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Abstract—Obtaining high-quality precipitation data with both
high spatial and temporal resolution is imperative for hydrological
and meteorological research. However, the coarse resolution and
uncertain data quality of most satellite data, coupled with sparse
rain gauge station (RGS), limit their direct applicability in scientific
research. Downscaling satellite data, particularly in conjunction
with RGS, proves to be an effective approach to overcome this
challenge. In this study, we utilize the geographically weighted
regression kriging model to downscale global precipitation mea-
surement IMERG monthly precipitation data from 2001 to 2020.
Leveraging spatially heterogeneous relationships with digital ele-
vation model, slope, land surface temperature, and soil moisture
in the Songhua River Basin in Northeast China, we enhance the
spatial resolution from 0.1° to 1 km, initially achieving a 1.4%
increase in data accuracy, with a CC value of 0.966. Subsequently,
employing the daily fraction method, the downscaled precipita-
tion data are disaggregated to the daily scale and calibrated by
merging RGS using the geographical difference analysis method.
The outcome is high-quality daily precipitation data with both high
spatial resolution and accuracy (CC = 0.818, RMSE = 3.188, and
ME = 0.086). An analysis of the annual variation of precipitation
in the Songhua River Basin over the past two decades reveals
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an increasing trend. Spatially, the average annual precipitation
variation rate in the basin increases from the middle to both ends,
with the increasing trend gradually decreasing from south to north.
The proposed approach provides a practical solution for enhancing
the spatiotemporal scale of satellite data, improving data quality,
and addressing the sparse distribution of RGS.

Index Terms—Downscaling, geographically weighted regression
kriging (GWRK), precipitation, Songhua River Basin.

1. INTRODUCTION

HE primary scientific challenge in hydrology and water
T environment research currently revolves around the uncer-
tainty of meteorological elements [1]. Precipitation, a pivotal
meteorological indicator, profoundly influences global climate
patterns and the Earth’s biomass energy cycle system with its
temporal and spatial distribution [2], [3]. Consequently, high-
quality precipitation data are indispensable for various environ-
mental studies, including flood forecasting, drought monitoring,
and watershed hydrological research [4], [5], [6], [7].

Acquiring high spatial and temporal resolution precipitation
data remains a significant challenge despite its importance [8].
Precipitation, as a complex natural phenomenon, exhibits con-
siderable variability in both time and space [9]. Typically, pre-
cipitation data can be sourced from rain gauges, satellite quanti-
tative precipitation estimates, radar precipitation estimates, and
model forecasts or reanalysis products [10], [11]. Traditional
methods for obtaining spatially continuous and accurate precip-
itation data rely primarily on the spatial interpolation of rain
gauge data [12], such as inverse distance weighting (IDW) [13]
and kriging interpolation methods. Due to the limited number of
rain gauges, the precipitation measured at one site is often used to
represent an area of tens to hundreds of square kilometers, which
may not be accurate, especially in alpine mountainous regions
[14]. The limited number and spatial distribution of rain gauges
introduce substantial uncertainty in the interpolation results [15].
Additionally, considering the spatial heterogeneity of precipita-
tion, using point values to represent large-scale precipitation is
often inaccurate [16].

Alternatively, satellite precipitation data, such as those from
the global precipitation climatology project, global satellite
mapping of precipitation, tropical rainfall measuring mission
(TRMM), and global precipitation measurement (GPM) product
datasets, have gained popularity in scientific research due to
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Fig. 1. Location of Songhua River Basin and the rain gauges in and around
the study area.

their wide spatial coverage and ease of acquisition [17], [18],
[19], [20]. However, the quality of satellite precipitation data
is challenged by inversion algorithms, terrain complexity, and
sensor sensitivity, which lead to uncertainties in data accuracy
[21]. Moreover, the spatial resolution of satellite products is
often too coarse for local watershed hydrological modeling and
meteorological research [22]. To address these issues, spatial
downscaling and calibration procedures are essential before
applying satellite precipitation data in hydrological and mete-
orological models [23], [24], [25].

Relevant studies have shown that the precipitation down-
scaling calibration scheme of extreme gradient boosting (XG-
Boost_DC), which integrates rain gauge data, can enhance the
spatial resolution and accuracy of satellite precipitation ex-
tremes and capture some small-scale heavy rainfall processes
[26]. Additionally, researchers have proposed an attention-based
convolutional network for spatial precipitation downscaling and
a geointelligent deep belief network for surface precipitation-
satellite fusion, achieving promising results in China [27].

Traditional statistical downscaling methods, including ex-
ponential regression, multiple linear regression, random forest
models, and artificial neural network models, assume spatial
constancy in the relationship between precipitation and envi-
ronmental variables, overlooking the spatial heterogeneity and
scale-dependent nature of this relationship [28], [29], [30]. GWR
model has emerged as a preferred method, considering spatial
and temporal variability in precipitation relationships [6], [31].
Several studies have highlighted the efficacy of GWR in han-
dling spatial heterogeneity and temporal diversity, outperform-
ing other downscaling methods [22], [31].

In this context, this study investigates the complex spatial
relationships between IMERG precipitation data and various
environmental factors, including digital elevation model (DEM),
slope, soil moisture, and land surface temperature (LST). A

12843

geographically weighted regression kernel (GWRK) model was
developed by employing rain gauge observations and satellite
precipitation data. Monthly scale IMERG precipitation data
are downscaled from the original 0.1° to a finer 1 km. The
high-resolution daily precipitation estimates are obtained using
the monthly fraction method. The downscaling process is cali-
brated and validated using the geographical difference analysis
(GDA) method, augmented with rain gauge data to produce
high-resolution, accurate daily precipitation maps covering the
Songhua River basin between 2001 and 2020.

The rest of this article is organized as follows. Section II
analyzes the geographical and climatic conditions of the study
area. Section III introduces the various datasets and rain gauge
data used in the research. Section IV introduces the methods
and model principles adopted in the study. In Section V, the
downscaling and calibration results at different time scales are
analyzed. In Section VI, we discuss the application of the GWRK
model, sources of uncertainty in the model, and directions for
future downscaling research. Finally, Section VII concludes this
article.

II. STUDY AREA

The study area, the Songhua River basin, as shown in Fig. 1,
situated in the northern part of Northeast China, stands as the
largest tributary of the Heilongjiang River in China. Encom-
passing geographical coordinates between 41°42'-51°38'N and
119°52'-132°31'E, the expansive Songhua River Basin covers
an area of 557 825 km?2, constituting 30.2% of the total Hei-
longjiang River Basin [32]. The basin boasts diverse landform
features, with the Wanda Mountains to the east, the Changbai
Mountains to the southeast, and mountainous and hilly terrain in
the southwest, delineating the watershed of the Songhua River
and Liaohe River basins. To the west and north, the Greater
and Lesser Khingan Mountains, respectively, contribute to the
basin’s topography [33]. The central Songnen Plain, charac-
terized by its rich population concentration and agricultural
productivity, features numerous lakes and wetlands.

The Songhua River Basin experiences a north temperate mon-
soon climate, marked by warm and rainy summers, cold and dry
winters, and notable temperature variations throughout the year
[34]. The annual average temperature ranges between 3 and 5 °C,
with July recording the highest temperatures, reaching a daily
average of 20-25 °C and occasionally exceeding 40 °C. Con-
versely, January exhibits the lowest temperatures, with monthly
averages dropping below —20 °C [35]. The basin receives an
annual average precipitation of approximately 500 mm, varying
across the region, with the southeastern mountainous areas
receiving 700-900 mm and the relatively arid western region
registering around 400 mm [36].

Known for its intricate water system, the Songhua River Basin
is endowed with abundant water resources, boasting an annual
runoff of 76.2 billion m®. This unique combination of geo-
graphical features and climatic conditions makes the Songhua
River Basin an ideal focus for the investigation into precipitation
patterns through the application of the GWRK model and rain
gauge data, as shown in Fig. 1.
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III. MATERIAL

A. GPM_IMERG Data

The GPM mission, an international satellite network launched
on 28 February 2014, provides cutting-edge global precipitation
data, building upon the TRMM [37]. Equipped with the first
spaceborne Ku/Ka Doppler dual-frequency precipitation radar
and multichannel GPM microwave imager, this satellite, jointly
developed by NASA and the Japan Aerospace Exploration
Agency [38], significantly enhances precipitation detection ca-
pabilities [39]. Compared with TRMM data, GPM data demon-
strate improved measurement capabilities for light rain, solid
precipitation, and precipitation particles, showcasing superior
performance [40], [41]. Monthly precipitation data in this study
are derived from GPM-3IMERGM precipitation data with a
spatial resolution of 0.1°, available publicly.'

B. Environment Variable Data

The 90-m resolution DEM data utilized originate from the
Shuttle Radar Topography Mission Project, sponsored by the
National Geospatial-Intelligence Agency and NASA. Slope
data, created using ArcGIS 10.5 based on DEM data, com-
plement this dataset. MOD11A2 LST data, acquired from the
NASA Land Processes Distributed Activity Archive Center
Data, cover the period 2001-2020, presenting eight-day intervals
aggregated into monthly averages. Soil moisture data, a 1 km
high-quality dataset within China, rely on the China Meteoro-
logical Administration’s (CMA) ten-layer soil moisture observa-
tions. Additional covariates, including ERAS5_Land time-series
data, leaf area index, and land cover type, obtained through
machine learning, contribute to the dataset. These datasets, avail-
able on the space—time tripolar environmental big data platform?
[42], [43], undergo resampling from 90 m and 1 km to 0.1°,
aligning with the IMERG data resolution.

C. Rain Gauge Data

Long-term monthly precipitation data derive from the daily
rainfall data of 70 CMA rainfall stations.® Daily precipita-
tion data accumulate from 20:00 P.M. on the previous day to
20:00 P.M. on the current day, Beijing time, spanning the years
2001-2020. Among these, 50 stations contribute to calibra-
tion, while 20 stations serve for validation. The selection of
verification and calibration stations involves sorting based on
station serial numbers. Verification stations are chosen at regular
intervals, ensuring comprehensive coverage across the study
area for more effective precipitation data calibration results.
Statistical results indicate an average rainfall of 565.5 mm from
2001 to 2020, with 2020 being the wettest year at 722.2 mm and
2001 the driest at 408.3 mm. The geographical distribution of
basin sites is illustrated in Fig. 1.

!Online]. Available: https://pmm.nasa.gov/data-access/downloads/gpm
2[Online]. Available: https://doi.org/10.11888/Terre.tpdc.272415
3[Online]. Available: http://data.cma.cn
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Fig.2. Flowchartillustrating the integrated downscaling process, merging rain
gauge data with the GWRK model, employed to generate high-resolution (1 km
x 1 km) precipitation data in the context of this study.

IV. METHODS

This study comprises two main phases.

Monthly Scale Processing and Analysis: In this initial phase,
a GWR model is developed, incorporating four geographic and
environmental factors to facilitate precipitation downscaling.
Geographic factors, such as the DEM and slope, along with
environmental factors, such as LST and soil moisture data, are
resampled to the original resolution of the IMERG data (0.1°).
Simultaneously, coarse-resolution environmental factors and
precipitation data are transformed into monthly datasets. Uti-
lizing these datasets, the GWR model generates fine-resolution
monthly precipitation data (1 km). The model produces resid-
uals at coarse resolution, necessitating kriging interpolation to
map these residuals to the downscaled resolution. The resulting
interpolated residual map is then combined with the regression
prediction map, yielding the final GWRK downscaling outcome.

Daily Processing: In the second phase, precipitation data
undergo further processing at the daily scale. The GDA method
is applied to calibrate daily precipitation data in conjunction
with calibration site data. Subsequently, the quality of the daily
calibration data is evaluated using verification sites. This process
concludes with the acquisition of the final daily downscaled
precipitation dataset for the Songhua River Basin.

Fig. 2 illustrates the flowchart of the integrated downscaling
process, showcasing the combination of rain gauges with the
GWRK model to generate high-resolution (1 km x 1 km)
precipitation data in the present study.
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A. GWRK Model

GWR is a local regression model first proposed by Brunsdon
et al. [44]. Since it assumes that regression coefficients vary
with geographical location, it has been widely used to study the
dynamic and scale-dependent characteristics between predictors
and explanatory factors [45], [46]. Precipitation is one of the
most typical research indicators in meteorological research,
and its spatial heterogeneity is its most important feature [47].
Therefore, the geographically weighted regression model can
perform better in precipitation downscaling [48]. The model is
expressed as follows:

n

I

Y BO u]7U.] U],U] XZJ+€_] (1)

where (u;, vj) is the latitude and longitude coordinates of the jth
point; By (u;, vj) is the intercept at point j, which is the estimated
value of the local constant term; j;(u;,vy) is the regression
coefficient at point j, which is the local estimate of the coefficient
of each variable; €; is the residual at point j, which represents
the difference between the jth observed value and the predicted
value of the dependent variable; Y; is the jth dependent variable
(satellite precipitation) observations; X;; is the ith explanatory
variable at location j; n is the number of explanatory variables
(elevation, slope, LST, and soil moisture)

B (ujv;) = (XT (W (uy,0)) X) " XTW (uj,0))Y ()
where 3(u;, v;) represents the local coefficient to be estimated
at position (uj,v;); X and Y are the vectors of explanatory
variables and dependent variables, respectively; and W (u;, v;)
is the weight matrix. This is the main step in building a GWR
model and greatly affects the final accuracy of the model [49].
Currently, there are several methods that can be used to de-
termine the weight matrix [50]. In this research, the Gaussian
function was selected to determine the weight

Wij = exp (~(dij/)°) &)

where W;; is the weight of the observation at position j used
to estimate the coefficient at position i; d;; is the Euclidean
distance between i and j; and b is the basis width of the kernel
function. In order to reduce the computational cost, the Gaussian
function defined above can be replaced by a bisquare function.
Most verification methods for the basis width of kernel functions
use the modified Akaike information criterion (AICc).

n+tr (S)
n2tr(5)> @

where n is the number of the sample size, & is the estimate of
the standard deviation of the residuals, and #7(S) represents the
trace of the hat matrix.

For the GWRK method, the ordinary kriging (OK) method
needs to be used to interpolate the residuals in GWR to the target
resolution (1 km), and the interpolated residual map is added to
the regression prediction map to obtain the GWRK map.

AICc = 2nln (6) +nln (27) +n<
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B. Daily Fraction Method

The daily fraction method is based on the fact that the daily
fraction is more accurate than the absolute value of the uncali-
brated raw GPM precipitation data, and subsequent experiments
also verified this assumption [2], [22]. The expression of the
daily fraction method is given as follows:

OriGPM{-!*
> OriGPMY-!

GPMaaily = ( ) GPM;E;E}LGWRK- (%)

Among them, OriGPM?1" represents the original daily pre-
cipitation of the ith day; n represents the corresponding number
of days in the month; and GPM!K™ ... represents the cor-
responding monthly precipitation after GWRK downscaling. It
should be noted that the spatial scale of the precipitation fraction
obtained based on the daily fraction method is 0.1° and needs to
be interpolated to 1 km. The interpolated precipitation fraction
is multiplied by the downscaled monthly precipitation to obtain
high-resolution daily precipitation estimates.

C. Geographical Difference Analysis

In order to further improve the accuracy of downscaled pre-
cipitation data, this study also uses GDA combined with rain
gauge data to further calibrate the downscaled data [51], [52].
The formula is given as follows:

1 km
down

n

Pcal ( ) Z Pops 177 Pdlo]\;/nr: ( Z)) (6)
where Pcal(z) is the final calibrated precipitation at target point
x; PLXM(z,) is the downscaled precipitation value at location
x5 Pops(x;) is the precipitation observed by the rain gauge at
location x;; and n is the number of observations near the target
point x used in the interpolation. 6; is the weight at position
x;, and the estimated variance is minimized by constraints on
the weights. In addition, the residual between the observed
precipitation at the target point and the reduced precipitation
needs to be interpolated to 1 km using the OK method, and then
fused with the downscaled data to obtain the final calibration
downscaled data.

D. Validation

Monthly GPM-IMERG precipitation estimates were down-
sized for the period 2001-2020. The downscaled precipitation
estimates were calibrated and evaluated using ground observa-
tion data from 70 weather stations. Four statistical indicators
were selected for validation: correlation coefficient (CC), mean
error (ME), and root-mean-square error (RMSE). CC represents
the strength of correlation between surface observations and
precipitation estimates. ME is used to evaluate the accuracy
of forecasts or models, which represents the average value
of the difference between the observed and predicted values.
RMSE represents the size of the error estimate. Their calculation
formula is given as follows:

S (M —
VI (M -

M) (P, — P)
M)*(P, - P)

CC =

(N
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TABLE I
QUALITY OF RAW SATELLITE PRECIPITATION DATA AT DAILY AND MONTHLY
SCALES IN THE SONGHUA RIVER BASIN FROM 2001 TO 2020

CC RMSE ME

Monthly 0.952 20.302 6.985

Daily 0.733 4.077 0.229

1 n
ME = — P, — M, 8
TR ©
iy (P — M)’
n

where M; and P; are the observed precipitation and estimated
precipitation at the ith weather station location, respectively; M
and P represent the mean values of M; and P;, respectively; and

n is the number of weather stations used for verification.

V. RESULT
A. Data Accuracy of Raw GPM Satellite Precipitation Data

The efficacy of the GWR model hinges significantly on the
quality of the original resolution precipitation data [22], [48].
Thus, prior to downscaling, an assessment of the satellite pre-
cipitation data’s quality is imperative. In this study, precipitation
data at both monthly and daily scales for the Songhua River
Basin from 2001 to 2020 were downscaled and calibrated. The
basin is equipped with 70 rain gauges, and satellite data were
acquired by aggregating half-hour raw satellite readings based
on Beijing time. The table below illustrates the quality analysis
of the raw satellite precipitation data.

For the daily scale data, CC, ME, and RMSE are 0.733, 0.229,
and 4.077, respectively. For the monthly scale data, CC, ME,
and RMSE are 0.952, 6.985, and 20.302 (see Table I). The ME
value indicates a general overestimation of precipitation in the
basin by the original IMERG data. Despite this, considering
the overall quality of the original precipitation data, this study
asserts that the GPM satellite data meet the requisite standards
for precipitation downscaling using the GWRK model.

B. Quality Correlation Analysis of Environmental
Explanatory Variables

In this study, DEM, slope, soil moisture, and LST serve
as auxiliary variables for constructing the GWRK model. As
DEM and slope exhibit minimal variation over the study period,
the analysis focuses solely on soil moisture and LST quality.
Initially, the accuracy of LST data is verified by comparing
it with data from 70 meteorological observation stations and
processed MODIS LST data. Subsequently, correlations among
LST, soil moisture, and raw satellite precipitation are analyzed,
and the results are presented in Fig. 3.

As can be observed that the MODIS LST data exhibit good
quality, with a CC value of 0.664 against the ground mea-
surement data. Moreover, the CC diagram illustrates strong
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Fig. 4.  Scatter plot after downscaling of monthly precipitation data.

correlations among LST, soil moisture data, and original satellite
precipitation data. Throughout the study period, the CC values
of LST, soil moisture, and original satellite precipitation in the
Songhua River Basin were 0.670 and 0.628, respectively.

Based on the accuracy of the environmental variables and
their correlation with precipitation, this study contends that the
construction of a GWRK model will yield improved downscaled
precipitation results.

C. Analysis of GWRK Model Precipitation Downscaling
Results

The GWRK downscaling model, designed to elucidate the
spatial heterogeneity relationship between environmental vari-
ables and precipitation, has yielded promising outcomes. This is
exemplified by the findings, as presented in Fig. 4 and Table II.

Compared with raw precipitation data, the GWRK model has
enhanced the accuracy of precipitation data while mitigating
RMSE and ME. The downscaled precipitation data exhibit re-
fined spatial distribution characteristics at a resolution of 1 km.
Following downscaling, the CC of monthly precipitation data
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TABLE II
ACCURACY ANALYSIS BEFORE AND AFTER DOWNSCALING OF MONTHLY
PRECIPITATION DATA

CC RMSE ME
Monthly Raw 0.952 20.302 6.985
Monthly Down 0.966 15.592 -1.315
1@ Bz o) _ z] @ B
] Z ] '

f
B
H“——{ (0

Fig.5. Boxplots of statistical indicators of downscaled daily precipitation data
from 70 rain gauge stations. (a) CC. (b) RMSE. (¢) ME.

TABLE III
ACCURACY ANALYSIS BEFORE AND AFTER DOWNSCALING OF DAILY
PRECIPITATION DATA

CcC RMSE ME
Daily Raw 0.733 4.077 0.229
Daily Down 0.772 3.562 -0.012

increased from 0.952 to 0.966, with ME and RMSE decreasing
from 6.985 and 20.302 to —1.315 and 15.592, as listed in
Table I, respectively. This supports our hypothesis regarding the
downscaling effect based on the correlation between explanatory
variables and precipitation.

Further comparison with the original data quality reveals an
improvement in the quality of satellite data to some extent. Sub-
sequently, we employ the daily fraction decomposition method
to disaggregate the downscaled monthly precipitation data to the
daily scale, evaluating the GWRK model’s downscaling efficacy
[2].

Fig. 5 depicts the quality of decomposed daily precipitation
data. Relative to the original daily precipitation data, the CC
of the monthly precipitation data increased from 0.733 to 0.772,
with ME and RMSE decreasing from 0.229 and 4.077 to —0.012
and 3.562, as listed in Table III, respectively. These results
indicate the GWRK model’s efficacy in handling daily precipita-
tion data as well. However, slight overestimation persists in the
downscaling results compared with rain gauge data. Given this,
our next step involves integrating rain gauge data to calibrate the
daily precipitation data [24].

D. Calibration of Downscaling Results From Fused Rain
Gauge Data

The construction of the GWRK downscaling model yielded
favorable outcomes on both the monthly and daily scales. How-
ever, to address the disparity between satellite precipitation
products and actual precipitation, the fusion of rain gauge data
with downscaled precipitation data becomes imperative. Out of
the 70 available rain gauges, 50 are selected for the calibration
group, while the remaining 20 constitute the verification group.
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Fig. 6. Radar plots of CC, ME, and RMSE of the observed, downscaled, and
calibrated daily precipitation.

TABLE IV
ACCURACY ANALYSIS BEFORE AND AFTER CALIBRATION OF DAILY
PRECIPITATION DATA

CcC RMSE ME
Daily Down 0.772 3.562 -0.012
Daily Cal 0.818 3.188 0.086

Selection of the verification group follows a rule of sorting
rain gauges by site number and choosing at regular intervals,
ensuring a spatially even distribution of sites in both validation
and calibration groups. Given the vastness of the Songhua River
basin and the absence of precipitation in some station areas, this
study employs GDA in conjunction with the IDW method to
integrate the downscaling results and rain gauge data, as shown
in Fig. 6.

The results underscore that the calibration process of fused
rain gauge data significantly enhances the accuracy of the down-
scaling outcomes. In comparison with the downscaling results,
the CC of the calibrated daily data increased from 0.772 to 0.818
(see Table I'V), while the ME and RMSE reduced from —0.012
and 3.562 to 0.086 and 3.188, respectively. These findings
emphasize the necessity of further calibration processing of
the downscaling results through the integration of rain gauge
data.

E. Analysis of Spatial and Temporal Distribution of
Precipitation in the Songhua River Basin

The spatial pattern of GWR downscaled monthly average
precipitation in the Songhua River Basin, spanning from 2001
to 2020, is illustrated in Fig. 7. Notably, the maximum monthly
average precipitation occurs in August, while the minimum
is observed in January. Spatially, precipitation increases from
northwest to southeast, with concentration in the eastern and
southern regions of the basin. This distribution aligns with
seasonal patterns, as higher altitude central and northern areas re-
ceive less precipitation compared with the lower altitude south-
eastern regions. The western region, despite its lower altitude,
experiences reduced precipitation due to water vapor blockage
by the Great Khingan along the east coast. In addition, by
comparing the precipitation data before and after downscaling,
it can be clearly found that the downscaled data not only have
higher data accuracy but also have higher spatial resolution,
which can describe the spatial changes of local precipitation
in more detail.
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Fig. 7. Spatial distribution of average monthly precipitation in the Songhua

River Basin from 2001 to 2020. (a) Represents the original satellite data.
(b) Represents the downscaled satellite data.

The spatial and temporal changes in annual average precipita-
tion in the Songhua River Basin are illustrated in Fig. 8. Overall,
the basin experiences an increasing trend in annual precipitation
without any significant areas of decline. Spatially, the average
annual precipitation slope gradually rises from the central re-
gion toward both ends, with the increasing trend diminishing
from south to north. Temporally, there is a consistent increase
in the average annual precipitation, with an annual increment
of 10.98 mm/year, reaching an average of 564.95 mm. Com-
pared with the original satellite precipitation data, the multiyear
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change trend of the downscaled precipitation data is obviously
more consistent with the rain gauge data (see Fig. 9).

VI. DISCUSSIONS

A. Applicability of the GWRK Precipitation Downscaling
Model

Traditional approaches to downscale satellite precipitation
datasets often assume a spatially constant relationship between
precipitation and environmental variables [5], [53]. In contrast,
the GWRK model, as employed in this study, considers the
spatial heterogeneity relationship between precipitation and
various auxiliary variables, showcasing superior performance
across diverse regions [24], [54], [55]. Our findings demonstrate
that the GWRK downscaling model effectively reduces IMERG
monthly scale satellite data from 0.1° to 1 km resolution, con-
currently enhancing data quality.

A range of spatial auxiliary variables, including DEM, slope,
aspect, NDVI, latitude, and longitude, has been utilized in the
GWRK downscaling model by other researchers [8], [28]. In



ZHANG et al.: DOWNSCALING AND CALIBRATION ANALYSIS OF PRECIPITATION DATA IN THE SONGHUA RIVER BASIN

Standard Deviation (mm)

Fig. 10.  Taylor plots of original daily precipitation data, downscaled precipi-
tation data, and calibrated downscaled data from 2001 to 2020. “Observation”
denotes the rain gauge data.

this study, we comprehensively considered the impact of topo-
graphic conditions and environmental factors in the study area,
selecting DEM, slope, LST, and soil moisture as spatial auxiliary
variables. NDVI was omitted due to concerns about potential
linear redundancy and a lag in the spatiotemporal relationship
between NDVI and precipitation. Prior to model construction,
quality verification and correlation analyses were conducted
on the chosen auxiliary variables, all of which exhibited close
spatiotemporal correlation with precipitation. This careful se-
lection of environmental variables significantly influenced the
satisfactory downscaling results.

Furthermore, the integration of the daily fraction method and
the GDA method yielded high-quality daily data based on the
downscaled high-precision data, as presented in Fig. 10, further
validating the application potential of the GWRK model.

At the same time, comparing the downscaling and calibration
results obtained by the GWRK model with other latest precip-
itation downscaling research methods, the method proposed in
this study is still satisfactory. Compared with the transfer deep
learning method applied to the Yangtze River Basin in China
(CC = 0.715, downscaling to 1 km, daily time scale to 2013)
[56], the final downscaled precipitation results provided by the
GWRK model have higher data accuracy and the same space
resolution and longer time series (CC = 0.818, downscaling
to 1 km, daily time scale 2001-2020). Four precipitation down-
scaling models based on deep learning, including support vector
regression, random forest, spatial random forest, and extreme
gradient boosting, have been applied in Guangdong, southern
China, and have achieved excellent results. The optimal value
of the final downscaling result of average annual precipitation
is CC = 0.95, which is obtained by the SVR_GDA (support
vector regression downscaling calibration) method [57]. The
precipitation downscaling method proposed in this study has
a determination coefficient of R?> = 0.932 on the monthly scale.
However, considering the variations in climate and terrain across
different regions, the differences in satellite data sources and
downscaling methods used, as well as the sparse distribution
of rain gauges, we cannot simply rely on the data quality of
the final results to judge the effectiveness of the downscaling
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methods. Similarly, we can also learn more diverse downscaling
methods from the above-mentioned related research articles so
that we can choose a more suitable method for our own research
according to our actual research needs.

Compared with the above studies, this study selected soil
moisture, which is less used in the current study, as one of
the downscaling spatial auxiliary variables. After analysis, it
was found that soil moisture and precipitation have a strong
correlation, which also proves the rationality of studying spa-
tial auxiliary variables. In addition, this study obtained long
time-series (20 years) daily high-quality (CC = 0.818) 1 km
precipitation data in the study area. The resolution and data
quality are significantly improved compared with the original
data. At the same time, the data can also be processed into
products of different time scales according to different needs,
and combined with relevant data, conduct multiscale drought
and flood research on the study area. This also reflects the strong
application potential of downscaled data in hydrometeorological
research.

B. Model Uncertainty and Error Sources

While the precipitation downscaling model based on GWRK
offers high-quality long-series precipitation data products at
daily and monthly scales, inherent uncertainties persist through-
out the downscaling process, potentially influencing the quality
of the final precipitation products.

First, satellite-derived precipitation estimates inherently carry
spatially varying errors stemming from terrain characteristics,
inversion algorithms, and insufficient sensitivity between elec-
tromagnetic signals and clouds [58], [59]. Original satellite data
may exhibit varying degrees of precipitation overestimation
or underestimation in different regions and seasons, thereby
impacting the GWRK precipitation downscaling model’s ability
to achieve higher quality predictions.

Moreover, the selection of environmental variables presents
an opportunity for further optimization. Additional environ-
mental variables, such as land use type, coastline distance,
cloud properties, wind speed, and roughness, may influence the
spatial distribution of precipitation and potentially enhance the
accuracy of precipitation downscaling [22], [24].

Finally, systematic errors and uncertainties in rain gauge mea-
surements contribute to potential inaccuracies. Instrument mea-
surement errors, including insufficient recording of wind speed
effects, wetting losses, evaporation losses, and underestimation
of precipitation, are prevalent [60], [61], [62]. Particularly in
high-altitude areas, such errors are more pronounced [63]. Sit-
uated in the northernmost region of China (41°N-51°N), the
Songhua River Basin experiences an annual average temperature
of 3-5 °C, with temperatures below —20 °C in January. These
harsh conditions amplify the systematic measurement errors of
rain gauges in the basin.

C. Research Prospects

Future endeavors to enhance the downscaling performance of
satellite precipitation data can explore the following avenues:
First, investigating precipitation data downscaling through the
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use of multielement satellite data fusion methods should be
considered to address challenges related to the inherent data
quality of satellite data itself [24]. Second, the current focus on
constructing GWRK precipitation downscaling models primar-
ily at annual and monthly scales could be extended. There is
potential to develop GWRK models at finer time resolutions,
such as ten-day, daily, or even hourly scales. Exploring the
application of GWRK or alternative downscaling methods at
these finer time scales will better align with the requirements
of relevant scientific research [64], [65]. Finally, investigating
novel downscaling algorithms, such as artificial neural networks,
and integrating multiple downscaling models can contribute to
obtaining more accurate and reliable high spatial resolution
precipitation data [66].

VII. CONCLUSION

This study developed a monthly scale GWRK precipitation
downscaling model in the Songhua River Basin. Utilizing the
correlation between environmental variables, i.e., DEM, slope,
LST, soil moisture, and precipitation, the model downscaled
precipitation data from 0.1° to 1 km spatial resolution. Subse-
quently, the monthly scale data underwent decomposition into
daily scale data through the daily fraction method and GDA
method, with the integration of rain gauge data for calibration
and verification of the daily scale data. Ultimately, long-term
high-quality daily data were obtained. This methodology was
applied to examine spatiotemporal changes in monthly and daily
precipitation in the Songhua River Basin from 2001 to 2020.

The research findings indicate that the GWRK precipitation
downscaling model yielded favorable outcomes owing to the
strong correlation between spatial auxiliary variables and precip-
itation. The CC value of the downscaled monthly precipitation
dataincreased to 0.966, arise of 1.4%. Furthermore, high-quality
monthly scale data were transformed to the daily scale (1 km)
through the original satellite data’s daily fraction scaling. The
CC value of the downscaled daily precipitation data reached
0.772, a 3.9% improvement compared with the original daily
data. To further enhance data quality, rain gauge data integration
was conducted using the GDA method to calibrate and verify
the downscaled daily data. The final results demonstrated that
data calibrated by integrating rain gauge data achieved optimal
downscaling results (CC = 0.818, RMSE = 3.188, and ME =
0.086).

Additionally, spatiotemporal analysis of annual-scale precip-
itation revealed a noticeable upward trend in the Songhua River
Basin during the study period (2001-2020). This trend gradually
intensified from the Greater Khingan Range toward the east and
west.

In summary, the proposed GWRK precipitation downscaling
model, integrating precipitation with environmental variables of
DEM, slope, LST, and soil moisture, exhibits robust applicability
in the Songhua River Basin.
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