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A Coarse-to-Fine Hierarchical Feature Learning
for SAR Automatic Target Recognition

With Limited Data
Yan Wen , Xihao Wang , Lihe Peng , and Yu Qiao

Abstract—With the rapid advancements in deep learning, Syn-
thetic Aperture Radar (SAR) Automatic Target Recognition (ATR)
has seen significant improvements in performance. However, the
effectiveness of even the most advanced deep-learning-based ATR
methods is limited by the scarcity of training samples. This chal-
lenge has sparked growing interest in SAR ATR under data-
constrained conditions in recent years. Most current approaches
for SAR ATR with limited data enhance recognition through data
augmentation, specialized modules, or contrastive learning-based
loss functions. However, effectively utilizing limited supervision
signals to identify key features remains a significant challenge
that existing methods have not thoroughly addressed. In our re-
search, we introduce a novel coarse-to-fine hierarchical feature
learning strategy for SAR ATR with limited data. Starting with
a feature extractor that produces multi-level features, we imple-
ment a coarse-to-fine gradual feature constraint to optimize each
level using limited supervision signals. This approach simplifies
parameter search and ensures effective feature utilization from
coarse to fine granularity. Additionally, our method enhances the
compactness within classes and the separability between classes
of features at various levels. This is achieved by capitalizing on the
consistency of features across multiple levels, thereby progressively
enhancing the features and, in turn, boosting the model’s overall
performance. To validate our approach, we conducted recognition
and comparative experiments on the MSTAR and OpenSARShip
datasets. The results demonstrate our method’s exceptional perfor-
mance in limited-sample recognition scenarios. Moreover, ablation
studies confirm the robustness of our approach, underscoring its
potential in addressing the challenges of SAR ATR with limited
data.

Index Terms—Automatic target recognition (ATR), coarse-to-
fine, hierarchical feature learning, synthetic aperture radar (SAR).
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I. INTRODUCTION

SYNTHETIC aperture radar (SAR), a pivotal microwave
remote sensing system, plays an essential role in both

military and civilian contexts [1], [2], [3]. Its implementation in
automatic target recognition (ATR) is fraught with challenges
but stands as a key element in SAR applications. Numerous
esteemed researchers have spearheaded diverse deep learning
strategies, leading to substantial advancements in SAR ATR
applications [4], [5], [6], [7], [8].

Yet, a common limitation in these algorithms is the need for
large amounts of labeled samples per target type for training, a
condition that’s difficult to meet in real-world applications [9],
[10], [11], [12], [13]. In certain scenarios, such as earthquake
and sea rescue operations, the volume of SAR images can be
sparse, causing potential shortcomings in existing SAR ATR
methodologies. As a result, attention has shifted towards ATR
methods that operate efficiently with limited SAR data [14], [15],
[16], [17], [18], [19]. The focus is on building robust classifiers
using minimal labeled SAR images.

The existing strategies for handling SAR ATR with limited
data are broadly classified into three main categories: data aug-
mentation, metric-based, and model-based methods [20], [21],
[22].

Data augmentation strategies play a critical role in overcom-
ing the challenges posed by sparse data in SAR ATR [4], [6],
[14], [23], [24]. These techniques focus on enhancing recogni-
tion performance by increasing both the number and variety of
training SAR images. A notable example is the work of Zheng
et al., who introduced a semisupervised SAR ATR method
utilizing a multidiscriminator generative adversarial network
(GAN). This approach achieved a remarkable recognition rate of
85.23% with a minimal dataset containing only 20 samples per
target [15]. Similarly, Gao et al. [25] proposed a semisupervised
GAN method with multiple generators, attaining an efficiency of
over 92% using approximately 40 samples for each target type.
These innovations highlight the effectiveness of data augmen-
tation in significantly enhancing SAR ATR performance, even
when dealing with limited data.

Metric-based approaches, in contrast to other methods, focus
on learning class representations that can effectively generalize
to new, unseen classes [18], [26], [27], [28], [29]. The primary
aim of these strategies is to develop more robust classification
systems. An example is the work of Wang et al. [30], who
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introduced a prototypical network. In this network, the classifier
is designed based on the Euclidean distance between training
samples and the prototype of each class. This distance-centric
approach ensures that the classifier is capable of accurately
identifying and categorizing novel samples. In a similar vein,
a distinct hard task mining technique has been applied to en-
hance meta-learning. This technique demonstrated significant
improvements, achieving absolute gains of 1.7% and 2.3% in
1-shot and 5-shot settings, respectively [31]. These metric-based
methods are proving to be effective in creating versatile and
generalizable class representations.

Model-based methods, the third category, harness prior
knowledge to construct the embedding space and regulate the
complexity of the model [19], [32], [33]. These approaches
prioritize incorporating domain knowledge and past experiences
into the model design. These model-based methods underscore
the value of incorporating prior knowledge and structural infor-
mation into the modeling process.

Despite these advancements, the key challenge in SAR ATR
with limited data is determining how to use rare supervisory
information to enable the model to identify effective recognition
features and achieve accurate identification. Generally, models
undergo an end-to-end training process, but the scarcity of data
often prevents the provision of sufficient supervisory informa-
tion. Consequently, it becomes challenging for the model to find
optimal hypotheses in the whole hypotheses space and extract
effective recognition features from SAR images. Therefore,
achieving precise recognition with limited SAR data in an ATR
model is quite difficult [27], [34], [35].

In this article, we introduce a novel coarse-to-fine hierarchical
feature learning approach for SAR ATR, specifically designed
to work with limited data. Our method effectively utilizes the
scarce supervisory signals available from limited samples and
progressively refines features at various levels, aligning with
the granularity of these features. Additionally, by leveraging the
consistency across different granularities of features as supple-
mentary supervisory input, our approach aids the model in nav-
igating towards the optimal hypothesis during training, thereby
enhancing the feature effectiveness. This strategy facilitates
accurate target identification even with a limited number of SAR
samples. More specifically, our approach begins by employing a
multistage feature extractor to obtain initial multilevel features
from limited SAR images, each representing different levels
of granularity. We then compute a multilayer deep supervisory
signal, which is derived from the consistency between features
of varying granularities. This computation includes two primary
components: the consistency loss in probability distribution and
the consistency loss in feature distribution. Throughout the train-
ing process, this multilayer deep supervisory signal is utilized to
progressively refine the features at each level, applying different
weights to different granularities. This methodology enables
precise recognition capabilities even with a constrained set of
SAR training data. The key contributions of our method can be
summarized as follows.

1) Our framework introduces an innovative approach to han-
dle the limited SAR training data challenge, focusing on
extracting highly discriminative features. This framework

is structured around hierarchical feature embedding, im-
plementing a coarse-to-fine gradual constraint mechanism
and a dual consistency constraint that targets features of
different granularities. This design is meticulously crafted
to amplify the effectiveness of feature extraction, even
with the limited availability of SAR data.

2) The core of our method lies in the coarse-to-fine gradual
feature constraint. This strategy prioritizes the extraction
of broader, more effective regions in SAR images initially,
before delving into the extraction of finer, more discrim-
inative features. Furthermore, we propose a consistency
constraint aimed at not only improving the compactness
within classes and the separability between classes at
different granularity levels but also ensuring uniformity
across features of various granularities.

3) Our approach demonstrates exceptional performance in
the recognition of MSTAR and OpenSARship datasets,
even with limited training data. The effectiveness of our
method is substantiated through rigorous verification,
showcasing its robustness and reliability in handling con-
strained SAR data scenarios. The detailed outcomes and
analyses of these verification processes, highlighting our
approach’s capabilities, are elaborated in the subsequent
sections of this article.

The rest of this article is organized as follows. Section II
provides an in-depth presentation of the proposed method.
Section III validates the effectiveness of our approach through
various experiments. Finally, Section IV concludes this article.

II. METHOD

In this section, the proposed method is introduced. First, we
elucidate the framework of our method. Then, the coarse-to-fine
gradual feature constraint is described in detail. The consistency
in features of different granularities is also presented.

A. Framework

The motivation behind the proposed method is to leverage
limited supervisory signals to progressively enhance the ef-
fectiveness of multilevel features in a coarse-to-fine manner.
Furthermore, the consistency across multilevel features serves
as additional prior information, further addressing the problem
of inadequate feature discriminability in small sample scenar-
ios. Given practical constraints, ATR methods often confront a
reduction in recognition performance with limited SAR data.

However, in real-world scenarios, there often exists knowl-
edge that can serve as prior information, which can help augment
the originally limited supervisory signals.

This can also enhance the utilization of limited supervisory
signals, thereby acquiring more discriminative recognition fea-
tures even with a small sample size. Hence, by exploring the
utilization of supervisory signals and effective prior information,
the recognition performance of the ATR method with limited
SAR data can be improved and achieve state-of-the-art perfor-
mance.

As shown in Fig. 1, our method can be divided into three
stages. First, a multilevel feature extractor is constructed. SAR
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Fig. 1. Whole framework of the proposed method. The proposed method uses the sparse supervisory signals from limited samples to iteratively optimize
multilevel features based on their granularity. It employs consistency across different feature granularities as extra guidance, assisting the model in finding the
optimal hypothesis during training and improving feature effectiveness. This leads to precise identification, even with limited SAR samples.

images are inputted and corresponding multilevel features are
obtained.

Second, the coarse-to-fine gradual feature constraint is pro-
posed to progressively enhance the effectiveness of the multi-
level features from coarse to fine in recognition, ensuring that
features at both coarse and fine levels have sufficient recognition
effectiveness.

Then, the consistency in features across different levels fur-
ther enhances the consistency of features at different levels,
working in conjunction with the progressive enhancement of
effectiveness of the coarse-to-fine gradual feature constraint. It
not only filters features at multiple levels, but also effectively
enhances the separability and compactness within classes of
features. Moreover, it limits the search range of the model’s
hypothesis space, making it easier for the model to find the
optimal hypothesis with small sample sizes. The pipeline of our
method can be formulated as follows.

Given the training SAR image datasets X = {x11, ..., xij ,
..., xCN}, C is the total class number, and N is the number of
SAR images for each class. xij is the jth SAR image of the ith
class, and yij is the corresponding class label.

First, the feature extractor is constructed to obtain the mul-
tilevel features Fij =

{
f1
ij , .., f

K
ij

}
from the input SAR image

xij . Here, fk
ij represents the features at the kth level of xij .

Then, the coarse-to-fine gradual feature constraint calculates the
recognition effectiveness of each level feature on the K levels
of features

{
L1
g, . . . , L

K
g

}
. By further proposing a progressive

optimization constraint for
{
L1
g, ..., L

K
g

}
and calculating the

final loss of features at K levels Lgc, it realizes the optimization
of single-layer features using the inadequate supervisory signals
provided by limited samples, and progressively enhances the
recognition effectiveness of features with the increase of feature
levels.

To maximize the efficacy of limited supervisory signals, our
method “consistency in features of different levels” calculates
the consistency measures for features at K levels, focusing on
both feature distribution and recognition probability distribu-
tion. This calculation results in an optimization loss, Lc. This
approach necessitates strong consistency between features at
adjacent levels, ensuring that recognition-effective features are
progressively enhanced through each layer. This strategy works
in tandem with the previously established progressively en-
hanced recognition effectiveness optimization loss, facilitating
better coordination of multilevel features for accurate recogni-
tion in scenarios with limited sample sizes.

The total loss of our method is formulated as

Ltotal = Lce + Lgc + Lc. (1)

In this equation, Lce represents the basic loss for recognition,
encompassing the foundational aspect of our loss function.

Our proposed method systematically augments the recogni-
tion effectiveness of multilevel features using the constrained
supervisory signals. This is achieved through the implementa-
tion of multilevel consistency constraints and progressive ef-
fectiveness constraints, which are critical for ensuring accurate
recognition in contexts characterized by small sample sizes. In
the subsequent sections, we delve into the intricacies of the
coarse-to-fine gradual feature constraint and the consistency in
features of different levels, providing a comprehensive overview
of these integral components of our methodology.

B. Coarse-to-Fine Gradual Feature Constraint

The coarse-to-fine gradual feature constrain aims to optimize
the features of K levels individually, using only limited super-
visory signals, so that the recognition effectiveness of features
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at K levels progressively increases with the enhancement of the
level.

Most previous methods used the same limited supervisory
signals to optimize the entire model simultaneously, making
it difficult to obtain ultimately effective recognition features.
This is because of the following. 1) The entire model has a
large number of parameters, corresponding to a large hypothesis
space, and limited supervisory signals find it hard to help the
model search for the optimal hypothesis. 2) The process of
feature extraction by the entire model gradually transitions from
coarse to fine levels. When limited supervisory signals are used
to optimize the entire model simultaneously, the optimization
of single-layer features is not controlled. This might lead to a
situation where a certain level of feature has high recognition
effectiveness, but the next level of feature has low recognition
effectiveness. These locally optimal parameters limit the overall
performance of the recognition model. Therefore, we propose
the coarse-to-fine gradual feature constraint to ensure the recog-
nition effectiveness of features at each level among the K levels
and a progressive effectiveness constraint to help the model
gradually learn effective recognition features. This not only
improves the way the model searches for optimal hypotheses in
the model’s hypothesis space, but also enhances the recognition
performance of the model.

The coarse-to-fine gradual feature constraint method is struc-
tured into two primary steps: 1) measurement of single-layer
recognition effectiveness; and 2) progressive constraint of recog-
nition effectiveness across K levels. The overarching structure
of our proposed approach is depicted in Fig. 1. The detailed
methodology is as follows.

We start with SAR image datasets X = {x11, . . . , xij ,
. . . , xCN} and extract the featuresFij =

{
f1
ij , . . . , f

K
ij

}
of each

image xij .
Step 1: Measurement of single-layer recognition effective-

ness. This step focuses on evaluating the effectiveness of
single-layer features in two dimensions: the distinction between
interclass features and the accuracy of recognition. Initially,
cosine similarity is employed to assess the similarity between
two sample features

d(xij , xmn) =
fk
ij · fk

mn

||fk
ij ||22||fk

mn||22
. (2)

Here, || · ||22 denotes L2 normalization. Subsequently, for a
given feature xij , we identify the most similar interclass sample
feature xn

ij and the least similar intraclass sample feature. The
separation degree of interclass features for xij is then calculated

Lskij = max
(
d
(
xk
ij , x

n
ij

)
+ θ − d

(
xij , x

p
ij

)
, 0
)
. (3)

In this equation, θ is a margin, a hyperparameter that defines
the desired level of feature separation. By measuring the cosine
similarity between pairs of features, we can effectively deter-
mine the most similar interclass and the least similar intraclass
features.

Therefore, the measurement of the degree of separation of
interclass features at the single layer can be calculated as follows:

Lsk = −
∑
j

∑
i

Lk
ij . (4)

In assessing the accuracy of single-layer feature recognition,
we employ the cross-entropy loss as a metric

Lk
ce = −

∑
i

∑
j

yij log
(
p
(
yij |fk

ij

))
. (5)

Here, p(yij |fk
ij) represents the probability of the feature fk

ij

being correctly classified into its corresponding class label yij .
To maintain consistency in classification across all granularity
levels, we utilize a shared-weight multilayer perceptron (MLP)
as the classifier. The overall effectiveness of the recognition
using single-layer features is quantified by

Lek = Lsk + Lk
ce. (6)

Step 2: Progressive recognition effectiveness constraint for
K levels. After calculating the recognition effectiveness of
single-layer features, we progressively constrain the features at
adjacent, gradually deepening levels. For features at level k − 1
and k, their progressive constraint is calculated as follows:

Lgk =

(
1− Lek−1 − Lek

Lek

)p

× Lek (7)

where p is the parameter to adjust the degree of progression.
Through the proposed coarse-to-fine gradual feature constraint,
we use limited supervisory signals to not only optimize the
features at each level, but also progressively constrain them layer
by layer, completing the progressive enhancement of feature
effectiveness. Next, the consistency of features at different levels
is described in detail.

C. Consistency in Features of Different Granularities

While the coarse-to-fine gradual feature constraint method
successfully enhances feature effectiveness incrementally, its
performance is limited due to the inadequacy of supervisory
signals. This limitation leads to a discrepancy in the features
extracted across different layers, resulting in the neglect or
loss of effectively extracted features, ultimately impacting the
overall performance of the recognition model. To address this,
we introduce the “consistency in features of different levels”
approach. This method aims to fortify the consistency among
features at various levels, diminish the disparity between these
features, and thereby augment the collaborative effectiveness of
multilevel features, which is crucial for accurate recognition in
small sample scenarios.

The “consistency in features of different levels” involves two
main steps: 1) measuring the consistency of features across
different levels; and 2) assessing the consistency of features at
K levels. The process, depicted in Fig. 1, unfolds as follows.

Starting with SAR image datasets X = {x11, . . . , xij , . . . ,
xCN} and the associated features Fij = {f1

ij , . . . , f
K
ij } for each

image xij :
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Step 1: We measure the consistency between features at
levels t and k for xij by unifying their scales using lightweight
convolution and then employing a mixed method to gauge their
similarity, calculated as

dc
(
fk
ij , f

t
ij

)
= d

(
fk
ij , f

t
ij

)
+

√(
fk
ij − f t

ij

)2
(8)

where d(fk
ij , f

k−1
ij ) represents the cosine similarity.

Step 2: For the consistency measurement of features at K
levels for xij , we compute

Lc(xij) =
∑
k

∑
t

k + |k − t|
k

p

dc
(
fk
ij , f

t
ij

)
(9)

where | · | computes the absolute value.
The final consistency measurement across K levels is thus

Lc =
∑
i

∑
j

Lc(xij). (10)

In addition, we use the cross-entropy loss as the basic recog-
nition loss

Lce = −
∑
i

∑
j

yij log (p (yij |xij)) . (11)

The Kth feature of xij post dense layer processing is utilized as
the final recognition feature for calculating Lce.

By employing these methods, our approach leverages lim-
ited supervisory signals to optimize and progressively constrain
features at K levels while enhancing consistency among level
features, effectively utilizing the limited supervisory signals.
Diverging from traditional overall optimization methods, our
approach to single-layer optimization increases the likelihood
of obtaining optimal features at each layer. The progressive
level constraints and consistency constraints collectively boost
feature effectiveness, enabling accurate recognition even with
limited sample sizes. The complete process is summarized in
Algorithm 1.

III. EXPERIMENTAL RESULTS

In the upcoming section, we will first introduce the dataset that
we have selected for our experimental evaluation. Subsequently,
to authenticate the efficacy of our proposed method, we will
conduct a series of performance assessments of the recognition
capability under a variety of sample number scenarios. These
tests will further illustrate the robustness and versatility of our
method under varying conditions.

A. Dataset and Network Setup

The moving and stationary target acquisition and recogni-
tion (MSTAR) dataset serves as a benchmark for evaluating
SAR ATR performance. Comprising SAR images of ten dis-
tinct ground target classes, each image in the dataset measures
0.3 m × 0.3 m. Fig. 2 displays optical images along with
corresponding SAR images for all ten target classes within the
MSTAR dataset. The training and testing data both feature the
same ten target classes, but differ in terms of depression angles.
While the training data were captured at a depression angle

Algorithm 1: Enhanced Recognition With Multilevel Fea-
ture Consistency.

Fig. 2. Optical images and corresponding SAR images of ten classes of objects
in the MSTAR database. (From left to right: BMP2, BTR70, T72, 2S1, BRDM2,
ZSU234, BTR60, D7, T62, and ZIL131.).

TABLE I
ORIGINAL NUMBER OF IMAGES FOR DIFFERENT DEPRESSION ANGLES FOR

SOC

of 17◦, the testing data were acquired at an angle of 15◦. The
distribution of training and testing images is detailed in Table I.

OpenSARShip is one key benchmark dataset in the field of
SAR ship recognition. The OpenSARShip dataset is specifically
designed to facilitate the development of advanced ship detec-
tion and classification algorithms that can perform under high
interference. The data comprising this dataset were collected
from 41 Sentinel-1 images under diverse environmental con-
ditions. The dataset encompasses a total of 11 346 ship chips
representing 17 types of SAR ships, which are combined with
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Fig. 3. SAR ship images and corresponding optical ship images of six classes
in the OpenSARShip dataset.

TABLE II
RECOGNITION ACCURACY (%) WITH DIFFERENT NUMBERS OF LABELED

IMAGES EACH CLASSES UNDER MSTAR

automatic identification system (AIS) information. The relia-
bility of the labels within this dataset stems from the fact that
they are based on AIS information [36]. In our experiments, we
utilized the ground range detected (GRD) data, which boasts a
resolution of 2.0m × 1.5m and a pixel size of 10m × 10m in
azimuth and distance directions under the Sentinel-1 IW mode.
The lengths of the ships in this dataset range from 92 to 399 m,
with widths spanning from 6 to 65 m. The SAR images of six
different ship classes within this dataset are illustrated in Fig. 3.

The experimental setup and the architecture of the network
are detailed in this section. The SAR input images are resized
to dimensions of 224× 224 using bilinear interpolation on the
raw data. We set the k value to 4, which implies we have 4
granularities. We initialize the batch size to 32. The learning rate
is initially set to 0.01, and it is subsequently decreased by a factor
of 0.1 every 25 epochs. We also incorporate a warming-up period
of 10 epochs prior to actual training. Our proposed method was
implemented and tested on a GPU cluster featuring an Intel Xeon
CPU E5-2698 v4 @ 2.20 GHz, and eight Tesla V100 units, each
equipped with 32 GB memory. The implementation leveraged
the open-source PyTorch framework, utilizing a single Tesla
V100 unit.

B. Recognition Performance Under MSTAR Dataset

The recognition results of the proposed method are shown
in Table II. The number of training samples per class ranges
from 5 to all to validate the effectiveness of our method. From

TABLE III
IMAGE NUMBER AND IMAGING CONDITIONS OF DIFFERENT TARGETS IN

OPENSARSHIP

the table, facing 5-shot each target, our method can achieve a
74.52% overall recognition ratio, and when the training number
of each class in a few labeled SAR samples is 20 and 10,
respectively, the recognition rate just decreases from 95.67%
to 83.46%. It indicates that our method can greatly improve
the recognition performance when the labeled samples increase.
When the number of each class in a few labeled SAR samples
is 40, it gets above 98.31%, and most classes of all targets
are above 98.00%. It shows that the innovations proposed in
our method are beneficial for the recognition of a few labeled
samples, though the one class of the target is more sensitive
to the decreased labeled samples. In addition, it is clear that,
when the number of each class in a few labeled SAR samples
is larger than 40, the recognition rate can get above 98.00%. It
demonstrates the effectiveness of the proposed method in SAR
ATR under few labeled SAR samples and relatively sufficient
SAR samples. When all the training samples are employed, the
proposed method also achieves state-of-art performance in SAR
ATR.

Through the experiments of different sample numbers under
MSTAR, it has been illustrated that our method can achieve
superior recognition performance facing a large range of number
of training sample each class. Then the recognition performance
under OpenSARship dataset is presented.

C. Recognition Performance Under OpenSARship Dataset

In this section, we conduct two sets of recognition exper-
iments using the OpenSARShip dataset to thoroughly assess
the efficacy of our method. The OpenSARShip dataset, which
includes several ship classes prevalent in the international ship-
ping market, constitutes a significant portion of this market, as
referenced in [37]. The experiments are carried out for both
three and six-class categorizations, in line with [37], [38], and
[39]. Specifically, the three-class experiments involve bulk car-
riers, container ships, and tankers, whereas the six-class trials
additionally include cargo ships, fishing vessels, and general
cargo ships, as detailed in Table III. The image preprocessing for
these experiments aligns with the protocols used in the MSTAR
dataset.

Table IV showcases our method’s results in the three-class
OpenSARShip experiment. Impressively, with 200 training sam-
ples per class, our method attains an overall recognition rate
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TABLE IV
RECOGNITION ACCURACY (%) OF THREE CLASSES UNDER DIFFERENT TRAINING DATA IN OPENSARSHIP

TABLE V
RECOGNITION ACCURACY (%) OF SIX CLASSES UNDER DIFFERENT TRAINING DATA IN OPENSARSHIP

TABLE VI
ABLATION EXPERIMENTS: AVERAGE RECOGNITION ACCURACY (%) OF SIX

CLASSES UNDER DIFFERENT TRAINING DATA IN OPENSARSHIP WITH

DIFFERENT LEVEL OF GRANULARITY

of 85.61%. Remarkably, the recognition rates only slightly
decrease from 82.32% to 80.00% when training samples are
reduced from 100 to 60 per class, underscoring our method’s
robustness and effectiveness. A further reduction in training
samples from 30 to 20 leads to a stable recognition rate around
72.99%, a commendable achievement in SAR ship target recog-
nition. Even under stringent conditions with just ten samples per
class, the method maintains a robust recognition rate of 69.76%.

In the 6-class OpenSARShip experiment, as shown in Table V,
the challenge is amplified due to the high similarity among
different ship classes and the significant variation within the
same class. Here, with 200 training samples per class, the
recognition rate stands at 68.47%. The rates remain relatively
stable, marginally dropping from 64.40% to 62.02%, as the
training data reduces from 100 to 60 samples. This robustness
is consistent with the three-class performance. With a further
reduction in training samples from 40 to 20, the recognition

rates show slight variation, ranging from 58.84% to 55.70%.
Even with as few as ten samples per class, the method achieves
a recognition rate of 52.39%, reflecting the typical challenges
faced in practical applications.

Our analysis reveals that for each dataset, the performance
initially improves rapidly with an increase in the number of
samples. During this phase, the diversity of data supplements
the model’s learning of key SAR image features, leading to swift
performance enhancement. However, as the sample size reaches
a certain threshold, the addition of key features becomes less
pronounced. The model learns more about the same category
in different environments, providing auxiliary information that
aids in classification, hence the slower rate of improvement.

The quantitative results from the OpenSARShip experiments
demonstrate that our method not only achieves high accuracy
in SAR ship target recognition but also maintains robustness
and effectiveness even with diminishing numbers of training
samples.

D. Ablation Experiments

In this section, we assess the effectiveness of our method
through ablation experiments conducted on the OpenSARShip
and MSTAR datasets.

Initially, we perform these experiments with four
configurations of our method: each using 40 samples per
class for OpenSARShip and ten samples per class for MSTAR.
As detailed in Table VII, the configurations are: V1, the basic
vanilla model without our proposed innovations; V2, which
incorporates the coarse-to-fine gradual feature constraint into
the vanilla model; V3, which applies consistency in features of
different granularities to the vanilla model; and ours, the full
version of our method. The recognition performances of these
configurations are presented in Tables VII and VIII.
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TABLE VII
ABLATION EXPERIMENTS: RECOGNITION PERFORMANCE (%) OF DIFFERENT ABLATION CONFIGURATIONS UNDER 40 TRAINING SAMPLES IN OPENSARSHIP

TABLE VIII
ABLATION EXPERIMENTS: RECOGNITION PERFORMANCE (%) OF DIFFERENT ABLATION CONFIGURATIONS SHOT UNDER TEN TRAINING SAMPLES IN MSTAR

The comparative analysis of these configurations highlights
the enhancement in recognition performance due to our in-
novations. Specifically, the comparison between V1 and V2
demonstrates the effectiveness of the coarse-to-fine gradual fea-
ture constraint. Moreover, the performance difference between
V2 and V3 indicates that the coarse-to-fine feature constraint
is more impactful than consistency in features across differ-
ent granularities. However, the combined implementation of
these two features in the “Ours” configuration illustrates that
the consistency of features across different granularities can
synergistically work with the coarse-to-fine feature constraint
to significantly enhance recognition performance.

Further, detailed ablation experiments in Table VI for the
OpenSARShip model reveal the impact of granularity consis-
tency across various shot settings. The model shows the best
average performance at level 4 granularity across different shot
settings. Generally, model performance increases with granular-
ity up to level 4, but beyond this point, granularity levels 5 and
6 lead to a decrease in performance due to model overfitting.
This pattern validates the necessity of multilevel granularity
consistency and, by extension, the efficacy of our approach.

Building on these findings, we will next present a comparison
of our methods with other state-of-the-art approaches in SAR
ATR under limited data conditions.

E. Comparison

In this section, the comparisons with other state-of-the-
art methods are presented under MSTAR and OpenSARShip
datasets.

TABLE IX
RECOGNITION ACCURACY (%) UNDER DIFFERENT NUMBERS OF LABELED

IMAGES

We compare our approach with other SAR ATR meth-
ods, incorporating five traditional methods (PAC+SVM,
ADaboost, LC-KSVD, DGM, and Gauss) and several few-shot
learning methods. The latter includes three data augmentation
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TABLE X
COMPARISON OF PERFORMANCE (%) OF THREE CLASSES UNDER

OPENSARSHIP

methods (GAN-CNN, MGAN-CNN, and ARGN), a metric-
based method (TMDC-CNNs), and four model-based methods
(DNN1, DNN2, CNN, and semisupervised).

When testing using 20, 40, 80, or all target samples from
each label as training images, it is evident from Table IX that
our proposed method outperforms the other methods in terms
of recognition rate. Remarkably, even when the training dataset
for each target comprises only 20 samples, our method achieves
a recognition rate exceeding 94%, whereas most other methods
fall below 86%. These findings attest not only to the effectiveness
of our method when leveraging all training images in the dataset
but also to its proficiency in few-shot learning scenarios.

Table X presents a comparison of our method with several
other approaches used for SAR ship recognition. The methods
we compare include the following. 1) Semisupervised learn-
ing [37], which leverages unlabeled data during training to
reduce the reliance on labeled data. 2) Supervised [37], a variant
of semisupervised learning that is fully supervised. 3) CNN [40],
a conventional classification framework. 4) CNN+matrix [40],
which combines a convolutional neural network with a matrix
for improved performance. 5) PFGFE-Net [41] that achieves po-
larization fusion at input, feature, and decision levels to address
the issue of insufficient utilization of polarization information.
6) MetaBoost [42], a method that employs a two-stage filtration
system focusing on the generation and combination of “good and
different” base classifiers. For the purpose of our comparison,
following [42], we divided the number of training images for
each class into three bands: 1–50, 51–100, and 101–338.

From Table X, it is evident that our method further enhances
the recognition performance across different sample quantity
intervals. In the 1–50 quantity range, among the compared meth-
ods, semisupervised learning achieves an excellent performance
of 61.88% when each class has 20 shots, whereas our method
reaches 71.46%. In the 51–100 quantity range, CNN [40] and
semisupervised learning [37] both deliver impressive perfor-
mance, exceeding 68.50% when each class has 80 shots. Our
method, on the other hand, reaches a recognition rate of 79.33%.
Through comparison with other methods on the OpenSARShip
dataset, it is clear that our method can achieve state-of-the-art
performance.

From the above comparison, it is evident that our method
can attain state-of-the-art recognition performance across a
broad spectrum of training sample sizes. More significantly,
our method clearly surpasses all other methods in both types of
recognition tasks, regardless of the number of classes involved.

IV. CONCLUSION

In conclusion, this article addresses the significant challenges
in the increasingly explored field of SAR ATR under the con-
straints of limited data, primarily caused by the scarcity of abun-
dant training samples. We have conducted a thorough analysis
of the limitations inherent in existing SAR ATR methods, such
as those relying on data augmentation, specialized modules, or
contrastive learning-based loss functions. Our analysis under-
scores the vital importance of effectively utilizing limited su-
pervision signals for precise target identification. We introduce
a groundbreaking approach in the form of coarse-to-fine hierar-
chical feature learning tailored for SAR ATR with limited data.
Our method is distinguished by its feature extractor that yields
multilevel features and a unique coarse-to-fine gradual feature
constraint. This approach enables individualized optimization of
features at each level, significantly reducing the complexity of
model parameter search and ensuring the robustness of features
across all granularity levels. A key aspect of our methodology
is the optimization of intraclass compactness and interclass
separability of features at different levels, achieved by leveraging
the consistency of features across these levels. This strategy
of progressively enhancing feature effectiveness substantially
elevates the overall performance of the model. Empirical exper-
iments conducted on the MSTAR and OpenSARShip datasets
have demonstrated the superior performance of our approach
in scenarios with limited sample sizes. The robustness of our
method has been further validated through comprehensive abla-
tion studies. This research contributes meaningful insights to the
ongoing advancements in SAR ATR with limited data, paving
the way for more sophisticated, efficient, and effective solutions
in the future.
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