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Soil Texture and pH Mapping Using Remote Sensing
and Support Sampling

Onur Yüzügüllü , Noura Fajraoui, and Frank Liebisch

Abstract—Soil pH and texture are valuable information for agri-
culture, supporting the achievement of high productivity and low
environmental impact, which is the basis for sustainable agricul-
tural production. In this study, we present novel soil mapping tech-
niques that integrate high-spatial-resolution satellite and ground
data, surpassing traditional methods in precision and reliability. By
synergizing remote sensing data, including polarimetric synthetic
aperture and multispectral imagery, with climate and terrain in-
formation, alongside coarse-resolution soil data, we achieved high
accuracy, with an average error of less than 6%, in predicting
soil pH and texture parameters. Notably, the approach allows for
detailed mapping at the pixel level, revealing nuanced variability
within 10×10 m field pixels. Considering the accuracy, the method
establishes itself as a benchmark for field management guidelines
integrating a precision sampling approach, offering actual and high
spatial resolution information crucial for sustainable agricultural
practices. This holistic approach allows new opportunities to rev-
olutionize soil management practices, facilitating variable rate ap-
plications, soil moisture, and fertilization mapping and ultimately
enhancing agri-environmental sustainability.

Index Terms—Machine learning (ML), precision agriculture,
remote sensing, soil health, soil mapping.

I. INTRODUCTION

THE mapping of soil properties, encompassing vital param-
eters such as pH and soil texture, is fundamental for com-

prehending the complex dynamics within the agri-environment.
It facilitates agricultural practices fostering soil fertility and
health, leading to more efficient use of fertilizer and water
resources. In addition, it enables the identification of regions
with higher yield potential [1], [2], [3], [4]. The implications
extend to plant growth dynamics, fostering sustainable agricul-
tural practices, and preventing soil degradation—an essential
step in mitigating climate change impacts [5], [6], [7].

In agriculture, the importance of soil pH and texture cannot
be overstated as essential pillars for successful crop cultivation
and effective management of input resources such as fertil-
izers. Soil pH, which denotes the soil’s acidity or alkalinity,
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significantly affects the availability of nutrients to plants and
soil stability [8], [9], [10], [11]. Deviations from the opti-
mal pH range can lead to nutrient deficiencies or toxicities,
adversely affecting crop growth and yield and fostering soil
degradation [12]. Similarly, soil texture, characterized by the
proportions of sand, silt, and clay particles, directly influences
crucial factors such as water-holding capacity, drainage and
aeration of soils, nutrient availability, and soil organic matter
stability [13]. This information relies on knowing soil texture
is pivotal as it directly impacts farmers’ ability to implement
efficient irrigation, manage water resources, and select appro-
priate crop varieties. The combined soil pH and texture assess-
ment is the bedrock for precision agriculture practices, such as
variable rate application. It allows farmers to customize their
strategies, such as precision fertilization or seeding, to maximize
crop productivity while minimizing environmental impact and
costs [10], [11].

Traditionally, soil mapping in agricultural contexts heav-
ily relied on conventional methods involving labor-intensive
soil sampling and subsequent laboratory analyses. While these
methods have proven effective, their time-consuming nature
and significant financial requirements have been widely rec-
ognized. The difficulties in employing these techniques on a
national, regional, or global scale have become increasingly
apparent. Moreover, the substantial spatial variability of soil
properties [14], [15], [16], [17] often leads to inaccuracies when
extrapolating calculations to larger areas.

Innovative techniques have been continuously developed and
improved to address this urgent need for more efficient and
extensive soil data acquisition. Image-based soil mapping, in
particular, has emerged as a promising solution, transcending
the limitations of traditional methodologies [18], [19], [20],
[21]. This approach seamlessly incorporates various secondary
data sources into mapping, like the SCORPAN method [22],
enhancing soil databases’ precision and spatial coverage. In
this context, remote sensing-based soil mapping offers a sig-
nificant advantage in terms of cost-effectiveness, particularly
when compared to the resource-intensive traditional soil survey
methods [23].

Furthermore, modeling-based approaches provide an objec-
tive quantitative measure of prediction uncertainty, often absent
in conventional methods [24], [25]. This inherent advantage
refines the accuracy of soil property predictions, leading to
more reliable soil maps. This advancement significantly benefits
agricultural land management decision support thanks to three
key factors as follows.
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1) Efficient and Cost-Effective Monitoring: Applicable
across large areas cost-effectively.

2) Overcoming Logistical Challenges: Fills gaps where
ground data collection is difficult or impossible.

3) Noninvasive Approach: Methods avoid direct soil interac-
tion and disturbance.

Remote sensing captures soil pH and texture parameters by
leveraging their temporal and electromagnetic characteristics.
pH, gauged by hydrogen ion concentration, influences soil’s
physical, chemical, and biological properties. In the electro-
magnetic spectrum, chemical alterations impact the visible and
near-infrared range [26], while physical changes affect elec-
trical conductivity and dielectric properties [27]. Conversely,
soil texture, reflecting particle size distribution, shapes how soil
particles interact with electromagnetic waves. Simultaneously,
variations in soil texture influence changes in soil moisture,
detectable through shifts in dielectric properties [28].

Numerous research efforts have explored the correlation be-
tween satellite data and soil mapping. Notable studies conducted
in the 1990s showcased the enhanced capability of satellite data
in providing valuable insights for soil mapping [29], [30], [31].
These investigations highlighted how satellite technology sub-
stantially contributes to our understanding of soil composition,
moisture levels, and other critical soil characteristics.

In the 2000s, significant progress was made in mapping soil
properties, driven by the integration of remote sensing technol-
ogy. This included increased satellite deployments and the usage
of higher-resolution data, such as aerial photography, facilitating
more accurate examination of spatial variation [18], [32], [33].
Researchers also incorporated optical and radar data to model
soil property changes, with findings indicating the effective
integration of radar imagery with optical data for extracting soil
and plant information [34].

During the 2010s, there was a significant shift in soil mapping
research, marked by the launch of Sentinel satellites with a spa-
tial resolution of 10 to 20 m. This development greatly enhanced
the capacity for detailed soil analysis [19], [35], [36]. During
this decade, research also focused on data fusion techniques,
integrating satellite imagery with ground-based measurements
to improve the accuracy and applicability of soil mapping
methods [19], [35], [36], [37], [38]. Notably, the release of
SoilGrids250 m in 2017 marked a significant milestone, as
it combined satellite data and machine learning (ML) to map
various soil properties globally, both on the surface and in the
soil profile down to 2 m [39].

Simultaneously with the satellite revolution, the first two
decades of the 21st century saw a rapid development in advanced
algorithms and ML techniques for processing and interpreting
extensive remote sensing data. Nevertheless, directly mapping
soil parameters with remote sensing remains a challenge due
to complex interactions between various soil properties and
their spectral response [21]. In this context, ground truth data,
meticulously collected through strategically designed field sam-
pling campaigns for soil texture and pH, plays a crucial role.
By integrating Sentinel-2 data with these ground observations,
researchers can leverage advanced statistical methods and ML
algorithms like Random Forest or Support Vector Machines to
develop increasingly accurate spatial predictions of soil texture

and pH [40], [41], [42], [43]. This data-driven approach holds
significant potential beyond traditional soil maps. Studies have
shown the potential for applications in precision agriculture,
enabling targeted interventions like optimized fertilizer applica-
tion [44] and improved crop yield prediction [45]. In addition,
these maps can contribute to environmental monitoring and
sustainable land use management by providing insights into soil
health and potential degradation risks.

This study presents an advanced approach that integrates high-
spatial resolution satellite (10×10 m), topography (30×30 m),
and a minimal number of ground data, whose locations are
determined according to Precision Sampling [21], to calibrate
the predictions spatially for comprehensive soil mapping, set-
ting a new standard in precision agriculture and environmental
management. The inclusion of a recent ground measurement
provides an improvement in obtaining an accurate soil map,
which makes the outputs of this method a reliable guideline for
field management practices, enabling informed decision-making
and optimized agricultural strategies. Furthermore, the inclusion
of spectral information, climate data, topographical features, and
coarse-resolution soil information in the soil mapping process
represents a significant advancement in the field, offering a holis-
tic understanding of soil properties and their spatial variability
at a fine scale.

We introduce two frameworks: One relying solely on satel-
lite data and ML and the other integrating supportive ground
measurements for refinement. The ML components within
both frameworks assess various algorithms, the light gradient
boosting machine (LGBM), random forest (RF), and multi-
layer perception (MLP). To ensure objectivity, the frameworks
undergo validation using an independent set of samples not
used in the model development phase. The aim is to generate
high-resolution (10 × 10 m) soil property maps utilizing an
approach that combines satellite-based ML predictions with
ground measurements, as was previously achieved for soil
organic carbon [46]. The Precision Sampling technique [21],
guided by spectral heterogeneity in Sentinel-1 and Sentinel-2
images, enhances predictions at the pixel level. The performance
and robustness of the proposed approach are rigorously tested
through three validation levels during model training, post-
training refinement, and finally, validation using the precision
sampling ground measurements.

The rest of this article is organized as follows. The initial sec-
tion focuses on the data, delivering a comprehensive overview
of the data used in this study. Subsequently, the methods section
details the preprocessing steps, the development of models, and
the various post-processing techniques implemented. Follow-
ing this, the results and discussion section outlines and exam-
ines diverse validation cases with and without refinement via
ground measurements to assess the model performances. The
subsequent discussions explain the practical implications of the
findings. Finally, Section V concludes this article.

II. DATA

This section presents the datasets used in this study, incor-
porating information regarding climate, topography, and soil
taxonomy, which significantly influence soil properties [47],
[48], [49].
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TABLE I
SUMMARY OF THE DATASETS USED FOR ANALYSIS, CONTAINING DATA PROPERTIES, INCLUDING ACCORDING TO SOURCES, RESOLUTION, SAMPLING DEPTH,

SAMPLING PERIOD, AND SAMPLE COUNTS FOR EACH SOIL PARAMETER

Fig. 1. This study used available agricultural soil property data (n = 100611),
which are colored according to their sources, as in purple for ISRIC, pink
for LUCAS, blue for LUFA Nord-West, yellow for OpenAgrar, green for
NABODAT, and orange for ITACyL.

A. Ground Data

1) Available Soil Databases: To facilitate the spatial mod-
eling of soil properties, we collected ground data from various
openly available sources and put it into a consolidated database.
Emphasizing uniformity, we standardized the units for each
parameter individually. The data were collected from diverse
European locations, as illustrated in Table I and Fig. 1. Table I of-
fers details on resolution, sampling depth, data source reference,
and sampling period for the topsoil’s pH, clay, silt, and sand. For
pH, we used the points with the CaCl2 extraction method [50]
for pH values. However, the measurement methods for the soil
texture parameters were not given for all samples, so all available
soil texture measurements were used in the development without
applying a method filter.

In Fig. 1, spatial distributions of the sampling locations are
given. Specific datasets such as ITACyL [51], LUFA Nord-
West, NABODAT [53], and OpenAgrar [54] represent their re-
spective countries, exhibiting concentrated sampling in regions
like northern Spain, Germany, and Switzerland. In addition,

Fig. 2. Distributions of the soil parameters used to develop the prediction
models shown for the training and validation dataset.

the LUCAS [52] dataset covers a substantial expanse of Eu-
rope, encompassing countries such as France, Great Britain,
Italy, Greece, Czechia, Poland, Slovakia, Austria, and Denmark,
thereby contributing to a comprehensive repository of soil prop-
erty measurements.

Fig. 2 shows the histograms of the target parameters, namely,
pH, clay, silt, and sand, for training and validation datasets. The
preliminary exploration of the data reveals that the pH distribu-
tion appears left-skewed, ranging from 3.3 to 8.1, with increased
population density observed between 6.2 to 7.8, aligning with the
prevalence of mildly acidic to neutral soils previously reported in
Europe [57]. Besides, soil texture parameter histograms display
a right-skewed distribution toward higher values for clay and
silt, while sand demonstrates a relatively uniform distribution.
These findings underscore most specific soil types within the
studied regions and provide crucial insights into the overall soil
composition.

When it comes to soil texture, using ternary plots is a common
practice to understand the distribution of the soil class. In Fig. 3,
it is evident that samples are scarce in the clay, silt, and sandy
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Fig. 3. Ternary distribution of soil texture ground measurements indicating
the soil type classification according to the classes presented in unified soil
classification system (USCS) [58].

Fig. 4. Locations of 636 fields sampled with Precision Sampling for pH
and soil texture. Points in the near vicinity are combined for simplicity in the
visualization.

clay classes. This absence could lead to a reduced prediction ca-
pability in the corresponding soil classes, particularly in the lack
of ground measurement support. This highlights the importance
of ensuring a balanced representation of soil types for robust
predictions across all classes.

2) Precision Sampling Data: We collected soil samples from
636 European fields using Precision Sampling [21] for parameter
map refinement and independent validation purposes. In each
field, validation samples are placed at least 30 m away from
the refinement samples, making sure that they are not in close
vicinity. These fields were chosen from diverse regions, as shown
in Fig. 4, encompassing Great Britain, Germany, Switzerland,
Poland, and Ukraine. Moreover, the diverse geographic dis-
tribution of these sampled fields ensures varied agricultural
landscapes characterized by differing climates, soil textures,
topography, and management practices.

B. Satellite Data

In our investigation, we extensively used data from two in-
tegral components of the Copernicus program: Sentinel-1 (S1)
and Sentinel-2 (S2). These essential satellites are part of the
collaborative efforts between the European Space Agency (ESA)
and the European Union. The Copernicus program is a crucial
Earth observation initiative dedicated to furnishing precise and
up-to-date information about various environmental aspects of
our planet. This mission is accomplished through a fleet of satel-
lites collectively known as Sentinels, which diligently capture
Earth’s atmosphere, oceans, and land data.

Sentinel-1 (S1) plays a critical role in our work, leveraging its
Synthetic Aperture Radar operating in the C-band with a center
frequency of 5.405 GHz. This mission encompasses two satel-
lites, S1a and S1b, collectively facilitating a temporal resolution
of six days. Our soil property prediction models extensively
relied on the Ground Range Detected data, which was processed
by ESA and offered an original spatial resolution of 10 m.

Sentinel-1 stands out for its capacity to capture data using two
polarizations: (i) vertical transmission-vertical received (VV);
and (ii) vertical transmission-horizontal received (VH). Com-
bined with the satellite’s operating frequency, these polarizations
render Sentinel-1 data uniquely sensitive to the Earth’s sur-
face’s physical and dielectric properties. This unique sensitivity
significantly enhances its suitability for precise soil property
prediction.

In conjunction with Sentinel-1, we incorporated Sentinel-2
(S2), which is the Multispectral Instrument. This highly adapt-
able instrument captures data across a spectrum of 13 electro-
magnetic bands, spanning from visible to shortwave infrared
(SWIR) wavelengths. Crucially, Sentinel-2 ensures a revisit
period of six days, guaranteeing frequent and systematic ob-
servations of the Earth’s surface. The spatial resolution of these
bands varies, with some providing a high resolution of 10 m
while others offer a slightly coarser resolution of 20 m. In
addition, Sentinel-2 encompasses three bands dedicated to cloud
screening and atmospheric corrections, each with a resolution
of 60 m. Combining these bands equips Sentinel-2 with detailed
and comprehensive soil property prediction capability.

The spectral properties of Sentinel-2 data align seamlessly
with the expected spectral signature of soil, as highlighted
in prior research [59]. This phenomenon can be attributed to
the interplay between incoming radiation and soil particles,
resulting in a saturation effect. Notably, near-infrared (NIR)
and shortwave SWIR wavelengths are absorbed and scattered
by soil particles. This unique interaction limits the additional
insights derived about soil composition and properties using
these wavelengths. As NIR and SWIR wavelengths are absorbed
and scattered, the soil’s response becomes less sensitive to
further changes in the electromagnetic spectrum. Essentially,
this saturation effect arises because soil particles efficiently
absorb energy at NIR and SWIR wavelengths, and subsequent
increases in energy do not yield significant changes or en-
hancements in the measurement of soil characteristics. The
basic statistics of the satellite data-driven features are given
in Appendix A.
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Fig. 5. Methodology followed in developing the presented soil property prediction models shows four interconnected steps in frames labeled accordingly.

C. Climate Data

The climate data used in this study was obtained through
the Meteomatics API [60]. This process requires API requests,
where we provide the precise latitude and longitude coordinates
of soil sampling locations. The acquired data is particularly
informative, encompassing daily temperature and precipitation
metrics. Our focus centered on the mean and standard deviation
of temperature and the mean and cumulative precipitation span-
ning 2017 to 2023. These parameters gave us a comprehensive
overview of the climate conditions in the regions where our soil
sampling efforts were concentrated. The basic statistics of the
climate data-driven features are provided in Appendix A.

D. Soil Grid Database

To enhance the precision of our predictions, we utilized
the 250 m soil property maps obtained through the Soilgrids
REST API [61], which provided a low-resolution overview.
These maps played a critical role in guiding our predic-
tions. Our methodology involved supplying the API with
latitude and longitude coordinates for various locations. Sub-
sequently, we extracted the surface soil texture properties,
including essential parameters such as clay, silt, and sand,
from the API’s response. By integrating this supplementary
data, we enhance our predictive models’ accuracy and relia-
bility, strengthening our models’ overall robustness. The ba-
sic statistics of the soil-grid data-driven features are given in
Appendix A.

E. Topography Data

We obtained our topography data from the Copernicus
Global 30 m digital elevation model (DEM), which we ac-
cessed through the Google Earth Engine using the COPER-
NICUS/DEM/GLO30 identifier. This dataset provides a spatial
resolution of 30 m and offers detailed insights into the elevation

variations across our sampling locations. In addition to fun-
damental elevation data, we extracted the topographical slope
from this DEM. Integrating elevation and slope data helped
us understand the terrain and hydrological characteristics. The
basic statistics of the topography data-driven features are given
in Appendix A.

III. METHODS

This article focuses on soil property mapping, achieved
through ML model predictions and ground measurements ob-
tained from agricultural fields. To accomplish this, our soil
property mapping approach encompasses four key components,
as depicted in the four interconnected stages that constitute our
comprehensive approach to mapping soil properties, ensuring
our predictions are robust and reliable.

The proposed methodology shown in Fig. 5 consists of the
following steps after the feature collection: Data preprocess-
ing, training different model frameworks, selecting the best-
performing model, and finally, refinement and validation of the
produced maps.

1) Data preprocessing: In this initial step, we investigate our
data. This involves setting temporal boundaries, removing
outliers, and keeping pertinent features from our input
datasets via correlation analysis. Doing so ensures that
the data used for modeling is high quality and directly
relevant to our objectives.

2) Training different model frameworks: We train three
models using the preprocessed data. These models in-
clude the LGBM, RF, and MLP. The aim here is to
explore various modeling approaches and measure their
effectiveness in predicting soil properties at the pixel
level.

3) Selecting the best-performing model framework: Follow-
ing the training phase with different frameworks, we
assess the performance of these models. We employ a
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mean absolute percent error (MAPE) and coefficient of
determination (R2) evaluation metrics and performance
criteria to identify the model framework that accurately
and reliably predicts the soil property. The top-performing
model framework, having the lowest MAPE and highest
R2, is chosen for the next step.

4) The selected model framework is then employed to gener-
ate initial soil property maps. These maps undergo further
refinement and validation using the precision sampling
approach and dataset. These ground measurements are
used to fine-tune and validate the predicted soil property
values, improving the accuracy and precision.

A. Preprocessing

1) Temporal Data Selection: Specific soil parameters,
namely pH, clay, silt, and sand, are temporally stable and exhibit
minimal temporal variation. We implemented a robust filtering
process to maintain the relevance and consistency of the soil data
used in our model development. Specifically, we included only
measurements obtained after 2000, while data collected before
that date were excluded.

This temporal filtering process ensured that our model used
the most relevant and current pH and soil texture data available.
By doing so, we aimed to strengthen our model’s precision and
practicality, relying on the latest and most pertinent information
to make accurate predictions and informed assessments of soil
properties.

2) Outlier Elimination: To ensure the quality and reliability
of our input data, we executed an outlier elimination during
the preprocessing phase. Our approach was methodical: We
investigated the distribution of each feature concerning each
target parameter independently. We singled out samples that fell
within the top and bottom 1% percentile range for each feature as
potential outliers. Furthermore, any sample flagged as an outlier
in at least 80% of the features was removed.

This method effectively identified and eliminated outliers
from our dataset. By excluding extreme values that could po-
tentially adversely affect our analysis and modeling results, we
ensured the integrity of our data. Following this outlier elimi-
nation process, we observed that the parameters’ distributions
began to tend to a Gaussian distribution with slight skewness.
This characteristic is particularly advantageous for feature scal-
ing, as it contributes to the smooth and effective convergence
of ML algorithms, ultimately enhancing the reliability of our
model.

3) Feature Selection: The feature selection was carried out
using a linear correlation analysis, which enables us to assess
the linear relationships between individual parameters and their
interactions. Our goal was to comprehensively understand the
influence of each parameter in a linear context. We conducted
correlation analysis across all the features present in our dataset.
We paid particular attention to highly correlated features dur-
ing the feature elimination process. Specifically, we identified
features with an absolute correlation coefficient exceeding 0.9.
From this subset of highly correlated features, we retained the

one that exhibited the strongest correlation with each target
parameter. The selected features for each model are given in
the tables of Appendix A. Our intention behind this approach
was to identify the most pertinent and informative features for
our modeling objectives. This process serves the dual purpose
of reducing the dimensionality of our dataset while selecting
the features that have the greatest influence in predicting soil
properties accurately.

B. Model Development

In the evaluation phase, we systematically assessed the per-
formance of different ML frameworks for each target parameter.
We employed a methodology that involved training the models
on a subset of the data and validating their performance on an
independent set of samples. We analyzed the results of various
ML algorithms to identify the most suitable framework for
accurately predicting each soil property.

1) ML Frameworks: Assessing various ML frameworks is
critical in effectively mapping soil properties using satellite data.
We selected three frameworks from established research and im-
plementations in our evaluation, considering each framework’s
distinctive features and advantages [62], [63]. The algorithms
are implemented in the widely used scikit-learn package [64]
and include:

1) LGBM: LGBM operates as a gradient boosting framework
that relies on tree-based learning algorithms. Its efficiency
in both training and prediction is noteworthy. LGBM
uses histogram-based algorithms and supports parallel
computing, rendering it adept at handling large datasets.
With an array of customizable hyperparameters, we could
fine-tune its performance according to our specific require-
ments [65].

2) RF: RF operates as an ensemble learning method that
combines multiple decision trees to generate predictions.
By aggregating results from various models, RF enhances
accuracy and robustness. Furthermore, it offers insights
into feature importance, facilitating the feature selection
process [66].

3) MLP: MLP functions as an artificial neural network
comprising multiple layers of interconnected neurons. It
excels in discerning complex patterns within data and
making predictions through feed-forward propagation.
MLP models can be trained with or without back-
propagation, allowing for optimization of their perfor-
mance based on specific requirements [67].

These algorithms offer different and diverse modeling ap-
proaches, each with unique strengths in capturing complex
relationships between features and soil parameters. We aim
to evaluate these algorithms to determine which can most ac-
curately account for the observed feature variations with the
highest precision. Subsequently, we select the best-performing
model to proceed with the subsequent steps. This evaluation
process entails a comprehensive assessment and comparison
of each algorithm’s performance using suitable metrics and
validation techniques.
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2) Data Split: The data splitting step in ML model develop-
ment is a pivotal stage for assessing the model’s performance
and capacity to generalize effectively to new, unseen data. This
step involves strategically dividing the dataset into two different
subsets: 1) the training set; and 2) the validation set.

The training set typically encompasses around 80% of the
entire dataset. This substantial portion is the foundation upon
which the model is built and fine-tuned. The model is ex-
posed to this training set during training, aiming to learn the
intricate relationships and patterns between the input features
and the target soil property. The model iteratively adjusts its
hyperparameters to minimize prediction errors, acquiring a deep
understanding of how input features influence the target soil
property. This understanding forms the basis for its subsequent
predictions.

C. Selecting the Best Performing Model

In contrast, the validation set accounts for the remaining
20% of the data. Its significance lies in its independence from
the training set; validation points should not overlap with the
instances used for model training. This independence ensures
that the model’s performance on the validation set is an unbi-
ased evaluation of its predictive capabilities. We gain valuable
insights into its robustness and generalizability by subjecting the
model to the validation set. We assess whether the model can
make accurate predictions under unfamiliar conditions, a crucial
aspect of its overall reliability.

1) Hyperparameter Optimization: Hyperparameter opti-
mization is a crucial phase in the development of ML models. It
thoroughly searches for the ideal combination of hyperparam-
eters to optimize a model’s performance with a given dataset.
Hyperparameters are essential configuration settings that must
be defined for each model. In this study, we employ the Hy-
peropt package [68], a powerful Python library that has gained
widespread recognition for its flexibility and efficiency in hy-
perparameter tuning. It uses Bayesian optimization, designed to
systematically explore the hyperparameter space, which essen-
tially represents a multidimensional parameter space containing
various hyperparameters, to pinpoint the most advantageous
configuration.

The process of hyperparameter optimization starts with the
definition of the objective function. This function quantifies
the model’s performance based on specific criteria. Our study
aims to minimize the validation error between the measured and
estimated values (MAPE) while maximizing the R2. Then, we
initiate the iterative exploration, where the Hyperopt package se-
lects an initial configuration of hyperparameters. The Bayesian
optimization algorithm uses this initial configuration to evaluate
the model’s performance on the validation data. This is followed
by selection, which learns from previous evaluations and lever-
ages this knowledge to decide which configurations to explore
next. This iterative cycle continues until the algorithm converges
to an optimal hyperparameter configuration. The optimization
aims to find the combination that yields the best possible model
performance according to our predefined objectives.

2) Model Performance Assessment Metrics: The model per-
formance assessment was conducted based on the validation
scores. To assess the accuracy of the models, three metrics were
employed: Root Mean Squared Error (RMSE), the coefficient
of determination (R2), and MAPE.

RMSE measures the average magnitude of the errors between
predicted and measured values, calculated by taking the square
root of the average of the squared differences between pre-
dicted and measured values. The coefficient of determinationR2

measures how well the model explains the variance. It ranges
from 0 to 1, with a higher value indicating a better model fit to
the measured data. MAPE, given in (1), assesses the absolute
percentage error between predicted and measured values, while
lower values indicate better prediction.

MAPE =

∣
∣
∣
∣

Prediction − Measurement
Measurement

∣
∣
∣
∣
× 100. (1)

In the best model selection, the algorithm that achieved the
highest validation R2 and lowest RMSE was selected as the
final model by comparing the validation scores of the different
models. A lower RMSE indicates a better fit between the pre-
dicted and actual values, indicating higher predictive accuracy
and better model performance in capturing the variations in
target parameters.

For a more rigorous assessment of the model’s accuracy, we
calculated the MAPE in 50%, 80%, and 90% confidence inter-
vals (CI). To do so, we divided the entire parameter range into
20 equidistant intervals. We systematically filter the data points
for each interval, enabling us to calculate the percentage errors
between the model’s predictions and the actual measurements.
Later, we compute the error distribution’s 50th, 80th, and 90th
percentiles for each parameter range.

D. Final Soil Property Mapping

This step employs a refinement process to enhance the ac-
curacy and detail of the predicted soil property map. Support
sampling is particularly crucial in geospatial analysis, where
values at unmeasured locations need to be estimated based
on the values observed at sampled locations. Considering the
parameter’s temporal changes, particularly for pH, the inclu-
sion of ground measurements conducted at a close time to
prediction solves the problem caused by variation resulting
from the parameter’s dynamic nature prior to planned precision
management.

In our approach, we use the Precision Sampling [21] points
taken for the refinement and left out the validation points in
the field [46]. The refinement starts with thin-plate spline inter-
polation [69]. It is a sophisticated 2-D interpolation technique
to fill in the gaps between sampled soil measurements. It is a
popular choice in geostatistics [70] due to its ability to generate
a continuous surface from scattered data points. It is like creating
a smooth, continuous map of soil properties.

The next step involves smoothing for noise reduction, similar
to applying a box-car filter to the soil property map. Imagine
examining a pixel on the map and considering the values of
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its neighboring pixels within a 3×3 grid, essentially covering
a 30× 30 m area. By averaging or smoothing these values,
we effectively reduce any noise or irregularities that might
have arisen during the interpolation process. This smoothing
operation ensures that our final map more coherently represents
the spatial variation of soil properties.

After mapping the soil properties, we conducted internal
and external model validations, during which we assessed the
models’ prediction performances by comparing ground mea-
surements to predictions with and without precision sampling
refinement.

IV. RESULTS AND DISCUSSION

This section outlines the comprehensive evaluation of our ML
models. It is divided into four key subsections as follows.

A) Data preprocessing that shows the number of samples
that are used for model training and validation as well as
remaining features after the selection.

B) Internal model assessment investigates the evaluation of
the model’s performance using the same data sources that
were used for training (as detailed in Section II-A1).
It tests how well the models perform when assessed
against data they are already familiar with regarding the
source. This is crucial in understanding how effectively
the models capture the underlying patterns and relation-
ships within the training data source.

C) Validation without precision sampling explores how the
models generalize to entirely new and unseen data col-
lected separately by AgriCircle. This provides valuable
insights into the models’ ability to make accurate predic-
tions in real-world scenarios beyond their training data.

D) Validation with refinement presents the results of
model performance on validation data (as explained in
Section II-A2), but with the added benefit of Precision
Sampling-based refinement using the samples collected
by AgriCircle. It shows the models’ performance when
fine-tuned with additional ground measurements, show-
casing their adaptability and refinement capabilities. Ul-
timately, this thorough assessment ensures a clear picture
of how well the models perform across different scenarios
and data sources, validating their effectiveness in predict-
ing soil pH and texture.

A. Data Preprocessing

The original pH dataset has 67 655 samples. After the elim-
ination of outliers, the pH prediction model was reduced to
include 59 797 samples, of which 47 838 were used for training
and 11 959 for validation. Through feature selection, the model
retained 21 features. These features encompass VV mean and
standard deviation, the mean value of B1, B4, B6, B9, B11,
and B12, the standard deviation of B9, B11, and B12, means of
temperature and precipitation, as well as the standard deviation
of temperature, clay, silt and sand, and landform, taxonomy, and
elevation.

In the clay model framework, the original dataset comprises
71 747 samples. Upon eliminating outliers, the clay prediction

model incorporates 63 367 samples, with 50 694 allocated for
training and 12 673 for validation. Through feature selection,
the model retains 22 features. These encompass VV and VH
mean, the standard deviation of VH, mean values of B1, B2, B4,
B6, B9, B11, and B12, and standard deviations of B9, B11, and
B12, mean temperature and precipitation, clay, silt, and sand,
landform, taxonomy, elevation, and slope.

In the silt model framework, the original dataset contains
63 356 samples. Following the removal of outliers, the model
integrates 53 535 samples, with 42 828 designated for training
and 10707 for validation. After feature selection, the model
preserves 23 features. These encompass VV and VH mean,
along with the standard deviation of VH, mean values of B1, B6,
B9, B11, and B12, as well as standard deviations of B9, B11,
and B12, mean temperature and precipitation and temperature
standard deviation, clay, silt, and sand, landform, taxonomy,
elevation, and slope.

In the sand model framework, the original dataset consists of
53 111 samples. After the elimination of outliers, the model in-
corporates 44 390 samples, with 35 512 allocated for training and
8878 for validation purposes. The model maintains 21 features.
These encompass VV and VH mean and standard deviation,
mean values of B1, B2, B6, B11, and B12, as well as the
standard deviations of B1, B9, B11, and B12. In addition, mean
temperature and precipitation, temperature standard deviation,
clay, silt, and sand, and elevation are retained.

The predictive models for pH, clay, silt, and sand content share
similarities in the features used for refinement and prediction.
Each model incorporates a diverse array of spectral indices
derived from satellite imagery, including the mean of VV, B1,
B11, and B12 and standard deviation values of various bands
such as B1, B9, B11, and B12. In addition, climate variables,
such as mean temperature and precipitation, are included. Low-
resolution soil data for clay, silt, and sand content, as well as
terrain characteristics like elevation, are also retained across
all models. This consistent feature selection approach ensures
the models capture the complex relationships between environ-
mental predictors and soil properties, seemingly contributing to
accurate predictions and enhancing our understanding of soil
dynamics at a spatial scale.

The existing research and physical reasoning also support
these selected features. As they are basically the same infor-
mation at a lower scale, the soil texture data from the soil grid
database is an expected set of features. When it comes to climate
data, [10] shows the importance of climate variations on the
distribution of soil properties.

B. Internal Model Assessment

In this section, we perform a comparative analysis of the three
distinct modeling frameworks explained in Section III-B1. The
results of these frameworks are summarized in Table II. Each
column group corresponds to a model framework, while each
row presents the evaluation results for both the training and val-
idation datasets for pH, clay, silt, and sand. In the Appendix, we
provide further information regarding the model performances
in Figs. 11–14.
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Fig. 6. Scatter plots between measured and predicted pH, clay, silt, and sand values using the best performing model framework for their validation data sets.

TABLE II
MODEL ASSESSMENT RESULTS FOR PH, CLAY, SILT, AND SAND FOR R2 AND

RMSE UNDER DIFFERENT FRAMEWORKS AFTER HYPERPARAMETER

OPTIMIZATION

We find the LGBM model consistently as the top-performing
model for all four soil parameters II. The LGBM model demon-
strates R2 higher than 76% for all soil parameters in training,
underscoring its capability to explain a substantial portion of
the variability within them. As we investigate the validation, we
see R2 higher than 81% for soil texture-related parameters and
56% for the pH model. The high R2 values in the validation set
indicate the robust generalization ability of the LGBM model to
new and unseen data, reaffirming its superior predictive power
and reliability.

For instance, for pH prediction on the training set, the LGBM
model achieves an R2 value of 76.97% and an RMSE of 0.47.
However, it is important to note that with this R2 value, ap-
proximately 23% of the pH variability remains unexplained.
This suggests that certain factors, such as unaccounted features,

measurement errors, or inherent pH variability, persist beyond
the scope of the selected features. The validation (see Fig. 6)
reveals a specific trend: The models consistently overestimate
pH values below six and underestimate them above 7.5. This
can be attributed to the intricate relationships between the input
features and pH and the tendencies of modeling frameworks to
converge toward the mean. It’s worth noting that the presence
of data points with very similar values, often differing only by a
small decimal point, emphasizes the challenges associated with
precise soil property prediction at the pixel level.

We observe a minimum R2 value higher than 80% for the
tested clay, silt, and sand prediction frameworks, demonstrating
higher robustness and generalization capabilities than the pH
model. Here, we should mention that RF showed higher accuracy
for sand than LGBM in the training dataset. However, LGBM
showed a slightly higher R2 and identical RMSE, which led us
to proceed with the LGBM framework for consistency across
the framework.

Fig. 6 presents scatter plots for the validation prediction
using the LGBM model against the measured values. These
scatter plots show the fit between predicted and measured values,
providing insights into the model’s performance. The achieved
R2 values of approximately 90% on the validation dataset, along
with RMSE values of 0.64 and 5.8 for Silt and Sand, respectively,
suggest good performance exhibited by the selected model.
Specifically, these metrics imply that the model effectively cap-
tures the variance in Silt and Sand content, as evidenced by the
highR2 values. Moreover, the model demonstrates considerable
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Fig. 7. Confidence intervals in MAPE for 50%, 80%, and 90%, calculated at different value ranges of pH, clay, silt, and sand.

accuracy for Clay, achieving an R2 score of 81.74% alongside
an RMSE of 5.8 were attained. This suggests the model can
provide precise predictions for Clay content, indicating its utility
in soil composition analysis. However, pH yields poor results,
with an R2 score of 56.1% and an RMSE of 0.64. Conversely,
the model’s performance is less favorable when assessing pH,
as evidenced by an R2 score of 56.1% and an RMSE of
0.64.

Fig. 7 illustrates the behavior of CI curves concerning predic-
tion errors across different parameter values. A notable pattern
emerges: As the parameter value increases, the MAPE, as de-
fined in (1), tends to decrease. This pattern can be elucidated by
considering the nature of the MAPE metric. At lower values of
clay, silt, and sand content, the measurements approach zero, im-
plying that any prediction higher than this point would result in a
disproportionately high MAPE. This phenomenon gives rise to
an asymptotic behavior in the confidence curve, characterized by
a sharp decline in prediction error as parameter values increase.
This observation highlights a critical aspect of the model’s
performance. It underscores that the model’s predictions are less
accurate than the ground truth measurements when dealing with
low clay, silt, and sand content values. The model’s prediction
accuracy improves as these soil properties increase, leading to
lower prediction errors and narrower confidence intervals.

Comparison of Figs. 2 and 7 provides a comprehensive view of
the CI discussions. In Fig. 2, we observe that the 50% confidence
intervals consistently maintain a relatively low prediction error,

staying below 20% for all considered parameters. The valida-
tion results remain favorable when adopting a more stringent
criterion, as represented by the 90% confidence intervals. For
pH, the error remains around 15%, while for clay, it is less than
40%. Silt and sand parameters exhibit approximately 25% error
within the 90% confidence interval. This stable pattern observed
in the confidence curves across most parameter ranges reflects
the robustness and reliability of the corresponding model. It
suggests the model’s predictions are generally consistent and
accurate within the specified ranges, providing valuable insights
into soil properties such as pH, clay, silt, and sand content.

C. External Model Assessment

After completing the internal validation assessment using the
data points represented in Fig. 1, our analysis transitioned to
evaluating the model’s performance using a distinct set of data
points collected from agricultural fields by AgriCircle, whose
locations are presented in Fig. 4. The dataset consists of 554
fields with 2909 samples for pH, 234 with 1130 samples for
clay, 234 with 1128 samples for silt, and 216 with 1038 samples
for sand.

Using data collected by AgriCircle via Precision Sampling,
we conducted a two-step validation. In the first step, we assessed
the model’s predictive capabilities on this new unseen set of
ground measurements. In the second step, we split this set of
data into two parts, with one part designated for the points to be
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Fig. 8. Scatter plots between measured and predicted pH, clay, silt, and sand values on the Precision Sampling points before the ground measurement-based
refinement. 50%, 80%, and 90% CIs are presented with bands in each subplot.

used for refinement, which were collected according to Preci-
sion Sampling, and the other part used for validation purposes,
ensuring a distance of at least 30 m from the refinement samples.

1) Validation Without Precision Sampling: The validation
analysis conducted in this phase serves as a critical step in under-
standing the performance and reliability of the trained models,
shedding light on their effectiveness in accurately predicting soil
properties across the designated geographical locations as shown
in Fig. 8. Notably, the observed shifts in the R2 values for the
pH parameter require closer examination, revealing a decrease
from 56.81% in the internal validation to 41.74% during the
external validation process. This decline can be attributed to
several factors, including the possibility of overfitting, inherent
variability in the data sources employed, potential discrepancies
in the spatial distribution of the training data, and the complex
interplay of various environmental factors influencing pH levels
at different geographical locations.

Furthermore, focusing on the evaluation of the soil tex-
ture parameters, we witnessed a reduction in the R2 values,
although within a relatively narrow range, from 81.74% to
80.73% for clay, from 90.23% to 89.41% for silt, and from
90.29% to 88.88% for sand. These marginal shifts underscore the
complex nature of soil composition, emphasizing the inherent
challenges associated with precisely predicting soil texture prop-
erties solely based on remote sensing data and associated feature
sets.

While the initial validation accuracy is higher than 80%,
particularly for the soil texture parameters, precision agriculture
demands a higher level of accuracy, greater than 90%, to ensure
effective and informed decision-making. Recognizing the criti-
cal need for improved precision, our approach underscores the
statistical integration of ground measurements into the predicted
soil property maps. This strategic integration process is a vital
enhancement mechanism, facilitating the refinement of the pre-
dicted maps by applying the Precision Sampling methodology.
By employing this approach, we aim to bridge the gap between
the initial predictions and the required accuracy levels neces-
sary for optimal precision agriculture practices and informed
decisions in field management.

2) Validation With Precision Sampling: The preceding
validation phase has emphasized the potential for enhancing
the precision of pH, clay, silt, and sand predictions within
agricultural fields. Fig. 9 provides valuable insights into the
outcomes of validation points obtained from the dataset outlined
in Section II-A2. This dataset leverages Precision Sampling pH,
clay, silt, and sand measurements to fine-tune the predicted soil
property maps through thin-plate spline interpolation. Notably,
the validation points within agricultural fields maintain a
minimum separation of 30 m from the refinement points,
ensuring their independence. The scatter plots in Fig. 9 enable
a comprehensive assessment of the adjusted soil property maps
with their accuracy and reliability.
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Fig. 9. Scatter plots between measured and predicted pH, clay, silt, and sand values on the validation points after the ground measurement-Precision Sampling
based refinement. 50%, 80%, and 90% CIs are presented with the grey bands in each subplot.

Regarding pH predictions, the refined model achieves a R2

value of 91.42% at the validation points, underscoring a robust
correlation between the predicted pH values and the ground
measurements. The low 50% CI value of 0.08 suggests rel-
atively minor errors well within the confines of laboratory
uncertainty. These results demonstrate the effectiveness of the
refinement process in accurately estimating pH content facil-
itated by interpolation and smoothing techniques. For clay,
silt, and sand, the R2 values exceed 95%, accompanied by
50% CI values of 0.84, 1.12, and 0.82, respectively. When
extending our analysis to the 90% CI, we observe an absolute
error rate of 0.49 for pH and less than 6.2 for soil texture
parameters.

Integrating ground measurements through the Precision Sam-
pling approach is critical in improving the precision and relia-
bility of soil property maps. By this approach, the refinement
process effectively reduces the uncertainty associated with the
predicted values, thereby enhancing the suitability of these maps
for informing precise and targeted agronomic strategies. Even
at a fine spatial resolution, this increased accuracy enables more
informed decision-making and promotes optimized agricultural
practices, contributing to improved crop yield and sustainable
land management.

The high-resolution soil maps obtained through the refined
methodology offer a detailed and comprehensive understanding
of soil properties within agricultural fields, facilitating various

precision agricultural practices such as variable rate application
for sowing density, fertilization, and irrigation [71], [72], [73].
The practical examples depicted in Fig. 10 showcase four distinct
agricultural fields across Europe. Each showcase represents a
soil property map after postrefinement. It illustrates the en-
hanced and precise delineation of the respective soil property,
empowering farmers and agronomists with valuable insights to
optimize their land management strategies and improve overall
agricultural efficiency and sustainability.

D. Practical Implications

In Fig. 10(a), the 46-hectare field in Ukraine highlights the
importance of the presented pH map applicable for optimizing
the lime application, likely improving crop productivity and
yield [74] as well as soil structure and stability [75]. In Fig. 10(b),
the 187-hectare field in Germany demonstrates the generated
clay map with the aim of understanding the field’s water holding
capacity [76], [77], facilitating informed water management [78]
and field drivability [79], [80] decisions. Similarly, the field
depicted in subfigure 10-c, covering 32 hectares in Hungary,
benefits from the calculated silt map, empowering the farmer
in his aim to create a variable sowing rate map [81]. Lastly,
Fig. 10(d) presents a 4-hectare field in England, where the sand,
clay, and silt maps aid the landowner in efficiently managing
irrigation activities [78], [82].
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Fig. 10. Examples maps for predicted pH, clay, silt, and sand on various locations: (a) pH map of a field in Ukraine has an area of 46 ha, (b) Clay map of a field
in Germany has an area of 187 ha, (c) Silt map of a field in Hungary has an area of 32 ha, and (d) Sand map of a field in England has an area of 4 ha.

As stated in this section, this research’s practical impli-
cations cover a broad range of agricultural applications. Al-
though soil sampling makes the presented approach more
costly than methods that rely on remote-sensing data, the
accuracy achieved makes the maps with support sampling
superior.

V. CONCLUSION

This research is dedicated to developing and implement-
ing an innovative algorithm that predicts soil texture and pH
content in European soils using satellite, climate, and terrain
data. Multispectral and radar imagery offer insights into soil
spectral properties, complemented by climate data (tempera-
ture, precipitation) and terrain features (elevation, slope, aspect,
hillshade). This integration allows the algorithm to navigate the
intricate relationships between environmental features and target
parameters. Training on a European dataset from various loca-
tions, the LGBM algorithm yields predictions with an average
percentage error below 6% at the European scale when combined
with precision-sampled ground measurements. Integration of
precision sampling, also called support sampling, significantly
enhances overall accuracy.

The framework is validated with independent datasets to
ensure robustness, which demonstrates reliable performance
across diverse soil types and geographic regions in Europe, both
with and without refinement through ground measurements. The
presented solution, with the support of ground measurements,
carries profound implications for soil management, land use

planning, and environmental research. Accurate predictions em-
power decision-making on soil health, sustainable land man-
agement, and optimization of fertilization and soil moisture
practices. In the following research phase, our focus shifts to
expanding predictive capabilities into soil moisture mapping.
This extension holds promise for supporting irrigation and field
drive-ability, enriching the toolkit for agriculture and environ-
mental decision-makers.
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APPENDIX A
FEATURE STATISTICS

In the appendix tables, VV and VH correspond to vertical–
vertical and vertical–horizontal polarizations, B# corresponds to
the respective band of Sentinel-2, and SGD corresponds to the
Soil Grid Database.

APPENDIX B
DIFFERENT MODEL FRAMEWORKS

This appendix presents the model training results using
different frameworks, including the training and validation
split.
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TABLE III
FEATURE STATISTICS FOR THE PH DATASET
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TABLE IV
FEATURE STATISTICS FOR THE CLAY DATASET



12700 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

TABLE V
FEATURE STATISTICS FOR THE SILT DATASET
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TABLE VI
FEATURE STATISTICS FOR THE SAND DATASET
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Fig. 11. Scatter plots between measured and predicted pH values using different frameworks for their training and validation datasets.

Fig. 12. Scatter plots between measured and predicted clay values using different frameworks for their training and validation datasets.
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Fig. 13. Scatter plots between measured and predicted silt values using different frameworks for their training and validation datasets.

Fig. 14. Scatter plots between measured and predicted sand values using different frameworks for their training and validation datasets.
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