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Abstract—Unmanned aerial vehicles (UAVs) have revolutionized
various industries by providing efficient and automated flight ca-
pabilities. However, reliance on GPS and traditional navigation
systems poses challenges in scenarios where signal interference or
failures occur. In this research, we present a novel computer-vision-
based method to enhance UAV navigation, enabling accurate height
and location estimation. Our approach utilizes a sophisticated
network that leverages a pair of images to estimate UAV height. The
pyramid stereo-matching network is employed to extract robust
image features and generate a disparity map. Subsequently, a cus-
tom network processes and convolves these data, employing diverse
computer vision techniques to achieve precise height estimation. To
evaluate the effectiveness of our proposed method, we collected a
comprehensive dataset by conducting flights with a Phantom 4 Pro
drone over the NUST Main campus, H-12 Islamabad. The dataset
encompasses images captured at 10 different heights, spanning
from 100 to 280 m, with flights evenly spaced 20 m apart. In
rigorous evaluations, our approach demonstrates promising results
compared to existing methods. By liberating UAVs from reliance on
GPS, this vision-based 3-D localization technique holds immense
potential to ensure successful flights even in challenging environ-
ments.

Index Terms—3-D localization of UAV, computer vision,
deep image matching, feature detection, UAV height estimation,
unmanned aerial vehicles (UAVs).

I. INTRODUCTION

IMAGE matching is a fundamental task in machine vision
with significant applications in depth estimation, motion

detection, tracking, 3-D object reconstruction, and height es-
timation. It involves comparing pairs of images captured by a
camera with a slight shift in camera position. Feature matching
is employed to measure the similarity between image pairs and
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calculate the disparity, which is subsequently used to determine
the depth maps.

One specific application of image matching is in the field of
vision-based autonomous navigation, where unmanned aerial
vehicles (UAVs) [1] utilize visual cues for self-localization.
In scenarios where GPS and altimeter failures occur due to
factors such as jamming, technical issues, or unforeseen cir-
cumstances, reliable localization becomes crucial for UAVs. As
UAV localization heavily relies on onboard GPS and altimeter
systems, malfunctions can render the UAV ineffective. Thus,
alternate approaches are essential aids in autonomous flight in
such scenarios.

UAVs are typically equipped with high-resolution cameras
that can be leveraged to estimate the UAV height from the
ground. This involves an image-matching procedure, where
features are extracted from two images to establish correspon-
dences. The resulting correspondences are then utilized to cal-
culate the disparity and depth maps. However, this pipeline is
complex due to factors such as viewpoint changes, variations
in illumination, and dynamic prominent features, making image
matching and depth estimation highly challenging.

Various models based on mathematical transforms (e.g.,
Fourier and wavelet) [2], [3] and rotation and scale-invariant
feature descriptors (e.g., SIFT, SURF, and histogram of dom-
inant gradients) [4], [5], [6], [7] have been proposed. These
models work by extracting key points from two images to
obtain feature maps, which then enable feature matching by
establishing correspondence among those images. Approximate
nearest-neighbor search algorithms, coupled with postprocess-
ing procedures (hierarchical k-means tree, RANSAC) [8], [9],
have been utilized to enhance matching results. Nevertheless,
nearest-neighbor search encounters limitations as they lack local
texture. To address this, researchers have recently proposed deep
trainable models [primarily relying on end-to-end trainable deep
convolutional neural network (CNN) architectures] [10], [11],
[12], [13] that facilitate robust feature extraction and establish
correspondence by incorporating larger context. Moreover, they
are effective in calculating disparity efficiently, which is useful
in applications such as 3-D object modeling, 3-D reconstruction,
and depth estimation [14], [15], [16], [17]. In the context of depth
estimation, these maps are frequently used to find the distance
of objects/pedestrians from the camera. They were also used to
find the height of UAVs from the ground using ground cameras
and height calculation during indoor flights [1], [5], [18] but not
used for aerial-to-ground distance calculation. This is the area
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Fig. 1. Main network diagram. The upper part of the diagram represents the network that extracts the feature using weight sharing and then calculate the cost
volume. This cost volume is processed by 3-D convolutions as well as 2-D convolutions. Finally, fully connected layers are used for final prediction of height. The
lower part of the network diagram shows the template mating of the image taken from the drone with an orthomosaic for 2-D localization. Both the networks were
combined for 3-D localization.

we focus, i.e., to compute the aerial to ground distance of the
UAV using a pair of images taken by the onboard camera.

Motivated by the concepts of deep CNNs and end-to-end
learning, this article presents a complete pipeline for end-to-end
learning and 3-D localization of UAVs, as illustrated in Fig. 1.
The primary focus is to utilize this technique for estimating the
UAV height from the ground and integrating it with 2-D data
to achieve 3-D localization. The proposed approach involves
utilizing a pair of images (UAV camera) to extract features
and establish correspondence, enabling disparity calculation
and subsequent determination of the UAV depth/height from
the ground level. Within the proposed architecture, the key
contributions include the following.

1) Designing an end-to-end trainable network that estimates
the UAV height using pairs of images for 3-D localization.
The pyramid stereo-matching network [17] is employed
as the base network for feature extraction from image
pairs and subsequent disparity map calculation, which is
adopted and enhanced to utilize for the estimation of the
UAV height.

2) Demonstrating the proposed model on real-time UAV
imagery by acquiring training and testing data through
multiple drone flights.

3) Collecting a unique custom dataset by flying a Phantom 4
Pro drone within the premises of the NUST Main Campus
H-12 Islamabad, Pakistan. This dataset is made publicly
available for the benefit of the research community.

II. RELATED WORK

Numerous researchers have made substantial contributions to
the fields of image matching and depth estimation, employing a
wide array of techniques, including invariant feature descriptors
and CNN-based approaches. Our research specifically focuses
on two significant research areas 1) image matching to calculate
disparity and 2) depth estimation.

Image matching forms the cornerstone of computer vi-
sion, playing a pivotal role in essential tasks, such as image

correspondence, optical flows/disparity, and person reidentifi-
cation, among others. Traditional image-matching techniques
employ Siamese-based networks to find correspondences. How-
ever, recent advancements have seen the emergence of more
sophisticated methods. Mughal et al. [19] explore the use of
deep convolutional neural networks for real-time 2-D localiza-
tion of UAVs, leveraging the UAV camera and locally stored
orthomosaic images. For disparity estimation, Mayer et al. [20]
contribute to the field by providing three realistic, diverse, and
large-scale synthetic stereo video datasets, enabling effective
convolutional network training for real-time disparity estima-
tion. Zhang et al. [21] focus on efficient disparity estimation,
incorporating squeezed cost volumes and attention-based spa-
tial residual modules. Chang and Chen [17] utilize a pyramid
stereo-matching network to establish image correspondences
for disparity calculation. Their network employs shared weights
to extract features from two images, and a 4-D cost volume is
employed to derive the disparity.

For depth estimation from monoscopic imagery, Haseeb
et al. [22] provide a machine learning configuration that gives
the obstacle detection system a way to calculate the distance
between the monocular camera and the item being seen by
the camera in order to enhance self-supervised monocular dis-
tance estimation on fisheye and pinhole camera pictures. Kumar
et al. [23] offer a unique multitask learning technique to im-
prove self-supervised distance estimation on monocular fisheye
camera images. Ciganek et al. [24] give a general overview
of measuring techniques and how to determine the distance
between an object and a camera. They initially identified the
corners in an image and the distance between them and then
used mathematical equations to find the distance of camera from
the object. Pavlovic et al. [25] presented the application of two
different techniques (sensor based and vision based) to find the
distance between a robot and an object. They used radar/ LiDAR
for the sensor-based technique and used both single and stereo
pairs for the vision-based technique. Yoon et al. [26] used both
single image as well as pair of images to find the depth by using
a depth fusion network.
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For depth estimation from a pair of images, there are many
methods available for cost volume optimization and matching
cost computation, which have been proposed in the literature.
Wang et al. [14] introduce the pseudo-LiDAR network, which
estimates depth for 3-D object generation using point cloud data.
Building on this, pseudo-LiDAR++ network and image calibra-
tion data are used for depth estimation [15]. Garg et al. [16]
present a novel neural network architecture utilizing a loss func-
tion derived from the Wasserstein distance to output arbitrary
depth values. Maximov et al. [27] worked on the generalization
of depth estimation outside the training set so that accurate
results can be achieved for that they have worked on direct
supervision of domain invariant defocus and used a convolution
neural network to learn from a pair of images with a different
point of focus.

For vision-based height estimation of the UAV, Shabayek
et al. [28] carried out the comparison of various techniques
including horizon-based methods, optical flow, stereoscopic-
based techniques and passing by vanishing points. Gökçe
et al. [5] worked on distance estimation as well as detection of
microunmanned aerial vehicles in different scenarios including
intruder UAVs in a protected environment and controlling UAVs
for environmental surveillance and monitoring. They tested local
binary patterns, histogram of gradients (HOGs), and Haar-like
features using the cascade of boosted classifiers. Pan et al. [18]
have used both monocular image and stereo images to estimate
the approach angle and height of the UAV for autonomously
landing. To calculate the approach angle, they extracted vanish-
ing lines by using the Hough transform and RANSAC algorithm,
and to calculate the height, feature-based matching is adopted
by extracting Harris corner from stereo images and then using
approach angle 3-D reconstruction. The Kalman filter model is
built by analyzing motion characteristics of the UAV for accurate
height estimation. Mondragon et al. [1] worked on estimating
UAV height, the pose and motion estimation using visual aid
to control the aircraft from the ground. Their objective was to
demonstrate that computer vision can be successfully used in
control loops and for which fast image processing algorithms
were required to close the gap between real-time controls and
visual control, i.e., a processing rate of 15 frames per second.
They have shown that to enable UAV navigation based on visual
input, traditional image-collecting techniques can be combined
with ad-hoc image processing and fuzzy controllers to achieve
good results. Dhahbane et al. [29] conducted a survey in the
domain of engineering (guidance, navigation, and control) to
determine the orientation of an aircraft in space with respect
to another object. They have compared different techniques
including computer vision to determine the attitude (roll, pitch,
and yaw) of an aircraft. Yang et al. [30] worked to determine the
position and attitude of an aircraft with respect to the horizon
by integrating a visual odometer (computer vision) and GPS,
which was used to take results so as to minimize the trajectory
estimation error. Wan et al. [31] provide a study on UAV localiza-
tion technique for its autonomous navigation based on matching
between onboard UAV picture sequences and a preinstalled
reference satellite image. The images compared with each other
are not taken under the same illumination conditions; hence, they

used illumination invariant tech of Phase Correlation through
mathematical deviation and able to estimate the current and next
position of the UAV and also apply self-coarse correction in
case the UAV is not following the planned path. Liu et al. [32]
worked to find the height of the UAV and focus on the issues
in optical flow due to rotational and translational movement by
using gated recurrent unit neural network. Yol et al. [33] 3-D
localize the UAV using the deep image-matching technique.

It is worth noting that while many of the earlier algorithms
primarily concentrate on calculating UAV height from ground
sensors or during indoor flights, there has been limited explo-
ration specifically dedicated to vision-based height estimation of
UAVs using the onboard camera. This particular aspect forms
a crucial aspect of our research, where we aim to extend the
existing methodologies to enable precise distance estimation for
UAV navigation. In the subsequent sections, we will present our
approach, methodology, and experimental findings to address
this gap in the existing literature.

III. METHODOLOGY

Depth calculation constitutes a comprehensive pipeline that
encompasses data acquisition from a pair of images. Subse-
quently, these images are processed through the network to
calculate feature maps, which are further integrated into a 3-D
cost volume. This cost volume facilitates the computation of
disparity, ultimately leading to the determination of depth from
the camera’s perspective. The implementation process is divided
into several distinct steps, each of which plays a crucial role in
comprehending the overall development of the project. In the
following sections, we present further details of the proposed
architecture.

A. Overview

In this research, we adopt the PSMNet as our base network and
tailor it to effectively establish correspondences and calculate
disparities between image pairs while simultaneously estimat-
ing the height from the ground. Our network is referred to as
the Pyramid Stereo-Matching and Height Estimation Network
(PSMHENet). Initially, we compare PSMHENet performance
with that of the original PSMNet, gradually refining our net-
work’s design step by step to achieve improved outcomes. We
conduct a comparative analysis between our results and those
obtained using PSMNet. Our main contributions encompass the
modification of PSMNet and the design of a network specifically
dedicated to height estimation, which is appended at the end of
PSMNet, effectively integrating the two functionalities.

To perform a comprehensive comparison with our proposed
network (PSMHENet), we also employed two state-of-the-
art algorithms. First, the Siamese-based image-matching tech-
nique [34] (with minor modifications) was employed to establish
correspondences, calculate the disparity between the matched
features, and subsequently estimate height. The Siamese-based
matching network [35] employs a patch-based image-matching
technique, which lacks the consideration of the full context of
the image. However, the full context is crucial for accurately
determining the true height of the drone. Whereas our technique
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(PSMHENet) not only utilizes the entire image for comparison
but also incorporates the full context of the image through two
essential techniques 1) spatial pyramid pooling (SPP) and 2) 3-D
convolutions, in combination with an hourglass network. This
comprehensive approach enables the PSMNet to attain the global
context of the image, resulting in more accurate and reliable
results for height estimation.

Second, we compared our approach with a vision-based UAV
localization technique proposed by Yol et al. [33]. Their method
relies solely on visual information and employs a multipass
localization algorithm. However, many existing approaches are
susceptible to scene variations caused by changes in season
or environment due to their utilization of Sum of Squared
Differences (SSD). To address this issue, the authors opted for
mutual information (MI) as a more robust alternative, capable
of accommodating both local and global scene variations.

B. Network Diagram

The network diagram presented in Fig. 1 consists of two
distinct parts. The upper part of the network showcases the
input of stereo images, which are processed with shared weights
to extract features from both images. These features are then
amalgamated to form a 4-D cost volume, encompassing width,
height of feature maps, and disparity at each location. Subse-
quently, this 4-D volume is convolved through various layers,
reducing the feature map size while increasing the number of
feature maps. Following this, the data are passed through fully
connected layers to estimate the height.

On the other hand, the lower part of the network employs
one image from the stereo pair, along with an orthomosaic, to
conduct 2-D localization of the image within that orthomosaic. It
highlights the proposed localization pipeline that fundamentally
relies on feature point learning and a neighborhood consensus
strategy to refine the matches between the template image patch
and the prestored orthomosaic. This is accomplished by lever-
aging the correlation information between the convolutional
features of the two images and then applying probabilistic con-
straints to interdetermine the point-to-point correspondences.
Here, the convolutional feature maps embodying both the lo-
cal and global information are extracted using a deep feature
extractor and are later used to generate the correlation matrix
that incorporates the feature matches for every extracted feature
point. Subsequently, the probabilistic constraints followed by
soft-argmax layer are applied to these established correspon-
dences to link each feature point in the source image with the
feature points in the orthomosaic. For further details, refer to our
publication [19].

C. Feature Extraction

The pair of images (an example pair shown in Fig. 2) is fed
into a custom feature extractor with shared weights. This feature
extractor processes the images sequentially and performs con-
volutions on them. Subsequently, SPP is applied to the feature
map, allowing the extraction of features with a broader con-
text. By incorporating SPP with different scales, the extracted
features can fully benefit from the global context of the image.

Fig. 2. Sample pair of images taken from the dataset. The pair of images is
fed into the network for matching and prediction of the UAV height in meters.
(a) Left image. (b) Right image.

Specifically, 32 features are extracted from each point of the
feature map for comparison with the feature map of the other
image. This approach facilitates enhanced feature matching and
disparity calculation between the image pair, leading to more
accurate height estimation for the UAV.

D. Disparity Correlation Matrix

After generating the feature maps from both images, they
are combined in a manner that preserves the dimensions of
the feature map. This is accomplished by concatenating the 32
features from each image, resulting in a total of 64 features at
each location of the feature map. The subsequent crucial step
involves forming a 4-D tensor, with dimensions one-fourth that
of the image, encompassing 64 features from both images and
48 disparity values. Initially, these disparity values are loaded
with default values and then 3-D convolutions are employed
for further processing. This process ensures the incorporation
of essential information from both images and disparity values,
allowing for accurate disparity estimation, which is instrumental
in height calculation for the UAV.

E. Tridimensional Convolutions and Hierarchical Hourglass
Framework

During this step, 3-D convolutions are employed, followed by
batch normalization and ReLU activation. This process is iter-
ated multiple times to convolve the network. Consequently, the
features at each point in the feature map are reduced from 64 to
32. Subsequently, an hourglass architecture (encoder–decoder)
is introduced to learn the maximum context of the feature map.
The hourglass network operates with a top-down and bottom-up
approach, where the feature map, already reduced to 1/4th of
the image size, is further downsized to 1/8th and then 1/16th of
the image size, aiming to attain a comprehensive context of the
feature map. In the bottom-up process, the feature map is up-
sampled using transpose convolutions to achieve 1/8th and then
1/4th of the image size. This approach facilitates the acquisition
of contextual information for improved height estimation.

Following the hourglass process, 3-D convolutions are per-
formed once more, further reducing the features from 32 to 1.
Consequently, the feature map is converted from 3-D to 2-D,
with dimensions of 48 × 1/4 H × 1/4 W. This step enhances
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the feature map’s representational power and prepares it for the
final stage of height estimation.

F. Planar Convolutions and Dense Connections for Height
Estimation

At this stage of the network, the size of the feature map is 48×
1/4 H× 1/4 W. The objective here is to further reduce the feature
map while increasing the number of planes (filters) to gather
maximum information for the subsequent fully connected layers
at the end. Initially, 2-D convolutions followed by MaxPool are
employed to reduce the feature map to 1/8th of its original size
while increasing the planes to 64.

This process of 2-D convolutions is stacked iteratively to
gradually reduce the feature map to a single point and simul-
taneously increase the number of planes to 512. Eventually,
AvgPool is applied to reduce the feature map to a single point
while maintaining 512 planes, resulting in dimensions of 512 ×
1/64 H × 1/64 W � 512 × 1 × 1.

The next stage entails fully connected layers, where the output
of 512 is connected to 256, then 128, followed by 64, and
eventually to 32, culminating in a single-output value. This
final output represents the estimated height of the UAV from
the ground, providing valuable information for 3-D localization
and navigation.

G. Integration of Planar Localization and Height Estimation
for 3-D Localization

In order to achieve 3-D localization of the UAV, we have
integrated a dedicated 2-D localization network with the height
estimation network, as depicted in Fig. 1. To ensure optimal
performance, a pretrained network on the same geographical
area was utilized. Notably, the input data for these networks
differ: The height estimation network employs a pair of images
with identical dimensions while the 2-D localization network
requires an image along with an orthomosaic. Within the 2-D
localization network, only one of the images from the image pair
is utilized.

Upon combining both networks, we are able to accurately
predict the height of the UAV while simultaneously achieving
precise localization of the image within the orthomosaic. This
seamless integration facilitates comprehensive 3-D localization
of the UAV, thereby aiding in its navigational capabilities.

H. Network Architecture

The overall architecture can be divided into three primary
components. In the first part, we utilize a custom feature ex-
tractor to generate feature maps. Subsequently, in the second
part, these feature maps are amalgamated to form a 4-D cost
volume, which represents the disparity map. Finally, the third
part involves the processing of this 4-D cost volume through
multiple convolution layers, culminating in the accurate es-
timation of the UAV height. This modular approach allows
for efficient and effective height determination, enhancing the
overall performance of the system.

I. Implementation Details

The implementation details encompass a comprehensive set
of hyperparameters utilized during the training process. Initially,
the model was trained for 150 epochs. During training, the learn-
ing rate was initially set to 0.00001, which was then fine-tuned to
0.000001 for model optimization. Beta values were assigned as
0.9 and 0.999 to optimize the optimization process for AdamW,
and the weight decay was set to 0.000001. Adam optimizer was
employed initially, but subsequently, the AdamW optimizer was
explored. AdamW, being a stochastic gradient descent method,
combines adaptive estimation of first and second-order moments
with a weight decay method, effectively countering overfitting
and yielding favorable outcomes.

To ensure robust results, multiple training strategies were
adopted. While the L2 loss was initially utilized, the presence
of outliers prompted a transition to L1 loss (absolute error),
which proved to be more effective in generating accurate results.
The model underwent extensive training with numerous epochs,
consistently updating to enhance its performance. In the final
iteration, the model was trained for 190 epochs, culminating in
the desired outcomes for height estimation and localization of
the UAV.

IV. EXPERIMENTAL EVALUATION

In this research, comprehensive experiments were conducted
to assess the performance of the proposed approach, aiming
to simulate real-world conditions encountered in UAV imagery
within our test dataset. Extensive investigations into algorithmic
details and hyperparameters were also undertaken to identify the
optimal configuration of the model concerning efficiency and
accuracy. The results of this thorough analysis, referred to as the
ablation study, are presented in this section.

A. Data Curation

Data collection emerged as one of the most challenging
aspects of this research undertaking. The project necessitated
the acquisition of a dataset comprising downward-looking drone
camera images exhibiting a minimum overlapping of 75%–80%
between consecutive images. Unfortunately, the existing stereo
image datasets available in the market mainly consisted of street
views or images of objects in confined spaces with limited
variations in depth. Consequently, the creation of a custom
dataset became imperative to cater to the specific requirements
and objectives of this project.

1) Data Acquisition: The data gathering process necessitated
the utilization of a professional drone equipped with the capa-
bility to fly at various heights, including higher altitudes. In
addition, a suitable location was chosen for the drone flights,
leading to the selection of the NUST Main Campus, H-12 Islam-
abad. A total of 10 flights were meticulously planned to cover
a diverse range of 10 different heights. The drone employed
for data collection was the Phantom 4 Pro, which conducted
multiple flights over the NUST Main Campus to collect the
necessary data. The dataset encompassed data gathered at 10
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TABLE I
DETAILS OF DATASET COVERING THE TIME, HEIGHT OF UAV, AREA COVERED, IMAGE RESOLUTION, CAMERA ANGLE, ETC

Fig. 3. Pix4dcapture mobile app [36] is used to capture the dataset. This app
has the option to enter the complete flight path along with start and end points as
well as the percentage of overlapping required among consecutive images. The
figure shows the start, end, and the complete path of drone flight for capturing
the dataset. The black lines (drone flight path) indicate the position of images
taken during flight. The image pair at the end of each path and the start of the
new path was ignored as they have little overlapping.

distinct heights, commencing from 100 m and ascending in
increments of 20 m up to 280 m.

To optimize the drone flights, the area of interest was de-
fined using the Pix4dcapture mobile app [36], and its Grid
2D option was utilized for setting the flight paths. This app
provides different options in which if you select the area on
map, start point, end point, height, and front/side overlapping,
it will automatically send the drone to capture images as per
the area selected, as shown in Fig. 3. The consecutive images
(with overlapping) were then used as pairs. About, 80% front
overlapping (consecutive images) and 20% side overlapping
were used to capture maximum images from a specific area
(front overlapping is more relevant in consecutive images). The
consecutive images as pairs with 80% overlapping were used. As
far as “base” distance is concerned, it was automatically adjusted
as per the height of the UAV so that overlapping remains the
same (80%), and the base distance is not used as a parameter
during training. For further insights, refer to Table I for technical
specifics of the dataset.

TABLE II
DETAILS OF DATASET AFTER AUGMENTATION PROCESS

2) Data Preparation: Upon successful completion of all
flights, a total of 1781 images were collected. However, this
dataset was deemed insufficient for the training of deep CNNs.
Consequently, data augmentation techniques were employed
to augment the dataset. During the data augmentation pro-
cess, images were subjected to flipping and rotation. Careful
consideration was given to ensure that the dimensions of the
images remained unchanged, thus rotation was limited to 180◦

while horizontal and vertical flipping were also implemented.
Furthermore, the direction of camera movement (shifting of
camera) was maintained in a consistent manner throughout
the augmentation process. The augmented dataset details are
presented in Table II for reference.

3) Dataset Split: In order to achieve optimal results during
the training of the network, a conventional 80%–20% split on
mixed data was deemed unsuitable due to the dataset containing
data of various heights. Mixing data of distinct heights in the
training set could lead to suboptimal performance. Therefore,
a novel approach was adopted to split the dataset based on the
specific height values. By organizing the split in this manner,
data of distinct heights could be segregated, ensuring a more
effective training process.
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Fig. 4. Sample images from the dataset. Each image is taken from the same location with different heights. The heights of images start from 100 to 280 m with
a gap of 20 m. (a) Height 100 m. (b) Height 120 m. (c) Height 140 m. (d) Height 160 m. (e) Height 180 m. (f) Height 200 m. (g) Height 220 m. (h) Height 240 m.
(i) Height 260 m. (j) Height 280 m.

a) Training Set: For the training phase, data from eight
distinct heights were utilized. In order to ensure a uniform
distribution of data, the selected heights were nonconsecutive.
The heights used for training the network were as follows: 100,
120, 140, 160, 200, 240, 260, and 280 m. This selection was
made to enhance the diversity of the training set and optimize
the learning process.

b) Testing Set: For validation and testing purposes, data
from two distinct heights was utilized. To ensure a representative
evaluation of the model’s performance, the heights for the testing

set were selected from within the overall distribution, rather than
focusing on either the tail or head data. The selected heights for
the testing set were 180 and 220 m. This approach aims to pro-
vide a comprehensive assessment of the model’s generalization
capabilities across a range of heights in the dataset.

4) Data Preprocessing: Prior to initiating the training of the
network, several preprocessing steps were employed to optimize
the training process, conserve time, and save computational
resources, including processing RAM. The major steps involved
in the preprocessing are outlined as follows.
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a) Image Scaling: Considering the high resolution of the
original images captured (5472× 3648), which can be computa-
tionally demanding for processing in a CNN, it became essential
to address the memory and processing constraints. The large
image size not only consumes significant CPU resources but
also limits the possibility of using large batch sizes, consequently
extending the training time for the network. To mitigate these
challenges, a preprocessing step involved scaling the images
using interarea interpolation to a more manageable resolution of
512 × 256, aligning with the design of the network. This scaling
process optimized the computational efficiency and facilitated
faster training without compromising on performance.

b) Image Illumination: Given that the dataset was col-
lected at various times of the day, significant variations in image
illumination were observed. Certain images exhibited bright
light with accompanying shadows while others were captured
under normal lighting conditions. To address the issue of illumi-
nation invariance across the dataset, the contrast limited adaptive
histogram equalization (CLAHE) technique was applied. By
utilizing CLAHE, the luminance channel of the images was
equalized, effectively mitigating the illumination discrepancies
and enhancing the overall consistency of the dataset. This pre-
processing step contributed to the improvement of the network’s
learning mechanism, resulting in enhanced results during sub-
sequent stages of processing.

c) Nonoverlapping Image Pair Elimination: In order to
ensure dataset uniformity and alleviate potential issues arising
from insufficient overlapping, a preprocessing step was imple-
mented to remove all image pairs captured at the edges of
each flight path with less than 70% overlapping, as depicted
in Fig. 3. To facilitate efficient management of the dataset, a
comprehensive list of image pairs was compiled. By eliminating
nonoverlapping pairs, the dataset was refined to enhance the
reliability and effectiveness of subsequent stages in the research
process.

d) Week Feature Elimination: To enhance the quality and
relevance of the dataset, a final preprocessing step involved the
removal of image pairs that lacked prominent features, specif-
ically those captured on plain grounds with minimal distinct
characteristics. By eliminating such image pairs, the dataset
was refined to include only those with significant features,
thus ensuring the efficacy of subsequent processing stages. In
addition, all image pairs captured at the edges of each flight
path were discarded, retaining only those with a substantial
70%–80% overlapping. A visual comparison of images taken
from different heights but the same location is depicted in
Fig. 4, further emphasizing the significance of this preprocess-
ing step in curating a robust dataset for analysis and training
purposes.

B. Results and Discussion

The proposed approach has been tested in terms of the correct-
ness of height estimated by comparing two overlapping images
taken from a UAV camera. In the subsequent paragraphs, a de-
tailed account of the step-by-step process employed to enhance
the results will be presented.

Fig. 5. Sample pair of images. This pair of images shows that due to the
absence of prominent features, the prediction of height is not very accurate.
(a) Left image. (b) Right image.

1) Luminance Disparities: The dataset comprises images
captured at different times of the day, exhibiting varying illu-
mination and lighting conditions. To address these variations
and enhance the learning process of the network, CLAHE is
employed to equalize the luminance channel of the color images.
Equalizing solely the luminance channel is found to be superior
to equalizing all the channels of the BGR image. As a result, all
the images in the dataset are equalized before being fed into the
network, leading to improved results.

2) Model Overadaptation: The primary challenge lies in the
network’s complexity due to the relatively limited size of the
dataset. As a consequence, the network initially demonstrates
signs of overfitting to the dataset, leading to unsatisfactory
results on the validation dataset. To mitigate this issue, data
augmentation techniques were employed. Considering the fixed
input dimensions of our network, the images were subjected to
180◦ rotation and vertical and horizontal flipping while ensuring
that the image dimensions remained unaltered. In addition,
careful consideration was given to the direction in which the
UAV was moving. Following the rotation and vertical flipping,
the image pairs were arranged in reverse order to maintain a
consistent direction (UAV moving in the forward direction)
across all image pairs in the complete dataset. Subsequently,
the initial results were compared with those obtained using
the PSMNet approach after implementing the aforementioned
modifications.

3) Preliminary Findings: The initial results, as presented in
Table III, exhibited an improvement compared to PSMNet, yet
they remained unsatisfactory due to the substantial average error
of 10 m during height estimation. The primary objective of this
research was to achieve an average error below 5 m. Further
analysis revealed inconsistencies in the dataset, attributed to
the imagery being captured at particular locations with varying
heights during drone flights at the NUST Main Campus. Several
issues were identified as follows.

1) Variation in Heights: Certain areas within the dataset
exhibited varying heights, contributing to the overall in-
consistency.

2) Variability in Image Features: Some image pairs lacked
prominent features (see Fig. 5) while others contained
significant features, introducing challenges in accurate
matching (see Fig. 6).

3) Insufficient Overlapping: In instances where the drone
changed its flight direction at specific locations, the image
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TABLE III
COMPARISON OF PSMNET WITH OUR NETWORK (PSMHENET)

Fig. 6. Sample pair of images. This pair of images shows that due to the
presence of prominent features, the prediction of height is more accurate.
(a) Left image. (b) Right image.

Fig. 7. Comparison shows mean absolute error (m) for 190 epochs. The
blue line shows the PSMNet, which is used for comparison with our network
(PSMHENet). The two versions of our network show the network after modifi-
cation and data processing.

pair overlapping proved inadequate for effective compar-
ison.

4) Conclusive Outcomes: Addressing these identified issues
would be essential for enhancing the performance of the pro-
posed approach and achieving the desired accuracy in UAV
height estimation. Consequently, a data-cleaning process was
employed to identify images lacking prominent features (as
depicted in Fig. 5). These identified images, along with their
corresponding augmented versions, were subsequently removed
from the dataset. Following the completion of this data-cleaning
procedure, a notable improvement in overall results was ob-
served, as illustrated in Table III. The implementation of the
data-cleaning process not only facilitated faster network conver-
gence but also led to significant improvements in overall results,
as depicted in Figs. 7 and 8.

Fig. 8. Comparison of the Siamese network [35] with our network
(PSMHENet) and how both networks converged to improve mean absolute error
(m) after 190 epochs.

Fig. 9. Scatter plots of predicted and true heights along the Y -axis and the
testing dataset along the X-axis. The testing set consists of 126 image pairs
fed into the network having 220 m height. The red dot shows the mean of all
predicted heights and the black line shows the standard deviation.

In conjunction with the data-cleaning procedure, continuous
updates were made to the network parameters, encompassing
shapes and other relevant parameters. As a result of these en-
hancements, the average error on the validation dataset notably
reduced to 4.4 m while on the test dataset, it approached approxi-
mately 4.6 m. In Table IV, a comparative analysis of our network,
denoted as PSMHENet, was conducted against the Siamese-
based image-matching network [35] and the vision-based 3-D
localization technique employed by Yol et al. [33]. Moreover, in
Fig. 8, the convergence of both networks is illustrated, displaying
their improvement in mean absolute error after 190 epochs.
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TABLE IV
RESULTS OBTAINED WHEN OUR PROPOSED NETWORK (PSMHENET) IS COMPARED WITH TWO OTHER TECHNIQUES OF IMAGE MATCHING AND HEIGHT

ESTIMATION, I.E., SIAMESE NETWORK *(OWN IMPLEMENTATION OF NETWORK) AND VISION-BASED 3-D LOCALIZATION USING MUTUAL INFORMATION

Moreover, Fig. 9 also illustrates the scatter plot to visualize the
spread and standard deviation of the testing set.

5) Hardware, Running Times, and Evaluation Mechanism:
The training of the model was conducted on a Linux machine
equipped with a 22-GB GPU. The initial training process ex-
tended over several weeks, during which continuous updates
were made to the model, along with parameter tuning to opti-
mize its performance. Subsequently, the final epochs required
approximately one week to complete. To evaluate the model’s
performance, the mean absolute height error was calculated.

V. CONCLUSION

In this research, we propose a novel approach for estimating
the height of UAVs by leveraging a pair of images. We have de-
vised a comprehensive pipeline to process these image pairs and
accurately determine the UAV height. The process commenced
with a stereo image dataset, where the image pair was input
into our network to extract essential features. These features
were then utilized for comparison and matching, allowing us to
compute the disparity at each location on the feature map. This
comparison was conducted using a 4-D tensor to calculate the
cost, enabling accurate disparity estimation. Subsequently, we
focused on refining the network by applying consecutive con-
volution and ReLU operations to enhance the output, reduce the
feature size, and increase the number of feature maps. Through
these improvements, we successfully estimated the height of
the UAV from the ground. Following the training phase, we
evaluated our network’s performance on a separate dataset (test
dataset), which consisted of heights not used during training and
validation. The achieved results were promising, demonstrating
the efficacy of our proposed approach.

Our research offers promising avenues for further enhancing
the results and incorporating various improvements. First, ongo-
ing efforts in refining methods and techniques for feature extrac-
tion and disparity calculation hold the potential to yield better
and more efficient outcomes. Second, utilizing a dataset that
encompasses diverse areas, including densely populated regions
like the plains of Punjab with minimal height variations, could
significantly contribute to improved results. Such areas would
provide richer features for matching and disparity calculation,
thus enhancing the accuracy and reliability of the estimation
process.
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“Neighbourhood consensus networks,” in Proc. Adv. Neural Inf. Process.
Syst., 2018, pp. 546–561.

[13] A. Dosovitskiy, P. Fischer, J. T. Springenberg, M. Riedmiller, and T. Brox,
“Discriminative unsupervised feature learning with exemplar convolu-
tional neural networks,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 38,
no. 9, pp. 1734–1747, Sep. 2016, doi: 10.1109/TPAMI.2015.2496141.

[14] Y. Wang, W. L. Chao, D. Garg, B. Hariharan, M. Campbell, and K. Q.
Weinberger, “Pseudo-LiDAR from visual depth estimation bridging the
gap in 3D object detection for autonomous driving,” in Proc. IEEE Comput.
Soc. Conf. Comput. Vis. Pattern Recognit., 2019, pp. 8437–8445.

[15] Y. You et al., “Pseudo-LiDAR++: Accurate depth for 3D object detection
in autonomous driving,,” in Proc. Int. Conf. Learn. Representations, 2020.

[16] D. Garg, Y. Wang, B. Hariharan, M. Campbell, K. Q. Weinberger, and
W.-L. Chao, “Wasserstein distances for stereo disparity estimation,” in
Proc. Conf. Workshop Neural Inf. Process. Syst., 2020, pp. 22517–22529.

[17] J. R. Chang and Y. S. Chen, “Pyramid stereo matching network,” in
Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., 2018,
pp. 5410–5418.

[18] X. Pan, D. Q. Ma, L. L. Jin, and Z. S. Jiang, “Vision-based approach angle
and height estimation for UAV landing,” in Proc. 1st Int. Congr. Image
Signal Process., 2008, pp. 801–805.

[19] M. H. Mughal, M. J. Khokhar, and M. Shahzad, “Assisting UAV localiza-
tion via deep contextual image matching,” IEEE J. Sel. Topics Appl. Earth
Observ. Remote Sens., vol. 14, pp. 2445–2457, 2021, doi: 10.1109/JS-
TARS.2021.3054832.

[20] N. Mayer et al., “A large dataset to train convolutional networks for dispar-
ity, optical flow, and scene flow estimation,,” in Proc. Comput. Vis. Pattern
Recognit., vol. 12, 2016, pp. 4040–4048, doi: 10.1109/CVPR.2016.438.

[21] S. Zhang, Z. Wang, Q. Wang, J. Zhang, G. Wei, and X. Chu, “EDNet:
Efficient disparity estimation with cost volume combination and attention-
based spatial residual,,” in Proc. Comput. Vis. Pattern Recognit., 2021,
pp. 5429–5438.

https://rdguez-mariano.github.io/
https://dx.doi.org/10.1109/TPAMI.2015.2496141
https://dx.doi.org/10.1109/JSTARS.2021.3054832
https://dx.doi.org/10.1109/JSTARS.2021.3054832
https://dx.doi.org/10.1109/CVPR.2016.438


12030 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

[22] M. A. Haseeb, J. Guan, D. Ristić-Durrant, and A. Gräser, “Disnet—A
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