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A Novel Strategy for Constructing Ecological Index
of Tea Plantations Integrating Remote Sensing

and Environmental Data
Yilin Mao , He Li , Yu Wang, Yang Xu, Kai Fan, Jiazhi Shen, Xiao Han, Qingping Ma, Hongtao Shi ,

Caihong Bi, Yunlai Feng, Zhaotang Ding , and Litao Sun

Abstract—The structure of plant communities and their response
to temperature variations are an essential basis for evaluating
the ecological structure and function of tea plantations. However,
field surveys and quantitative evaluation of plant communities
and ecotea plantations remain challenging. In this study, a novel
strategy was proposed for rapid surveillance of plant community
structure and its response to changes in weather conditions in tea
plantations. This strategy aims to construct the normalized tea
plantation ecological index (NTEI) by synergizing environmental
parameters with multisource remote sensing data; establish the
fitting and inversion model of NTEI by cascading the Fourier
function with the convolutional neural networks gate recurrent unit
(CNN-GRU) network; and evaluate the variability of the plant com-
munity in tea plantations by analyzing the variation characteristics
of the NTEI and the measured temperature. The study revealed the
following: First, the NTEI can objectively characterize the plant
communities of tea plantations, and its variation characteristics
were consistent with the changes in vegetation phenology and tem-
perature; second, the Fourier function has the potential to quantify
NTEI, and it is fitting R2 for the NTEI of nine plant communities
ranged from 0.840 to 0.921; third, the CNN-GRU has the most
advantage in establishing the prediction model of NTEI, and its
prediction accuracy was Rp2 = 0.955 and RMSEP = 0.314; and
fourth, the plant communities with high species richness increased
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regional ecological stability, had a strong buffering capacity against
temperature changes, and had less variability in NTEI. The results
provide significant guidance for building plant community struc-
tures and improving the ecological benefits of tea plantations.

Index Terms—Convolutional neural networks gate recurrent
unit (CNN-GRU), ecological tea plantation, environmental para-
meters, multisource remote sensing, plant community, UAV.

I. INTRODUCTION

ECOLOGICAL tea plantation is a composite ecosystem
paradigm with the tea plant (Camellia sinensis (L.) O.

Kuntze.) as the main species, which is in line with the biological
characteristics of the tea plant that is fond of temperature and
humidity, and suitable for scattered light, and at the same time
follows the natural law of ecological balance [1]. In the specific
ecosystem of a tea plantation, the ecological status is a complex
and multidimensional system that encompasses environmental
factors, such as air humiture, soil temperature and moisture, and
illumination, while also incorporating biological factors, such as
biodiversity and plant community structure, and emphasizing the
dynamic balance among them. In order to maintain this balance,
people have constructed ecological tea plantations with different
plant community structures based on the generic pattern of
ecological tea plantations and their own subjective ideas [2]. It is
expected that this measure will effectively alleviate the adverse
effects of high or low temperatures and droughts on tea plants in
the North Yangtze District of China. However, the ecological sta-
tus of these tea plantations is difficult to measure quantitatively,
which affects the standardization of ecological tea plantation
construction. How to reveal the differences in the community
structure of different tea plantations and their influence on the
stability of tea plantation ecosystems has become an important
issue to be solved at this stage.

The plant community structure and its response to weather
conditions change is an essential basis for monitoring and eval-
uating the ecological structure and functions of tea plantations.
The traditional methods of monitoring and evaluating vegetation
usually involve direct observations of key indicators, such as
plant type, crown width, plant height, and leaf area, through
field surveys. This field survey method, while able to provide
researchers with intuitive and detailed data support, also has
limitations in practical operations, such as requiring a great
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Fig. 1. Data collection, processing, and analyzing process of this study.

deal of manpower and material resources, as well as consuming
a considerable amount of time when conducting large-scale
investigations [3].

Remote sensing technology, with its efficient, unbiased, and
dynamic quantitative monitoring characteristics, has gradually
become the most effective and practical method for regional or
global ecological evaluation [4], [5]. Currently, scholars from
various countries have utilized remote sensing indices based
on satellite data to monitor changes in large-scale ecosystems,
including individual indices, such as global water index based
on Landsat [6], normalized difference vegetation index (NDVI)
[7], and enhanced vegetation index (EVI) [8] based on MODIS,
as well as composite indices, such as remote sensing based eco-
logical index (RSEI) [9] and ecological risk index [10] based on
Landsat. However, due to the low spatial and temporal resolution
of satellite remote sensing data, these indices are often only
applicable to ecosystems, such as forests and cities, making it
difficult to adequately reflect the ecological status of small-scale
plantations, especially in evaluating the impact of multiple plant
communities on ecosystems [11], [12]. The data collected by
UAVs, characterized by high precision and high resolution,
provide a new opportunity for refined ecological monitoring
of tea plantations. In recent years, the significant advantages
of UAVs in the monitoring of tea plantation ecosystems have
been demonstrated by our team. On the one hand, their high
maneuverability and flexibility enable the UAV to quickly cover
a wide area of tea plantations, thus enabling the monitoring of the
growth conditions of tea plants and intercrops [13]. On the other
hand, the multispectral (MS) and visible light sensors carried by
the UAV can capture multidimensional information about the
tea plantations, including key parameters, such as the health of
the tea plants and the quality of the tea leaves. This information
is crucial for accurately assessing the status of tea plantations
and optimizing tea plantation management strategies [14], [15].

Meanwhile, environmental data are also crucial for ecological
monitoring. More and more scholars have combined continuous
observation data from meteorological stations, with remote sens-
ing data for ecological evaluation research. For example, Zhong
et al. [16] investigated the response of vegetation to drought

using multiple remote sensing and meteorological indicators
from 48 states in the United States; Leng et al. [17] developed
a practical method for all-weather soil moisture acquisition
by combining optical/thermal infrared (TIR) information from
satellite images and gridded meteorological products. Recently,
in the direction of synergizing environmental data and spec-
tral data, our laboratory has also made some explorations. By
synergizing meteorological station data (temperature, humidity,
and illuminance) and hyperspectral data, and combining them
with deep learning algorithms, a dynamic model of tea seedling
growth was established [18]. Previous study has synergized and
analyzed heterogeneous data from multiple sources and realized
the monitoring of agronomic parameters of tea plants. This lays
the foundation for this work to synergize environmental and
remote sensing data in order to probe the ecological status of
tea plantations.

Based on the above analysis, in this work, a deep learning
network was used to conduct collaborative research on envi-
ronmental data and multisource remote sensing data, and a
“Space–Earth” integrated monitoring mode was established, in
order to realize timely, accurate, and continuous monitoring of
the ecological status of tea plantations. The graphical abstract
is shown in Fig. 1. The experimental site was in the Chunxi
Tea Plantation in Shandong Province, China, of which nine
plant communities were selected for the study. Temperature,
humidity, and illuminance data were obtained continuously by
using the environmental monitoring system of the meteorolog-
ical station, and MS, visible (RGB), and TIR data by using the
multisource remote sensing system of the UAV; a normalized
tea plantation ecological index (NTEI) was constructed for
monitoring the ecological status of tea plantations; and NTEI
fitting model based on Fourier function and NTEI prediction
model based on convolution neural network (CNN), gate re-
current unit (GRU), CNN-GRU, and support vector machine
(SVM) were established. In addition, during periods of acute
fluctuations in air temperature, the responses of the maximum
and minimum temperature in different plant communities, as
well as the variability and fluctuation of their NTEIs, were
compared. The effects of diverse plant communities on the
ecological stability of tea plantations were explored. This study
is the first to synergistically process and analyze temperature,
humidity, and illumination data, as well as the remote sensing
index. Then, the Fourier model and machine learning model are
cascaded and coupled to fit and predict the NTEI values, thereby
determining the vegetation phenological changes and ecological
status of tea plantations. This provides an objective, rapid, and
effective new strategy for plant community monitoring of tea
plantations, which has great significance as a guide to carrying
out the construction of plant communities and the enhancement
of ecological benefits in northern tea plantations.

II. MATERIALS AND METHODS

A. Experimental Area

1) Overview of the Experimental Area: The experimental
area was Chunxi Tea Plantation [see Fig. 2(a)] (117.45°E,
35.11°N), located in Linyi City, Shandong Province, China,
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Fig. 2. Location of the experimental area and the plant communities.
(a) Labeled locations of the Chunxi Tea Plantation, Shandong Province, China.
(b) Marked locations of the nine plant communities. (c) Displayed details of the
nine plant communities.

which belongs to the North Yangtze District of China. The
climate of the area is a temperate continental monsoon climate,
which is characterized by four distinctive seasons. Summer is
warm and humid, and disasters weather, such as floods, high
temperatures, and droughts, are more frequent; Winter is cold
and dry, and catastrophic weather, such as cold snaps and late
frosts, can occur from time-to-time. From August 2022 to Au-
gust 2023, the average annual temperature was 9 °C, with an
extreme annual high temperature of 38 °C and an extreme annual
low temperature of −11 °C; and the total rainfall was 824.1 mm.

The Chunxi Tea Plantation occupies a total area of 155
acres, with an elevation of 483 m and a terraced terrain. It is
an artificial composite tea plantation ecosystem, which is the
product of the combination of natural geography and artificial
transformation. There are a large number of plant species in
the tea plantation. Besides the main crop, the tea plant, the
dominant species include neem (Melia azedarach L.), paper
mulberry (Broussonetia papyrifera L.), mulberry (Morus alba
L.), mugwort (Artemisia argyi H.), and horseweed (Erigeron
canadensis L.). The later artificial plantings also comprise lateral
oriental arborvitae (Platycladus orientalis L.), hazelnut (Corylus
heterophylla Fisch.), honeysuckle (Lonicera japonica Thunb.),
vetch (Vicia sepium L.), and so on.

2) Characterization of Plant Communities: To characterize
the distribution and structure of plant communities in the tea
plantation, a UAV was first used for field surveys to locate dif-
ferent plant cover densities, which were combined with ground

Fig. 3. Data acquisition. (a) Research data sources. (b) Meteorological station
monitoring system. (c) UAV multisource remote sensing system.

observations. The nine different kinds of plant communities
were selected as the basic types of plant communities for the
research of Chunxi Tea Plantation. Finally, according to the
survey routes, the nine plant communities were numbered as
NO.1, NO.2, …, and NO.9 [see Fig. 2(b) and (c)].

The field investigation was carried out during the vigorous
growth period of plants (May–August 2022 and May–August
2023). Each plant community was located using the global
positioning system and the sample methods (5 m × 5 m) were
used to comprehensively survey the basic characteristics of the
nine plant communities, including species name, abundance, and
height. The basic vegetation characteristics of the nine plant
communities are shown in Table I.

Based on the species abundance and community α-diversity
(Simpson index), the nine plant communities were classi-
fied into three categories. Category 1 (C1): NO.1, NO.6,
and NO.8, 0≤Richness<4, 0≤Simpson<0.4. Category 2 (C2):
NO.2, NO.3, and NO.9, 4≤Richness<7, 0.4≤Simpson<0.7.
Category 3 (C3): NO.4, NO.5, and NO.7, 8≤Richness<10,
0.7≤Simpson<1.0.

B. Data Acquisition

The research data in this article were mainly divided into
two parts (see Fig. 3). One part was the environmental sensing
data generated by multiple sensors in the meteorological station
monitoring system. It included air temperature and humidity,
soil temperature and humidity, and illuminance. It was primarily
used to characterize the weather conditions change and stability
of the tea plantation ecosystem. The other part was multisource
remote sensing data collected by low-altitude UAV, including
MS, RGB, and TIR data. It was mainly used to characterize the
vegetation and ecological status of tea plantations.
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TABLE I
VEGETATION CHARACTERISTICS OF THE NINE PLANT COMMUNITIES

1) Acquisition of Environmental Data: The environmental
monitoring system [see Fig. 3(b)] of the meteorological station
(Kerun Information Technology Co., Ltd., Shandong, China)
was utilized to obtain the environmental data. The meteorologi-
cal station in the tea plantation was installed on 9 August 2022,
and consists of three main components.

i) Perception layer: It mainly consisted of temperature, hu-
midity, and illumination sensors, which were installed in the
center of each plant community. The temperature and humidity
sensors were installed in four layers, including 100 cm above
ground (100 cm), 0 cm above ground (0 cm), 20 cm below

ground (−20 cm), and 40 cm below ground (−40 cm); and
illuminance sensors were installed one layer at 100 cm above
ground. These sensors were powered by solar energy and had
a data acquisition cycle of every 30 min, capable of accumu-
lating 48 data points (24 h × 60 min/h/30 min/times = 48)
every day.

ii) Network layer: It was mainly responsible for receiving the
data recorded by the sensors and transmitting them to servers
through 4G networks.

iii) Application layer: It mainly implemented the query and
processing of sensor data, and finally realized data viewing and
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TABLE II
BAND PARAMETERS AND CHARACTERISTICS OF MS600 PRO

sharing in the form of webpage1 and WeChat applet (Farmer’s
Treasure).

In order to make the data suitable for the analysis in this
work, all raw environmental data from 9 August 2022 to 30
September 2023 were exported to Excel, a total of 418 days.
Subsequently, the average, maximum, and minimum values of
the 48 data points for each day were calculated, which will be
utilized for further analysis.

2) Acquisition of Remote Sensing Data: The low-altitude
UAV platform [see Fig. 3(c)] was utilized to acquire multisource
and multitemporal remote sensing data. The UAV flight platform
was a DJI Matrice M300 RTK (DJI Co., Ltd., Shenzhen, China),
equipped with a dual cloud platform carrying the MS600 Pro
(Yusense Co., Ltd., Qingdao, China) and the Zenmuse H20T
(DJI Co., Ltd., Shenzhen, China).

The MS600 Pro is a customized MS sensor for acquiring MS
data in six bands. The specific bands and their characteristics
are shown in Table II. The MS sensor has a complementary
metal–oxide–semiconductor (CMOS) sensor with a target size
of 1/3". The pixels are 1.2 million, the shutter type is global, the
field of view is 49.5°×38.1° (horizontal × vertical), the capture
mode is overlapping rate triggered (forward: 80% and lateral:
70%), and the image format is TIFF. In this study, the effect
of light on MS data acquisition was reduced by standard gray
plate calibration and downlink light sensor (DLS) correction,
which ensured the authenticity of feature spectral reflectance.
Before each flight, images of the standard gray plate were taken
and were used in the radiation calibration process of MS data in
the later stage. During the flight, the DLS mounted horizontally
on top of the UAV synchronously measured the ambient light
corresponding to the six bands and recorded it in the metadata of
the captured images, which was used to automatically calibrate
the light changes.

The Zenmuse H20T is equipped with a visible light sensor
and a thermal imaging sensor for obtaining RGB and TIR
data, respectively. The RGB sensor has a CMOS sensor with
a target size of 1/1.7". The pixels are 20 million, the shutter
type is rolling, the field of view is 66.6° (Display), the shooting
mode is timed trigger (2 s), and the image format is JEPG. The
type of thermal imaging sensor is an uncooled vanadium oxide
microbolometer. The resolution is 640×512, the field of view is
40.6° (Display), the capture mode is timed triggered (2 s), and
the image format is R-JEPG.

1[Online]. Available: https://kr.miots.cn/login

In order to mitigate the adverse effects of weather conditions
on remote sensing data, the on-site UAV operation was carried
out in sunny weather with good light conditions and low wind
speed. The flight time was 11:00–14:00 noon, the flight altitude
was 30 m, and the flight speed was 2.5 m/s. The specific flight
dates were 11 June (x1, indicating the number of days the test was
conducted, with this date as the first day), 24 June, 9 August, 28
September, and 14 November in 2022, and 14 January, 1 March,
15 April, 25 May, 11 August, 30 August, and 27 September in
2023. A total of 12 flight tests were conducted with intervals
of 13d, 46d, 50d, 47d, 61d, 46d, 45d, 40d, 78d, 19d, and 28d,
respectively.

C. Data Analysis

1) Extraction of Remote Sensing Variables: In order to make
the remote sensing data suitable for further processing and anal-
ysis, the raw MS, RGB, and TIR images were first preprocessed
using Yusense Map (V1.0) software. Through the processes of
band alignment, radiometric calibration, and image stitching,
the original and single MS images were output as a complete
MS image of the experimental area. Through processes, such
as camera parameter generation and temperature normalization,
the original RGB and TIR images were output as RGB and TIR
images of the study area. After that, spectral information, struc-
tural information, and temperature information were extracted
from the MS, RGB, and TIR images, respectively.

Extraction of spectral information: In the remote sensing pro-
cessing software ENVI (V5.3) (Research System, Inc., Amer-
ica), the mean spectral reflectance of each community was
extracted from the MS images using the region of interest (ROI)
tool. The mean spectral reflectance was obtained by calculating
the average value of the spectral reflectance of all pixels within
the ROI in each band. Then, referring to the existing research
results [19], 15 common vegetation indices were calculated
according to the formulae, as listed in Table III. Therefore, the
initial spectral information dataset of this study consists of 6+15
= 21 variables.

Extraction of structural information: In the ENVI (V5.3),
three-channel texture information was extracted from the RGB
image for each community using the cooccurrence measures
tool. The texture information type was an 8-D grayscale cooc-
currence matrix, including mean (Mean), variance (Var), homo-
geneity (Hom), contrast (Con), disparity (Dis), entropy (Ent),
second-order moment (SM), and correlation (Cor) [31]. There-
fore, the initial structural information dataset for this study
consists of 3 × 8 = 24 variables.

Extraction of temperature information: In the DJI thermal
analysis tool (V3.0) (DJI Co., Ltd., China) software, the maxi-
mum temperature (Max), the minimum temperature (Min), and
the average temperature (AVG) of each community were ex-
tracted from the TIR images using the rectangular thermometry
tool. Therefore, the initial temperature information dataset for
this study consisted of three variables.

2) Construction and Fitting of NTEIs: Construction of NTEI:
To better characterize the stability of ecological tea plantations,
remote sensing variables that were sensitive to changes in the

https://kr.miots.cn/login
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TABLE III
FULL TITLE AND CALCULATION FORMULA OF 15 VEGETATION INDICES

microclimate of plant communities were identified. The corre-
lations of 21 spectral, 24 structural, and 3 temperature variables
with the environmental data (air humiture, soil humiture, and
illuminance) of the tea plantations were analyzed with the SPSS
software. Using principal component analysis (PCA), remote
sensing variables highly correlated with temperature, humidity,
and illumination were constructed into NTEI sensitive to the eco-
logical status of tea plantations. Based on the methods mentioned
in the previous articles of the research group, the raw data were
first standardized and then subjected to PCA [32]. Specifically, in
SPSS software, the “dimensionality reduction” tool was utilized
to perform principal component operations to determine the ini-
tial eigenvalues [including eigenvalue (λ), variance contribution
(VC) rate, and cumulative variance contribution (CVC) rate]
and loading coefficients (LCs) of each principal component.
Then, the first n principal components, whose eigenvalues are
greater than 1, were selected and used in the construction of
the NTEI. Next, the linear combination coefficients (LCCs) and
composite score coefficients (CSCs) were calculated using (1)
and (2), respectively. Finally, the calculation formula for NTEI
was obtained based on the percentage method. The simplified
expression of NTEI is presented in (3)

LCCij =
LCij√

λj

(1)

CSCi =

n∑
i=1

LCC × VC
CVC

(2)

NTEI =
m∑
i=1

CSCi∑m
i=1 CSCi

× Xi. (3)

In (1), LCij is the loading coefficient of the jth principal com-
ponent and ith indicator, and λi is the eigenvalue of jth. In (2), n is
the number of principal components involved in the construction

of NTEI. In (3), Xi is the ith remote sensing variable, and m is
the number of remote sensing variables participating in PCA.

Fitting of NTEI variation curves: The Fourier fitting function
is a very effective analytical method for dealing with periodic
data. In order to reconstruct the NTEI data of a continuous time
series, the Fourier function was used to fit the NTEI with a
periodic regularity and to quantify the variation curve of the
NTEI (operating environment: MATLAB 2020). The initial date
of the NTEI quantization curve was 11 June 2022, and the end
date was 30 September 2023, for a total of 477 days. To enhance
the computational efficiency, in this study, the selected Fourier
expansion level was 1, and its fitting function was expressed as
follows:

f (x) = a0 + a cos (wx) + bsin (wx) . (4)

In (4), x is the number of days from the initial date of the
experiment (e.g., 11 June 2022, x = 1), and a0, a, b, and w are
the constants.

The sum of squares due to error (SSE), coefficient of de-
termination (R2), degree-of-freedom adjusted R2 (Adj.R2), and
root-mean-square error (RMSE) were chosen to evaluate the
effectiveness of Fourier’s fit to the NTEI. Among them, SSE
and RMSE were smaller and closer to 0, showing the stronger
performance of the model. R2 and Adj.R2 were larger and closer
to 1, indicating a better fitting of the data. Their specific formulae
were given as follows:

SSE =
n∑

i=1

(yi − ŷi)
2 (5)

R2 = 1−
∑n

i=1 (yi − ŷi)
2∑n

i=1 (yi − ȳ)2
(6)
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Fig. 4. CNN-GRU network architecture. Conv: convolution; BN: batch nor-
malization; ELU: exponential linear unit (activation function); and FC: fully
connected.

Adj. R2 = 1−
(
1−R2

)
(n− 1)

n− p− 1
(7)

RMSE =

√∑n
i=1 (yi − ŷi)

2

n
. (8)

In (5)–(8), n is the number of NTEI data, yi is the true value of
NTEI, ŷi is the fitted value of NTEI, ȳ is the average true value
of NTEI, and p is the number of features.

3) Prediction of NTEIs: In order to synergize the environ-
mental data with the remote sensing data, regression models
were developed between the environmental data of different
communities and their NTEI data to predict future NTEI. NTEI
data from 9 August 2022 to 30 September 2023 were selected, for
a total of 418 days. They were used in the NTEI modeling process
to better match environmental data. Therefore, in this study,
the NTEI dataset and the humiture and illumination dataset for
the nine plant communities contained 418 × 9 = 3762 data.
Simultaneously, according to the 3:1 rule, the total dataset was
divided into a training set (2821 samples) and a testing set (941
samples), which were utilized for the training and testing of the
NTEI regression model, respectively. In order to synergize the
environmental data with the remote sensing data, a regression
model was developed between the environmental data and NTEI
data of different plant communities using a hybrid CNN-GRU
network to predict NTEI (operating environment: MATLAB
2020). The structure of the hybrid CNN-GRU network is shown
in Fig. 4, which includes a CNN network with strong feature ex-
traction capability and a GRU network that is good at exploiting
time-series data. In addition, to further validate the performance
of the CNN-GRU, several regression models were built using
CNN, GRU, and SVM, and the results were compared with those
of CNN-GRU. The specific parameters of CNN-GRU, CNN,
GRU, and SVM networks are shown in Table IV.

Six metrics were selected to evaluate the predictive effec-
tiveness of the model for NTEI. These include RMSE (7) for
validation (RMSECV), calibration (RMSEC), and prediction
(RMSEP), and R2 (5) for calibration (Rc2) and prediction (Rp2).
Among them, the smaller the RMSECV, RMSEC, and RMSEP,
the larger the Rc2 and Rp2, indicating better performance of the
model.

TABLE IV
MAIN PARAMETERS OF THE CNN-GRU, CNN, GRU, AND SVM MODELS

III. RESULTS

A. Analysis of Temperatures at the Center Site of Different
Plant Communities

1) Spatiotemporal Variations in Temperature of Three Plant
Community Categories: Temperature is a key factor affecting
vegetation phenology. In order to investigate the temporal
and spatial variation patterns of temperature at different plant
communities, the interannual variation curves of daily mean
temperature at the 100, 0, −20, and −40 cm layers of three
plant community categories were plotted from 9 August 2022
to 30 September 2023 [see Fig. 5(a)]. It can be seen that the
temperature varies significantly with the change of seasons,
with the lowest peak of temperature occurring in winter. In
winter, the −20 and −40 cm layers of C1, C2, and C3 were
consistently above 0 °C, while the 100 cm layer was frequently
below 0 °C. The difference was that the temperature of the 0 cm
layer of C1 was close to or below 0 °C, whereas the temperature
of the 0 cm layer of C2 and C3 was able to maintain above
0 °C all the time. As a result, C2 and C3 were responsible for
providing relatively high-temperature conditions for the tea
plant during the severe winter.
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Fig. 5. Response of three categories of plant communities to temperature
changes. (a) Interannual variation curves of temperature at different layers.
(b) 0 cm max/min temperature response to external high/low temperatures.

Fig. 6. Variations of humidity and illuminance at different layers of three
categories of plant communities. (a) Interannual variation curves of humidity
at different layers. (b) Interannual variation curves of illuminance at different
layers.

The four-layer temperatures of the three categories of plant
communities generally showed a decreasing and then increasing
trend, fluctuating within the range of −10 °C–33 °C. Specif-
ically, the magnitude of change in air temperature at 100 cm
was significantly higher than the variation in soil temperature
at 0, −20, and −40 cm. In soil temperature, the deeper the
soil, the smaller the variation. The temperatures at 0 cm were
relatively more variable, while the temperatures at −40 cm were
the least variable. For example, at the lowest peak of winter
temperatures, the temperature at 0 cm was relatively lowest,
close to 0 °C; the temperature at −20 cm was next highest;
and the temperature at −40 cm was relatively highest. This was
because the temperature at 0 cm was strongly influenced by air
temperature, while temperature transfer in the soil was slower.
Therefore, the closer to the surface, the lower the temperature.

Additionally, the interannual variation curves of humidity and
illuminance for different categories of plant communities are
shown in Fig. 6.

2) Response of Three Categories of Plant Community Tem-
peratures to Extreme Temperatures: For evaluating the re-
sponse of different plant community categories to extreme

Fig. 7. Pearson correlation coefficients among MS, RGB, and TIR variables
and temperature, humidity, and illumination (L). Explanation: orange, red, and
blue fonts indicate MS, TIR, and RGB variables with high correlation with
environmental data, respectively.

temperatures, special attention was paid to four time peri-
ods of drastic temperature changes. Summer high-temperature
phases: 11/08/2022–18/08/2022 and 20/06/2023–27/06/2023;
and winter low-temperature phases: 28/11/2022–05/12/2023
and 11/03/2023–18/03/2023. The maximum (Max-) and min-
imum (Min-) temperature variations in the 0 cm of the C1,
C2, and C3 plant communities were analyzed [see Fig. 5(b)].
It can be noticed that, during the high-temperature phase, the
temperature of C1 was always higher than that of C2 and C3,
and C2 and C3 exhibited a good buffering capacity. For instance,
for the maximum temperature on 15 August 2022, C2 and C3
were 0.4 °C and 2.7 °C lower than C1, respectively. During the
low-temperature phase, the temperature of C1 was always lower
than that of C2 and C3, and C2 and C3 exhibited good thermal
insulation. For example, for the minimum temperature on 1
December 2022, C2 and C3 were 0.9 °C and 1.5 °C higher than
C1, respectively. Overall, compared with C1, the rich vegetation
of C2 and C3 created a localized climatic environment with
warmer winters and cooler summers for the tea plant. The C2
and C3 had favorable stability to maintain lower temperatures
during summer warming and higher temperatures during winter
cooling.

B. Construction and Fitting of NTEIs

1) Correlation Analysis of Remote Sensing Variables and
Environmental Data: A total of 48 remote sensing variables
were obtained from MS, RGB, and TIR images. To determine
the remote sensing variables that were sensitive to environmental
changes, the correlations between the 48 remote sensing vari-
ables and the temperature, humidity, and illumination data of the
plant community were analyzed. The Pearson correlation coeffi-
cient matrix is shown in Fig. 7. The results demonstrated that the
correlation between remote sensing variables and temperature
data was higher than that with illuminance and humidity data.
The correlation between illuminance data and MS variables was
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TABLE V
EIGENVALUES AND VCS OF CORRELATION MATRICES OF REMOTE SENSING

VARIABLES

higher; and the correlation between temperature and humidity
data and TIR variables was higher, followed by MS variables
and RGB variables. For TIR variables, Min and AVG showed a
high correlation with temperature and humidity. The correlation
coefficient of Min with 100 cm temperature was as high as
0.942. For MS variables, NDVI, green-normalized difference
vegetation index (GNDVI), red-edge NDVI (RENDVI), opti-
mization of soil-adjusted vegetation index (OSAVI), red-edge
chlorophyll index (RECI), ratio vegetation index (RVI), and
simple ratio (SR) vegetation index exhibited a higher correlation
with temperature, humidity, and illuminance. Especially, the cor-
relation with temperature data was stronger, with correlation co-
efficients greater than 0.530. For RGB variables, blue correlation
(BCor), green correlation (GCor), and red correlation (RCor)
displayed higher correlations with temperature and humidity.
Similarly, they showed a higher correlation with temperature
data compared with humidity and illuminance data. Therefore,
12 remote sensing variables highly correlated with temperature,
humidity, and illumination data were selected to participate in
the construction of the NTEI, including TIR variables (Min and
AVG), MS variables (NDVI, GNDVI, RENDVI, OSAVI, RECI,
RVI, and SR), and RGB variables (BCor, GCor, and RCor).

2) Construction of NTEI Based on Highly Correlated Remote
Sensing Variables: In order to comprehensively analyze the
stability of different plant communities in response to weather
conditions change, 12 remote sensing variables were assembled
into NTEI using PCA. To avoid the weight imbalance caused
by dimensional inconsistency, the 12 remote sensing variables
were first standardized before the PCA operation. Subsequently,
PCA operations were performed (see Tables V and VI). The data
in Table V indicated that the eigenvalues (λ) of the first three
principal components (Y1, Y2, and Y3) were all greater than 1,
and their cumulative contribution was as high as 95.098%. The
Y1, Y2, and Y3 were able to respond to most of the information

TABLE VI
PRINCIPAL COMPONENT LOADINGS FOR 12 REMOTE SENSING VARIABLES

of the 12 remote sensing variables. Therefore, Y1, Y2, and Y3

were utilized to construct NTEI.
Based on the data in Tables V and VI, the LCC was calculated

using (1) to yield linear composite expressions for Y1, Y2, and
Y3

Y1 = 0.366X1 + 0.367X2 + 0.370X3 + 0.362X4 + 0.366X5

+ 0.351X6 + 0.355X7 + 0.003X8 + 0.016X9

− 0.007X10 + 0.195X11 + 0.205X12 (9)

Y2 = 0.009X1 + 0.032X2 − 0.006X3 + 0.053X4 − 0.002X5

+ 0.056X6 + 0.062X7 + 0.549X8 + 0.548X9

+ 0.546X10 − 0.267X11 − 0.133X12 (10)

Y3 = − 0.047X1 − 0.090X2 − 0.072X3 − 0.059X4

− 0.101X5 − 0.1524X6 − 0.197X7 + 0.163X8

+ 0.158X9 + 0.184X10 + 0.593X11 + 0.687X12.
(11)

After that, the CSC was calculated using (2) to obtain the
formula for the principal component (Y)

Y = 0.221X1 + 0.223X2 + 0.216X3 + 0.229X4 + 0.212X5

+ 0.214X6 + 0.213X7 + 0.174X8 + 0.181X9

+ 0.169X10 + 0.108X11 + 0.162X12. (12)

Finally, the percentage-based approach was normalized for
each coefficient of the Y-equation. The final equation for NTEI
was obtained as follows:

NTEI = 0.095X1 + 0.096X2 + 0.093X3 + 0.099X4

+ 0.091X5 + 0.092X6 + 0.092X7 + 0.075X8

+ 0.078X9 + 0.073X10 + 0.047X11 + 0.070X12.
(13)
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Fig. 8. Analysis of NTEI for three categories of plant communities.
(a) Temporal variation curves of NTEI. (b) Descriptive statistics of NTEI.
(c) Comparison of CV of NTEI.

C. NTEI Analysis of Different Categories of Plant
Communities

The characteristics of temporal variation in NTEI: In the
context of the NTEI formula, the theoretical value range of
NTEI is [−3, 9]. However, it is worth noting that this range
is not an absolute theoretical range, but a relative range. In
order to elucidate the ecological meaning of NTEI, the seasonal
variation characteristics of NTEI in different plant communities
were analyzed. Fig. 8 displays the variation curves of NTEI,
ranging from −0.890 to 6.526. From a temporal perspective, the
period from July to September of each year is observed to be at
the peak of the overall trend. For example, during the observation
on 30/08/2023, the NTEI values for C1, C2, and C3 were
4.906, 5.616, and 6.197, respectively, exhibiting a significant
decreasing trend. The period from January to February 2023
represented the low peak of the overall trend. At the lowest
point on 14/1/2023, the NTEI values for C1, C2, and C3 were
−0.259, 0.171, and 0.378, in which order again confirmed that
the NTEI value of C3 was higher than those of C2 and C1. This
phenomenon clearly indicates that communities with higher
coverage tend to have higher NTEI values. It is particularly
noteworthy that this trend of high and low peaks coincided with
the actual temperature variation curves in Fig. 5(a). For instance,
the reason for the lowest peak may be related to the winter
season, which leads to a decrease in air and soil temperatures,
a reduction in water vapor content, as well as a decline in the
coverage area of surface vegetation. Overall, the variation curve
of NTEI exhibited significant seasonality, gradually decreasing
with the transition from midsummer (June–September) to severe
winter (November–February), and increasing with the alterna-
tion of winter and summer, demonstrating a cyclical pattern of
change. More importantly, the performance of NTEI was close
to actual conditions, demonstrating significant interannual vari-
ations that are consistent with the actual phenological changes of
deciduous trees in the north. Therefore, the magnitude of NTEI
values indeed provides us with important information regarding
the degree of vegetation coverage. The higher the vegetation
coverage of the tea plantation community, the larger the NTEI
value; the lower the vegetation coverage of the tea plantation
community, the smaller the NTEI value.

The statistical analysis of NTEI: Fig. 8 illustrates the statistical
analysis of NTEI for three categories of plant communities,
including maximum value, minimum value, standard deviation,
and coefficient of variation (CV). The data showed that the CV
was 0.518, 0.461, and 0.458 for C1, C2, and C3, respectively.
The three plant communities were ranked in ascending order of
the CV: C3 < C2 < C1. The use of CV values for the plant
community helped to elucidate the extent and rate of change
in the data and to reflect the discrete and fluctuating the NTEI
distribution. If the vegetation characteristics and microclimate
of the plant community tend to be stable, then the fluctuation of
NTEI will be smaller and the CV value will be lower. On the
contrary, if the vegetation characteristics and microclimate of
the plant community change drastically, then the fluctuation of
NTEI will be greater and the CV value will be larger. Therefore,
among the three categories of plant communities, C3 was the
most stable and less susceptible to external factors.

The variability analysis of NTEI: To more intuitively identify
the differences between different time series and communities,
and to further validate the feasibility of NTEI in characterizing
plant community stability, the CV value was used to analyze
and interpret NTEI under different spatiotemporal conditions.
Specifically, the CV of NTEI for four remote sensing fly-testing
phases was analyzed. These four remote sensing fly-testing
phases were 09/08/2022–28/09/2022, 14/11/2022–14/01/2023,
01/03/2023–15/04/2023, and 25/05/2023–11/08/2023, which
encompassed the four time periods of drastic temperature
changes in Section III-A. Fig. 8 displayed the comparison re-
sults of the CV of the NTEI in the three categories of plant
communities, and it can be observed that C1 always has the
largest CV, followed by C2, while C3 always has the smallest
CV. This is consistent with the differences in the response
of the three categories of plant communities to extreme tem-
peratures [see Fig. 5(b)]. The results indicated that NTEI can
effectively characterize the buffering effect of plant communities
in tea plantations on temperature and the stability of vegetation
phenology. Furthermore, during the period from 25/05/2023
to 11/08/2023, the CV values of various communities were
particularly large (C1, 0.307; C2, 0.290; and C3, 0.252), in-
dicating significant differences between different communities.
Besides the inherent differences among different communities,
this may also be attributed to the fact that this period was in the
peak growth stage of plants. During this time, the phenotypic
changes of vegetation were obvious and significantly influenced
by external environmental factors. Therefore, this period serves
as an excellent phase for studying the diversity of plant commu-
nities in northern tea plantations.

D. Quantization of NTEI Curves

To compensate for the lack of remote sensing data during
the study period and to promote the application of remote
sensing data for multitemporal ecological analyses, the NTEI
data were fitted using the Fourier function (3). Table VII lists
the coefficients and fitting efficacies of the equations of the fitted
curves for the NTEI of the nine plant communities. The results
indicated that the trend of the NTEI fitted curve based on the
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TABLE VII
PARAMETERS OF NTEI FITTING CURVES FOR DIFFERENT PLANT COMMUNITIES

Fig. 9. Fitted curves for different plant communities. (a) NO.1. (b) NO.2.
(c) NO.3. (d) NO.4. (e) NO.5. (f) NO.6. (g) NO.7. (h) NO.8. (i) NO.9.

Fourier function was in accordance with the actual value and
could accurately fit the annual trend of NTEI. The R2 between
the fitted and actual NTEI values for the nine plant communities
was greater than 0.840, and the goodness of fit was as expected
from the research. Among them, the best fit to the NTEI data
was achieved for NO.8, with R2, Adj.R2, SSE, and RMSE of
0.921, 0.891, 3.149, and 0.627, respectively; and the worst fit
to the NTEI data was achieved for NO.5, with R2, Adj.R2, SSE,
and RMSE of 0.840, 0.780, 6.660, and 0.912, respectively. Fig. 9
shows the actual values and the fitted curves of the NTEI. Among
the nine fitted curves, the actual NTEI values at x60, x110, x309,
and x349 were closest to the fitted values, while the other dates
were somewhat overestimation or underestimation. Moreover,
the Fourier function is periodic, which fits well with the seasonal
cyclic variation pattern of the NTEI.

E. Modeling of NTEI Predictions

Due to the large volume of environmental data, environmental
data obtained after long-term monitoring in the form of external
factors can accurately reflect the dynamic characteristics of

TABLE VIII
PREDICTIVE PERFORMANCE OF CNN-GRU, CNN, GRU, AND SVM

vegetation growth variations. In this study, temperature, humid-
ity, and illuminance data were used as intermediate data, and
CNN-GRU, CNN, GRU, and SVM networks were utilized to
achieve synergistic transformation between environmental data
and NTEI data, and ultimately the prediction of NTEI data.
Table VIII lists the prediction performance of the models. The
data indicated that CNN-GRU, CNN, GRU, and SVM were able
to achieve the expected results in predicting NTEI (Rp2 >0.888).
Specifically, compared with the single model CNN, GRU, and
the machine learning model SVM, the CNN-GRU had the best
prediction accuracy, with Rp2 and RMSEP of 0.955 and 0.314,
respectively. Fig. 10 shows the scatter plot of the actual and
predicted values of NTEI. The black diagonal line indicated the
1:1 line, and the orange dashed line indicated the regression line
between the predicted values and the actual values. The predicted
values of NTEI have all been distributed around the regression
line at a closer distance, which indicates that the four models
have good robustness.

IV. DISCUSSION

A. Feasibility of NTEI Application for Ecological Monitoring
of Tea Plantations

Remote sensing technology is widely used in ecological
environment monitoring and evaluation by scholars in various
countries because of its macroscopic, real-time, rapid, dynamic,
and objective features [33]. With the prevalence of RSEI, it can
reasonably respond to the ecological status of a region, and has
been well applied to many regions [4], [34]. However, more and
more scholars have discussed that the ecological environments
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Fig. 10. Scatter plot of actual and predicted NTEI values. (a) CNN-GRU.
(b) CNN. (c) GRU. (d) SVM.

in different areas are regionally characterized and that relying
only on RSEI for ecological assessment is not very representa-
tive [35], [36], [37]. Therefore, it is necessary to improve or
establish new remote sensing indicators for specific regions.
From the perspective of sensor types, this work identified 12
remote sensing variables that are highly correlated with regional
environmental parameters to construct the NTEI. The NTEI
effectively integrated the effective information of spectral index,
texture features, and heat. The index’s indicator system took into
account the influence of multiple factors, such as temperature,
humidity, heat, vegetation, and soil, on the ecological status of
tea plantations, making it more suitable for ecological moni-
toring of tea plantations over long time periods and multiple
types. This overcame the limitations of the ecological status
evaluation method based on only one indicator, especially in
the comprehensive reaction to the overall status of complex
ecosystems [38]. In addition, the construction of NTEI was
coupled with the indicators through PCA, which avoided the
errors caused by artificially setting the weights and thresholds,
and made the results objective and stabilized. This process is the
same as the process of constructing RSEI by Xu [39].

The application of NTEI in the Chunxi Tea Plantation demon-
strated that the seasonal variations of NTEI were consistent
with the variations of temperature and vegetation phenology
characteristics (see Fig. 5). Consequently, the NTEI can be used
to delicately characterize the ecological condition of the tea
plantation and the regional environmental condition. The higher
the vegetation coverage, the larger the NTEI; and conversely, the
smaller the NTEI. The relevant results of this study proved that
the NTEI is a novel and powerful indicator that can be utilized
to quantify and monitor the ecological status of tea plantations

at small scales, and thereby facilitate the practical application of
monitoring the status of different ecological tea plantations.

However, it is worth noting that, in complex ecosystems,
changes in meteorological conditions (such as temperature and
humidity) often have a certain time-lag effect on remote sens-
ing variables, such as vegetation spectral characteristics [40].
Specifically, the overall low correlation (see Fig. 7) observed
in this study between remote sensing variables and tempera-
ture, humidity, and illumination data may be a manifestation
of this lag effect. Therefore, to gain a deeper insight into this
phenomenon, it is necessary to use the longer time series of basic
data to investigate the time-lag effect of remote sensing variables
in response to changes in weather conditions. Concurrently,
the new generation artificial intelligence technologies will be
employed to explore key features and optimize parameters, such
as time lag and sensitivity factors. This approach will enhance
the correlation between environmental parameters and remote
sensing variables, thereby ensuring the timely representation of
tea plantation ecological effectiveness by NTEI.

B. Plant Diversity Contributes to the Stability of Ecological
Tea Plantations

The vegetation is strongly related to the surrounding envi-
ronment and is very sensitive to changes in the ecological en-
vironment. The changes in the regional ecological environment
are often hypothesized according to the stability characteristics
of the vegetation itself and the regularity of response to the
changes in the external environment. The ecological variability
is measured by CV. The CV indicates the proportion of variation
around the mean value. The lower the stability, the higher this
value [41]. Tilman et al. [42], [43] studied biomass changes
in 207 grasslands with different levels of diversity and pointed
out that diversity promotes community stability (lower CV). In
this study, three plant communities with species richness levels
were set up, including C1, C2, and C3 (see Fig. 2). Based on the
NTEI to assess the ecological feasibility of the tea plantation,
the stability of the three plant communities was evaluated using
the CV values of the NTEI. The results revealed that the C3 with
higher vegetation density exhibited smaller fluctuations (lower
CV) (see Fig. 8). This suggested that plant diversity contributes
to the stability of ecosystems. This result is in accordance with
the conclusion obtained by Wu et al. [44] in their study on the
impact of diversity on stability based on NDVI.

Some studies, however, have also found a negative correlation
between ecological stability and plant diversity in certain envi-
ronments, especially in redundant states where species abun-
dance reaches saturation point [45]. Accordingly, in an effort
to more scientifically explore the relationship between plant
diversity and ecological stability in ecological tea plantations,
it is imperative to conduct investigations and studies in tea
plantations with more levels of diversity in the future. Finding
the saturation point where plant diversity increases ecosystem
stability and providing a theoretical basis for the scientific con-
struction of ecological tea plantations with high stability.
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C. Robustness of Hybrid Deep Learning Networks

With the advancement of machine learning, the research on
remote sensing image inversion has made rapid progress [46].
Traditional machine learning algorithms, such as SVM, PLS,
and RF, have been widely applied to agricultural remote sensing
parsing research [47], [48]. In recent years, deep learning has
become an emerging research direction in the field of machine
learning [49]. One of our recent studies has shown that the
CNN-GRU network exhibits a better fitting ability when dealing
with 160 data related to tea plant freeze damage, and the Rp2 of
the optimal model was 0.850 [19]. In exploring the performance
of hybrid networks, such as CNN-GRU and CNN-LSTM, Yu
et al. [50] proposed to further enrich the amount of data used
for model training and improve the accuracy of the models.
Furthermore, this study explored the robustness of hybrid deep
learning networks with respect to massive remote sensing data
by utilizing CNN-GRU. According to the prediction results of
NTEI, the CNN-GRU (Rp2 = 0.955) outperforms the indepen-
dent CNN, GRU model, and traditional SVM model in terms
of prediction accuracy (see Table VIII). This result suggested
that the combination of CNNs feature extraction capability and
GRUs temporal memory capability improved the predictive
performance of the model. This is attributed to the large training
sample (2821) of this study. In addition, Fourier functions are
characterized by universality and the fact that they work best in
describing periodic functions [51]. The Fourier function fitting
method was utilized to quantify daily NTEI data. This has made
an essential contribution to obtaining continuous time series of
NTEI data as well as large datasets.

V. CONCLUSION

Basis on full consideration of plant communities and weather
conditions’ characteristics, 12 remote sensing variables were se-
lected to construct NTEI, and the Fourier function was used to fit
the daily variation curves of the NTEI; finally, a prediction model
of NTEI based on the environmental data was constructed using
CNN-GRU, CNN, GRU, and SVM. The results indicated that
NTEI has the potential to monitor the ecology of tea plantations
and its variations in the case of the Chunxi Tea Plantation. The
main conclusions of this study are given as follows.

1) The NTEI enables a delicate characterization of the eco-
logical status of tea gardens, and its variation is consistent
with changes in temperature and vegetation phenology.

2) The Fourier function allows for the accurate quantification
of the daily variation in NTEI, with a fitted R2 above 0.840.

3) Compared with CNN, GRU, and SVM models, the CNN-
GRU is more appropriate for predicting long-term NTEI
and has the best prediction performance (Rp2 = 0.955 and
RMSEP = 0.314).

4) Plant diversity contributes to ecosystem stability, with
high-density C3 plant communities having the ability to
buffer high/low temperatures and C3 having the smallest
NTEI variance (C1’s CV = 0.518; C2’s CV = 0.461; C3’s
CV = 0.458).

The establishment and application of NTEI in the ecological
monitoring and assessment of Chunxi Tea Plantation demon-
strated the enormous potential of synergizing environmental
parameters with multisource remote sensing data, as well as
the significant advantages of cascade application of the Fourier
fitting model and NTEI-CNN-GRU model. This provides a novel
strategy for rapidly assessing the plant community of tea planta-
tions and a new idea for the scientific construction of ecological
tea plantations. In the future, on the one hand, tests should be
conducted in tea plantations with various complex structures and
environmental conditions to further validate the robustness and
generalizability of the NTEI-CNN-GRU model in evaluating the
ecological aspects of tea plantations. On the other hand, empha-
sis should be placed on acquiring and analyzing the ecological
indicators (biomass and quality) of tea plants and integrating
them with the NTEI model to further reveal the ecological value
of NTEI for the tea plantation. This will facilitate a deeper
understanding of the role of NTEI in the tea plantation ecosystem
and enhance the interpretability of the model.
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