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Abstract—Combined with the synthetic aperture radar (SAR)
imaging algorithm, diverse simulation sample sets of ground mov-
ing targets are constructed to tackle the problem of insufficient
measured data in the SAR ground moving target indication algo-
rithm based on deep learning. In view of this, a overall scheme of
realizing robust detection of ground moving targets under varying
backgrounds is conducted on the integration of the adaptive spatial
location extraction network based on deformable module and the
multichannel clutter suppression technology. In particular, a spa-
tial deformable module is incorporated into the network to enhance
its modeling capacity of the input targets with different shapes.
Furthermore, the multichannel clutter suppression technology of
airborne SAR is adopted to significantly mitigate the interference
of complex background clutter. The effectiveness of the proposed
method is verified on the simulation sample sets, and comparison
with other detection methods is given simultaneously.

Index Terms—Adaptive spatial location extraction network
based on deformable module (ASLE-DM), clutter suppression,
ground moving target detection, synthetic aperture radar (SAR)
imaging algorithm.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is an active microwave
imaging sensor, which realizes high-resolution imaging and

recognition of region of interest (ROI) and plays an irreplaceable
role in military surveillance and civilian remote sensing [1], [2],
[3], [4], [5]. As one of the key applications of SAR, ground
moving target indication (GMTI) has aroused the interests of
many researchers, aiming to quickly find and locate the ROI
from noise and complex backgrounds [6], [7].

Traditional SAR-GMTI algorithms are mainly based on echo
such as constant false alarm rate (CFAR) algorithm [8]. Since
the CFAR detector is conducted on the statistical characteristics
of clutter, the detection performance is easily disturbed by back-
ground clutter, and the false alarm rate increases significantly, es-
pecially under the complex urban background. Guo et al. [9] pro-
posed a modified SAR moving target detection method based on
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robust principal component analysis, which separated the sparse
matrix of moving targets from the low-rank matrix of static back-
ground. In [10], based on the clutter suppression and multitarget
tracking algorithm, the target trajectory was reconstructed by
using the parameter estimation method on the foundation of
Doppler feature and circular SAR geometry. In [11], moving
targets with different parameters were classified according to
the relative positions of moving target spectrum and clutter spec-
trum. On this basis, a two-stage GMTI method was proposed to
detect multiple moving targets and especially those submerged
by clutter. However, the above mentioned traditional SAR-
GMTI algorithms rely heavily on the output signal-to-clutter-
and-noise ratio [12] and signal processing technology. The clut-
ter disturbance under complex backgrounds can easily affect the
detection results, and the operation complexity is rather high.

In recent years, the intelligent SAR-GMTI algorithm based on
deep learning has been continuously improved and developed,
which realizes the detection of the ground moving targets by
learning the morphological characteristics of 2-D SAR images.
In [13], a new anchor-free moving target detection algorithm
was proposed to improve the performance of the model by
enhancing the strong scattering properties of the targets, and
the effectiveness of the algorithm was verified on the published
relevant datasets. Wang et al. [15] took the SAR-GMTI task as
a blind inverse problem, and it was tackled by using the deep
complex-valued convolutional network, which significantly im-
proved the detection and refocusing accuracy. Aiming at the
problems of insufficient feature extraction and high false alarm
rate in the current SAR-GMTI algorithm based on the con-
volutional neural network (CNN), Mu et al. [14] proposed a
network model based on the improved GoogLeNet architecture
to enhance the dependencies between channels, obtain more
context information, and improve the detection performance un-
der a complex background. Inspired by transfer learning, Zhang
et al. [15] proposed a subdomain adaptive residual network for
moving target detection in the multichannel SAR system and
was verified through three-channel SAR data.

However, these algorithms mainly focus on optimizing the
detection performance of moving targets under the same back-
ground, but most of them lack flexibility and universality for the
targets under varying backgrounds. In practical applications, the
background where the moving target is located often changes, so
it is of great research significance to realize the robust detection
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of the moving targets under new backgrounds. The performance
of the intelligent detection algorithm depends largely on the
quantity and quality of sample datasets, but it is difficult to obtain
the measured SAR data due to the operating cost and complexity
of the SAR system. The performance and generalization capa-
bility of the neural network will be extremely constrained when
only a small number of SAR image samples are used for training.

In this article, the SAR imaging algorithm is adopted to
construct the SAR sample datasets for network training and
testing. On this basis, we propose a new method that enables
the network to realize the robust detection of ground moving
targets under different backgrounds. The contributions of this
article are given as follows.

1) To tackle the problem of insufficient SAR image datasets
when applying intelligent detection algorithms to SAR-
GMTI, a new method of experimental data construction
is proposed in this article to simulate multiple moving
targets under varying backgrounds combined with the
SAR imaging algorithm, taking the backprojection (BP)
algorithm [16] as an example. Particularly, the character-
istics of SAR moving targets and scenes are fully con-
sidered in the experiment to ensure proper and reliable
simulation results. By traversing the location parameters
of the moving targets (azimuth–range coordinates) within
a reasonable range, it is easy to obtain a large number
of SAR image datasets required for network training and
testing accordingly.

2) In this article, the adaptive spatial location extraction net-
work based on deformable module (ASLE-DM) network
structure based on the spatial deformable module is pro-
posed to adaptively model the input targets with different
shapes, which realizes robust detection of polymorphous
moving targets in the SAR scene. The network can adjust
the positions of spatial sampling points and the size of
receptive field according to the geometry transformation,
thus optimizing the feature extraction mode of moving
targets and improving the detection performance of the
model. Especially for the SAR system where the imag-
ing scene rotates due to the change of observation angle
(such as circular spotlight SAR), ground moving targets
can still be detected correctly with no need for image
registration [17].

3) The proposed method possesses flexibility and universal-
ity for the moving targets under varying backgrounds in
practical applications. For the intelligent detection of mov-
ing targets under the complex background, the interference
of artificial buildings, rocks, and vegetation in the scene
will bring about many false alarms in the detection results.
In this regard, the multichannel clutter suppression algo-
rithm of airborne SAR is applied to significantly suppress
the background clutter, while the moving target informa-
tion is fully reserved to further mitigate the false alarms
in the detection results. Even when there exists channel
error in practical applications, the network can still realize
the robust detection of moving targets in different SAR
scenes.

II. CONSTRUCTION OF MULTIPLE MOVING TARGET DATASETS

At present, most of the SAR-GMTI algorithms based on deep
learning focus on the optimization of moving target detection
performance under a single background. However, in practical
applications, the scene where the target is located often varies,
so it is of great significance to explore how to robustly detect the
moving targets under a new background.

For the target detection algorithm based on deep learning,
whether the network can realize the flexible and robust detection
of ROI depends largely on the quality and quantity of the training
sample datasets. However, it is extremely difficult to obtain the
measured SAR data for network training and testing, and it is
even impossible to obtain the datasets of moving targets under
different backgrounds required in the experiment. Therefore, the
construction of multiple high-fidelity simulation sample sets is
the key to improving the performance of the algorithm.

A. Signal Model

Assuming that the airborne SAR works in the spotlight imag-
ing mode, the linear frequency modulation continuous wave
(LFMCW) transmitted by SAR can be expressed as

S0(τ) = Arect

(
τ

Tr

)
exp(j2πf0τ)exp(jπKrτ

2) (1)

where A represents the signal amplitude, τ represents the range
time, Tr is the bandwidth, Kr is the range chirp rate, and f0
is the carrier frequency. The received signal is the delay of the
transmitted signal S0(τ) and can be expressed as

r0(τ, t) = Arect

(
τ − τi
Tr
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exp(j2πf0(τ − τi))
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where τi is the time delay given by τi=
2R(t)

c , t is the time
index in slow time, and R(t) is the instantaneous range between
the radar platform and the moving target. The echo signal after
demodulation can be expressed as
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where A0 is an arbitrary complex constant. Then, the received
echo signal after range compression is

Src(τ, t) = A′ρr

(
τ − 2R(t)

c

)
exp

(
−j4πf0

R(t)

c

)
(4)

where A′ is the gain including scattering coefficient, and ρr is
the envelope of the signal echo after pulse compression.

B. BP Algorithm

With the continuous development of SAR technology, high-
resolution imaging algorithms [18], [19] have emerged one
after another. Taking the BP imaging algorithm as an example,
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Fig. 1. Diagram of the BP imaging algorithm.

the construction of diverse SAR image sample sets for neural
network training and testing is completed in this article. The BP
algorithm is a typical time-domain imaging algorithm. Com-
pared with the imaging algorithms conducted in the frequency
domain, such as polar format algorithm, range–Doppler, and
chirp scaling, it can accurately eliminate the coupling between
range and azimuth directions without any assumption of slant
range approximation, and it is applicable to the radar system in
any working mode [20].

The imaging diagram of the BP algorithm is shown in Fig. 1.
The imaging scene is divided into M ×N grids along azimuth
and range directions. M is the number of points in the azimuth
direction, and N is the number of points in the range direc-
tion. The high-resolution imaging result of the BP algorithm
is realized through the relative position between the grid and
the phase center of the antenna. The echo data are projected
back to the imaging grid, and the amplitude of each pixel at
different azimuth moments is coherently accumulated to obtain
the objective function [21].

For the pixels in the imaging grid, the instantaneous slant
range between each pixel and the platform at the current azimuth
moment is calculated to acquire the two-way propagation delay
and obtain the phase compensation factor. By interpolating
the radar echo signal, the amplitude value is correspondingly
assigned to each pixel and then coherently accumulated along
the azimuth time to obtain the imaging result of this pixel. The
pulse at each azimuth moment is coherently accumulated to
obtain the imaging result of each pixel point

I(x, y) =

t=t2∑
t=t1

Src(τxy, t)exp(j2πf0τxy) (5)

where (x, y) represents the coordinate of the pixel point in the
imaging grid, τxy is the two-way propagation delay from the

Fig. 2. Key steps for the construction of simulation sample sets.

pixel point to the radar platform, and t1 and t2 represent the start-
ing and ending time of the current azimuth pulse, respectively.

C. Construction of Multiple Moving Target Datasets Under
Different Backgrounds

As the SAR scene and position state where the moving target
is located always vary in practical applications, the simulation
dataset should possibly comprise the moving targets under dif-
ferent backgrounds and at different positions. In the process
of simulation, the matching between the moving target and
the scene (such as scale ratio and contrast) also needs to be
considered reasonably.

After setting the parameters such as position coordinate of
moving target according to the characteristic of scene, the simu-
lation of moving target is conducted, and the obtained echo data
are stored in the matrix for subsequent processing. For the echo
simulation of SAR scene, as SAR images are gray images, it is
necessary to preprocess the pixel values first, that is, normalize
the value of each pixel point to 0–255 pixel by pixel. Then, the
obtained echo data of each SAR scene and moving targets are
adaptively added, and the noise component is added to make
the simulation results closer to practical applications. The SAR
images of moving targets under different backgrounds can be
obtained by processing the integrated echo data by using the BP
algorithm in Section II-C. In addition, the noise component is
superimposed to the echo of moving target alone so as to obtain
the SAR datasets for network training. The main steps for the
construction of simulation datasets are shown in Fig. 2.

As the position of a moving target can be set arbitrarily
within a reasonable range, it is easy to obtain a large number
of SAR image sample sets by traversing the position parameters
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Fig. 3. Simulation results of SAR scenes. (a) Scene 1 (desert). (b) Scene 2
(urban road). (c) Scene 3 (artificial buildings). (d) Scene 4 (apron). (e) Scene 5
(forest). (f) Scene 6 (baseball diamond).

Fig. 4. Overall framework of realizing robust detection of ground moving
targets under different backgrounds based on the ASLE-DM network.

(azimuth–range coordinates) of the targets. In this article, typical
SAR scenes (desert, complex urban backgrounds, forest, etc.)
are selected for simulation, and the imaging results are shown
in Fig. 3. Under the desert background in Fig. 3(a), some
rocks show strong scattering properties, and the features of
gullies and target trajectories are obvious. In addition, the overall
characteristic of the desert is similar to the noise background.
However, there relatively exists plenty of interference from
ground objects such as vegetation, roads, and artificial buildings
in other backgrounds shown in Fig. 3(b)–(f), which will make it
difficult for the network to accurately detect the moving targets
in the scene.

Combined with the constructed SAR image sample sets, it is
proved that the proposed method can realize robust detection
of moving targets under different backgrounds. The overall
framework of this article is shown in Fig. 4. In particular, the
simulation dataset of moving targets under the noise background

is used for network training, and the trained model is verified by
using the simulation test sets of moving targets under different
backgrounds.

III. ADAPTIVE FEATURE EXTRACTION OF POLYMORPHIC

GROUND MOVING TARGETS USING ASLE-DM

The CNN [22], [23] is limited to adaptively model geometric
transformations such as the variation of target shape and scale
due to its fixed model structure, which greatly limits the detection
performance of the network. The ASLE-DM network based
on the spatial deformable module is proposed in this article,
allowing the network to adjust the spatial sampling position
and ROI feature mapping mode according to the geometric
characteristics of the input feature map [24], [25].

A. Spatial Deformable Module

The receptive field plays an important role in feature ex-
traction, and it should be neither too big nor too small. In the
traditional CNN network structure, all the activation units in the
same CNN layer have the same receptive field when processing
different input feature maps, which is obviously undesirable for
the deep CNN layer to encode high-level semantic information.
The deformable convolution and deformable ROI pooling mod-
ule can adjust the position of spatial sampling points according
to the shapes of input feature maps, and the receptive field is
transformed accordingly.

1) Deformable Convolution: Based on standard convolution,
a 2-D offset is additionally designed for spatial sampling position
points, which provides the network with the modeling capacity
of the freely transformed grid points. 2-D deformable convolu-
tion is conducted in two steps: 1) position sampling is conducted
on the input feature map Ifm by using regular grid G; and 2) all
the sampling values in step 1 are summated by weight, and the
weight is expressed by w. Each position g0 on the output feature
map Ofm can be expressed as

Ofm(g0) =
∑
gn∈G

w(gn) · Ifm(g0 + gn) (6)

where gn represents the position in the grid G.
In the deformable convolution, the extra offset �pn(n =

1, 2, . . . ,N) is added to the grid G, where N is the number
of grids in the set G, and then, we can obtain

Ofm(g0) =
∑
gn∈G

w(gn) · Ifm(g0 + gn +�pn). (7)

Then, the current sampling point is at the irregular offset
position gn +Δpn.

The feature map is calculated on the input image by standard
convolution operation, and then, the position offset is obtained
by another convolution layer. The dimension of the generated
channel is 2N , namely N × 2-D offsets (corresponding to the
offsets in the X and Y axes). The learned offset is then added to
the original standard convolution operation to form an irregular
convolution, which makes the sampling points closer to the
shape of the targets.
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Fig. 5. Network structure model of ASLE-DM.

2) Deformable ROI Pooling: ROI pooling is commonly ap-
plied in the object detection network with region proposal struc-
ture to convert the input feature map with arbitrary size to the
fixed-size output so as to realize feature dimension reduction
and data compression. Deformable pooling adds an offset for
each box position and learns the offset from the prior feature
map and ROI to implement the adaptive positioning of input
with different shapes.

Given the input feature map X , the size of ROI is w × h, and
the upper left corner is p0. After pooling operation, ROI will be
divided into several k × k boxes, and a k × k feature map will be
output, in which k is the kernel size. For the (i, j)(i ≥ 0, j < k)
box in standard ROI pooling, the output y(i, j) can be expressed
as

y(i, j) =
∑

p∈box(i,j)

X(p0 + p)/nij (8)

where nij is the total number of pixels in the box. Similarly, the
offset Δpij is added to the position of the spatial group box to
obtain

y(i, j) =
∑

p∈box(i,j)

X(p0 + p+�pij)/nij . (9)

B. Basic Structure of ASLE-DM

The network is required to adaptively adjust the size of re-
ceptive field to learn more effective feature information when
confronted with input targets with different shapes. As a con-
sequence, the ASLE-DM network model structure based on the
spatial deformable module is proposed in this article to offer
a more flexible and effective ROI feature extraction mode and

improve the adaptive modeling capability of geometric trans-
formations. The network structure of ASLE-DM is shown in
Fig. 5. The ASLE-DM network structure mainly consists of three
modules.

1) Multireceptive field feature extraction: Original fixed-size
convolution and pooling operation are substituted into
the deformable module described in Section III-A. The
size of the receptive field is adaptively adjusted accord-
ing to the input geometric transformations. The spatial
sampling positions of convolution and pooling layer are
strengthened by using additional offset to obtain more
diverse feature information. This module extracts the
high-level semantic information of the input feature map
(downsampling) and generates a feature map, which is
more suitable for subsequent intensive prediction. It has
strong adaptability to model the input targets with different
shapes.

2) Shallow feature fusion: Inspired by the feature pyramid
network [26], shallow feature information (such as edges
and textures) and high-level features are fully fused on
multiscale feature maps through splicing and addition
modes. In this way, the feature map has not only rich
semantic information but also accurate position informa-
tion of the target, which helps the network understand the
position and shape of the monitored targets in subsequent
prediction better.

3) Multiobject prediction: The prediction head is stacked by
a series of convolution layers and fully connected layers.
Based on the preset prior anchors, multidimensional arrays
that record the coordinate, width, and height, category and
confidence of the detection boxes on the input feature
maps are calculated by convolution layers. Afterward,
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Fig. 6. Rotated SAR scene and moving targets.

each bounding box will be further classified via fully
connected layers and softmax function, and the coordinate,
width, and height of the detection box will be regressed by
linear transformation, fully connected layers, and sigmoid
function simultaneously. Ultimately, the parameters of the
detection boxes are spliced and output as arrays after
filtered by several postprocessing steps to obtain the final
detection results.

C. Effective Receptive Field

Due to the change of observation angle, the imaging results
of SAR scenes may rotate at different angles, as shown in Fig. 6.
For the neural network, the shapes of the moving targets under
surveillance are also transformed, and the morphological char-
acteristics of such targets are not completely the same as those
of standard rectangular targets. Whether the network can adjust
to the geometry transformations is the key to realizing robust
detection of the moving targets under different backgrounds.

Taking two CNN layers with 3 × 3 convolution kernel as
an example, the outcome of substituting the original module
with the spatial deformable module is shown in Fig. 7. In the
process of standard convolution operation, the receptive field
and spatial sampling positions on the feature maps are entirely
fixed [see Fig. 7(a)], so it is impossible to accurately model and
learn the features of input with different shapes. In comparison,
the size of receptive field and the spatial sampling positions
are adaptively adjusted to the input features in the deformable
module [see Fig. 7(b)], which makes the spatial sampling points
closer to the real shapes of the targets and optimizes the detection
accuracy of the network. When encountering the input with dif-
ferent shapes, sizes, or observation angles, the network can still
robustly detect the targets without image registration or other
operations.

Fig. 7. Receptive field and sampling position of standard and deformable
module. (a) Standard convolution. (b) Deformable module.

IV. ROBUST DETECTION OF MOVING TARGETS UNDER

DIFFERENT BACKGROUNDS BASED ON CLUTTER SUPPRESSION

The intelligent detection of moving targets under a complex
background is easily disturbed by background clutter. The scat-
tering coefficients of artificial buildings, rocks, vegetation, and
other ground objects are not much different from those of the
monitored vehicles, and they show similar characteristics in
imaging results, which will bring a lot of false alarms to the
detection results. In order to improve the performance of the net-
work under different backgrounds, the imaging results need to
be further processed by the clutter suppression technology to al-
leviate the interference from background clutter [27], [28], [29].

Compared with traditional single-channel moving target de-
tection methods, the multichannel SAR-GMTI system can ef-
fectively suppress background clutter, reserve the information
of moving targets, and effectively detect ground moving targets.
At present, the multichannel SAR-GMTI methods, such as
displaced phase center antenna (DPCA) [30], along-track in-
terferometry, and space-time adaptive processing [31], [32], can
be flexibly selected for different SAR systems. Based on clutter
suppression technology, the false alarms in the detection results
can be significantly mitigated to realize the robust detection of
ground moving targets under different backgrounds.

The geometric observation model of the multichannel air-
borne SAR system is shown in Fig. 8 (number of channels:
N ≥ 2). The radar platform moves along the x-axis (azimuth
direction) at a constant speed of v, and the flight height is H . R0

is the slant range of the scene center. N antennas are placed
along the track, in which antenna 1 is a duplexer, antennas
2, 3, . . ., N are receiving antennas, and the distance between two
adjacent antennas is d. Antenna 1 transmits LFMCW signals,
and then, all antennas receive the echo signal simultaneously.
Suppose that there is a point P in the imaging scene. At the
azimuth slow time t = 0, the coordinate of the nth antenna is
(−(n− 1)d, 0, H)(n = 1, 2, . . . ,N), and the initial coordinate
of the point P is (x0, y0, 0). The azimuth velocity of moving
target is va, and the radial velocity is vr. After a certain time, the
coordinate of moving target is changed to (x′, y′, 0), and Rn(t)
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Fig. 8. Geometric observation model of multichannel SAR.

represents the instantaneous slant range (n = 1, 2, . . . ,N) be-
tween the nth antenna and the moving target.

In this article, take dual-channel DPCA technology [30] as an
example to suppress background clutter, and then, the number of
channels is N = 2. Combined with the signal model described
in Section II-A, for the dual-channel airborne SAR system,
the instantaneous slant range between the moving target and
antennas 1 and 2 can be, respectively, expressed as

R1(t) =
√
(x0 + vat− vt)2 + (y0 − vyt)2 +H2 (10)

R2(t) =
√
(x0 + vat− vt+ d)2 + (y0 − vyt)2 +H2 (11)

where vy = vr/sinϕ and ϕ is the downlooking angle of radar.
The echo signal after demodulation can be expressed as

Si(τ, t) = A0rect

(
τ − 2Ri(t)

c

)
exp

(
−j4πf0

Ri(t)

c

)

exp

(
jπKr(τ − 2Ri(t)

c
)2
)
. (12)

The obtained echo signal after range pulse compression can
be expressed as

Src,i(τ, t) = A′ρr

(
τ − 2Ri(t)

c

)
exp

(
−j4πf0

Ri(t)

c

)

(13)
where i = 1 and 2 represent antennas 1 and 2, respectively.

In the actual SAR system, inconsistency of radar antenna
pattern, error of antenna phase center, instability of platform
velocity, noise, and environmental interference will cause the
amplitude and phase error between channels [33], which will
greatly limit the performance of clutter suppression. It is partic-
ularly important to study how to realize the robust detection of
moving targets even if there exists channel error. Therefore, the
amplitude and phase error are further added to channel 2, and
the echo signal of channel 2 after demodulation is S ′

rc,2(τ, t).
After adding the channel error, the echo signal of channel 2 can

TABLE I
SYSTEM SIMULATION PARAMETERS

be expressed as

S ′
rc,2(τ, t) = Ae · Src,2(τ, t) · exp(j ∗ Ph) (14)

where Ae stands for the factor of amplitude error, and Ph stands
for the factor of phase error.

Then, the echo signal of channels 1 and 2 after range compres-
sion is, respectively, simulated according to the steps described
in Section II-B. The echo signal after phase compensation is
coherently accumulated to obtain the imaging results of each
pixel in the background

Ii(x, y) =

t=t2∑
t=t1

Src,i(τxy, t)exp(j2πf0τxy) (15)

where i = 1 and 2 represent antennas 1 and 2, respectively.
Finally, the echo data of the two channels after imaging are

further processed by the DPCA technology in the complex image
domain, which can be expressed as

I1,2(x, y) = I1(x, y)− I2(x, y). (16)

Consequently, most of the background clutter is significantly
suppressed, and the moving target information is sufficiently
reserved.

V. EXPERIMENT

Before applying the ASLE-DM network to detect the ground
moving targets, it is necessary to complete the construction of
moving target simulation sample sets. In this article, the BP
imaging algorithm is taken as an example to simulate moving
targets and diverse SAR scenes. The simulation parameters of
the airborne SAR system are set in Table I.

A. Construction Results of Ground Moving Target Simulation
Sample Sets Under Different Backgrounds

The shape of the vehicle to be monitored can be approximately
considered as an irregular rectangle, and the number of moving
targets in the scene is set within 5–10 according to the character-
istics of each scene. In the process of moving target simulation,
such parameters as size, shape, number, and position of moving
target can be set arbitrarily, so it is easy to obtain a large number
of simulation sample sets for the experiment, and some imaging
results are shown in Fig. 9(a)–(d). In order to make the imaging
results closer to practical applications, noise component is added
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Fig. 9. Simulation results of ground moving targets. (a)–(d) Imaging results
of moving targets. (e)–(h) Imaging results of moving targets under the noise
background.

to the echo simulation of moving targets, and the signal-to-noise
ratio is 15 dB, as shown in Fig. 9(e)–(h). The obtained moving
target sample sets under the noise background are used for
network training.

The azimuth position coordinate of moving target is traversed
within a reasonable range (step size: 1). Accordingly, 350 SAR
image sample sets under the noise background are obtained, and
then, the quantity is expanded to 4000 by image enhancement
(image rotation, cropping, translation, etc.). The obtained mov-
ing target image sample sets under the noise background are fed
into neural network for training. Furthermore, the echo signal
of the moving target is separately fused with that of each SAR
scene shown in Fig. 3 to obtain the test sample sets. Some of the
imaging results are shown in Fig. 10.

In particular, the variation of observation angle of some SAR
systems (such as circular spotlight SAR) will lead to the rotation
of the imaging scene. Therefore, the simulation of moving target
at a certain rotation angle (30◦) is added to construct the test
sample set, as shown in Fig. 9(c). This usually requires image

Fig. 10. Simulation sample sets of moving targets under different back-
grounds. (a) Scene 1 (desert). (b) Scene 2 (urban road). (c) Scene 3 (urban
building). (d) Scene 4 (apron). (e) Scene 5 (forest). (f) Scene 6 (baseball
diamond).

registration for accurate detection, but it will also generate
additional calculation load and work complexity. Comparatively,
the ASLE-DM network proposed in this article can still realize
the robust detection of moving targets in the rotated scene due to
its strong adaptive modeling capability of the input targets with
different shapes. So far, the construction of diverse simulation
sample sets has been completed.

B. Results of Moving Target Detection Using ASLE-DM

The simulation sample set of moving targets under the noise
background constructed in Section V-A is input into the ASLE-
DM network for training, and the trained model is used to detect
the SAR images under different backgrounds in the test set.
The partial detection results of moving targets under different
backgrounds obtained by using the ASLE-DM network are
shown in Fig. 11(s)–(x).

Except that some sandstones show strong scattering proper-
ties, the overall characteristics of scene 1 (desert) are similar
to the noise background, and most of the moving targets in
this scene can be correctly detected. However, some moving
targets are submerged in background clutter, which will produce
a certain number of missing alarms, as shown in Fig. 11(s). For
the moving targets in other scenes, although the imaging results
of the vegetation, artificial buildings, and some strong scattering
points in the scene are similar to the shapes of targets, which will
bring some missing and false alarms to the detection results, the
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Fig. 11. (a)–(x) Detection results of moving targets under multiple backgrounds based on different methods. (Red rectangle represents correctly detected
moving target, green ellipse represents missing alarm, and yellow ellipse represents false alarm.) Each row represents different detection methods (rows 1–4 are
Faster-RCNN, Detr, Yolov8, and ASLE-DM, respectively), and each column represents different scenes (columns 1–6 are scenes 1–6, respectively).

ASLE-DM network can still robustly detect most of the targets
under different backgrounds, as shown in Fig. 11(s)–(x). Espe-
cially, as to the moving targets in scene 3, the rotation of SAR
imaging result occurs due to the change of observation angle,
while most of moving targets can still be accurately detected
by the ASLE-DM network due to its strong adaptive modeling
capability of input targets with different shapes. Generally, the
ASLE-DM network can realize robust detection of the moving
targets under different backgrounds with a certain number of
missing and false alarms.

C. Comparative Experiment of Different Methods

In order to further verify the effectiveness of the pro-
posed method, the experimental results of Faster-RCNN [34],
Detr [35], Yolov8 [36], and ASLE-DM are quantitatively com-
pared in Table II. Note that the frames per second (FPS) is used
to measure the processing speed of model prediction. With the
results shown in Table II, it can be seen that the mean average
precision (mAP) and F1-score are superior to those of other

TABLE II
COMPARISON OF DIFFERENT NEURAL NETWORKS

methods and the speed of model prediction is also optimized .
By comparison, the ASLE-DM network comprehensively shows
better performance to other methods.

In addition, although Table II reflects the better performance
of the ASLE-DM model, further validation is needed to de-
termine whether the proposed method can better realize ro-
bust detection of moving targets under different backgrounds.
Therefore, the moving target simulation dataset under the noise
background is fed into Faster-RCNN, Detr, and Yolov8 networks
for training, respectively, and the trained model is used to detect
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TABLE III
DETECTION RESULTS OBTAINED BY DIFFERENT NEURAL NETWORKS

TABLE IV
DETECTION RESULTS OF DIFFERENT NEURAL NETWORKS AFTER CLUTTER

SUPPRESSION

TABLE V
ABLATION STUDY OF THE SPATIAL DEFORMABLE MODULE

TABLE VI
DETECTION RESULTS OF DIFFERENT NETWORK ARCHITECTURES ON THE

SIMULATION DATA

the moving targets in the test sample set. The quantitative
comparison of detection results obtained by different methods
is shown in Table III. Apart from the intelligent target detection
algorithms, the echo-based CA-CFAR algorithm [37], [38] is
also implemented to make a comparison. The 2-D cell-averaging
CFAR (CA-CFAR) method adopts the sliding window mecha-
nism, which consists of cell under detection (CUT), guard band,
and training band. When the power of CUT is greater than the
detection threshold T , it is determined that there exists a target
in the current unit; otherwise, there exists no target. Similarly,
the above operation is conducted for the next CUT until all the
cells are traversed. The detection results of CA-CFAR are also
recorded in Table III to make a comparison.

The simulation test set contains SAR image samples of mov-
ing targets under six different backgrounds, and the total number
of moving targets to be detected is 5525. The detection threshold
(confidence) of each neural network model is set as the same to
make the results comparable.

In particular, recall rate and precision indicators are further
calculated to display the comparison results more intuitively.

Fig. 12. Detection results by CA-CFAR. (Red rectangle represents correctly
detected moving target, green ellipse represents missing alarm, and yellow
ellipse represents false alarm.) (a)–(f) Scenes 1–6.

The definition of recall rate and precision can be expressed by

Recallrate =
TP

TP + FN
(17)

Precision =
TP

TP + FP
(18)

where TP, FN, and FP separately stand for true positive, false
negative, and false positive, respectively. Actually, TP, FN, and
FP correspond to the number of correctly detected targets,
missing alarms, and false alarms, respectively.

Faster-RCNN is a typical two-stage object detection algo-
rithm, and the detection accuracy of the algorithm is improved by
introducing region proposal network structure. It can correctly
detect most of moving targets in the test set with the highest
recall rate, but the detection precision is extremely unacceptable,
which will not operate well in practical applications. Detr is
an end-to-end target detection model based on the transformer
architecture, and it leverages CNN, encoding, and decoding
structure to implement feature extraction and inference. How-
ever, for the relatively complex training process and insufficient
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Fig. 13. (a)–(x) Detection results of the targets after clutter suppression by different methods. (in ideal conditions). Each row represents different detection methods
(row 1-4 are Faster-RCNN, Detr, Yolov8 and ASLE-DM, respectively), and each column represents different scenes (column 1-6 are scene 1-6, respectively).

feature extraction of small targets, the performance of Detr is
relatively poor in detection precision. Yolov8 is a typical one-
stage object detection algorithm, which regards target detection
as a regression problem and inputs the whole image into the
network directly for inference. According to Table III, although
the detection performance of Yolov8 is relatively satisfactory
with decreasing false alarms, it is still inferior to that of the
ASLE-DM network. Compared to the ASLE-DM network, the
detection performance of CA-CFAR is easy to be interfered by
complex background clutter, which brings about several missing
and false alarms consequently and make it perform badly in
recall rate and precision.

Moreover, some detection results of moving target under
different backgrounds based on the neural network models and
CA-CFAR are shown in Figs. 11 and 12, respectively. For the
detection of moving targets in desert, the echo signal of some
targets is merged in background clutter, which brings several
missing alarms to the detection results, as shown in Fig. 11(g),
(m), and (s). And there still exist a few false alarms in the
detection results of Faster RCNN and Detr, as shown in Fig. 11(a)

and (g). For the rotated imaging scene due to the change of
observation angle, some targets can still be correctly detected by
virtue of its adaptive modeling capability, as shown in Fig. 11(u).
In relatively complex backgrounds, the number of missing and
false alarms will increase in the detection results of the other
three neural networks, while better detection results can be
obtained by the ASLE-DM network, as shown Fig. 11(b), (h),
(n), and (t).

It can be seen from Fig. 12 that there are many scattering points
in the detection results of CA-CFAR, which can be ignored since
the moving target to be monitored occupies a certain area instead
of isolated points, and only the region composed of several
pixel points is judged as a target. Combined with Table III,
CA-CFAR can correctly detect partial moving targets from the
noise interference. However, the detection performance of the
CA-CFAR algorithm will deteriorate sharply due to the distur-
bance of strong background clutter, and a large number of false
alarms and missing alarms will be generated especially under a
relatively complex backgrounds, as shown in Fig. 12(b)–(f). By
comparison, the ASLE-DM network can overall realize robust
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Fig. 14. (a)–(x) Detection results of the targets after clutter suppression by different methods (with channel error). Each row represents different detection methods
(rows 1–4 are Faster-RCNN, Detr, Yolov8, and ASLE-DM, respectively), and each column represents different scenes (columns 1–6 are scenes 1–6, respectively).

detection of the moving targets under different backgrounds and
shows better detection performance than the other methods with
fewer false and missing alarms.

D. Robust Moving Target Detection Based on Clutter
Suppression

Although the ASLE-DM network can correctly detect most
of the moving targets under different backgrounds according to
the comparative experimental results in Section V-C, there still
exist a certain number of false alarms and missing alarms in the
detection results due to the interference of complex background
clutter. In order to further improve the detection performance
of the ASLE-DM network, multichannel clutter suppression
technology is combined to suppress background clutter sig-
nificantly. Taking dual-channel DPCA technology (d = 1m)
as an example, the network is used to detect the SAR images
under different backgrounds after clutter suppression. From the
simulation results of clutter suppression, in the ideal simulation

conditions (that is, there exists no channel error), the background
clutter can be significantly suppressed, and the moving target
component is fully reserved in the final imaging results. On this
basis, almost all of the moving targets in the test sample set can
be correctly detected, as shown in Fig. 13. Consequently, the
proposed method can effectively realize the robust detection of
moving targets under different backgrounds.

However, in the actual SAR system, the channel error (such as
antenna phase center error, inconsistent response of each channel
pattern, and receiver thermal noise) exists inevitably, which will
restrict the performance of clutter suppression technology and
inhibit the detection accuracy of ground moving targets. In the
case of amplitude and phase error between channels (Ae =
1.08, Ph = −π/180), the experimental results of CA-CFAR,
Faster-RCNN, Detr, Yolov8, and ASLE-DM are quantitatively
compared in Table IV. From Table IV, except that the detection
performance of the ASLE-DM network is comprehensively
superior to the other methods, clutter suppression technology
can also effectively improve the detection results of different
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Fig. 15. Detection results of CA-CFAR based on clutter suppression. (Red
rectangle represents correctly detected moving target, green ellipse represents
missing alarm, and yellow ellipse represents false alarm.) (a)–(f) scenes 1–6.

methods as a whole. In particular, combined with Table III, the
recall rate of the detection results by using the ASLE-DM net-
work increases (from 0.87 to 0.894 and the precision increases
from 0.915 to 0.933), and so are the other methods.

Moreover, the corresponding detection results after clutter
suppression by different methods are partially shown in Figs. 14
and 15. Due to the existence of channel error, the background
clutter cannot be completely suppressed, and there is still some
residual clutter in the SAR imaging results. Compared with the
detection results in Fig. 11, the false alarms and missing alarms
have been significantly mitigated, such as Fig. 14(d)–(v). From
Fig. 15, it can also be seen that the detection performance of CA-
CFAR is also improved when compared to Fig. 12. Meanwhile,
even if there is residual clutter in the background, the ASLE-DM
network shows better detection performance with fewer false
alarms and missing alarms generated in the detection results,

which can effectively realize the robust detection of moving
targets under different backgrounds.

As to the intelligent target detection algorithms, further study
of the detection results at different confidence levels is conducted
for supplement to demonstrate the impact of detection thresh-
old on the number of missing and false alarms. The detection
threshold (confidence) is set as 0.65, 0.7, 0.75, 0.8, and 0.85,
respectively, and the relevant experimental results obtained by
different detection methods are calculated, as shown in Fig. 16.

The total number of missing and false alarms in detection
results obtained by different methods is compared in Fig. 16(a)
and (b), respectively. As the detection threshold increases, the
number of missing alarms embodies an upward trend, while the
number of false alarms declines as a whole. From Fig. 16(a),
it is not difficult to see that the number of missing alarms
obtained by ASLE-DM is relatively less than those by other
methods. In particular, although Faster-RCNN shows slightly
better performance to the proposed method in missing alarms,
much more false alarms are produced by Faster-RCNN com-
bined with Fig. 16(b), which is unacceptable in practical ap-
plications. Moreover, from Fig. 16(b), the detection results of
false alarms by ASLE-DM are mostly better than the other
methods. Although Yolov8 shows similar performance to the
proposed method in false alarms, the missing alarms extremely
increases in Fig. 16(a). Therefore, it is well verified that the
proposed method shows superior detection performance to the
other methods mentioned in this article.

E. Ablation Study of the Spatial Deformable Module

In order to further verify the effectiveness of spatial de-
formable module, comparative experiments with different net-
work architectures are conducted, and relevant results are shown
in Table V. All of the experiments are conducted on the platform
NVIDIA GeForce RTX 3090 GPU, the deep learning framework
is PyTorch (version 1.10.0), and the training process consists of
200 epochs.

The ablation study of the deformable module is conducted
by using Yolov5s and Faster-RCNN as baseline networks, in
which CSPDarkNet53 and ResNet-50 are used as the backbone
architectures, respectively. On this basis, further experiment of
applying baseline architecture with three deformable layers on
the simulation datasets is conducted to make a comparison.

From Table V, it is verified that the proposed architecture is
superior to other methods and thus will show better detection per-
formance of the targets in the test sample sets. The deformable
module can effectively increase the mAP value of the model, and
the prediction speed and the training time of the model are also
optimized. As described in Section III, the spatial deformable
module can further enhance the sampling positions of the feature
maps and fully preserve high-level semantic information of
ROI in SAR images during the process of feature extraction,
which will significantly promote the final detection results of
the moving targets.

In addition, further comparative experiments of the network
architectures are performed on the detection results of the
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Fig. 16. Calculation of detection results at different confidence levels. (a) Number of missing alarms. (b) Number of false alarms. (The blue, brown, red, and
yellow lines correspond to ASLE-DM, Faster-RCNN, Detr, and Yolov8, respectively.)

simulation test sample sets, and the relevant results are recorded
in Table VI.

As given in Table VI, when using the trained network model
to detect the SAR imaging results after clutter suppression in
test sample sets, the recall rate and precision of the detection
results are effectively increased due to the application of the
spatial deformable module. By comparison, it is verified that
the proposed method can effectively improve the detection per-
formance of the model by virtue of its more powerful ability of
feature representation and can further realize robust detection of
the moving targets under different backgrounds.

Moreover, it is noted that although the introduction of the
deformable module can effectively optimize the detection per-
formance of the model with more correctly detected targets and
fewer false alarms generated, it also brings more parameters
and raises the calculation complexity of the model, which will
significantly increase the training time. In particular, during the
experiment process, it is found that the training results and
detection performance of the model are no longer promoted
remarkably with three more network layers substituted by the de-
formable module, while the training time significantly increases
instead. Therefore, the number of the network layers substituted
by the deformable module depends comprehensively on the
calculation complexity and detection performance of the model.

VI. CONCLUSION

In this article, a new method of SAR ground moving target
detection is proposed on the basis of associating the ASLE-DM
network with traditional clutter suppression technology, which
focuses on optimizing the detection performance of moving
targets in varying SAR scenes for further practical applications.
Combined with the SAR imaging algorithm, the simulation
sample set is constructed by traversing the position parameters
of moving targets, which can tackle the problem of insufficient
measured data in the SAR-GMTI algorithm based on deep
learning. In order to enhance the detection performance of poly-
morphous input targets, the spatial deformable module is applied
to make it capable to model various geometry transformations.
Moreover, the multichannel clutter suppression technology is
used to suppress the background clutter and then realize robust

detection of the moving targets under different backgrounds. The
effectiveness and robustness of the proposed method are further
verified compared with other detection methods. Eventually, it
is acknowledged that although we pursue ensuring the diversity
and representativeness of the simulation data, the experimental
sample data are impossible to cover all the SAR scenes, which
means that the proposed method still needs to be replenished and
improved continuously with the accumulation of diverse SAR
sample data.
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