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Dilated-RNNs: A Deep Approach for Continuous
Volcano-Seismic Events Recognition
Manuel Titos , Joe Carthy, Luz García , Talfan Barnie, and Carmen Benítez

Abstract—Monitoring continuous volcano-seismic signals is of-
ten performed by systems trained on scarce or incomplete datasets.
From a machine learning perspective, these types of systems are
typically built by learning from seismic records containing infor-
mation not only on the volcanic dynamics, but also on the complex
inner structure of the volcanic edifice. The dual nature of the
information content presents a challenge when it comes to modeling
events temporally. Here, we show that while existing recurrent-
neural-network-based monitoring systems recognize almost 90%
of events annotated in seismic catalogs, the long-range temporal
dependencies are still hard to model. We found that dilated recur-
rent neural networks based on multiresolution dilated recurrent
skip connections between layers have the remarkable capability to
simultaneously enhance the efficiency of the model, reducing the
number of training parameters, while increasing the performance
of the model when compared with classical recurrent neural net-
works in sequence modeling tasks involving very long-term seismic
records. Our results offer the potential to increase the reliability of
monitoring tools despite the variations in the geophysical properties
of the seismic events within the volcano across eruptive periods.

Index Terms—Deep learning, dilated recurrent neural networks
(Dilated-RNNs), transfer learning (TL), volcanic monitoring.

I. INTRODUCTION

A LTHOUGH the combination of multiple remote sensing
and real-time monitoring disciplines has allowed rapid

advances in volcanic hazard assessment and risk mitigation,
the study of seismic waves in the volcanic environment offers
an understanding of what complex processes are happening
inside the volcano. These processes range from the complex
interaction between multiphase fluids and their hosting rock to
ductile deformation and brittle failure and processes associated
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with the magma transport. Volcanic activity can be located and
described by seismic waves that are characterized (in terms of
waveform, energy, duration, and frequency content) based on
the internal processes generating them. Therefore, developing
operational frameworks that allow for the real-time assessment
of the large volumes of data obtained by volcano observatories
is an important challenge to address. Particularly, in the field
of volcanic seismology, it will help to understand the behavior
behind the physical processes of the volcano.

Starting with Ohrnberger [1], the past two decades have
borne witness to the development of automatic volcano-seismic
monitoring systems. The overwhelming success of data-driven
models to solve complex real-world problems [2] positions
them as an effective alternative to physics-driven models,
which currently form the basis of many of the monitoring
systems deployed in volcanological observatories. In addition
to their computational cost, physics-driven approaches rely on
data to unmask and improve the theoretical explanation be-
hind them. Data-driven approaches allow for improvements
in terms of discovering the inner workings of volcanoes, in
volcanic hazards assessment approaches, and in risk mitiga-
tion protocols [3], [4] by analyzing monitored data through
well-defined mathematical rules. As a consequence, to de-
velop improved predictive models, one needs to pursue a bal-
anced approach taking elements from both data and physics-
driven approaches, keeping data as a common point. This bal-
anced approach can be achieved by using machine learning
(ML) [5].

Focusing on volcanic monitoring through seismic data, ML
algorithms, employing both supervised and unsupervised ap-
proaches, have played a pivotal role since the groundbreak-
ing works in [6] and [7]. These algorithms aim to uncover
meaningful patterns and generate new features for interpreting
information collected by seismometers, ultimately enhancing
automatic early warning systems [8], [9], [10], [11], [12], [13],
[14], [15]. In seismic event recognition, there are two key per-
spectives: 1) classifying isolated events, where individual events
categorized by expert geophysicists are placed into predefined
classes [16], [17], [18], [19], [20], [21], and 2) sequence mod-
eling, which involves processing continuous event sequences
and requires efficient models capable of capturing the temporal
evolution of such sequences for detection, segmentation, and
classification [6], [7], [8], [9], [11], [12], [13], [22], [23]. While
the isolated classification of volcano-seismic events remains
an active area of research, this study specifically emphasizes
sequence modeling detection.
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Traditional ML techniques, such as Hidden Markov models,
have been widely employed in sequence modeling [11], [24].
However, in recent years, neural networks (NNs), including
recurrent and temporal convolutional approaches have taken
a leading role due to their strong temporal modeling capabil-
ities. By generating a spatiotemporal sequence of hierarchical
features, both recurrent NNs (RNNs) [25], [26] and temporal
convolutional networks (TCNs) [27] have recently been suc-
cessfully applied as seismo-volcanic monitoring tools [12], [13],
[14], [22], [23] but also in complex and emerging research
geosciences fields, such as climate change monitoring [28] and
remote sensing [29].

Sequence modeling is a significant challenge in the develop-
ment of real-time monitoring systems. Learning from contin-
uous seismo-volcanic records can be arduous [25]. There are
multiple challenges in training models both due to the require-
ment to recognize sequences of different durations and due to
other considerations including the following:

1) modeling long-term dependencies while maintaining mid
and short-term ones;

2) mathematical limitations affecting the training process
(vanishing/exploding gradient problems) [26], [30];

3) learning may not be possible to efficiently parallelize;
4) datasets guiding supervised learning are scarce and, the

labeling criteria carried out is sometimes not uniform
among the experts;

5) algorithms often cannot provide insights into their behav-
ior (being a black-box to users) potentially hiding bias in
the model or problems in the training data.

Each of these challenges may hinder the development of high-
performance models.

This work introduces dilated recurrent NNs (Dilated-
RNNs) [31] as an architecture to build a new seismo-volcanic
monitoring system. Based on multiresolution dilated recurrent
skip connections between layers, the Dilated-RNN possesses
enhanced efficiency reducing the training parameters (compared
with standard stacked RNN cells) while matching state-of-the-
art performance in sequence modeling tasks involving very
long-term dependencies. Our objective is to show the usefulness
of Dilated-RNN simultaneously tackling the first, second, and
third challenges referred to above. To address the fifth challenge
(enhancing learning explainability), this work adopts the method
outlined in [22] to assess neural activation dynamics in the most
informative network layers. This is achieved by pruning the
least influential neurons, with the objective of 1) simplifying
the architecture of the network and 2) studying the ability of the
neurons to specialize in the recognition of a specific physical
event by mapping their activation levels.

The rest of the article is organized as follows: Section II offers
a theoretical overview of dilated architectures (Dilated-RNN).
Section III details the database and experimental framework. In
Section IV, we present the results and engage in discussions.
Finally, Section V concludes this article.

II. DILATED-RNNS

Dilation operations in NNs allow for inserting holes between
consecutive information elements in each network layer during

the learning/prediction process. This creates a trainable mech-
anism for selectively emphasizing or disregarding individual
features based on their relevance to the prediction task. This
dynamic feature selection allows the network to effectively ana-
lyze temporal series, adjusting to diverse temporal structures and
sequence durations. This adaptive behavior ensures alignment
with the specific requirements of the task at hand.

The introduction of dilations in NNs was initially proposed
in [32], leading to TCNs. Processing of temporal series has
not been successfully attained with classic Convolutional NNs
(CNNs) because their fixed input data size is unable to identify
longer-term patterns for events of higher durations. When deal-
ing with sequential training, CNNs have primarily been used as
a preliminary feature-extractor, e.g., [31], [33], [34]. TCNs pro-
posed a compact approach to learning temporal structures. They
combined very deep networks (augmented with residual layers)
with dilated convolutions to efficiently increase the size of the
receptive field employed. This increase in the effective receptive
field allows TCN models to better capture short-to-medium
sequences in the data. However, the capability of TCN models
to capture longer temporal dependencies is still constrained by
their kernel size while RNNs, using autoregressive modeling,
can theoretically capture longer term of temporal dependencies
with a modest number of parameters [31].

Despite issues related to extended training durations and
limited parallelization due to their gradient propagation
through time training approach, RNNs and more specifically
their memory-gate versions such as long short-term memory
(LSTM) [25], [35] and gated recurrent unit (GRU) [36], [37]
have provided interesting advances in parallel to those of TCNs
in effective sequential training in several applications including,
speech recognition and processing [38], [39], or volcano-seismic
events recognition [22], [23].

While RNN-LSTMs and RNN-GRUs achieve high-
performance, long-sequence learning remains a challenging
problem often confronted with vanishing and exploding
gradients (impeding learning) and time-consuming sequential
training periods. The usage of dilations offers potential
improvements in regard to both of these issues, which has led to
the approach named Dilated-RNNs [31], that are theoretically
capable of capturing longer-term dependencies with a small
number of parameters and parallel computation if desired.
Dilated-RNNs are multilayer and contain cell-independent
neural connection architectures, analogous to TCNs, but under
a recurrent setting (see Fig. 1). The dilated recurrent skip
connections organized into multiple dilated recurrent layers
with hierarchical dilations alleviate the impeding learning
problems and extend the range of temporal dependencies with
fewer parameters and lower computational cost permitting
parallel computation.

According to the work in [31], dilated recurrent skip connec-
tions can be mathematically described using a general formula
for forward propagation at each time step. Let clt denote any
RNN cell, such as a Vanilla RNN cell, LSTM, GRU, etc., in
layer l at time t. Assuming an input at time t and layer l denoted
by xl

t, the dilated skip connection is represented as follows:

clt = f
(
W l ∗ xl

t + U l ∗ clt−sl

)
. (1)
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Fig. 1. Dilated-RNN architecture studied in this investigation. Each gray point represents an LSTM cell. A classical LSTM configuration is essentially equivalent
when there is just one layer, and there are no dilated recurrent skip connections.

Here, sl is referred to as the skip length or dilation of layer l,
W l is the weight matrix at layer l for the current input xt, U l is
the weight matrix at layer l for the dilated connection from the
output at time t− sl, and f encompasses any activation function.
This formula embodies the central concept of incorporating
dilated connections to capture temporal patterns by introducing
a connection from the output at a previous time t− s. The
dilation s determines the time distance of this connection. An
essential distinction between dilated and regular skip connection
approaches lies in the fact that the former eliminates reliance
on clt−1, in contrast to the regular skip connections [31]. This
reduction in dependence results in a decrease in the number of
parameters that need to be tuned. It is important to note that
this equation serves as a general example, and the mathematical
notation may vary depending on the specific architecture of
the Dilated-RNN in use. The architecture of a Dilated-RNN
may include multiple layers and structures. For a more in-depth
understanding, we encourage readers to explore the work in [31].

III. DATABASE DESCRIPTION AND EXPERIMENTAL

FRAMEWORK

A. Database Description

Our dataset consists of seismological signals from Deception
Island (62° 59’ S, 60° 41’ W), a prominent active volcanic
island in the South Shetland archipelago and the Antarctic
Peninsula [40], [41], [42]. These signals were gathered during
three Antarctic seismic surveys conducted in the austral seasons
of 1994–1995, 1995–1996, and 2001–2002. A thorough account
of the sensor and acquisition systems can be accessed in [43]. For
a more extensive understanding of the dataset and the seismic
events themselves, one can refer to the work in [12]. Data label-
ing was conducted by experienced geophysicists knowledgeable
about the volcano’s dynamics. All volcano-seismic events have
been selected as the most representative of each class. This
yielded 512 continuous data streams, comprising 2193 events,
distributed among the classes as follows: 1222 background
noise (BGN), 77 tremors (TRE), 765 long-period events (LP),
75 volcano-tectonic earthquakes (VTE) and 54 hybrid events
(HYB). Fig. 2 illustrates the volcano-seismic events related to

the Deception Island dataset examined in this article, providing
a comprehensive depiction of their temporal organization across
both time and frequency domains. The fluctuations in amplitude
and frequency observed throughout the event stem directly
from the distinctive source mechanism that characterizes this
occurrence. Consequently, these variations can be utilized as
distinctive markers for identification purposes.

B. Experimental Framework and Recognition Results

To facilitate a comprehensive comparison and evaluate the
efficacy of these models in recognizing volcano seismic signals,
two architectures have been implemented in this study: 1) RNN-
LSTM and 2) Dilated-RNN with LSTM cells (Dilated-LSTM).

Rather than directly employing the waveform, the raw stream-
ing records underwent parameterization. This involved applying
the log filter bank parameterization scheme, incorporating tem-
poral context information (δ, δδ), as outlined in [22], to establish
the baseline systems. Such feature extraction workflow follows
the process outlined in the following.

1) Raw data undergo windowing using 4-s Hamming win-
dows with a 3.5-s overlap.

2) For each window, a 512-point fast Fourier transform
is computed. The magnitude of the resulting spec-
trum serves as input for a bank of 16 triangular fil-
ters, evenly distributed on a logarithmic frequency scale
with 50% overlap between adjacent filters. Subsequently,
we compute the logarithm of the filter-bank energies,
resulting in a 16-component feature vector for each
window.

3) The feature vector is finally augmented with details about
the temporal context. This includes the incorporation of
the first and second-order temporal derivatives (δ, δδ) for
each 16-component feature vector [44]. Consequently, the
size of the feature vector triples in comparison to the initial
one.

The RNN-LSTM network topologies utilized in this study
are based on the architectures described in [12]. Specifically,
we explored a range of configurations by adjusting the number
of hidden units for the LSTM layer from 10 to 300 and the
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(a) (b)

(c) (d)

Fig. 2. Amplitude and spectrograms of the four types of volcano-seismic events recorded at Deception Island volcano during three seismic surveys: 1994–1995,
1995–1996, and 2001–2002. (a) LP. (b) Volcano-tectonic earthquake (VTE). (c) TRE. (d) HYB.

learning rate from 0.004 to 0.01. To mitigate overfitting, we
employed early stopping and L2 regularization techniques. The
optimal RNN-LSTM model, which featured a single hidden
layer without dilations, demonstrated superior performance with
210 hidden units (including δ, δδ) and 130 hidden units (ex-
cluding δ, δδ). For the dilated version, we varied the number
of hidden units per layer from 10 to 150, incorporating dilation
factors of 2, 4, and 8 (considering the length of the input signals).
This parameter also determined the depth of the system, ranging
from 1 to 3 layers. The most effective configuration for the
Dilated-LSTM model included three hidden layers, each with
50 hidden units, and 2–4 dilated recurrent skip connections per
layer. System performance was assessed using accuracy-based
validation metrics. The experimental configuration is defined as
follows.

1) All experiments were conducted within a conda envi-
ronment. The setup of this environment includes CUDA
version 9.2, Python 3.7, PyTorch 1.2.0, CUDNN 7602,
and requisite libraries. The seismic data were divided into
two segments for model training and testing purposes. The
training set was further divided into two subsets: 1) the
training dataset and 2) the validation dataset, constituting
80% and 20% of the data, respectively.

2) Data Normalization: We use a standard deviation normal-
ization across the training, validation, and blind testing

datasets, defined as

yi-normalized =
yi − μi

σi

whereμi andσi represent the mean and standard deviation
of the ith feature for all the seismic instances in the training
set, respectively, and yi denotes the ith feature of the input
vector.

3) Optimizer: SGD with a fixed learning rate ranging from
0.004 to 0.01.

It is important to acknowledge the inherent limitations of the
dataset, stemming from its scarcity and imbalance. The PyTorch
implementation of both architectures’ source codes, along with
preparameterized databases, is accessible to users through the
provided link.

Table I summarizes per-frame recognition results obtained
for RNN-LSTM and Dilated-LSTM models when applying a
leave-one-out cross-validation approach. All the experiments
were carried out using fivefold, resulting in 80% and 20% of
the data for the training, validation, and test sets, respectively.
A closer look at the table reveals that the dilated model out-
performs the classical model, both with and without contextual
information, while also reducing the parameter count. As em-
phasized in Section II, the parameter reduction in the dilated
architecture is evident not just in a reduction of hidden units
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TABLE I
RECOGNITION CAPABILITIES ANALYSIS: RECOGNITION PERFORMANCE

OBTAINED BY THE PROPOSED ARCHITECTURES USING DATA BELONGING TO

THE 1994–1995, 1995–1996, AND 2001–2002 SPANISH ANTARCTIC

CAMPAIGNS

per layer but also in the elimination of reliance on clt−1. This
represents a fundamental distinction between dilated and regu-
lar skip connection approaches. Interestingly, when contextual
information is introduced, the RNN-LSTM yields results similar
to the Dilated-LSTM without context. These results suggest that
the use of dilations, effectively expanding the receptive field,
imparts knowledge akin to that obtained from contextual infor-
mation. Since training RNNs often exhibit oscillatory behavior
due to the variation in training segment sizes and, consequently,
error propagation at different time steps, we did not utilize an
early stopping-based regulator. However, we have observed that
dilated models converge earlier than their classical counterparts
in terms of the number of iterations. The training times are
associated with a fixed training duration of 300 iterations.

IV. ANALYZING ARCHITECTURES: DISCUSSION

As discussed, our goal is to assess Dilated-LSTM effec-
tiveness in seismo-volcanic monitoring systems, specifically in
offline recognition tasks. We will examine how multiresolution
dilation operations impact result robustness and reliability. The
results obtained for RNN-LSTM models in [22] and [12] are
considered as baselines and three aspects are analyzed as fol-
lows.

1) We examine a sparse version of Dilated-LSTM, where
selected hidden units are pruned to reduce complexity
while operating in high-dimensional feature spaces.

2) We explore the completeness of the system’s learning
mechanism, focusing on the idea of abstraction through
the specialization of sub-structures, neurons, or units.

3) We assess the system’s robustness by characterizing data
from seismic campaigns or periods with varying volcanic
dynamics.

A. Posttraining Sparsification Analysis

Understanding the impact of sparsity on NNs remains a chal-
lenge, but there is growing interest in this area. Deep learning
models are typically dense and overparameterized, leading to
overfitting and memorization of random patterns, ultimately im-
pairing their generalization abilities [44]. Sparsified networks,
on which some hidden units or neurons are selectively pruned,
consistently match and often outperform their initially dense
versions [45], [46]. That is, they reduce the representational

complexity of the systems by zeroing out subsets of parame-
ters while they continue to operate in high-dimensional feature
spaces [45].

Although sparsification approaches in the field of deep learn-
ing are very diverse, this work focuses on a data-driven se-
lection scheme where the network is pruned after training, by
removing a certain amount of components with the lowest heat
values to match the required sparsity level [45]. Following
the work in [22], instead of relying on an absolute weight
magnitude-based pruning method (data-free selection scheme),
our posttraining sparsification approach is grounded in the
neurons’ excitation behavior. Rather than pruning connections
solely based on their magnitude (as smaller absolute magnitude
weights are assumed to have less impact), we prune hidden
units using an absolute-heat-value-based threshold. The heat
value is determined as the average activation value for each
hidden unit when recognizing events within the same category.
Additionally, sparsification, alongside having an impact on a
network’s generalization and robustness, can aid in assessing the
saliency of each layer as well as the high-heat-value neurons.

Fig. 3(a) depicts the average posttraining sparsification re-
sults for the Dilated-LSTM (with three hidden layers). Average
posttraining sparsification results related to RNN-LSTM are
described in [22]. Each line represents recognition accuracy
(%) at various sparsification levels, considering all possible
pruning combinations among layers. “All-layers” illustrates
performance while varying activation percentile and pruning
neurons in all layers. “Layers-1-2,” “Layers-1-3,” and “Layers-
2-3” show the same analysis but keep all the neurons at layer 3
and only pruning neuron in layers 1 and 2 for the first; keeping
all the neurons at layer 2 and only pruning neuron in layers 1 and
3 for the second and keeping all the neurons at layer 1 and only
pruning neurons in layers 2 and 3 for the latest one respectively.
Finally, “Layer-1,” “Layer-2,” and “Layer-3” show the results
when pruning only layer 1, 2, or 3, respectively. The Y -axis
represents the percentile of neuron activity (relative to the most
active neuron) used for testing the architectures. For example, the
100th percentile on the Y -axis uses all neurons for testing while
the 10th percentile uses only the top 10% of the most active
neurons (those with 90% of the maximum activation value).
The X-axis represents classification results in terms of accuracy
percentage. Fig. 3(b) illustrates the number of neurons pruned
per layer during posttraining sparsification for Dilated-LSTM
when keeping other layers unpruned.

The results exhibit varying trends when considering differ-
ent layers during pruning. Fig. 3(a) demonstrates that, when
evaluating layer 3, performance deteriorates earlier, even with
a relatively low activation percentile. This highlights both the
greater specialization of layer 3 compared to layers 1 and 2 and
the robustness of the extracted features. Even with a substantial
number of neurons pruned from layers 1 and 2, performance re-
mains acceptable. The specialization of layer 3 is further evident
in Fig. 3(b). Assuming specialization when only a subset of units
within a layer are highly activated, layer 3 is highly specialized.
The average number of pruned neurons, even at low activation
percentiles, is significantly higher in layer 3 compared to layers
1 and 2. Approximately 40% of neurons in layer 3, on average,
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Fig. 3. Posttraining sparsification analysis. (a) Recognition accuracy (%). (b) Number of neurons pruned per layer.

Fig. 4. Waveforms (first row), spectrograms (second row) and time-evolution profiles of the top five specialized hidden units for RNN-LSTM (third row) and
Dilated-LSTM (fourth row) architectures when recognizing different LPs (a and b) and VTEs (c and d). L3 in Dilated-LSTM corresponds to the final layer depth.

exhibit activation levels below 5% of the highest one. While
40%–50% of neurons in layers 1 and 2 can be pruned having
a little effect on the performance, when layer 3 is included,
the number of pruned neurons grows hugely, losing elemental
information and dropping out the performance quickly.

B. Neural Activation: Analyzing the Knowledge Acquired

Analyzing the system’s output is essential for detecting train-
ing biases and ensuring its correct functioning. We aim to address
the challenge of delivering accurate yet interpretable insights

into the system’s behavior (completeness of interpretation) [47].
To examine the completeness of the system’s interpretation, we
highlight the concept of abstraction through the specialization of
substructures or hidden units. Given that data are parameterized
according to frequency domain information and grouped by
bands, the objective is to incorporate visual cues for gaining
“potential insights.” These insights aid in comprehending the
system’s behavior and the reasons behind specific input–output
relationships.

Fig. 4 depicts the temporal neural activity of the top five highly
specialized hidden units in the architectures while recognizing
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different LP and VTE events. The most specialized units are
identified by first grouping events by type and calculating the
average absolute activation values of neurons over time during
event recognition. Subsequently, the heat value for each hidden
unit is determined. This heat value represents the average neural
activation of each hidden unit when recognizing all events
grouped by type. Finally, the five neurons with the highest heat
values for each event type are selected.

Upon closer examination of neural activation patterns, we
observe a clearer class-selectivity among neurons, which is
defined as the ability to enhance event recognition or detection
by reducing global neural activity concentrated in a few highly
sensitive neurons with high activation values [48], [49]. While
the RNN-LSTM demonstrates a comprehensible behavior in
detecting and delineating both types of events, Dilated-LSTM
exhibits a slightly less intuitive behavior when detecting VTEs:
The most specialized neurons reduce their activity when a VTE
is detected and become active again when the energy levels drop.
In the case of LPs, the most specialized neurons maintain a
state of minimal activity, activating efficiently to detect incoming
events when there is a change in energy levels. Compared to the
RNN-LSTM, the Dilated-LSTM displays a relative quasi-plain
behavior before and after the event occurrence. In terms of event
detection, both architectures prove effective.

C. Generalization Capability: Reviewing Recent Dataset

One of the most important challenges in automatic volcano-
seismic recognition systems is to build robust computational
models that can easily readapt themselves to the highly dy-
namical internal seismic sources inside volcanoes. Over time,
volcanic dynamics may alter specific seismic signal character-
istics, potentially leading to significant changes in event charac-
terization. Consequently, in the long term, these alterations can
result in a recognition system’s failure to detect certain events,
even if the dynamic changes have not given rise to entirely new
seismic event types. Given the highly dynamic nature of the data
under examination, we assess whether a system trained on data
from campaigns in 1994–1995, 1995–1996, and 2001–2002 can
effectively monitor the XXX Spanish Antarctic Campaign data
at the Deception Island volcano.

We employed a 3.5-h seismic record from the 2016–2017
Antarctic survey as our testing data. To maintain consistency
with the training dataset’s frequency range (see Section III),
all signals were filtered between 1 and 20 Hz. This new dataset
was derived from various unprocessed seismic records, featuring
unknown events and lacking prior human oversight. The inclu-
sion of such events in this dataset might impact the predictions,
as they may differ from the meticulously selected prototype
events used to train the system. According to the work in [12],
the accuracy of recognition and generalization capabilities for
all recurrent models proposed could be influenced by the pro-
nounced attenuation and source effects observed in the volcanic
environment of Deception Island.

Table II presents our test results, reported in terms of ac-
curacy and correct detection. Correct reflects the percentage
of recognized events within the existing seismic catalog while

TABLE II
GENERALIZATION CAPABILITIES ANALYSIS: RECOGNITION PERFORMANCE

OBTAINED BY THE PROPOSED ARCHITECTURES USING DATA BELONGING TO

XXX SPANISH ANTARCTIC CAMPAIGN, 2017

accuracy also accounts for insertion errors (recognized events
not found in the seismic catalog). Notably, the table reveals
that recognition performance (Cor%) is robust, but a significant
decline is observed when insertion errors are considered. When
comparing architectures, it is noteworthy that Dilated-LSTM
consistently introduces a 5% insertion error rate in contrast to
the LSTM. These errors predominantly stem from the inclusion
of TRE events in noisy seismic records, and the inclusion of
BGN events in previously labeled TRE records. These observed
phenomena could be related to attenuation effects involving the
degradation in peak-to-peak amplitude of the recorded signals
in comparison to those included in the master (training) dataset.
Although spectrograms reveal a consistent frequency pattern
(indicative of a common source mechanism), the discernible
variations in their energy levels point to significant attenuation
effects. The reason the expanded version encounters this 5%
insertion error may be attributed to its larger receptive field,
detecting longer-term changes or transients with fluctuating
energy levels along the seismic trace.

Regarding the parameterization scheme, the incorporation of
contextual temporal information (δ, δδ) results in an insertion er-
ror rate ranging from 4% to 5%. These errors primarily stem from
the identification of transient events in traces initially labeled as
TRE. The inclusion of δ, δδ makes the models more responsive
to subtle variations in seismic traces, leading to the recognition
of events that were initially overlooked or considered part of
broader occurrences. As highlighted in [12] and [50], seismic
tomographies in velocity and attenuation at Deception Island
substantiate the presence of aquifers and hot materials near the
surface. Interactions between water and hot rocks (source ef-
fects) induce a sudden phase change at depth, accompanied by a
pressure step and the emission of high-frequency seismic waves.
The intricate fault systems in the area contribute to the generation
of low-frequency seismic wave swarms that produce overlapping
signals. The acquisition of strongly supervised data, including
fully ground-truthed catalogs, is impeded by the considerable
costs associated with the data-labeling process. Consequently,
inherent limitations, stemming in part from the methodologies
used to obtain these catalogs, have significant implications for
the testing of future monitoring systems. Therefore, these inser-
tion errors may be associated with source effects arising from the
completeness of seismic catalogs, which are notably influenced
by human decision-making biases. An expert review may be
necessary to discern some of these insertions from a geophysical
perspective, and certain insertions may not be considered errors
after further examination.
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Furthermore, irrespective of the selected parameterization
scheme, both architectures exhibit decreased performance in
terms of accurately detecting events. This decline can be
attributed to the classification of all earthquakes with negative
magnitudes or those exhibiting significant attenuation due to
propagation or side effects as LPs.

Finally, it is worth noting that while the LSTM architectures,
both with and without contextual information, yield quite similar
results in terms of events correctly recognized, the dilated ver-
sion shows a significant discrepancy. This difference becomes
more pronounced, reaching 4%, when contextual information
is not included. In both scenarios, the drop in Dilated-LSTM
performance primarily results from misidentifying sequences
of events within the same seismic category. Where the LSTM is
capable of separately recognizing each of the events forming the
sequence, the Dilated-LSTM, mainly due to its broader receptive
field, recognizes consecutive events (smaller than the model’s
own receptive field) as a single event, leading to a higher number
of omitted events and a decrease in performance.

V. CONCLUSION

In this work, we introduce Dilated-RNNs as a foundational
framework for robust and efficient volcano-seismic monitoring
systems. Our results demonstrate that the incorporation of mul-
tiresolution dilated recurrent skip connections between layers
not only enhances efficiency by reducing training parameters
but also surpasses classical RNN architectures in sequence mod-
eling tasks involving seismic records. These networks enable
hierarchical representations that can be effectively leveraged
in dynamic and streaming data environments. Moreover, while
their performance with recent seismic campaign data may be in-
fluenced by catalog incompleteness, their learning/adaptability
capabilities have the potential to outperform traditional ap-
proaches.
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