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A Multifeature Fusion Framework Based on D-S
Theory for Automatic Building Extraction From

High-Resolution Remote Sensing Imagery
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Abstract—Building information serves as a critical foundational
dataset in the fields of urban planning, smart cities and surveying
and mapping, and high-resolution remote sensing (HRRS) imagery
has become a vital data source for extracting building informa-
tion. However, automatically extracting building information from
HRRS imagery using a single feature or method remains a chal-
lenging task. On one hand, buildings exhibit significant variations
in terms of their size, color, geometric structures, and other aspects.
On the other hand, there are also numerous features in the environ-
ment that bear spectral and morphological resemblances to build-
ings. In this article, we proposed a multifeature fusion framework
based on Dempster–Shafer (D-S) theory that consists of two steps
for automated building extraction from HRRS imagery. The initial
D-S fusion step involves two branches: object-level and pixel-level
feature fusion. Then the outcomes are further combined to derive
the ultimate building confidence information. In the framework,
we introduced a proportional consistency and centroid consistency
index to convert pixel-level features to object-level features, thereby
facilitating their fusion. In addition, we proposed an initialization
module for the basic probability assignment formula, enabling the
elimination of the impact of nonbuilding objects and simplifying
the construction process of BPAF. The experimental results based
on the Nanjing, WHU, and Washington datasets demonstrate the
effectiveness of our method, the accuracy outperforms the other
four advanced algorithms.

Index Terms—Building extraction, Dempster–Shafer (D-S)
theory, multifeature fusion, object-oriented, two-step decision
fusion framework.

I. INTRODUCTION

BUILDINGS are not only vital places for human produc-
tion and living but also important artificial features in

geographic databases [1], [2]. Accurate and timely building
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information is essential in diverse fields such as urban plan-
ning, land analysis, environmental monitoring, and autonomous
driving. With the development of sensors and remote sensing
platforms, high-resolution remote sensing (HRRS) images can
provide rich and detailed building details and they have become
crucial sources of data for building mapping. However, extract-
ing building information from HRRS images is often difficult
to achieve satisfactory results due to the low signal-to-noise
ratio of HRRS images [3] and complex building morphology.
Therefore, there is an urgent requirement to investigate accurate
and effective methods for extraction of building footprint from
HRRS images.

Previous research works have utilized various building fea-
tures, such as spectrums, shapes, textures, and others, to extract
building footprints in HRRS [4]. However, relying on a single
building feature is insufficient for recognizing building foot-
prints in diverse complex environments. Naturally, several stud-
ies have employed multiple features to hierarchically constraint
candidates of buildings or simply fuse these features to filter out
negative factors [5], [6]. While these methods have demonstrated
impressive outcomes, striking a balance between the recall rate
and precision rate of buildings remains challenging. Multiple
building features often result in conflicting, complementary,
and redundant information. The hierarchical extraction or linear
fusion method based on multiple features is not sufficient to
effectively process information. Effectively integrating different
building features, leveraging redundant data to minimize detec-
tion inaccuracies, and fully utilizing complementary data are the
key to accurate recognition of building footprints.

Dempster–Shafer (D-S) theory could handle incomplete, un-
certain, or conflicting information from multiple sources, and
provides a reasonable way to represent and reason with such
information [7]. Therefore, we propose a multiple building fea-
tures fusion framework based on D-S theory in this manuscript.
The framework consists of two steps of fusion: the first step in-
tegrates object-level features and pixel-level features separately,
while the second step further fuses the two types of fusion results
from the first step. In the pixel-level features fusion stage, we
propose the proportional consistency and centroid consistency
index (PCCI) index, which represents the probability of an
object belonging to a building by calculating the proportion of
building pixels within the segmented object and the Euclidean
distance between their centroids. The index efficiently converts
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pixel-level features into object-level features for subsequent
object-based building extraction. For the initial assignment of
probabilities to propositions in the D-S theory, we developed an
initialization module for basic probability assignment formula
(BPAF). This module combines feature constraints and fuzzy
clustering methods to effectively mitigate the impact of non-
building objects and initialize the BPAF using fuzzy C-means
clustering (FCM). In conclusion, our study contains the follow-
ing main contributions.

1) A two-step fusion framework for building multiple
features based on the D-S theory was proposed. The
framework extracts building information from spectral,
geometric, and texture features of buildings, and utilizes
D-S theory to fuse information extracted from different
features to solve the instability and uncertainty caused
by using a single feature or method. The two-step fu-
sion method can reduce the computational challenges
brought by processing a large amount of evidence. The two
branches, which are based on object-level and pixel-level
features, can complement each other in achieving a high
recall rate and precision rate in the analysis of buildings.

2) In the pixel level features fusion stage, we proposed a
PCCI tailored to building segmentation objects. This index
calculates the proportion of building pixels within the
segmented object and the Euclidean distance between their
centroids to represent the probability of the object belong-
ing to a building. It serves as a bridge between building
pixels and the segmentation objects, effectively integrating
the strengths of both pixel-level and object-level building
extraction methods. It is worth noting that the PCCI is
not only applicable to this study but can also be used
in scenarios where any pixel-level detection method is
combined with segmentation objects.

3) This research constructed a BPAF initialization module
that addresses the challenge of initializing the BPAF in the
D-S theory. The module is constructed based on feature
constraints and fuzzy clustering. Initially, this module uti-
lizes shadow and vegetation features to restrict the object.
Then, FCM clustering is employed to acquire object mem-
bership degrees as a substitute for the initial probability
values. The module has the capability to mitigate the influ-
ence of nonbuilding objects on the extraction outcomes.
Furthermore, it simplifies the BPAF construction process
without any parameter tuning.

This article is structured as follows. Section II presents rel-
evant research works of building extraction. Section III intro-
duces the implementation process of a two-level decision fusion
framework. In Section IV, we present the experimental results
and provide relevant analysis. Section V discusses the method
of threshold determination and the ablation experiment of the
proposed method. Finally, Section VI concludes this article.

II. RELATED WORK

Surveying the research of numerous scholars on building
extraction over the past decades, these methods can be classified
into two categories based on the need for labeled samples:

machine learning based methods and methods based on physical
rules [4]. In recent years, machine learning, particularly deep
learning, has been extensively applied in the field of remote
sensing image processing. Benefiting from the powerful fea-
ture extraction ability of deep neural networks, methods of
deep learning have shown outstanding performance in building
extraction. However, the majority of deep learning algorithms
require a large number of annotated samples for model training.
The labeling of samples is time-consuming and labor-intensive.
The methods that use physical rules rely on the knowledge of
domain experts instead of annotated samples for constructing
models. The high interpretability of these approaches provides
a clear understanding of how each feature contributes to build-
ing extraction. Naturally, when comparing deep learning-based
methods with physical rule-based methods, the latter exhibit
slightly lower accuracy in extracting buildings. Nonetheless,
due to not requiring manual data annotation, these methods
demonstrate superior extraction efficiency, rendering them the
preferred option for specific application scenarios with less
stringent precision requirements. Moreover, buildings extracted
using physical rules-based methods can also serve as a source
of samples for deep learning networks, which help to reduce the
effort manually labeling the samples. Therefore, the method of
extracting buildings based on physical rules from HRRS images
remains of significant research importance. This study mainly
reviews methods for extracting buildings based on physical
rules.

Convolutional neural networks have attracted much attention
due to their powerful feature-learning ability and have also made
significant achievements in the field of building automation
extraction. Classic semantic segmentation networks such as fully
convolutional network (FCN) [8], SegNet [9], DeepLab series
[10], etc., have the advantage of actively learning image features
and obtaining rich global, contextual, and semantic information
[11]. However, due to the complexity and diversity of HRRS
image scenes, directly applying the network has poor accu-
racy. Considering that buildings appear in various sizes, Zhao
et al. [12] proposed the PSPNet network to enhance multiscale
information fusion and reduce local and global losses. Using
pyramid pooling modules to capture and fuse multiscale features
to improve segmentation accuracy. Wen et al. [13] designed a
multiscale erosion network for building edge information and
combined it with a semantic decoding module for constructing
edge detection. Aiming at the geometric shape of building roofs,
an adversarial shape regularization learning method is adopted
to model the shape patterns of buildings [14], to learn vertex
deformations and further refine the shape of buildings.

In recent years, with the development of deep learning, some
advanced deep learning models have been applied in the field of
remote sensing, such as the multiscale interactive fusion network
and multistage self-guided separation network. Wang et al.
[15] applied the proposed MIFNet network to the classification
of hyperspectral and synthetic aperture radar (SAR) images.
This model solves the problem of single data source feature
extraction and multisource data feature fusion by designing a
multiscale interactive information extraction (MIIE) module and
a global dependency fusion module. To solve the problem of
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discontinuous feature extraction caused by the limitations of
traditional methods in their respective fields and the loss of
multiscale information. Pang et al. [16] proposed a method called
enhanced multiscale feature fusion network (EMFFN) for the
classification of hyperspectral images. EMFFN extracts spectral
and spatial multiscale features through two subnetworks, and
integrates them together using a comprehensive loss function.
Zhou et al. [17] proposed a multiscale cross-layer interaction and
similarity refinement network to improve the network’s repre-
sentation ability. Multiscale feature interaction fusion network
(MSIFNet) [18] is used for fusion tracking of RGBT (RGB and
thermal infrared) images. The MSIFNet model should extract
multiscale features through different convolutional branches and
adaptively aggregate them through feature selection modules. At
the same time, the transformer interaction fusion module was
used to establish long-distance dependency relationships. Fi-
nally, a global feature fusion module was designed to adaptively
adjust global information. Multistage self-guided separation
network is also a popular method. Wang et al. [19] proposed a
multistage self-guided separation network (MGSNet) for remote
sensing scene classification. MGSNet utilizes a target back-
ground separation strategy to enhance the separation of target
background information by extending feature attention across
different network branches through comparative regularization.
Solved the problem of insufficient feature differences and dif-
ficulty in effectively distinguishing different scene images in
remote sensing image classification due to imbalanced changes
between background and target. Xu et al. [20] proposed a mul-
tilayer feature fusion network for scene classification of high
spatial resolution images. This method utilizes the VGGNet-16
model to extract features and improves classification accuracy
through multilayer feature fusion.

In general, the geometric structure of buildings differs sig-
nificantly from other objects, making geometric feature-based a
highly popular method [21]. In remote sensing images, buildings
often exhibit diverse shapes, with rectangles or combinations of
rectangles being the most common. Wang et al. [22] proposed
a method using line segment detection. This method first uses a
line detector to extract lines as candidate rectangular buildings,
and then performs line connecting and contour closure through
a recursive approach. Sun et al. [23] constructed a regular shape
similarity index using the ratio of the object’s area to its mini-
mum bounding shape area and then utilized object-based image
analysis methods to extract the targets. Ngo et al. [24] introduced
a novel method for extracting rectangular buildings. This method
merges regions with similar spectral characteristics based on
their shadow positions and uses rectangularity to extract build-
ings. While shape-based extraction methods effectively detect
rectangular buildings, they may overlook buildings with other
shapes. Cote and Saeedi [25] utilized corner information ex-
tracted in the color-invariant space to generate polygonal roof
outlines and refined building contours using the level set curve
evolution method. Chen et al. [26] introduced multiresolution
wavelet transform and local spatial autocorrelation statistics to
model the spatial pattern of built-up areas, and used an adaptive
threshold algorithm to achieve detection of built-up areas. The
detection of built-up areas on ZY-3 and Quickbird full-color

satellite images is very effective. Sirmacek and Unsalan [27]
proposed a building detection probability framework. They first
extracted corners using four different methods and used the
corner information as the independent variable to estimate the
variable kernel density function. Finally, they detected building
locations through density estimation. Unlike the method used by
Sirmacek and Unsalan, Munawar et al. [28] employ Gabor filters
to detect local feature points and subsequently identify urban
areas. Although corner matching methods can address issues
arising from lighting and shape differences, their performance
is poorer in densely built areas or regions with occluded corners.

Object-oriented methods for building extraction consider the
spatial relationships and contextual information between pixels.
Grouping pixels with similar features into objects can help pre-
vent the occurrence of salt-and-pepper noise during building ex-
traction, resulting in improved performance [4]. Several popular
segmentation methods, such as GrabCut [29], MeanShift [30],
and Watershed [31], can be applied in object-oriented build-
ing extraction techniques. Liasis and Stavrou [32] developed
an optimized active contour level-set segmentation framework
based on the RGB color space. They utilized color clustering to
remove shadows and vegetation interference, thereby extracting
buildings. Jiang et al. [33] proposed a semi-automatic method
that first performed mean shift segmentation on the image and
simultaneously obtained building boundaries through edge de-
tection. Finally, manual merging of objects was performed to
address over-segmentation. In order to address the issue of over-
segmentation, studies in papers [34], [35] utilized a multiscale
segmentation approach to choose the most suitable threshold for
merging objects. Subsequently, the objects were discriminated
and classified by combining the building feature database.

Another category of building extraction methods is based
on building index indices. Building indices, like the built-up
index (PanTex) [36] and built-up area significance index (BASI)
[38], are constructed based on building texture features and can
accurately identify urban or built-up regions. However, they
lack the capability to extract fine building contours. Hu et al.
[31] proposed a new spatial feature called object in correla-
tive index (OCI), which considers the characteristics of image
objects based on spectral similarity and constructs useful OCI
to objectively describe spatial information. Huang and Zhang
[39] proposed the morphological building index (MBI), which
extracts building features such as contrast, size, and brightness
through multiscale and multidirectional top-hat transforms. MBI
performs well in urban scenes but often yields less satisfactory
results in suburban or rural areas. In addition, there are many
variants of MBI algorithms, such as MABI [40] and MFBI [41].
Liu et al. [42] proposed the perceptual building index (PBI)
based on the presence of obvious corners around the built-up
areas. PBI employs corner detectors to identify corners and
junction points, subsequently propagating the significance of
local structures throughout the image via spatial kernels, thereby
calculating the building index. PBI exhibits independence from
local image contrast, ensuring the detection of buildings with
lower brightness does not go overlooked. Xia et al. [43] proposed
the geometric building index (GBI) to reduce information redun-
dancy caused by spatial voting in PBI. They utilized geometric
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reasoning to extract the precise contour of individual buildings.
However, the extraction results of GBI could be affected by
nonbuilding rectangular objects.

Automatically extracting buildings using a single feature
or method has inherent limitations and often fails to produce
satisfactory results. A natural approach is to integrate multiple
building features to comprehensively describe complex building
structures. The common methods involve using multiple features
for hierarchical constraint of building candidates or simple fu-
sion to extract buildings [5], [6]. However, these approaches
fail to fully exploit the interrelationships and complementarity
among features. Due to the D-S theory’s ability to effectively
handle information from multiple sources, it has been applied in
building change detection [1], [38], [44], [45], [46] and building
extraction [3], [47]. The initialization of the BPAF in D-S theory
greatly impacts the results. But determining how to allocate
initial probabilities is a challenging aspect of applying the
D-S theory. Previous experiments considered the relationships
between different evidence and constructed new BPAFs based
on experience [45], [46], [47]. This resulted in limitations in
the applicability of the methods. Inspired by previous work
[47], we propose a BPAF initialization method based on feature
constraints and fuzzy clustering. We use FCM to replace the
S-shaped membership function used in [47]. This avoids the
need for parameter tuning. In addition, we apply constraints on
shadows and vegetation to the obtained building features before
assigning initial probabilities to different propositions. This
effectively avoids the problem of nonbuilding objects having
high rectangularity or low entropy values.

III. PROPOSED METHODOLOGY

This manuscript proposes a two-step D-S fusion framework
based on multiple building features for detecting buildings in
HRRS images. As depicted in Fig. 1, the framework primarily
comprises the following three components.

1) Image segmentation.
2) First-level fusion of building multiple features.
3) Second-level fusion of building features.
In the first-level feature fusion stage, it is divided into two

parts: object-level feature fusion and pixel-level feature fusion.
In the object-level feature fusion part, first, we extract the
rectangularity and entropy value of objects as two object-level
features. Then, we construct a BPAF initialization module based
on feature constraints and fuzzy clustering to assign an initial
probability for the segmentation objects. Based on the D-S
theory, we combine the attributes of rectangularity and entropy
to calculate the probability that the segmented object belongs to
buildings. In the pixel-level feature fusion part, first, we use the
MBI and corner-based methods to obtain the building extraction
outcomes at the pixel level. By calculating the proportion of
building pixels in the objects and the distance between the
centroid of buildings and the centroid of objects, we construct
the PCCI index to convert pixel-level features into object-level
features. In a similar manner to the object-level feature fu-
sion component, we use the same BPAF initialization module
and D-S fusion method to obtain the probability of objects

belonging to buildings. In the second-level feature fusion stage,
the probabilities of the objects generated from the two parts of
the first-level fusion are fused again to obtain the final confidence
information of the buildings, and the building extraction results
are obtained using decision rules.

A. Image Segmentation

The multiscale morphological gradient reconstruction water-
shed transformation (MMGR-WT) algorithm [48] is employed
to generate segmented images for object-oriented analysis. This
segmentation method successfully preserves the integrity of
object boundaries. The definition of a segmented image is as
follows:

SI = WT(G(g, r1, r2)) (1)

where SI represents the segmented image, WT represents wa-
tershed transformation, and represents the gradient image after
multiscale morphological reconstruction. The calculation of G
is as follows:

G(g, r1, r2)

= max
(
Rc

r1
(g), Rc

r1+1(g), R
c
r1+2(g), . . . , R

c
r2
(g)

)
(2)

where c represents morphological closing constructions. R de-
notes the newly generated gradient image obtained through the
morphological closing reconstruction of the original gradient
image g using a structuring element of size r1. The term “max”
denotes the operation of pixel-wise maximum value extraction.
r1 and r2 represent the scale of the minimum and maximum
structural elements, respectively.

The segmentation parameter r2 can be substituted with the
error ε, as defined in (3). In our study, the value of ε is set
as 0.00001, and the structural element’s minimum scale r1 is
set as 3

|G(g, r1, r2)−G(g, r1, r2 + 1)| < ε. (3)

B. Object-Level Feature-Based D-S Fusion

In remote sensing imagery, buildings predominantly exhibit
geometric structures that are either rectangular or similar to
rectangles. In addition, the grayscale values of pixels within
the building regions vary slightly, which means that individ-
ual buildings possess limited grayscale information, resulting
in low entropy values. Therefore, we designed rectangularity
and entropy as building features for segmentation objects. The
initialization of the BPAF for each proposition has consistently
posed a challenge when employing D-S theory for fusing two
building features. To address this issue, we propose a BPAF
initialization module that is founded on feature constraints and
fuzzy clustering. The definition of BPAF can be simplified by
substituting initial probability values with fuzzy cluster mem-
bership, while ensuring precision in extraction.

1) Extraction of Object-Level Features: Most buildings ap-
pear as rectangles in HRRS images. Thus, we can determine
if an object is a building by assessing its resemblance to a
rectangle. This study employs the concept of "rectangularity,
which is defined as the ratio of the object’s area to the area of
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Fig. 1. Two-step D-S fusion framework for extracting buildings.

its minimum bounding rectangle, to quantify the likelihood of
an object being a building. Equation (4) provides the definition
of rectangularity

Ri = Nor

(
S0

i

SMER
i

)
(4)

where Ri represents the rectangularity of object i, while S0 and
SMER denote the area of object i and the minimum area of its

enclosing rectangle, respectively. The symbol “Nor” represents
the process of normalization calculation.

The interior areas of a building are usually uniform and
consistent, lacking noticeable texture or structural variations.
Hence, this study utilizes object entropy values to quantify the
extent of grayscale variation in the pixels within the building’s
interior regions. A lower entropy value of an object indicates
a greater likelihood of it belonging to the building. The cal-
culation of the entropy value of an object is performed as
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follows:

H0
i = −

∑
pi(x)log2(x) (5)

where H0 represents the entropy value of object i, x represents the
grayscale value of the pixel, and pi(x) represents the probability
of the pixel’s grayscale value occurring. As the entropy value
decreases, the possibility of the object being a building increases.
To facilitate assigning credibility to each piece of evidence, the
entropy value is first normalized. Then, one minus the entropy
value is used to represent the probability of it being a building.
The normalized entropy value is denoted as Hi

Hi = 1− Nor(H0
i). (6)

2) BPAF Initialization Module Based on Feature Constraints
and Fuzzy Clustering: To address the difficulty in initializing
BPAF, we propose a BPAF initialization method based on feature
constraints and fuzzy clustering. By utilizing FCM algorithm
to construct membership functions, the need for parameter ad-
justment is eliminated. In addition, before assigning the initial
probability to different propositions, we consider the constraints
imposed by shadows and vegetation on the derived building
features. This avoids the impact of shadows and vegetation on
the extraction results.

Shadows are frequently observed in HRRS images and exhibit
lower brightness values. Considering the human eye’s sensitivity
to different wavelengths, the method described in [49] is used to
calculate the brightness of the image, which serves as the first
feature of shadows (7). In addition, normalized color space does
not have an impact on either shadow areas or high-brightness
areas. Thus, the difference between the original color space
and the normalized color space in the image can be used to
define the shadow feature [50], which functions as the secondary
characteristic of shadows (8). Ultimately, shadow regions are
extracted by employing comprehensive decision-making

SF1 = 0.46R+ 0.5G+ 0.04B (7)

SF2 = (|r −R|+ |g −G|)/2 (8)

shadow =

{
1, if(SF2− SF1) > t
0, other

. (9)

R, G, and B are used to represent the respective red, green, and
blue channels of RGB images. The variables r and g represent the
normalized values of the red and green channels. The variable t
is the threshold value, which is adaptively determined using the
OTSU method in this article.

Vegetation demonstrates a pronounced reflectance in the
green light spectrum, while its reflectance is comparatively low
in the red and blue light spectra. This characteristic has led to
the proposal of various vegetation indices by numerous scholars,
including the excess red index, excess green index, and excess
green minus red difference index (ExGR) [51], [52]. This study
employs the frequently utilized ExGR index from the color
indices for vegetation extraction

ExGR = (2G−B −R)− (1.4r − g) (10)

Vegetation =

{
1, if(ExGR > 0)
0, other

(11)

where r and g represent the normalized values for red and green
channels respectively.

According to (7)–(11), the binary images obtained for shad-
ows and vegetation can be obtained. Next, calculate the ratio of
the number of shadow and vegetation pixels in the segmented
object to the total number of pixels in that object. Then, a
multiplication constraint term is obtained by subtracting this
proportion from 1, which is used to process Ri and Hi. The
approach of constraining building features using a multiplication
term demonstrates enhanced fault tolerance compared to the
methods that directly eliminate shadow and vegetation regions.
The calculation of the feature constraint is as follows:

R1
i = Ri ×

(
1− Si × V i

N i ×N i

)
(12)

H1
i = Hi ×

(
1− Si × V i

N i ×N i

)
. (13)

Ni represents the total number of pixels in object i, while Si and
Vi represent the number of shadow pixels and vegetation pixels
in object i. R1 and H1 represent the probability of object i being a
building in two different sets of evidence. The R1 and H1 values
calculated from the two different features have differences in
their value distributions. To ensure equal contributions in the
subsequent D-S fusion of the two features, it is necessary to
assign weight to each of them. The updated probabilities R2 and
H2 for objects belonging to buildings are defined as follows:

R2
i = R1

i ×
K∑
i

Hi
1

Ri
1 +Hi

1

H2
i = H1

i ×
K∑
i

Ri
1

Ri
1 +Hi

1

. (14)

Among them, K represents the total number of segmented
objects in the image.

Let Θ represent the recognition framework in the context of
D-S theory. 2Θ represents the entire set of hypothetical events
on the framework. Consider the function m:2Θ→[0,1] as the
fundamental probability allocation function. Thus, the allocation
function m satisfies

m(∅) = 0∑
A∈2Θ

m(A) = 1 (15)

where A is a focal element, denoted as a nonempty subset of 2Θ,
where m(A) signifies its fundamental probability distribution.

In this study, the recognition framework Θ: {B, NB, UN} is
defined, which represents the three propositions in this article.
For any object, B, NB, and UN represent buildings, nonbuildings,
and uncertain situations respectively. The nonempty subsets of
2Θ are {B}, {NB}, {UN}. According to (14), we obtain the
probabilities R2 and H2 of the object belonging to the building.
For any object, if R2 or H2 value is higher, it is more likely to be
classified as a building; otherwise, the possibility of it being a
building is smaller. Naturally, we divide the values of R2 or H2

into three categories: larger values represent buildings, smaller
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values represent nonbuildings, and moderate values represent
uncertain situations. We use the FCM algorithm to determine the
three cluster centers CB, CUN, and CNB for R2 and H2, where
each center corresponds to a building, uncertain situations, and
a nonbuilding respectively. Simultaneously, the membership
degrees UB, UUN, and UNB of object i to a specific class can
be obtained. For all objects, BPAF is defined as shown in the
following equation:

mi
n({B}) = U i

B

mi
n({UN}) = U i

UN

mi
n({NB}) = U i

NB (16)

where n represents two distinct features: either that of a rectangle
or entropy.

3) Features Fusion Based on D-S Theory: The D-S theory
makes decisions by combining multiple pieces of evidence.
Equation (16) can be used to calculate the initial basic probability
allocation values for each proposition that the object belongs to.
According to (17), we perform the first-level fusion on mn({B}),
mn({UN}), and mn({NB}) to obtain the new probability values
m1({B}), m1({UN}), and m1({NB}) for object i belonging to
different propositions.

For recognizing �AϵD on the frame Θ, the synthesis rule for
n m-functions (mass functions) is defined as follows:

m(A) = m1 ⊕m2 ⊕m3⊕ · · · ⊕mn

=
1

K

∑
A1∩A2∩···∩An=A

m1(A1)m2(A2)m3(A3) · · ·mn(An).

(17)

The variable K represents the degree of conflict between
evidence. A higher K value indicates a stronger conflict among
the evidence. K is defined as

K =
∑

A1∩A2∩···∩An=∅
m1(A1)m2(A2)m3(A3) · · ·mn(An).

(18)

C. Pixel-Level Feature-Based D-S Fusion

Most buildings exhibit brighter values compared to the sur-
rounding objects and possess higher local contrast with the envi-
ronment in remote sensing images. Simultaneously, the presence
of numerous corners surrounding the building renders local
geometric features a potent criterion for extracting buildings.
We utilize methods that are based on MBI [39], [53], and corner
[27] to extract building features at the pixel level. The extraction
techniques for pixel-level building features are relatively simple
and efficient. However, it is widely acknowledged that pixel-
based building extraction methods often encounter significant
amounts of salt-and-pepper noise as well as holes, as illustrated
in Fig. 2(b) and (c). Fortunately, object-based building extraction
methods can overcome these challenges by aggregating pixels
into homogeneous objects, leveraging contextual pixel infor-
mation. Nonetheless, object-based algorithms tend to be more
intricate, resulting in a longer extraction process. To tackle the
above challenges, we propose a PCCI index as a bridge between

Fig. 2. Results of building detection based on pixel-level methods. The green
box shows the phenomenon of holes, whereas the red box shows the noise of
salt and pepper. (a) Original image. (b) MBI. (c) Corner.

building pixels and segmented objects, effectively integrating
the advantages of both pixel-level and object-level building
extraction methods.

1) Extraction of Pixel-Level Features: The fundamental idea
of MBI is to utilize the local high contrast between buildings
and the surrounding environment, as well as the structural char-
acteristics of the buildings, to generate an index map of the
buildings using morphological methods. After generating the
building index map using MBI, we apply the OTSU algorithm
adaptively to determine the segmentation threshold. We identify
pixels with values greater than the threshold as buildings, while
those with values less than or equal to the threshold are consid-
ered background. As a result, a binary image is generated. To
evaluate the effectiveness of the OTSU algorithm, we conducted
a comprehensive evaluation of various threshold segmentation
methods, and their findings are detailed in Section V.

A method based on corner points and a variable kernel density
function was proposed in [27] to estimate the position of build-
ings. The proposed method comprises two primary components:
corner point extraction and estimation of the variable kernel
density function. First, corner point information is extracted
using the Harris corner detector [54], GMSR detector [55],
Gabor filtering detector [56], and FAST detector [57]. The four
different results of corner point extraction are represented by
kh, kg, kf, and ks. Then, the four sets of corner point results
are fused together to obtain k = {kh, kg, kf, ks}. This k is used
as the observed value for the variable kernel density function
to estimate it. In our study, adopting the parameter settings as
in [27], the corner detection process is carried out. The building
probability index map is obtained using a variable kernel density
function, and a binary building image is acquired through the
utilization of the OTSU method. Utilizing the corner points as a
basis, the results of building extraction are achieved.

2) Calculation of the PCCI Index: The construction of this
index is based on the following principle: the more building
pixels there are in an object, and the more uniformly they are
distributed within the object’s internal boundary or the entire
object, the higher the probability that the object represents a
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building. Thus, PCCI is calculated by measuring the proportion
of building pixels within an object (proportion consistency) and
the distance between the centroid of building pixels and the
centroid of the object (centroid consistency). The detailed steps
for calculating PCCI are outlined below.

a) Calculate the proportion consistency index: Through
MBI and corner points, we get the binary image of the building
generated by two different methods. By combining the seg-
mented images, we calculated the ratio of building pixels in
object i to the total number of pixels within object i. This ratio
is defined as the proportion consistency index

P i
n =

Bi
n

N i
(19)

where Bn represents the total number of pixels of buildings in
object i based on evidence n. Ni represents the total number
of pixels in object i. A higher value of Pn in this equation
implies a greater proportion of building pixels within the object,
indicating a higher likelihood that the object is a building. In an
ideal scenario of image segmentation and pixel-level building
extraction, the number of building pixels within the object is
equal to the total number of pixels in the object.

b) Calculate the proportion consistency index: The cen-
troid consistency index is defined as the Euclidean distance
between the centroid of object i and the centroid of building
pixels in object i, as shown in (23)

Ci
n =

√
(xi − xi

n)
2 + (yi − yin)

2 (20)

where x and y represent the centroid coordinates of object i,
whereas xn and yn represent the centroid coordinates of building
pixels obtained based on evidence n within object i. The equation
assesses the uniform distribution of building pixels within the
internal edge region or the entire object. A lower value of Cn

indicates a more uniformly distributed building pixels within the
internal edge or the entire object, implying a higher likelihood
of the object being a building. In an ideal situation, the centroid
coordinates of the building pixels and the object would coincide.

c) Calculate the PCCI: To ensure that PCCI has a larger
value only when the number of building pixels in the object is
large and the distribution is relatively uniform, the definition of
PCCI is shown in (21). Transforming the centroid consistency
index into the multiplication of e-Cn with the proportion consis-
tency index is to facilitate the use of the PCCI index to indicate
the probability of the object being a building, so that when Pn

increases or e-Cn increases, the probability of the object being
a building also increases. Therefore, only when the values of
Pn and e-Cn are relatively large, that is, when PCCI has a larger
value, the probability of the object belonging to a building will
be relatively high

PCCI = P i
n × e−Ci

n . (21)

The PCCI index can be calculated for any object using two
different methods, resulting in PCCIMBI and PCCICorner. Nor-
malization is applied to PCCIMBI and PCCICorner to ensure
comparability among different features. By employing the BPAF
initialization method described in section of Initialization for

BPAF Based on Feature Constraints and Fuzzy Clustering, the
initial probabilities mn({B}), mn({UN}), and mn({NB}) are
obtained. Subsequently, next, we perform a D-S fusion, resulting
in new belief values m2({B}), m2({UN}), and m2({NB}) for
object i.

D. Secondary D-S Fusion of Building Information

New degrees of Confidence in object i are obtained through
pixel-level features fusion and object-level features fusion. The
D-S fusion is applied once again to different degrees of belief,
resulting in the secondary fused BPAF denoted as m({B}),
m({UN}), and m({NB}). Finally, (22) is utilized to achieve the
ultimate outcome of building extraction

Buildings =

⎧⎨
⎩
1,

mi({B}) > mi({UN})ANDmi({B})
> mi({NB})

0, others
.

(22)

IV. EXPERIMENTS AND ANALYSIS

A. Datasets and Evaluation Metrics

1) Datasets: In this study, we performed experiments using
three separate datasets that encompassed various scenarios. The
datasets utilized in our study are listed below.

The first dataset is aerial drone data from Jiangbei New Area,
Nanjing, China, in October 2019. It consists of digital orthopho-
tos with dimensions of 27337× 21816 pixels, composed of three
bands (RGB) with a spatial resolution of 0.3 m. The dataset
covers an area of 53.67 km2. To validate the efficacy of the
building extraction methods, we constructed a reference dataset
for buildings using visual interpretation and manual delineation
methods. Due to computational performance and efficiency
considerations, the original aerial images were resized, resulting
in smaller images measuring 512 × 512 pixels. Not all cropped
images contain buildings or have a very small proportion of area
occupied by buildings. Therefore, only images with buildings
and a building area larger than 2% were retained in the dataset.
The Jiangbei dataset comprises 349 images of dimensions
512 × 512 pixels in addition to their reference data.

The second dataset was selected from the aerial imagery
dataset of the WHU building dataset [58]. The image spatial
resolution was downsampled from 0.075 to 0.3 m and cropped to
a size of 512 × 512 pixels. This dataset comprises three subsets:
a training set, a validation set, and a test set.

Considering the dataset’s extensive size, the validation set
with the least amount of data was chosen as the second dataset
in this study. Similarly, only the images containing buildings and
where the building area represents more than 2% of the cropped
image were retained. The final dataset comprises 565 images
and their respective label images.

The third dataset is an aerial image object recognition dataset
obtained from the Washington area [59]. This dataset consists
of two aerial orthoimages with a spatial resolution of 0.16 m.
The covered area is predominantly urban, leading to a relatively
dense configuration of buildings. Due to the large size of both
images (5000× 5000 pixels), we have cropped them into images
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TABLE I
MBI PARAMETER SETTINGS ON DIFFERENT DATASETS

of size 500 × 500. We obtained a final set of 174 images and
their corresponding label images by discarding those where the
area occupied by buildings is less than 2% of the cropped image.

2) Evaluation Metrics: To quantitatively evaluate the final
extraction results of buildings, five commonly used quantitative
indicators were employed: overall accuracy (OA), precision (P),
recall (R), and the harmonic mean of precision and recall (F1)

OA =
TP+ TN

TP + FP + TN+ FN
(23)

P =
TP

TP + FP
(24)

R =
TP

TP + FN
(25)

F1 =
2× P ×R

P +R
(26)

where TP, FP, and FN represent true positive, false positive, and
false negative, respectively. In this study, we assign equal im-
portance to precision and recall for buildings. Thus, we evaluate
our results using their harmonic mean F1.

B. Experimental Results

1) Validation of the Validity of the PCCI: In the first step
of the D-S fusion, we used the MBI method and the corner
detection strategy to obtain building index maps, respectively.
The parameter configurations for MBI across various datasets
are presented in Table I. Then, we used OTSU for threshold
segmentation to generate pixel-based binary images for building
extraction. The PCCI of each object was calculated using the
segmentation result of MMGR-WT. A higher PCCI of the object
indicates a higher probability of being a building. Based on these,
the building index maps were generated using an object-oriented
approach. We used MBI-PCCI and Corner-PCCI to represent
the combination of two different techniques and the PCCI. To
assess the feasibility of the proposed PCCI, we employed a
threshold range of [0,1] with a step size of 0.01 to partition
the object-oriented building index maps. The highest F1 score
was chosen as the resultant object-oriented building extraction.
To ensure a fair comparison, we applied shadow and vegetation
constraints to MBI and MBI-PCCI. Fig. 3 shows the building
results extracted using PCCI indexes based on different methods.
As we can see, the extraction results of MBI-PCCI and Corner-
PCCI [see Fig. 3(d) and (e)] demonstrate a more comprehensive

TABLE II
BUILDING EXTRACTION RESULTS USING PCCI AND NOT USING PCCI IN THE

NANJING DATASET

TABLE III
BUILDING EXTRACTION RESULTS USING PCCI AND NOT USING PCCI IN THE

WHU DATASET

building extraction or fewer instances of holes, as compared to
the results of MBI and corner extraction [see Fig. 3(b) and (c)].
Furthermore, these methods effectively minimize the impact of
salt and pepper noise, leading to a substantial enhancement in
both recall and precision rates. Accordingly, the PCCI index can
function as a bridge connecting pixel-level building extraction
methods with object segmentation, facilitating the shift from
pixel-level to object-level processing and analysis. This index
effectively combines the strengths of both pixel-level and object-
level methods by integrating their respective advantages.

This study quantitatively evaluated the results of building
extraction combined with the PCCI based on three datasets,
as shown in Tables II–IV. The inclusion of the PCCI index
in the method considerably enhanced the accuracy of building
extraction in comparison to the method omitting the PCCI
index. For three datasets, the F1 scores of building extraction
using the MBI-PCCI method exhibited an increase of 7.22%,
2.44%, and 3.57% respectively, in contrast to the original MBI
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Fig. 3. Results of building extraction from three datasets, from top to bottom, are Nanjing, WHU, and Washington, with two images taken from each dataset.
(a) Original image. (b) MBI method. (c) Corner method. (d) MBI-PCCI method. (e) Corner-PCCI method. (f) Reference map.

TABLE IV
BUILDING EXTRACTION RESULTS USING PCCI AND NOT USING PCCI IN THE

WASHINGTON DATASET

method. The F1 scores of building extraction with the Corner-
PCCI method showed even more significant improvements, with
increases of 10.45%, 7.6%, and 8.32% in the three datasets
respectively. Likewise, both the MBI-PCCI and Corner-PCCI
methods displayed a prominent enhancement in the OA of
building extraction results when compared to the original MBI

and corner methods. These results align with the qualitative
results, demonstrating that the integration of pixel-level methods
with the PCCI significantly enhances the detection accuracy of
buildings, thus providing compelling evidence of the efficacy of
the PCCI.

The comparison of the extraction results between MBI-PCCI
and Corner-PCCI reveals that the MBI-PCCI-based method
achieves a higher precision rate, suggesting a reduced mis-
classification error. Nevertheless, the recall rate of the MBI-
PCCI-based method is markedly lower than that of the corner-
based method. In essence, the MBI-PCCI-based method exhibits
reduced misclassification error, while the Corner-PCCI-based
method demonstrates lower missed classification error. These
findings effectively support the viability of integrating these two
methods through D-S fusion and hierarchical fusion.

2) Results and Performance Evaluation: We conducted com-
prehensive and objective evaluations of our proposed method’s
overall performance by conducting comparative experiments
using the following six advanced methods:
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TABLE V
EVALUATION RESULTS IN NANJING DATASET

1) the object-oriented method combining MBI [39] and PCCI
(MBI-PCCI),

2) the object-oriented method combining corner detection
[27] and PCCI (Corner-PCCI),

3) the method based on the GBI [43], and
4) the majority voting method using rectangularity, entropy

calculation, MBI-PCCI, and corner-PCCI (Major voting).
The above-mentioned methods do not require any training
data. We also compare our approach with deep learning-
based approaches, including

5) Modified DeeplabV3+ [60], and
6) CBRNet [61].
To illustrate the rationality for utilizing the D-S theory, we

introduce Method 4, which integrates four different techniques
for building extraction and employs the majority voting method.
Since methods 1, 2, and 4 ultimately yielded probability index
maps of buildings, we performed a threshold segmentation on
these maps to obtain the final binary building images. Con-
sequently, we compared the F1 scores at different threshold
intervals (threshold range: [0, 1], with an interval of 0.01) and
chose the highest F1 score as the result. Notably, the index
map requires normalization before threshold segmentation. By
comparing with different methods, we can better evaluate the
proposed method.

Fig. 4 displays the extraction results obtained from var-
ious methods. Correctly identified building pixels are high-
lighted in green, while undetected buildings are marked in
blue, and erroneously detected buildings are represented in
red. It depicts representative images from three datasets, with
Image Fig. 4(a) representing the original image, and images
Fig. 4(b)–(h) corresponding to MBI-PCCI, corner-PCCI, GBI,
modified deeplabV3+, CBRNet, major voting, and the pro-
posed method, respectively. Obviously, the method proposed
demonstrates superior accuracy in detection results, with a lower
incidence of false positives and false negatives compared to other
methods. The MBI-PCCI method mistakenly identifies bright
nonbuilding areas as buildings, while also missing some build-
ings that are relatively darker in comparison to the surrounding
environment. Both the corner-PCCI and GBI methods exhibit

a high number of false positives as they mistakenly identify
areas with complex textures, such as parking lots and roads, as
buildings. The major voting method exhibits a notable rate of
false negatives for buildings. Notably, the modified deeplabV3+
method and CBRNet method exhibit exceptional performance
in terms of minimizing both false positives and false negatives
on the WHU dataset (rows 4–6 of Fig. 4). This is attributed to
the fact that both models were trained using the WHU dataset.
However, two network models demonstrate poor performance
in building extraction when applied to the other two datasets.
without manually annotated data, the proposed method exhibits
superior detection results with fewer misses and false positives
compared to other methods, as visually observed.

Furthermore, a quantitative evaluation of different methods on
various datasets was performed, and the evaluation results are
presented in Tables V–VII. The proposed method achieved the
highest F1 score on both the Nanjing dataset and the Washington
dataset. On the Wuhan University dataset, our method only
ranked below two deep learning-based methods. Nevertheless,
our method obtained the highest F1 score among the methods
that did not employ training data. Compared to the Nanjing
dataset and WHU dataset, the F1 score of the proposed method
has significantly improved on the third dataset. This improve-
ment can be attributed to the higher spatial resolution of Wash-
ington dataset, resulting in larger buildings in the images. In
addition, Washington dataset predominantly covers urban areas
characterized by simpler scenes and more densely populated
buildings, thus reducing the complexity of building extraction.

The OA indicator reflects the proportion of correctly classified
samples to all samples. The F1 score is a comprehensive eval-
uation indicator of precision and recall, which can effectively
balance the accuracy and completeness of building extraction.
Therefore, when assessing the effectiveness of building extrac-
tion, we comprehensively consider both OA and F1 indices of
the chosen method.

The F1 scores and OA of all comparison methods on three
datasets are presented in Tables V–VII. The results show that
our method’s F1 scores on the Nanjing and Washington datasets
are 3.35% and 0.98% higher than the second-highest method,
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Fig. 4. Building detection results on different datasets using different methods, with 1–3 rows belonging to Nanjing dataset, 4–6 rows belonging to WHU dataset,
and 7–9 rows belonging to Washington dataset. (a) original image. (b) MBI-PCCI. (c) Corner-PCCI. (d) GBI. (e) Modified DeeplabV3+. (f) CBRNet. (g) Major
voting. (h) Proposed method.
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TABLE VI
EVALUATION RESULTS IN WHU DATASET

TABLE VII
EVALUATION RESULTS IN WASHINGTON DATASET

respectively. On the Nanjing dataset, our method yielded the
highest OA of 0.8795, and the Major voting method obtains
the second-highest OA of 0.8775. Although the increase in OA
is modest, just 0.2%, a closer observation of the F1 scores
demonstrates that our method outperforms the Major voting
method by 3.35%. On the Washington dataset, our method
achieved the third-highest score with an OA value of 0.7382,
which was 0.84% lower than the first-highest method (Major
Voting). However, our method significantly enhances the F1
score by 8.34% in comparison to the Major voting method. We
consider this tradeoff, sacrificing a slight improvement in OA
for a substantial enhancement in F1 score, to be worthwhile.
Both the CBRNet network model and the modified deeplabV3+
network model attained the top two positions in terms of F1 score
on the WHU dataset. This success can be attributed to the fact
that both models were trained directly on this specific dataset.
Nevertheless, when two models were applied to the Nanjing
dataset or the Washington dataset, they exhibited poor gener-
alization capabilities. Specifically, the modified deeplabV3+
model and the CBRNet model recorded the lowest and second
lowest F1 values, respectively, on both the Nanjing and the

Washington datasets. Our method is optimal in the OA and F1
score on the Wuhan University dataset without training data.

Both the majority voting method and the method proposed in
this article are based on MBI, corner points, rectangularity of
objects, and entropy values of objects for the initial extraction
of buildings. However, there is a distinction in the methodology
employed in this article. It utilizes a multilevel D-S theory
to integrate various approaches, thereby improving the mod-
eling of uncertainty and facilitating the fusion of information
from diverse evidence. The F1 scores of the proposed method
consistently outperform those of the majority voting method
across all three datasets, as illustrated in Tables V–VII. The
F1 scores of the proposed method have exhibited respective
improvements of 3.35%, 2.58%, and 8.34% compared to those of
the majority voting method within each dataset. The difference
in OA values between the two methods on three datasets is
not significant. Without considering the experimental results
of the modified deeplabV3+ model and CBRNet model, the
majority voting method attains the second-highest F1 score
in Nanjing dataset and WHU dataset but yields the poorest
results in Washington dataset. This limitation emerges due to
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Fig. 5. Building detection results of patches. (a) Patch. (b)–(h) Results ob-
tained in patch using methods 1–6 and the proposed method, respectively.

the majority voting method’s inability to effectively account
for the uncertainty inherent in diverse evidence sources, hence
leading to its overall instability. The observation suggests that
the D-S theory approach outperforms major voting methods
when it comes to integrating diverse evidence for building
extraction.

The results of the representative patches are reported in
Fig. 5. By observing the detection results of buildings within
the yellow box, it can be found that methods 1, 4, 5, and 6 have
caused missed detections of darker buildings. Methods 2, 3, and
our method have significantly reduced missed detections, but
method 3 may incorrectly identify some nonbuilding areas as
buildings. Observing the results of the purple frame detection,
it can be observed that in the same situation, methods 1, 5,
and 6 cannot detect darker buildings. The buildings detected by
methods 3 and 4 are relatively complete, but there are some false
detections. Method 2 and the method proposed in this article
have similar detection results in the purple frame, but in some
areas, the missed detection situation of Method 2 is worse than
that of the method proposed in this article.

Through visual analysis of representative patches, this method
can detect different types of buildings and is insensitive to inter-
ference in most nonbuilding areas. This method is significantly
superior to other comparative methods and consistent with the
conclusions of quantitative analysis.

V. DISCUSSION

A. Segmentation Threshold Selection

When extracting buildings through MBI-PCCI and Corner-
PCCI, we need to perform threshold segmentation on the index

Fig. 6. F1 scores for different threshold methods on three datasets. (a)–(c)
Nanjing dataset, WHU dataset, and Washington dataset, respectively.

maps generated by MBI and corners to generate binary images of
buildings. Subsequently, the PCCI is calculated using the binary
images and segmentation maps to perform object-oriented build-
ing extraction. The OTSU method is employed in this process to
dynamically determine the segmentation threshold. To validate
the appropriateness of utilizing the OTSU algorithm in this study,
we conducted a comparative analysis and evaluation with other
threshold evaluation methods, which encompassed the K-means
clustering algorithm (K-means), expectation maximization al-
gorithm, mean method (Means), and the threshold that yields
the highest F1 score across the entire dataset (Max, obtained
through traversal).

Fig. 6 shows the results of various thresholding methods
across three datasets. It is important to note that the F1 score
presented here is computed using binary images obtained from
pixel-based MBI and corner-point detection, without under-
going post-processing. The figure clearly shows that among
the four methods for automatically determining segmentation
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TABLE VIII
ABLATION STUDY RESULTS ON THREE DATASETS BASED ON PIXEL-LEVEL BRANCH

Fig. 7. Results of method proposed for building occluded areas and bright
road areas. (a)–(d) Original image, segmentation image, results of our method,
and real labels, respectively.

thresholds, the OTSU method consistently performs the best,
closely trailing the Max method in most instances. Nonethe-
less, it is worth noting that in certain scenarios, the automatic
thresholding methods can yield higher F1 scores than the Max
method. This discrepancy is mainly attributed to the adaptive
nature of the automatic thresholding methods, which determine
thresholds for each image based on their distinct characteristics.
In contrast, the Max method determines the threshold based on
the entire dataset, potentially resulting in suboptimal segmenta-
tion thresholds for individual images. Therefore, using the Otsu
method in this study to adaptively determine the threshold and
generate binary images is reasonable.

B. Ablation Study

The framework proposed in this study comprises two
branches, which are built upon pixel-level features and object-
level features. In the pixel-level branch, we apply the proposed
PCCI index and BPAF initialization module, while in the object-
level branch, we solely utilize the BPAF initialization module. To

better know the contribution of each component to the proposed
framework, we conducted ablation experiments on different
branches and three different datasets. It is worth mentioning
that no post-processing methods were employed in any of the
ablation experiments.

Table VIII shows the results of the ablation study conducted
on the pixel-level features branch. We combined baseline mod-
els, MBI and Corner, with the PCCI and BPAF initialization
modules to explore the contributions of each module. The OA
of baseline MBI on three datasets is 0.7750, 0.7818, and 0.7318,
respectively, while the OA of baseline Corner is 0.7907, 0.5493,
and 0.6798. First, upon applying PCCI to both baselines, the
“MBI+PCCI” yielded OAs of 0.8096, 0.8074, and 0.7339,
while the “Corner+PCCI” achieved OAs of 0.8686, 0.7212, and
0.7335. These results confirm the effectiveness of PCCI in mit-
igating hole artifacts and salt-and-pepper noise, thus enhancing
the precision of boundary delimitation. Second, the integration
of the BPAF initialization module further improved building ex-
traction performance. The addition of BPAF initialization mod-
ule to “MBI+PCCI” resulted in OA increases of 5.32%, 0.29%,
and 0.68%. Similarly, after integrating the BPAF initialization
module on the baseline Corner, the OA improved by 0.82%,
7.69%, and 0.19% on the three datasets respectively. Finally,
by integrating two baselines and two modules, the extraction
performance of the building reached the optimal level, with OA
improved to 0.8795, 0.8286, and 0.7558 on three datasets.

We evaluated the BPAF initialization module on the object-
level branch, utilizing rectangularity and entropy as baselines.
The experimental findings are outlined in Table IX. In addition
to achieving the second-highest score on the Nanjing dataset, the
method integrating rectangularity, entropy, and BPAF achieved
the best results on the WHU and Washington datasets, with
OA reaching 0.8034 and 0.7049, respectively. The results in
Tables VIII and IX demonstrate the practicality and effectiveness
of each component in the proposed method.

Without considering the secondary evidence fusion stage, we
conducted a more detailed analysis of the extraction effects on
buildings in the first layer through two distinct branches. Table X
displays the extraction effects of the three datasets. As we have
seen, the pixel-level branch demonstrates higher precision but
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TABLE IX
ABLATION STUDY RESULTS ON THREE DATASETS BASED ON OBJECT-LEVEL BRANCH

TABLE X
BUILDING EXTRACTION RESULTS BY FUSING PIXEL LEVEL FEATURES AND OBJECT LEVEL FEATURES

lower recall. The object-level component compensates for this
impact by increasing the recall rate.

Specifically, the pixel-level branch and object-level branch
contribute to higher precision and recall rates in second-step
evidence fusion. This proves that it is effective and reasonable
to use the D-S theory to perform a hierarchical fusion of archi-
tectural features.

VI. CONCLUSION

Accurately and effectively extracting buildings from HRRS
images using a single feature or method is challenging. To
overcome this issue, our study proposes a fusion framework that
integrates multiple building features. The framework fully uti-
lizes the spectral and spatial geometric features of buildings and
effectively combines the building information extracted from
multiple features through a two-step decision-making process
based on the D-S theory. The proposed approach better handles
the uncertainties and correlations among multiple evidence and
solves the problem of computational explosion when there is
a lot of evidence, thus improving the quality and reliability
of decisions. In the first-step fusion of pixel-level features,
we propose a PCCI index that merges the pixel-level building
extraction results with the segmentation of geographical objects.
This index efficiently converts pixel-level building features into
object-level features, thus facilitating subsequent object-based
building analysis and ensuring greater consistency between the
extracted building boundaries and human visual perception.
To address the issue of initial probability allocation in D-S

fusion, we construct a BPAF initialization module based on
feature constraints and fuzzy clustering. The module diminishes
the impact of nonbuilding objects on the extraction results,
streamlines the construction process of BPAF, and eliminates
the need for parameter adjustments. Experimental results on
datasets from three different areas show that the proposed
method outperforms the other four methods in both qualitative
and quantitative evaluations.

The performance of the proposed method largely depends
on the results of image segmentation. Images with under-
segmentation often result in significant errors between the ex-
tracted boundaries of buildings and their actual boundaries.
Segmentation algorithms encounter challenges in identifying
obstructed regions of buildings that are concealed by shadows
and vegetation, which can subsequently lead to the misclas-
sification of neighboring objects. Consequently, the algorithm
proposed in this article may result in false negatives in the
occluded areas (see Fig. 7, rows 1–2). Model matching, corner
assistance, and morphological methods [62] can be employed
to rectify the problem of irregularly extracted building outlines
due to occlusion. The algorithm in this manuscript mistakenly
identifies some bright rectangular roads as buildings due to their
similarity in spectra and geometric shapes (refer to row 3 in
Fig. 7). Compared to roads, buildings have distinctive heights
and exhibit shadow information around them. The impact of
roads can be reduced by introducing height and shadow infor-
mation. In the future, our primary focus will be on optimizing
the boundaries after building extraction to enhance our current
work.
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