100

]

with [10, 20, · · · 100] being n2 (1)

their DTW distance (D(100, 100)) is calculated recursively,
using the formula

D (n1, n2) =
∣∣∣
∣∣∣RH(1)

v n1 − RH(2)
v n2

∣∣∣
∣∣∣

+ min

⎧⎨
⎩

D (n1 − 1, n2)
D (n1 − 1, n2 − 1)
D (n1, n2 − 1)

⎫⎬
⎭ (2)

with the initial condition being D(10, 10) = ||RH(1)
v 10−

RH(2)
v 10||.

The DTW k-means clustering is, unlike the approach based
on the Euclidean distance metric, therefore less sensitive to
shifts between profiles, meaning that it should be able to as-
semble similar shapes of lidar returns even if the canopy height
(RHv100) varies among them. In practice, as shown in Fig. 3,
the canopy height still plays a significant role in defining the
clusters, although it is logically less important than it would be
with the conventional k-means Euclidean approach.

The number of clusters (N = 15) is determined using the
elbow technique, which comes down to identifying the elbow in
the curve depicting the within-cluster sum of square (WCSS) as
a function of number of clusters [38].

The parallel effort to propose supervised model-based clus-
tering, which involves defining a sigmoid function with two
degrees of freedom—the translation for the canopy height and
the slope for the shape of the lidar return—resulted in fairly
good performance when clustering original GEDI RH profiles.
However, it proved to be less effective than the previously
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Fig. 4. MLP classifier and regressor. (a) Input data. (b) Classifier training and test data, as well as the confusion matrices for three different solvers. (c) Regressor
training and test data, as well as the point clouds for three different solvers.

described unsupervised approach for the vegetation profiles used
in this work.

2) Classification: Predicting Profile Structural Classes: The
classification step assumes predicting the vegetation profile
structural class using the auxiliary data available both at the
locations of GEDI footprints and at NFI field plots. The method
we apply is the multilayer perceptron classifier [39], [40], which
serves as the first part of the encoder, as shown in Fig. 2(a).
The reference data consist of clustering labels (i.e., structural
classes) from subsample “training n◦1.” The input data include
[see Fig. 4(a)] the following.

1) The canopy height indicator: RHv98 is used during the
training and test when only vegetation profiles are em-
ployed, and HNFI as defined in Section II-A when predict-
ing the structural classes at NFI plots.

2) Sentinel-2 frequency bands (B2, B3, B4, B5, B6, B7, B8,
B9, B11, and B12) corresponding to the data acquired in
the summer (June 2021) as well as the data acquired in
winter (November 2021) [41].

3) Size of the polygon in the forest stand type map that
contains the point of interest (whether it is GEDI the
footprint or the NFI plot) [32].

4) The attributes of the DTM, which include: mean elevation,
slope, and aspect.

At some point, we tested a series of spectral indices at the input
instead of directly introducing the values of different spectral
bands, but this did not produce any significant difference in terms
of classifying performances.

The employed MLP classifier was parameterized separately,
through the optimization procedure, for each of the three solvers
[see Fig. 4(b)]: limited-memory BFGS optimizer (LBFGS),
stochastic gradient descent (SGD), and stochastic gradient-
based optimizer (Adam). This is done using vegetation profiles
structural classes (without NFI plots), more precisely using 80%
of the data subsample n◦1 (i.e., 16 000 profiles). When applied

on 20% of the used subsample, the first solver achieved a test ac-
curacy of 67% (percentage of well predicted classes), by slightly
outperforming the others, and was therefore applied further on
in the method. The retained classifier is therefore based on the
LBFGS solver, has three hidden layers, the rectified linear unit
function as an activation function, and uses the adaptive learning
rate.

The classifier trained and tested using vegetation profile
classes is then applied at locations corresponding to NFI plots
[see Fig. 5(a)] and GEDI footprints [see Fig. 5(b)]. It is important
to clarify here that the classifier is not applied to the subsample
used for its training (and testing), but rather to another randomly
selected subsample, referred to as the “application” sample, of
the same size (20 000 footprints).

3) Regression: Predicting Profile Shapes: The regression
step consists of predicting the vegetation profile shape, i.e., ten
relative height values (RHv = [RHv10, RHv20, · · · RHv100]),
using the auxiliary data available both at locations of GEDI
footprints and at NFI field plots. The method we apply is
the multilayer perceptron regressor [39], [40], designated as
the second part of the encoder in Fig. 2(a). It uses a random
subsample of vegetation profiles (subsample “training n◦2”) as
the reference data and shares the same composition of input data
as the previously described classifier [see Fig. 4(a)].

In the nearly equivalent procedure as the one described in
the previous section, the regressor was parameterized simulta-
neously for three solvers [see Fig. 4(b)]: LBFGS, SGD, and
Adam. The first one achieved the best performances—model
explaining 78% of the variance (R2 = 0.78) when applied on
the test dataset (i.e., 20% of the dataset). The retained regressor
is thus based on the LBFGS solver, has three hidden layers, with
the hyperbolic tangent activation function, and uses the constant
learning rate.

The regressor trained and tested using vegetation profiles
is then applied at locations corresponding to NFI plots [see
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Fig. 5. Prediction of (a) vegetation profile structural classes at NFI plots,
(b) vegetation profile structural classes at locations corresponding to GEDI
footprints, (c) vegetation profile relative heights (RHv) at NFI plots, and
(d) RHv at locations corresponding to GEDI footprints.

Fig. 5(c)] and GEDI fooprints [see Fig. 5(d)], which were
already characterized by a vegetation profile class (subsample
“application” in the classification step).

B. Step II

Once we have the predicted class and shape for each plot
and footprint, we proceed to the pairing procedure. This is
performed within the given structural class, considering both the
geographical distance and the similarity between the predicted
shapes (at the NFI plot versus the GEDI footprint). This process
results in projecting real vegetation profiles onto NFI plots, using
the predicted ones as a proxy [see Fig. 2(b)].

Previously described predicting of the vegetation profile class
and shape at locations where we have actual GEDI measure-
ments (subsample “application”), could seem counter-intuitive.
It is presumed to be necessary given that the core part of the
proposed method refers to the pairing of the predicted profiles
within the common class. The assumption is therefore that it
is more suitable to perform pairing among the synthesized,
predicted profiles than between the synthesized and the real ones.
This means that the predictions of both class and shape serve only
as an intermediary product, acting as a proxy to associate a real
vegetation profile with each NFI plot. The predicted structural
class could find its utility in the poststratification phase of the
NFI inference phase.

So, what would be the most suitable way of pairing the
predicted profiles within one structural class?

1) Should one be very confident in the classification step
and therefore only consider the closest profile in terms of

geographical distance (nearest neighbor), assuming that
the classification sufficiently homogenized the profiles
[see Fig. 6(a)]? Perhaps, even though we acknowledge
that neither the clustering (e.g., class 13 in Fig. 3) nor
the classification (with a test accuracy score of 67%) are
flawless in terms of performance.

2) Alternatively, should one choose to entirely disregard the
intuitive proximity criterion and instead rely solely on
the similarity between predicted profiles, i.e., the nearest
profile in the feature space, regardless of the geographical
distance separating them within the specified region and
class [see Fig. 6(b)]? Perhaps, even if we know that the
regression (test R2 = 0.78) is not perfect either, and that
the vicinity nevertheless can be a strong indicator of
dealing with the very similar forest stand.

Unable to resolve this dilemma, we decided to take both into
account [see Fig. 2(b)]. Namely, we opted to explore the tradeoff
between the geographical distance (dg) and the feature space
distance (dfs) by defining the weighted distance

d = w · dfs + (100− w) · dg (3)

withw being the weight ranging from 0 to 100. The geographical
distance is the Euclidean distance between two coordinates,
while the feature space distance uses the DTW principle in-
troduced in Section III-A1. The latter implies that the dfs is
defined in the same way as D with the only difference that we
now compare the predicted rather than the original vegetation
profiles. The distance d is considered within a class as predicted
in Step I, meaning we calculate the distance and perform pairing
only between the NFI plots and the GEDI footprints belonging
to the same class. Due to the difference in magnitude, both dg
and dfs are normalized with respect to their maximum values
within a class.

On the example illustrated in Fig. 6(c) we can indeed see
that as we move from w = 0 (d = dg) to w = 100 (d = dfs), we
gradually release the geographical proximity constraint and give
more space to the similarity in the feature space.

As for the choice of using the DTW rather than the Euclidean
distance, we aim at reproducing the vegetation profile and there-
fore prefer not to penalize the pairing of profiles very similar in
shape due to a potentially minor offset in terms of total height.

Given the significance of geographical distance and the ge-
olocations of NFI plots and GEDI footprints, it is crucial to note
that the horizontal geolocation error of GEDI is estimated at
10.2 m [42]. In contrast, the relative mean error for the French
NFI plots is 3.7 m, obtained by comparing the original position
estimate with the one determined during routine quality control
between 2008 and 2017. This estimate is based on a combination
of photo-interpretation, chainage, and GPS, with the latter being
particularly imprecise in forestry environments [43], [44].

To effectively utilize both geographical distance and feature
space distance using the weighted distance defined in (3), we
must identify the optimal value of the weight w. This basically
involves determining the extent to which we should depend
on geographical distance versus feature space distance, and
inherently provides valuable information about the homogeneity
of the forest stand in the area of application.
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Fig. 6. Example of the GEDI-NFI pairing (within class 1). (a) Locations of NFI plots (red) and GEDI footprints (blue). (b) Predicted shape of vegetation profiles
(RHv) at locations corresponding to NFI plots (red) and GEDI footprints (blue). (c) Six ways of pairing profiles corresponding to six different values of w.

Since Step II aims to enhance the performance of directly
estimated profiles from Step I, the optimization ofw is conducted
within the validation framework (see Section IV-A) used to
evaluate the method’s performance. Essentially, this involves
using the pairing mechanism to improve the baseline results
achieved by the machine learning method in Step I.

The decision to base the method constitution phase (Steps
I and II) on a randomly selected sample of 20 000 footprints,
rather than using all available data (185 725 footprints), was
made primarily for time efficiency. Additionally, this approach
aims to demonstrate the potential of the proposed method by
highlighting its effectiveness with a sparser GEDI footprint
coverage.

At the end of this step we have a projection of the actual
vegetation profiles for each of the NFI plots in the area of
application.

C. Wood Volume Modeling

Once we have obtained projections of vegetation profiles
at NFI plots, we can proceed to establishing a link between

the remotely sensed “measurement” and various forest at-
tributes measured or estimated at the plot. As already men-
tioned in Sections I and II-A, the forest attributes we are
particularly interested in are the wood volume and the AGB.
While waiting for the formalization of the novel biomass es-
timation protocol at French NFI plots, we settled upon the
wood volume model for illustrating the benefits of the proposed
method.

The method we apply in order to link the projected profiles and
the locally estimated wood volume (VNFI) is the random forest
regressor [39], [45]. The method is optimized for two different
variants, i.e., relating the in situ estimated wood volume to:

1) GEDI-issued vegetation profiles—RHv (10 deciles);
2) GEDI profiles top value—RHv100.
Principal component analysis (PCA) is applied beforehand to

address the multicollinearity of RHv metrics, retaining 7 out of
10 components. The final regressor uses 400 trees, with nodes
expanding until all leaves are pure or contain fewer than two
samples, and bootstrap samples are used in building the trees.

For every variant, the resulting models are applied to all
available GEDI footprints in the considered area.
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Fig. 7. Validation framework: Almost coinciding NFI plots and GEDI foot-
prints, as well as the description of the forest stand in question [32].

IV. RESULTS

The results presented in this section pertain to the efficacy
demonstrated by the proposed method in interpolating accurate
vegetation profiles to the NFI plots, as well as the perfor-
mance of wood volume interpolation from the NFI plots to the
GEDI footprints. Both assessments are enabled by the validation
framework introduced in Section IV-A.

In Section IV-B, we verify the performance of predicted
vegetation profiles, as detailed in Step I of the method presented
in Section III (dashed line trajectory in Fig. 1). Section IV-C
describes the optimization of the weight w necessary for the ap-
plication of Step II of the method, and finally presents the results
of validating the final projections, derived at the conclusion of
Step II of the method (full line trajectory in Fig. 1).

A. Validation Framework

Validation framework is made possible by the fortuitous
spatio-temporal quasi-coincidence between certain NFI plots
and the portion of GEDI footprints. This allowed us to identify
32 NFI plots (6%), addressed further as the validation plots,
where we can assume with a relative certainty that we know what
the projected vegetation profile should look like (see Fig. 7).
This identification is done by respecting the following criteria
establishing the coincidence between 32 plots and corresponding
footprints.

1) Distance: The geographical distance separating the plot
and the footprint should not exceed 40 m, which we found
to be a compromise between what would be the expected
forest stand spatial auto-correlation length and the size of
the validation sample. That is to say, more than 40 m would
increase the risk of not dealing with the extremely similar
part of the stand, and less would simply leave us with
insufficient number of pairs in the sample to allow a proper

statistical analysis. The analysis carried out in the forest of
Sologne (Central France) and presented in [27] shows that
the semivariogram of GEDI measurements reached the
horizontal asymptote at the distance corresponding to 500
m, meaning that the 40 m maximum distance represents a
fairly rigorous choice.

2) Forest stand type class: Both the plot and the footprint
should belong to the same polygon of the vector forest
stand type data base [32].

3) Height check: Due to the geo-localization issues which
can characterize GEDI footprints [42], [46], we included
an extra verification which refers to the height difference
|HNFI − RHv98| which should not exceed 4 m.

Validation of profiles consists of observing the concor-
dance between the ensemble of vegetation profiles predicted
(Section IV-B) or projected (Section IV-C) at the NFI valida-
tion plots (RHv predicted/projected) and the reference profiles
coming from the validation footprints (RHv “observed”). We
evaluate this concordance globally, by comparing all relative
height values at all validation plots at once, and in the more
stratified manner, by comparing one relative height (RHvn) at a
time at all validation plots.

Validation of estimated wood volume refers to the comparison
of the wood volume estimation at GEDI footprints and the wood
volume estimated locally at NFI plots for the 32 validation plot-
footprint pairs. The GEDI footprints—NFI wood volume pairs
corresponding to the validation plots were evidently kept out of
the construction of the wood volume models.

B. Validation of Predicted Profiles (Step I)

As what it concerns the validation of predicted profiles,
i.e., before the pairing [see Fig. 8(a)], the global evaluation
demonstrates the coefficient of determination scores (R2) rising
up to the value of 0.88. It is the “stratified” evaluation that
we found particularly interesting. Namely, the coefficients of
correlation (rRHvn) for the lower part of the considered relative
heights (RH10 − RH50) do not drop below 0.5. Although there
is some dependence between the metrics, a slight decrease in
correlation is observed as we move down the profile. This is
expected, considering the auxiliary data used does not provide
direct information about the lower part of the stand.

The results for the so-called two variants of the final wood
volume estimation, introduced and enumerated from a to b in
Section III-C are presented in two panels of Fig. 8 ranging from
b to c. Depicted point clouds, as well as the corresponding
coefficients of determination (R2), normalized relative mean
square error (NRMSE), and mean bias error (MBE), allow us to
deduce the following.

1) Step I of the method allows building the GEDI profiles-
based model explaining 53% of the wood volume variance
(R2 = 0.53), with 44.99% of NRMSE and 21.43 m3/ha
of MBE. One could rather say at least, knowing that the
employed random forest model was not subject to an
extensive optimization given its somewhat auxiliary role
as the demonstrator of the GEDI measurements interpola-
tion efficiency, the latter being the “raison d’être” of this
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Fig. 8. Validation of predicted profiles (Step I). (a) Validation of predicted profiles, (b) validation of estimated wood volume using predicted profiles, and
(c) validation of estimated wood volume using only profile top values. Different point colors in the upper part of subfigure (a) correspond to various metrics, as
indicated by the bar plot in the lower part.

article. However, these results are far from satisfactory,
particularly due to the notably high value of the mean bias
estimate.

2) Even so, results are far better when using the ten relative
height values (Full RHv) than when using only the canopy
height (RHv100), where the employed random forest re-
gressor fails to do better than the mean estimate—negative
R2 [see Fig. 8(c)].

C. Validation of Projected Profiles (Step I + Step II)

The method (Step I + Step II) is iteratively run for every value
ofw ranging from 0 to 100, collecting scores based on Pearson’s
correlation coefficient between “observed” and projected RHv ,
as well as the coefficient of determination (R2), NRMSE, and
MBE of the resulting wood volume model. Displayed in Fig. 9,
the scores indicate that the optimal values of the wood volume
R2 and NRMSE for the considered subsample “application” are
located either in the midpoint of the possible range of w values,
halfway between the nearest neighbor and the nearest profile,
or toward the end of the range, at the nearest profile. However,
when we add the wood volume MSE to the equation, we re-
strain the selection to the former subrange, ultimately choosing
w = 47.

After performing the pairing with the optimal weight selected
in the previous section (w = 47), we repeat the same analysis
as in Section IV-B, but with actual vegetation profiles. It is
important to note that the matching of NFI plot and GEDI foot-
print acquisition years did not significantly impact the pairing
procedure (e.g., out of 123 NFI plots from 2019, only 40 (33%)
were paired with the GEDI shots from the same year).

In the part concerning the validation of projected profiles [see
Fig. 10(a)], we observe results similar to those obtained with the
predicted profiles. Specifically, the global evaluation coefficient
of determination (R2) rises to 0.85, and the “stratified” evalua-
tion shows that the correlation coefficients (rRHvn) for the lower
range of the considered relative heights (RH10 − RH50) do not
drop below 0.5.

The results for the two variants of the final wood volume
estimation are presented in two panels of Fig. 10 ranging from
b to c, allowing us to deduce the following.

1) Step I + Step II of the method allows building the GEDI
profiles-based model explaining up to 65% of the wood
volume variance (R2 = 0.65), with 39.10% of NRMSE
and only 2.31 m3/ha of MBE. These results are far better
than the ones obtained after the direct predictions (Sec-
tion IV-B), especially in terms of the mean bias estimate,
which is particularly relevant when dealing with the forest
resources estimation.

2) Results are significantly better when using the ten relative
height values (Full RHv) compared to using only the
canopy height RHv100 [see Fig. 10(c)].

V. DISCUSSION

Despite the loss of correlation in the lower RH values, our
approach has the key advantage of proposing a match for the
entire set of NFI plots. With our strict approach in building the
validation framework (Section IV-A), based on distance (i.e.,
40 m, ±4 m, same forest polygon), only 32 matches were ob-
tained, representing 6% of the plots available in the area. Using
a 200 m distance and a 2 m height thresholds, [26] matched 69%
of the NFI plots in their area. Using distance thresholds of 100,
300, and 500 m following a semivariogram analysis, [27] were
able to match respectively 22%, 52%, and 57% of the NFI plots.
Also, such result did not guarantee that the matched data are
representative of the distribution of forest resources [27], with
possible impact on models and associated inferences. In this
prospect, our approach could be considered as a milestone for
the development of models of forest attributes using GEDI and
NFI data.

The capability to predict field attributes at locations corre-
sponding to the entire set of GEDI footprints over an area
of interest, highlights the potential of the approach for post-
stratification purposes [47]. It is also of interest for grid-level
(i.e., 41 km2 hybrid-inference approaches [19], [48], in order to
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Fig. 9. Weight w optimization (Step II), conducted using validation performance criteria: R2, NRMSE, and MBE, representing the coefficient of determination,
NRMSE, and MBE of the resulting wood volume model, respectively. r denotes the Pearson’s correlation coefficient between “observed” and predicted RHv .

Fig. 10. Validation of the projected profiles (Step I + Step II). (a) Validation of projected profile shapes, (b) validation of estimated wood volume using projected
profiles, and (c) validation of estimated wood volume using only profile top values. Different point colors in the upper part of subfigure (a) correspond to various
metrics, as indicated by the bar plot in the lower part.
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estimate various forest attributes of interest for NFIs. Another
interesting application is related to the high resolution mapping
of forest attributes using deep learning approach. Indeed, by
generalizing the NFI information to the GEDI footprints, it
is possible to use deep learning approaches to directly map
NFI attributes using optical or radar data, instead of height,
such as in, e.g., [13], [16], and [17]. Such approach might be
more efficient than those attempting to predict either volume or
biomass from GEDI-based height maps [49]. Though this seems
obvious, we find it important to state clearly the necessity for
the community to focus less on the canopy height interpolation
or extrapolation which alone represents only a fraction of the
GEDI data potential. The presented results demonstrate this
clearly: as shown in Fig. 10, applying a similar random forest
regressor reveals that the use of 10 decile vegetation profiles
(Full RHv) significantly outperforms using only the RHv100.
This is evidenced by a gain of 0.3 in R2, a 14% reduction in
NRMSE, and an improvement of over 12 m3/ha in MBE.

One could notice that the method is indeed somehow condi-
tioned by the geographical limits of the study. This is consistent
with our ambition to expand the application of the proposed
work all across the metropolitan France, which is split into 91
sylvo-eco regions (out of which 86 nonalluvial), meaning that
the method would be independently parameterized, i.e., locally
adjusted in each of them.

As it makes sense to redo the weight optimization in different
sylvo-ecological regions, it is also sensible to redo it after updat-
ing the GEDI dataset with upcoming measurements. The new
measurements could influence the observed balance between
geographical and feature space. The same principle applies when
using a different sample size or the entire set of available GEDI
footprints. Specifically, the curve used to determine the value of
w (as shown in Fig. 9) is influenced by the sample size used in the
study (subsample “application”). Employing a smaller or larger
sample would lead to different tradeoffs between geographical
and feature space.

Throughout the manuscript, we refer to the approach as an
interpolation of GEDI measurements, given that the NFI plots
are spatially situated between GEDI footprints and the datasets
roughly coincide temporally. However, this method could also be
used for extrapolation, especially in the temporal sense, which is
particularly relevant for its application in the MSNFI framework.

Finally, we attempted to develop a model that does not require
the canopy height indicator at the input. Currently, the inclusion
of this indicator restricts the interpolation to NFI plots. However,
the auxiliary data used proved absolutely insufficient for the
model to reproduce the variance in vegetation classes without
this information, i.e., without the canopy height indicator the
employed classifier for example achieves the test accuracy of
only 18%. This inherent limitation of the proposed method can
be overcome by employing AI methods: either by enhancing the
complexity of the proposed encoder (Step I), or by incorporating
a spatially continuous height indicator such as the combination
of height maps mentioned throughout the manuscript [50], or
GEDI gridded RH100 metrics. The latter therefore should not
eclipse the added methodological value of this work which
dominantly consists in successfully merging the feature and

geographical space when interpolating GEDI measurements.
Additionally, the method offers scalability and flexibility, mean-
ing that while the whole method can be used do downscale the
estimates of forest attributes, one could also use classification
alone for poststratification purposes.

VI. CONCLUSION

In this article, we sought to respond to the issue of the spatial
mismatch between GEDI footprints and NFI plots, representing
a major obstacle for the deeper integration of GEDI data into
the MSNFI frameworks of countries whose forest ecosystems
are covered by the mission. This was achieved by proposing
a method for interpolating GEDI measurements to the NFI
plots, which relies on the sequential use of clustering, classifi-
cation, and regression machine learning routines, all integrated
within a framework of profile pairing by structural class. The
latter means that we were able to project, through the pretty
much methodologically transparent pairing process, real non-
synthesized GEDI-issued vegetation profiles to each NFI plot
in the considered area. The fact that the method is capable
of associating GEDI measurements to each NFI plot in the
considered area makes it already distinctive with respect to most
of the state-of-the-art approaches in dealing with the mismatch
without simulating GEDI profiles from the local ALS data. This
association allows further on to link GEDI data and the wood
volume, or any other forest attribute of interest, by proposing
GEDI-issued vegetation profile ↔ wood volume models. The
proposed method proves to be able to explain 85% of the variance
of the projected profiles, allowing notably to project reasonably
well the lower part of the vegetation profile. The resulting
GEDI-wood volume ensemble model is capable to reproduce
at least 65% of the wood-volume variance with a MBE of only
2.31 m3/ha, illustrating the clear modeling benefit of using ten
relative height values rather than the canopy height only.

More generally, the proposed method could be used to im-
prove the calibration of GEDI-forest attribute formulas, partic-
ularly the GEDI-AGB ones. The step of the proposed method
introducing the notion of the profile structural class could as
well find its utility in the poststratification step of the (MS)NFI
inference procedure.

Scanning the Earth surface from more than 400 km above
the ground is challenging, and therefore, the principal asset of
the GEDI mission is not the level of stability and precision
usually required from national airborne lidar campaigns [51],
[52], [53], [54], but its capacity to repeatedly cover extremely
large areas. Therefore, the most immediate short-term goal of
this work is to establish a framework that allows the simulta-
neous and, to some extent, perpetual application of the method
in the other 85 nonalluvial sylvo-ecological regions of France
(in addition to the Vosges mountains, which were used for the
method’s conception and presentation in this article), and its
integration into the MSNFI framework. We are simultaneously
planning to pursue the approach of reinforcing the validation
step by running the GEDI simulator [22] over a subset of NFI
plots with ALS data. The medium-term perspective would be
to work around the key limitation of the presented method
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which currently projects profiles only to the NFI plots, and by
doing so to spatio-temporally densify the interpolation allowing
the forest attributes high-resolution mapping application, which
could further more improve the MSNFI spatial resolution. We
plan to achieve this by: 1) enhancing the complexity of the
proposed encoder; and 2) integrating a spatially continuous
height indicator from an external source.
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