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MSSM-SCDNet: A Multiclass Semantic Change
Detection Network Suitable for Coastal Areas Based
on Multiband Spatial-spectral Attention Mechanism
Zhen Liu, Xue Sun, Jianchen Liu , Hao Liu , Yuhang Zhou, Fazhi Cheng , Yilong Zi , and Zhen Zhang

Abstract—Coastal change detection holds significant importance
in the management of marine resources, coastal city change anal-
ysis, coastal land planning, and utilization. Deep learning-based
remote sensing semantic change detection has evolved into a cru-
cial method for identifying alterations in coastal areas. However,
commonly used land cover type annotations lack specific multiclass
semantic change detection type annotations unique to coastal areas.
Additionally, existing datasets for coastal change detection lack rich
spectral details. Therefore, this study has created a finely annotated
coastal high spatial resolution multiclass semantic change detection
dataset, namely CHRM-SCD, which includes 5 land cover types
and 20 semantic change types. This is the first high-resolution
semantic change benchmark dataset for coastal areas based on
Gaofen-2 imagery. Based on this dataset, a multiclass semantic
change detection network based on multiband spatial-spectral
attention mechanism has been proposed in this study to achieve
multiclass semantic change detection in coastal areas. It achieves
89.20% overall accuracy, 81.48% mean intersection over union,
and 50.26% separated kappa coefficient, showing improvements
of 7.28%, 11.58%, and 21.39% over the BiSRNet method, respec-
tively. The stability of this research method is also demonstrated on
the semantic change detection dataset. The dataset developed in this
study is applicable for tasks related to detecting changes in coastal
areas. The proposed method demonstrates practical effectiveness in
the field of multispectral high-resolution remote sensing for coastal
change detection.

Index Terms—Coastal, deep learning, Gaofen-2 (GF), high
spatial resolution, remote sensing, semantic change detection
(SCD).

I. INTRODUCTION

THE coastal zone is a transitional area between terrestrial
and aquatic environments, exhibiting characteristics of
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both terrestrial and marine ecosystems [1]. It holds significant
importance in various aspects such as ecological environment,
disaster assessment [2], [3], climate change [4], [5], coastline
dynamics [6], [7], land use and land cover (LULC) [8], [9].
However, due to dual interventions by human activities and
natural processes, such as storm surges, land reclamation, urban
expansion, fisheries and aquaculture, and salt production, the
coastal zone remains in a state of dynamic flux. Consequently,
the detection of coastal zone changes has emerged as a crucial
research focus. Remote sensing technology, characterized by its
wide coverage, high temporal frequency, and cost-effectiveness,
has become a pivotal approach for monitoring coastal zone
changes.

In the past few decades, there has been significant progress
in remote sensing change detection (CD) techniques, particu-
larly in the domain of land use surveys. Broadly, methods for
remote sensing CD can be classified into two primary method-
ologies: pixel-based CD (PBCD) [10], [11] and object-based
CD (OBCD) [12], [13]. PBCD involves simple arithmetic op-
erations, such as ratios or differences, applied to pre-processed
remote sensing images acquired at different time periods. While
this method is relatively straightforward, the computational
complexity is high, and differences between image objects are
amplified due to factors like radiometric errors or differing
spatial resolutions. These disparities significantly impact the
accuracy of CD. Therefore, PBCD is typically suitable for CD in
medium to low spatial resolution remote sensing imagery [14].
With the advent of high and even ultra-high spatial resolution im-
agery, remote sensing CD methods have gradually transitioned
from pixel-level analysis to an object-based approach. OBCD
involves classifying remote sensing images into different object
types based on the similarity between pixels and subsequently
detecting changes between different time periods for these object
types. This method takes into consideration spatial neighbor-
hood, shape characteristics, and texture features of objects, to
some extent addressing the limitations of pixel-level CD. How-
ever, the accuracy of OBCD depends on criteria for determining
pixel similarity [15], and it still has shortcomings when dealing
with highly heterogeneous classes, especially in high-resolution
images.

In recent years, the application of deep learning in CD for
remote sensing images has become a focal point in research.
Broadly, there are two main approaches of CD in optical remote
sensing imagery using deep learning. One approach involves
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first classifying the images and then discriminating changes
based on the classification results. This method heavily relies
on the accuracy of the classification model. Additionally, when
comparing two sets of classification results, prediction errors can
accumulate [16]. The other approach directly conducts CD using
deep learning, where deep learning techniques are employed to
directly generate change results between two temporal images,
leading to a noticeable improvement in accuracy. However, the
majority of established methods of deep learning-based CD are
binary CD (BCD) methods [17], [18], [19], [20], [21]. These
methods focus on determining whether land use types have
changed but do not furnish details regarding the specific char-
acteristics of the change. Understanding the specific changes in
land cover types is crucial for large-scale land cover surveys.
In recent years, an increasing number of researchers have made
contributions to semantic CD (SCD) [22], [23], [24], [25], [26],
[27], [28], [29], [30], [31], [32], [33]. SCD involves analyzing
pixel-level “from-to” changes, providing detailed information
on the specific changes in land cover types.

According to the structural attributes of deep learning net-
works, CD models can be classified into single-branch struc-
ture, dual-branch structure, and multitask structure. Within the
single-branch structure, two CD approaches can be identified.
The first involves combining two temporal images through
band fusion and image differencing operations, resulting in the
generation of disparity images, which are then fed into a deep
network for the extraction of profound change features [19].
Nonetheless, this technique could potentially introduce noise
to the procedure. Another strategy within the single-branch
structure involves initially classifying the two temporal images
using a single-branch framework and subsequently comparing
the classification outcomes to derive change results [16]. This
method runs the risk of overlooking the temporal relationship
between the two images. The dual-branch structure employs two
separate branch networks to capture change characteristics from
the two temporal images. The extracted change features are then
fused, and the fused features are subsequently fed into a deep
network for further extraction of useful change features until the
change results are obtained [21], [26], [34]. In order to perform
SCD, the multitask structure has gradually gained traction. In
contrast, the multitask structure utilizes three branches for CD.
Two of these branches are specialized in extracting features or
semantically classifying the two temporal images, whereas the
third branch is dedicated to extracting binary change features.
The semantic classification results from the first two branches are
then used to mask the binary change results, yielding semantic
change results [24], [25]. This adoption of the multitask structure
has demonstrated improved CD accuracy [16].

As of the present, numerous CD datasets have been widely
employed, encompassing BCD datasets such as WHU Building
[35], Season-Varying [36], Google Data Set [37], LEVIR-CD
[18], and others. Single-class SCD datasets include BDD [38],
xDB [39], among others. Furthermore, there are multiclass SCD
datasets like Hi-UCD [27], Hi-UCD mini [40], SECOND [31],
and HRSCD [16]. While the spatial resolution of these datasets
continues to improve, certain limitations persist. For instance,
many datasets feature samples derived from three-band remote

sensing images, lacking the richness of spectral details. Due to
the complexity of dataset creation and other factors, there is a
relative scarcity of multiclass SCD datasets. Furthermore, these
datasets predominantly focus on labeling common land cover
types, often lacking annotations specific to coastal zone regions.

Regarding coastal zone CD tasks, this article makes contribu-
tions in following two main aspects.

1) A finely annotated coastal zone high spatial resolution
multiclass SCD (CHRM-SCD) dataset has been estab-
lished in this study. This dataset represents the first high-
resolution semantic change benchmark dataset for coastal
areas based on Gaofen-2 (GF-2) imagery. It provides
imagery with richer spectral information (four bands)
and pixel-level semantic class annotations, encompassing
unique coastal zone features, including coastal fence aqua-
culture areas.

2) This article introduces a multiband spatial-spectral at-
tention mechanism multiclass SCD network (MSSM-
SCDNet). This network leverages the GDAL library to
incorporate multiband (with the number of bands > = 4)
image inputs and integrates a channel and spatial attention
module (SAM) into the multitask CD structure based on
the Bi-SRNet [23]. This approach is aimed at achieving
multiclass SCD in coastal zone regions.

This article commences by providing an overview of the
research progress in remote sensing CD of LULC. The rest
of the article is organized as follows. Section II delineates the
study area and elucidates the dataset creation process. Section III
elucidates the methodology proposed in this article. Section IV
delineates the experimental environment configuration, evalua-
tion metrics, and result analysis. Section V delves into experi-
ments regarding the selection of parameter combinations and the
applicability of this method to the SEmantic Change detectiON
dataset (SECOND). Finally, Section VI concludes the article.

II. DATASET

A. Study Area

The study area (see Fig. 1) is situated in the West Coast
New Area of Qingdao, China. It is located in the southwestern
part of Qingdao City, at the southwestern tip of the Shandong
Peninsula, adjacent to Jiaozhou Bay. Geographically, it lies
between approximately 35°35’ to 36°08’ N and 119°30’ to
120°11’ E. The land area covers approximately 2096 km2, while
the sea area extends to around 5000 km2. The region measures
approximately 79.25 km diagonally from northeast to southwest
and spans 62.36 km from east to west. It boasts a coastline of
282 km, comprising 83 km2 of tidal flats, 42 islands, and 23
natural harbors along the coast. West Coast New Area belongs
to the hilly region of Ludong, the territory of the mountains
undulating, ravines crisscrossing. The western part is dominated
by the Xiaozhu Mountain Range, while the eastern region is
coastal, marked by a winding and intricate coastline, numerous
islands, and an abundance of estuaries. The central portion is
characterized by coastal plain deposits, with a topography that
gradually descends from west to east. The West Coast New
Area serves as a critical outlet for the Yellow River Basin and
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Fig. 1. Map illustrating the geographical location of the study area.

TABLE I
GF-2 SATELLITE IMAGES SELECTED IN THE STUDY

represents a vital endpoint of the eastern terminus of the Eurasian
Continental Bridge.

B. Dataset Introduction

The GF-2 satellite, launched on August 19, 2014, as part
of China’s High-Resolution Earth Observation System, is an
optical remote sensing satellite. It features a spatial resolution
of better than 1 m for panchromatic images and 4 m for multi-
spectral images (including near-infrared, red, green, and blue),
with a 45-km swath width. GF-2 with 5 days revisiting period
provides high-quality imagery for applications in land resources
management, environmental monitoring, agriculture, forestry,
and disaster mitigation.

In this study, a total of 26 high-resolution GF-2 remote sensing
images were utilized for the study area. These images encompass
both multispectral imagery with a 4-m spatial resolution and
panchromatic imagery with a 1-m spatial resolution. A fusion
of the images resulted in a 1-m spatial resolution. The temporal
coverage spans from 2017 to 2022, encompassing all four sea-
sons. The images selected for this article are clear and cloudless,
with good quality. Comprehensive details are available in Table I.

C. Dataset Creation Process

The annotation process (see Fig. 2) for the dataset primarily
consists of five steps: image preprocessing, image registration
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Fig. 2. Annotation process for the CHRM-SCD dataset.

and cropping, sample annotation, removal of false changes, and
generation of semantic change labels.

1) Image Preprocessing: The preprocessing of GF-2 remote
sensing images in this study consists of three main steps:
multispectral preprocessing, panchromatic preprocessing, and
fusion of panchromatic and multispectral bands. Multispec-
tral preprocessing includes orthographic correction, radiomet-
ric correction, and atmospheric correction, while panchromatic
preprocessing involves orthographic and radiometric correction.
The preprocessed panchromatic band and multispectral bands
are fused to generate images with a spatial resolution of 1 m.

2) Image Registration and Cropping: Due to the spatial dis-
parities that naturally occur in remote sensing images captured
in different years, pixel-level remote sensing CD is adversely
affected. The accuracy of image georegistration directly impacts
the precision of CD results. In this study, a georegistration

method for remote sensing image raster layers was employed.
Six years of GF-2 images in the study area were selected for
georegistration. Each pair of images involved a selection of
approximately 200–400 ground control points, which included
visually interpreted control points and field-based RTK control
points. The goal was to ensure that the spatial registration error
was within one pixel. Following the georegistration process, the
images were randomly cropped without overlapping to generate
602 image pairs with a size of 512 × 512 for subsequent
analysis.

3) Sample Annotation:
a) Land cover class definition: With reference to common

land cover classes and supplemented by on-site field
surveys, five land cover types are annotated, including
ground, artificial objects (buildings, asphalt roads, play-
grounds, and vessels), water (seawater, ponds, and lakes),
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coastal fence aquaculture areas, and vegetation. The de-
tailed classification of each semantic class has been pre-
sented in Table II.

b) Semantic classification annotation: In order to improve the
efficiency of dataset annotation, a team of seven people
conducted the annotation, which took more than three
months. A strict quality control strategy was developed
to ensure the quality of dataset annotation. By referring to
common land cover classes and conducting field surveys,
the annotation criteria for each class were unified. Six
people were responsible for dataset annotation, and the
remaining one was responsible for checking and modify-
ing the annotation results to ensure the uniformity of the
classes in the labels. LabelMe, a professional and user-
friendly pixel-level image annotation tool, was employed
for annotating. Initially, the RGB bands of the cropped im-
age pairs were extracted to generate bitemporal images in
PNG format. LabelMe was then used to annotate four land
cover types: ground (with vegetation), artificial objects,
water, and coastal fence aquaculture areas. These four
classes are represented byC(i, j) = 1, 2, 3, 4 respectively,
where i represents the number of rows and j represents
the number of columns of the image. Given the scattered
distribution of vegetation, the delineation of boundaries
between ground and vegetation in wooded areas posed a
challenge. Moreover, there was a potential for vegetation
within building shadow regions to be overlooked. There-
fore, the key was to effectively separate the vegetation
class from the ground class using the remote sensing
method.

c) Addition of vegetation class: The Normalized Difference
Vegetation Index (NDVI) can accurately detect vegetation
class. First, calculate the NDVI values for the bitemporal
images separately and generate two NDVI masks using
a threshold, as depicted in (1) and (2). Then, pixel-wise
comparison is made between the preannotated classifica-
tion label mapC(i, j) and the NDVI mask map Mask(i, j).
The “ground” (C(i, j) = 1) at positions where it is deter-
mined as “vegetation” (Mask(i, j) = 1) in the mask map
is changed to the vegetation class (C(i, j) = 5), while the
class values at other pixel positions remain unchanged.
From this, the vegetation class is separated from the ground
class, resulting in bitemporal semantic classification labels
SC(i, j) for five coastal land cover types, as depicted in
(3)

NDVI = (NIR −R) / (NIR +R) (1)

Mask1,2 (i, j) =

{
1, vegetation
0, no vegetation

(2)

where NIR represents the near-infrared band, an R corre-
sponds to the red band; Mask1,2(i, j) represents bitempo-
ral NDVI mask maps

SC1,2 (i, j)

=

{
5, C1,2 (i, j)=1 and Mask1,2 (i, j)=1

C1,2 (i, j) , other
(3)

where C(i, j) represents the bitemporal semantic classes
annotated using LabelMe, SC1,2(i, j) denotes the gener-
ated bitemporal semantic classification labels. The pos-
sible values of SC1,2(i, j) are 12,3,4,5, which represent
ground, artificial object, water, coastal fence aquaculture
area, and vegetation, respectively.

4) Removal of False Changes: The bitemporal classification
labels are differenced to obtain the binary change map BC(i, j),
as depicted in (4). Due to the subjective nature of image anno-
tation, the binary change map may contain some false changes.
On one hand, during the classification annotation of bitemporal
images, the boundaries between different classes are not per-
fectly aligned, which can lead to line-shaped false changes.
On the other hand, there is a phenomenon of mislabeling the
same class for the same location, resulting in block-shaped false
changes. Due to the presence of false changes, it can interfere
with the deep neural network’s ability to identify change types.
Therefore, it is necessary to remove false changes from the
binary change maps. This study employs two methods for this
purpose: image median filtering and manual removal. First,
median filtering is applied to eliminate line-shaped false changes
from the maps, followed by a manual removal to eliminate
block-shaped false changes. Finally, the binary change maps
without false changes are obtained. This process is illustrated in
steps 4© to 6© in Fig. 3

BC (i, j) =

{
1, SC1 (i, j) �= SC2 (i, j)
0, SC1 (i, j) = SC2 (i, j)

(4)

where BC(i, j) represents the binary change map.
5) Generation of Semantic Change Labels: The pretime clas-

sification labels are masked with the binary change maps to
obtain the pretime semantic change labels SCL1(i, j). Similarly,
the post-time classification labels are masked with the binary
change maps to obtain the post-time semantic change labels
SCL2(i, j), as depicted in (5). Different classes in the semantic
change labels are assigned different colors, where white rep-
resents no change, gray represents the ground, red represents
artificial objects, blue represents water, yellow represents coastal
aquaculture areas, and green represents vegetation. The colors
corresponding to each class are as depicted in (6). Finally,
these 602 pairs of images and labels are randomly divided into
three parts according to the ratio of 8:1:1, with the training set,
validation set and test set accounting for 482 pairs, 60 pairs, and
60 pairs respectively

SCL1,2 (i, j) =

{
SC1,2 (i, j) , BC (i, j) = 1

0, BC (i, j) = 0
(5)

LabelColor1,2 (i, j) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

White, SCL1,2 (i, j) = 0
Gray, SCL1,2 (i, j) = 1
Red, SCL1,2 (i, j) = 2

Blue, SCL1,2 (i, j) = 3
Yellow, SCL1,2 (i, j) = 4
Green, SCL1,2 (i, j) = 5

. (6)
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TABLE II
LAND COVER CLASSES WITHIN CHRM-SCD DATASET
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Fig. 3. Process of generating bitemporal semantic change labels: 1© Annotate classes using LabelMe. 2© Generate NDVI mask map. 3© Add vegetation class
based on discriminant conditions. 4© Image difference. 5© Remove false changes through median filtering. 6© Manually remove false changes. 7© Generate
semantic change labels through masking operations.

III. METHOD

Using the CHRM-SCD dataset as a foundation, this article
extends the input data by leveraging the GDAL library to in-
corporate multiband (with a number of bands > = 4) images.
Building upon the Bi-SRNet architecture, a multitask CD struc-
ture is introduced that incorporates channel and SAMs, referred
to as the Convolutional Block Attention Module (CBAM) [41].

This approach aims to achieve multiclass SCD in coastal zone
regions.

A. CBAM Block

CBAM combines the channel attention module (CAM) and
the SAM so that each network branch can learn “which is
important” on the channel axis and “where is important” on
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Fig. 4. CBAM block.

Fig. 5. CAM block.

the spatial axis. The CBAM block effectively helps information
be transmitted in the network by learning which information
should be emphasized or suppressed. It can achieve better re-
sults than attention modules that only focus on channels or
spatial features [41]. Fig. 4 illustrates the architectural frame-
work of CBAM. The input feature is processed sequentially
through CAM and SAM. It can be seen from Fig. 4 that the
configurations of the input feature F and the refined feature
F ′′ remain unchanged. The CAM and SAM are described as
follows.

1) CAM Block: Considering the impact of the difference in
feature weights of different channels in the network on the
coastal zone SCD results, the CAM block focuses on learning
“which channels are important.” The weight assigned to each
channel can be interpreted as its relative importance. The CAM
block captures the significance of each channel in the channel
attention map. Multiplying input feature maps with correspond-
ing weights can highlight channels relevant to changes while
suppressing irrelevant channels. The implementation of CAM
is shown in Fig. 5. First, the input feature maps F undergo
compression through the application of both the maximum pool-
ing (MaxPool) and average pooling (AvgPool) operations along
the spatial axis. And the input feature maps with dimensions
C×H×W are squeezed into two feature vectors with dimensions
C×1×1 after the pooling operation. Then, these two feature
vectors are pushed to a shared multilayer perceptron (MLP).
After passing the shared MLP, the two vectors are summed ele-
ment by element. Ultimately, a sigmoid (σ) function is adopted
to assign the attention weights across all channels, and then
the channel attention map MC is obtained. At this time, the
weights (between 0 and1) of all channels of input feature maps
F are received. After that, these weights are multiplied with
the original input feature maps F to produce the refined feature

mapsF ′. The channel attention mapMC is calculated as follows

MC = σ (MLP (MaxPool (F )) + MLP (AvgPool (F ))) . (7)

2) SAM Block: Similarly, considering the impact of the dif-
ference in feature weights of different positions in the network
on the coastal zone SCD results, the SAM block concentrates on
learning “which positions are important.” The weight assigned
to each position can be understood as its relative importance.
The spatial attention map encodes the significance of each pixel
position. The network continuously approaches the network
prediction value to the ground truth (GT) by minimizing the
loss function operation. The SAM can automatically adjust the
weight of each pixel position after training. Higher weights
are assigned to the pixel positions that have changed, whereas
lower weights are assigned to the unchanged pixel positions.
Multiplying the input feature maps with the corresponding spa-
tial attention map weights, features at changed pixel positions
are emphasized while features at unchanged pixel positions
are suppressed. Fig. 6 illustrates the implementation of SAM.
For the input feature maps F ′, the MaxPool operation and the
AvgPool operation are performed on the channel axis of each
feature point. Then, these two results are stacked ([;] indicates
a stacking operation). Next, perform a convolution operation
f7×7 with a filter with dimensions 7×7, and take a sigmoid (σ)
function for creating a spatial attention map MS . At this time,
the weight (between 0 and1) of each feature point position of
the input feature maps is obtained. After that, the input feature
maps F ′ are simply multiplied by these weights to acquire the
refined feature maps F ′′. The spatial attention map MS can be
expressed as follows:

MS = σ
(
f7×7 ([MaxPool (F ′) ;AvgPool (F ′)])

)
. (8)
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Fig. 6. SAM block.

Fig. 7. Structure of the proposed MSSM-SCDNet for coastal zone SCD.

B. Coastal SCD Network MSSM-SCDNet Structure

To highlight the changed information and suppress invariant
information in coastal zone, the MSSM-SCDNet is proposed
in this article by integrating the attention modules. The archi-
tectural framework is illustrated in Fig. 7. Input two temporal
images I1 and I2 to the network, MSSM-SCDNet first uses
two fully convolutional network encoders ε to extract semantic
features Y1 and Y2. Y1 and Y2 are subsequently processed
by two siamese semantic reasoning (SiamSR) blocks, which
integrate semantic focus into two temporal branches to empha-
size features. The weights of the two encoders ε and the two
SiamSR blocks are shared to alleviate the overfitting problem.
The two emphasized features Y ′

1 and Y ′
2 are further pushed to the

CBAM blocks. The generated features Y
′′
1 and Y

′′
2 are pushed

to the cross temporal semantic reasoning blocks, which can
learn cross-temporal semantic consistency to highlight features
in unchanged regions. Next, the two output features Y

′′′
1 and Y

′′′
2

are mapped into the semantic maps SM1 and SM2 through the
classifiers. Meanwhile, the CD module projects the unaligned

information in Y
′′
1 and Y

′′
2 to the binary change map B through

the CD classifier. The above three feature maps are all output
through convolutional layers of size 1×1, and their weights are
not shared. Finally, the semantic mapSM1 and the binary change
map B are masked to generate the semantic change map SCM1.
The semantic map SM2 and binary change mapB are masked to
produce the semantic change map SCM2. See formulas (9)–(13)
for the above realization process. Three loss functions are used
in this article to optimize the MSSM-SCDNet network: semantic
class loss �sem, binary change loss �bc, and semantic consistency
loss �sc [24]. �sem is the multiclass cross-entropy loss calculated
between semantic segmentation maps SM1, SM2 and semantic
change labels SCM1, SCM2. �bc is the binary cross-entropy loss
calculated between the binary change map B predicted by the
network and the binary change label BC. �sc is used to correlate
the loss between SM1, SM2 and BC

Y1 = ε (I1) , Y2 = ε (I2) (9)

Y ′
1 = SiamSR (Y1) , Y

′
2 = SiamSR (Y2) (10)
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TABLE III
LIBRARY FUNCTIONS AND THEIR CORRESPONDING VERSIONS

Y
′′
1 = CBAM (Y ′

1) , Y
′′
2 = CBAM (Y ′

2) (11)

SM1, SM2 = CotSR
(
Y

′′
1 , Y

′′
2

)
(12)

SCM1 = Mask (B, SM1) ,SCM2 = Mask (B, SM2) .
(13)

IV. EXPERIMENTAL RESULTS

This section outlines the environmental configuration, eval-
uation metrics, and presents the experimental results analysis
conducted using the CHRM-SCD dataset.

A. Environmental Configuration

The deep learning model framework utilized in this study
was PyTorch 1.12.1 operating on the Windows 10 platform,
with Python version 3.8. Other prominent library functions are
detailed in Table III. The experiments were performed using
a workstation that was outfitted with a GeForce RTX 3090 Ti
GPU. The optimization technique employed in this research was
the stochastic gradient descent with Nesterov momentum.

B. Evaluation Metrics

Three evaluation metrics are employed to gauge the accuracy
of coastal zone SCD, comprising overall accuracy (OA), mean
intersection over union (mIoU), and the separated kappa (SeK)
coefficient.

1) OA is a common evaluation metric for semantic segmen-
tation and CD tasks. Express P = {pij} (i, j � {0, 1 …,
N}, 0 means no change, N is the total number of change
classes) as a confusion matrix, where pij indicates the
overall count of pixels misclassified by the network, that
is, the network predicted class is i, but the actual class is
j; pii indicates the overall count of pixels that the network
predicted correctly. The formula for calculating OA is as
follows:

OA =

N∑
i=0

pii/

N∑
i=0

N∑
j=0

pij . (14)

2) The mIoU is the standard measure of semantic segmenta-
tion. It is utilized to quantify the correlation between the
actual value and the predicted value. A greater correlation
corresponds to a larger mIoU. Here, mIoU is the average
of the intersection over union for no change regions (IoUn)

and the intersection over union for all change regions
(IoUy):

mIoU = (IoUn + IoUy) /2 (15)

IoUn = p00/

⎛
⎝ N∑

i=0

pi0 +

N∑
j=0

p0j − p00

⎞
⎠ (16)

IoUy =

N∑
i=1

N∑
j=1

pij/

⎛
⎝ N∑

i=0

N∑
j=0

pij − p00

⎞
⎠. (17)

3) The SeK coefficient reflects the consistency between the
predicted value and the real value. The larger the SeK
is, the closer the predicted value is to the real value. The
SeK coefficient is obtained according to p̂ij = pij in the
confusion matrix P̂ = {p̂ij}, and p̂00 = 0 is excluded
to eliminate the true unchanged pixels whose number
occupies the majority. SeK is expressed as

SeK = eIoUy−1 ·K (18)

K = (s0 − se) / (1− se) (19)

S0 =

N∑
i=0

p̂ii/

N∑
i=0

N∑
j=0

p̂ij (20)

Se =
N∑
i=0

⎛
⎝ N∑

j=0

p̂ij ×
N∑
j=0

p̂ji

⎞
⎠ /

⎛
⎝ N∑

i=0

N∑
j=0

p̂ij

⎞
⎠

2

.

(21)

C. Experimental Results Analysis

To validate the role of CBAM, as well as the CAM and
SAM components, this study conducted ablation experiments.
Bi-SRNet served as the baseline network, while BiSR-CAMNet
involved the incorporation of CAM into Bi-SRNet, and BiSR-
SAMNet incorporated SAM into the baseline. The proposed
coastal zone SCD network, MSSM-SCDNet, introduced CBAM
into the Bi-SRNet framework. The impact of each compo-
nent on the results of coastal zone SCD is delineated in
Table IV.

As evident from Table IV, networks augmented with attention
modules exhibit improvements in various metrics compared to
the baseline network Bi-SRNet. BiSR-CAMNet, featuring chan-
nel attention mechanisms, demonstrated notable enhancements
of 3.98%, 5.87%, and 10.28% in OA, mIoU, and Sek metrics,
respectively. Similarly, BiSR-SAMNet, incorporating spatial at-
tention mechanisms, yielded remarkable gains of 5.85%, 9.21%,
and 16.62% in OA, mIoU, and Sek metrics, respectively. In-
troducing both channel and spatial combined attention mecha-
nisms in MSSM-SCDNet resulted in significant improvements
of 7.28%, 11.58%, and 21.39% in OA, mIoU, and Sek metrics,
respectively.

The results of these networks in the experiments are illustrated
in Fig. 8. In group 1©, neither Bi-SRNet nor BiSR-CAMNet
identified changes related to the missing coastal fence aquacul-
ture area. Although BiSR-SAMNet detected this change, the
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TABLE IV
QUANTITATIVE EVALUATION RESULTS OF THE ABLATION STUDY

TABLE V
COMPARISON OF THE RESULTS PROVIDED BY DIFFERENT PARAMETER GROUPS

recognized aquaculture area was relatively small. In group 2©,
all four networks exhibited good performance in recognizing the
large prechange coastal fence aquaculture, with MSSM-SCDNet
providing the closest approximation to the ideal outcome for
incomplete upper-boundary aquaculture area. The recognition
of unchanged areas appeared to be more accurate with MSSM-
SCDNet, as indicated by the buildings on the left. Bi-SRNet
showed suboptimal performance in identifying post-change tidal
flats. In group 3©, for the continuous identification of asphalt
roads, both Bi-SRNet and BiSR-CAMNet exhibited subpar
performance, while MSSM-SCDNet demonstrated noticeable
improvements. In group 4©, regarding the identification of
scattered vegetation and building gaps, Bi-SRNet yielded un-
satisfactory results, while BiSR-CAMNet, BiSR-SAMNet, and
MSSM-SCDNet successively demonstrated improved recogni-
tion. It is evident that MSSM-SCDNet excels in the identification
of unchanged areas. In summary, when considering CD across
various coastal land cover types, the proposed network in this
article demonstrates excellent performance in SCD for diverse
coastal classes.

V. DISCUSSION

A. Comparative Experimental Analysis of Different Parameter
Groups

In order to determine the optimal parameter combination of
MSSM-SCDNet for Coastal Zone SCD, this article selected
three values for batch size and three values for learning rate
(lr) for pairwise groups, resulting in a total of nine distinct
parameter groups, denoted as [batch; lr]: [4; 0.001], [4; 0.01],
[4; 0.1], [8; 0.001], [8; 0.01], [8; 0.1], [16; 0.001], [16; 0.01],
and [16; 0.1]. To ensure that each set of experiments received

sufficient training, no specific number of training epochs was
defined. Instead, experiments were terminated when there was
no improvement in the performance metrics for ten consecutive
epochs. Following multiple iterations of experimentation, the
best results from each group were selected for comparison.
The comparative results of various performance metrics are
presented in Table V. It is evident that when the batch size is 16,
the lr is 0.1, and the epochs are 94, MSSM-SCDNet achieves
optimal performance, as shown in group (9) in Table V. At this
time, the OA, mIoU, and Sek metrics reach values of 89.20%,
81.48%, and 50.26%, respectively.

The comparative experimental results for each parameter
group are illustrated in Figs. 9–12. In Fig. 9, concerning the
identification of newly constructed buildings, groups (1), (4),
and (7) exhibit poor performance, whereas groups (6) and (9)
demonstrate significant effectiveness in distinguishing individ-
ual buildings from the surrounding ground. A potential obser-
vation has emerged, suggesting that when batch sizes remain
constant, an increase in the lr may contribute to a more stable
recognition of architectural details. In Fig. 10, with respect to
the continuity and boundary recognition of newly paved asphalt
roads, group (9) closely approximates the desired outcome,
while groups (4) and (7) exhibit noticeable disconnections, and
the other groups do not achieve a uniform identification of road
surfaces. In Fig. 11, group (4) confuses the aquaculture area
with seawater. Group (7) fails to identify changes within the
aquaculture area, group (1) exhibits insufficient recognition of
it, and group (3) displays redundancy in its identification. In
Fig. 12, groups (1), (4), and (7) lack sensitivity in identifying
scattered vegetation. Groups (2), (3), (5), (6), and (8) fall short in
capturing architectural details. However, group (9) achieves the
best recognition of both vegetation and buildings. It is evident
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Fig. 8. (a) Bitemporal images (GF-2). (b) Bitemporal images (RGB). (c) Bi-SRNet. (d) BiSR-CAMNet. (e) BiSR-SAMNet. (f) MSSM-SCDNet (proposed).
(g) GT.

that an optimal parameter group can significantly enhance the
effectiveness of deep learning networks for coastal zone SCD.

B. Analysis of the Applicability of MSSM-SCDNet to the
SECOND Dataset

SECOND [31] is a benchmark dataset for SCD. It is composed
of bitemporal high-resolution optical images collected by some

aerial platforms and sensors, including RGB channels. The spa-
tial resolution of the images is between 0.5 and 3 m. There are a
total of 4662 pairs of bitemporal images, each with the same size
of 512×512 pixels. The dataset provides semantic change labels
of bitemporal images. Each label is marked with a change cat-
egory and six land cover classes, including nonchange, ground
(impervious surface or bare land), playgrounds, buildings, water,
trees, and low vegetation. The comparison between SECOND
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Fig. 9. (a) Bitemporal images (GF-2). (b) Bitemporal images (RGB). (c) Group (1). (d) Group (2). (e) Group (3). (f) Group (4). (g) Group (5). (h) Group (6).
(i) Group (7). (j) Group (8). (k) Group (9). (l) GT.

Fig. 10. (a) Bitemporal images (GF-2). (b) Bitemporal images (RGB). (c) Group (1). (d) Group (2). (e) Group (3). (f) Group (4). (g) Group (5). (h) Group (6).
(i) Group (7). (j) Group (8). (k) Group (9). (l) GT.
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Fig. 11. (a) Bitemporal images (GF-2). (b) Bitemporal images (RGB). (c) Group (1). (d) Group (2). (e) Group (3). (f) Group (4). (g) Group (5). (h) Group (6).
(i) Group (7). (j) Group (8). (k) Group (9). (l) GT.

Fig. 12. (a) Bitemporal images (GF-2). (b) Bitemporal images (RGB). (c) Group (1). (d) Group (2). (e) Group (3). (f) Group (4). (g) Group (5). (h) Group (6).
(i) Group (7). (j) Group (8). (k) Group (9). (l) GT.
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TABLE VI
COMPARISON INFORMATION BETWEEN SECOND AND CHRM-SCD DATASETS

TABLE VII
QUANTITATIVE EVALUATION RESULTS OF DIFFERENT NETWORKS

and CHRM-SCD dataset constructed in this article is shown in
Table VI.

To more comprehensively and objectively identify the perfor-
mance of the proposed coastal SCD network MSSM-SCDNet
architecture, this article further compares it with CD methods
proposed by other researchers.

1) FC-EF, FC-Siam-conc, and FC-Siam-diff [42]: FC-EF is a
BCD method using one encoder–decoder structure. Both
FC-Siam-conc and FC-Siam-diff use the siamese encoder
structure.

2) UNet++ [19]: It is an effective semantic segmentation
encoder–decoder architecture. It inherits the structure of
UNet and draws on the dense connection method of
DenseNet.

3) ResNet-LSTM [43]: The network architecture integrates
a convolutional neural network and a recurrent neural
network to complete the CD task. Its encoder is changed
to ResNet34 [44].

4) IFN [21]: The network uses an encoder and an attention-
based decoder.

5) HRSCD-str.4 [16]: This is an SCD method that consists
of residual block and triple encoder–decoder branches.

In the above methods, method 5) belongs to SCD, which can
detect the change of “from-to.” Approaches 2), 3), and 4) belong

to BCD. The last convolutional layer of these three networks
has been modified to detect multiclass changes [23]. Table VII
displays the evaluation metrics for all methods. Among them,
the Sek values of FC-EF and UNet++ are low, which is probably
because the networks do not process semantic information and
change information separately. Both FC-Siam-conc and FC-
Siam-diff use a decoder to stitch semantic features, and ResNet-
LSTM takes time modeling into account, so the accuracy of
all metrics is relatively high. Among the comparison methods,
the two metric values (mIoU and Sek) of HRSCD-str.4 are the
highest, which benefits from the strategy of BCD and land cover
mapping tasks in this network as well as the skip connection
between branches. The network MSSM-SCDNet proposed in
this article achieved 87.66%, 72.88%, and 21.84% in OA, mIoU
and Sek, respectively. The accuracy of all metrics exceeds all
the above comparison methods.

To evaluate the methods more intuitively, two groups of
SECOND coastal zone test data are selected for comparison,
as shown in Fig. 13. It can be seen from the figure that in
group 1©, UNet++ and IFN fail to recognize water in the
changed image. Water and low vegetation are confused. Al-
though ResNet-LSTM identifies some water changes, it falls
short in detecting complete water boundaries. Moreover, these
three methods do not perform well for CD in some key areas



LIU et al.: MSSM-SCDNET: A MULTICLASS SEMANTIC CHANGE DETECTION NETWORK SUITABLE 15831

Fig. 13. (a) Bitemporal images. (b) ResNet-LSTM. (c) UNet++. (d) IFN. (e) HRSCD-str.4. (f) MSSM-SCDNet (proposed). (g) GT.

(such as trees) in group 2©. In contrast, HRSCD-str.4 signif-
icantly improves on the previous three methods, effectively
identifying water changes in group 1©. However, it is not ideal
in the boundary detection of multiple change classes (such as
trees and asphalt roads) in group 2©. The above changes can
be well captured by MSSM-SCDNet. Moreover, the proposed
method exhibits a closer alignment with the desired results in
the boundary detection of coastal areas, encompassing structures
like buildings, trees, and asphalt roads. This implementation is
closely related to the weight assignment of CBAM to the channel
and spatial position of the input feature.

VI. CONCLUSION

Coastal zone CD holds significant importance for monitoring
coastal ecological environments, managing coastal resources,
and facilitating comprehensive coastal governance. Remote
sensing technology, characterized by its wide coverage, high
temporal frequency, and cost-effectiveness, has emerged as a
vital tool for coastal zone CD. However, existing remote sensing
datasets for coastal zone CD often lack detailed spectral features.
Due to the complexity involved in dataset creation, there is a
relative scarcity of multiclass SCD datasets specifically tailored
for coastal zones. Therefore, this study has developed a finely
annotated CHRM-SCD dataset, referred to as CHRM-SCD.
To our knowledge, this represents the premier high-resolution
semantic change benchmark dataset for coastal zones based on
GF-2 imagery. Leveraging this dataset, the present research
introduces an MSSM-SCDNet, denoted as MSSM-SCDNet,

designed for detecting multiclass semantic changes in coastal
areas. MSSM-SCDNet achieves impressive performance with
an OA of 89.20%, a mIoU of 81.48%, and a Sek index of 50.26%.
These metrics represent substantial improvements of 7.28%,
11.58%, and 21.39%, respectively, over the BiSRNet baseline.
The proposed approach also demonstrates robust performance
on the SECOND dataset, underscoring its stability. The ex-
perimental results indicate that MSSM-SCDNet can accurately
identify changes in the coastal fence aquaculture area while
maintaining sensitivity to unchanged regions. Furthermore, the
network exhibits closer to ideal performance in boundary de-
tection for coastal features such as buildings, vegetation, and
asphalt roads. As such, this research methodology proves highly
applicable to the task of SCD in coastal zones with high spatial
resolution.
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