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Domain Adaptation for Mapping LCZs in
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Abstract—Environment and population are closely linked, but
their interactions remain challenging to assess. To fill this gap, mod-
eling the environment at a fine resolution brings a significant value,
if combined with population-based studies. This is particularly
challenging in regions where the availability of both population
and environmental data are limited. In low- and middle-income
countries, many demographic and health data are from nationally
representative household surveys, which now provide approximate
geolocations of the sampled households. In parallel, freely avail-
able remote sensing data, due to their high spatial and temporal
resolution, make it possible to capture the local environment at
any time. This study aims to correlate standard demographic and
health information with a high-resolution environment character-
ization derived from satellite data, encompassing both rural and
urban areas in Sub-Saharan Africa. We use the malaria indicator
survey conducted in 2017–2018 in Burkina Faso. We first present
a deep semisupervised domain adaptation strategy based on the
intertropical climatic characteristics of the country for precisely
mapping local climate zones (LCZs). This strategy models seasonal
variations through contrastive learning to extract useful informa-
tion for the mapping process. We then use this high-resolution LCZ
map to characterize, in four groups, the immediate environment
of the sampled households. We find a significant association be-
tween these local environments and malaria among households’
children. Going beyond the traditional dichotomous urban/rural
characterization, our results provide interesting insights for public
health. This innovative method offers new avenues for exploring
population and environment interactions, especially in the growing
climate change concern.

Index Terms—Deep learning, demography, domain adaptation
(DA), land cover, remote sensing.

I. INTRODUCTION

R ECENT studies highlight the interactions between pop-
ulation and environmental characteristics, especially in
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countries where population, strongly depends on the local envi-
ronment for resources and economic activities [1], [2], [3]. With
regard to health in many intertropical countries, malaria, which
is a mosquito vector-borne disease, has an epidemiological
facies that directly depends on the climate and its variability
over the year (e.g., temperature, rainfalls), as well as the local
environment (e.g., urbanity, presence of stagnated water) [4]. In
Sub-Saharan Africa, most countries are located in the intertropi-
cal zone (apart from the southern part), and malaria is still a ma-
jor health issue [5]. High-frequency environmental monitoring
would be beneficial for public policy. However, studying the link
between population and environment is challenging as it requires
matching data from both fields. In Sub-Saharan Africa, where
most of the low-income countries are located, the challenge is
even higher because both population and environmental data are
limited. In these countries, most of the demographic and health
data are from nationally representative household surveys as
those conducted by the demographic and health survey (DHS)
program. To address the rising concern of the environment, the
DHS program provides approximate coordinates of the areas
where households are located, as well as some associated en-
vironmental indicators (e.g., normalized difference vegetation
index, rainfall). However, these indicators are rarely frequently
updated or spatially precise. This gap can be filled using very
frequent and freely available remote sensing images, such as
those from the Copernicus program. Such images allow us
to create complex environmental indicators (e.g., land cover
maps) for specific areas and periods. This ability to picture the
environment, when linked to population and health data, can
provide valuable insights about environmental risk factors [6],
[7], [8]. Gibb et al. [7] used remote sensing to study interactions
between climate and dengue in Vietnam. These studies often use
basic indicators, such as vegetation or precipitation, and would
gain from more detailed environmental characterization.

Many products and land use/land cover classification systems
have been developed in the last years to offer resources for
environmental characterization: the global human settlement
layer produced global spatial data about human presence un-
til 2014 [9], the global human footprint estimates the human
influence on the environment [10], and the ESA world cover
project generated worldwide 10 m resolution land cover maps for
2020 and 2021 [11], [12]. However, these classification schemes
have some limitations, such as the ESA World Cover Project’s
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Fig. 1. Training process using s-SSDA, including a supervised and an un-
supervised track. These two tracks are used simultaneously during training.
First, a batch of labeled 32×32×10 images is fed into the model to compute
the cross-entropy loss LS . Then, the contrastive loss LT is computed from
prediction vectors from positive and negative pairs. The two losses are combined
into one total loss L for backpropagation.

Fig. 2. Mapping process. We perform a temporal regularization process using
a Markov Chain. Sentinel-2 images from early 2017 and 2018 are selected to
match the survey period. A prior LCZ map for early 2018 is computed from a
Markov chain and a map for early 2017. This prior is linked to the 2018 map
using the Bayes theorem. Color legend can be found in Fig. 1.

definition of urban areas, which is closely tied to cultural aspects,
limiting its transferability [13].

To address these limitations and provide a more globally
applicable and detailed characterization, Stewart et al. [14]
introduced the local climate zones (LCZs) classification scheme.
It is made of 10 urban classes and 7 rural classes based on their
surface physical properties and human activities, which allows
a better transferability than ESA world cover and a more com-
prehensive description level than the Global Human Settlement
Layer. Classes and their reference colors are represented in
Fig. 4. LCZs were first developed to support Urban Heat Island
research [15] but have been used to support various fields, such
as energy usage [16], climate [17], or geoscience modeling [18].
They also offer a great opportunity to analyze population data
better, thanks to their comprehensive and culturally independent
classification. Indeed, LCZs have proven to be a good representa-
tion for linking the environment to many different health issues,
as depression [19], cardiovascular diseases [20], or urban health
issues in Sub-Saharan cities [21].

Fig. 3. Regions of interests used to create the seasonal dataset over Burkina
Faso.

Fig. 4. LCZ map of Burkina Faso for early 2018.

However, mapping LCZs is a challenging research topic.
Several works on LCZs have focused on the generation of
high-quality maps using administrative data, vector data, or
remotely sensed data [13], [22], [23], [24]. In particular, the
community-based project “World Urban Database and Access
Portal Tools” provides a worldwide database on urban mor-
phology [25]. It has been used alongside other available LCZ
products to produce continental and worldwide LCZ maps with
a 100 m resolution [26], [27]. The So2Sat LCZ42 dataset was
introduced to support research on automatic classification of
LCZ using deep neural networks [28]. This dataset provides
labeled 32×32 pixel Sentinel-1 and Sentinel-2 patches from 42
agglomerations worldwide. It has been used for the generation of
1642 LCZ maps using deep neural networks, to further support
urban research [29].

Deep neural networks have substantially contributed to com-
puter vision [30], [31]. Due to their improved transferabil-
ity compared to conventional methods (e.g., random forests)
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and their ability to incorporate contextual information, these
techniques are well suited for remote sensing tasks [32], [33].
Moreover, deep networks have been successfully applied to LCZ
classification using convolutional neural networks [13], [34],
[35], as well as with recurrent neural networks [23], [36], taking
advantage of the large-scale So2Sat dataset. However, these
models remain significantly reliant on training data, resulting in
spatial domain adaptation (DA) issues. For instance, only 3 of the
42 training cities are located in Africa, but only 1 in the intertrop-
ical zone of the continent (Nairobi). The intertropical African
climate characteristics, with its large seasonal changes between
wet and dry seasons, cannot be learned by a neural network
fully supervised on this data. More data are required to include
such information in the training process. Although Sentinel-2
data are freely accessible, its annotation is time-consuming
and requires expertise. Taking advantage of the large amount
of available Sentinel-2 data using DA methods is required to
generate accurate LCZ maps of Sub-Saharan Africa.

In machine learning, DA involves transferring a model from
a labeled dataset, referred to as the source dataset, to a target
dataset that has a different underlying distribution. The objective
of DA methods is to enable models to generalize better and
perform well in the target domain, even with limited or no
supervision (i.e., labeled data) from the target domain. It is
suitable for many real-life tasks where few labeled data are
available [37]. DA techniques have been explored for remote
sensing [38], [39] for transferring knowledge from a sensor to
another [40], [41], [42] and from a region to another [43], [44],
[45], [46]. This enables transferring the model on large-scale
datasets, as SEN12MS [47] or So2Sat [28], on other regions of
the world. Common DA techniques include generative networks
to modify the data distributions [48], [49], latent space alignment
with adversarial training [50], [51], [52] or semisupervised
learning (SSL) that leverages unlabeled data to improve model’s
performances [53], [54]. Most DA strategies, when applied to
remote sensing, are focused on small DA problems, such as
cross-city or regional adaptation. Tasar et al. [43] performed
DA using 4 European cities, whereas Zhu et al. used ISPRS
Vaihingen and Potsdam datasets. These strategies are then not
adapted for land cover mapping at a country level, as they
do not include the environmental complexities of a whole
country.

This article is built upon a preliminary work [55] conducted
for large scale LCZs mapping in Sub-Saharan Africa. In the
following, we go further by investigating the potential links
between malaria and local environment, as described by the gen-
erated high-resolution map. The focus of our study is on Burkina
Faso, using a nationally representative household survey related
to malaria conducted in 2017–2018. We take advantage of the
high-temporal frequency of Sentinel-2 images to capture the
temporal climate specifics of Burkina Faso, as it is crucial for
linking maps to data collected over defined periods.

Our contributions are as follows.
1) We introduce a novel semisupervised DA (SSDA) method

that includes seasonal data and contrastive learning into
training for mapping LCZs in Sub-Saharan Africa.

2) We propose a method for linking the resulting LCZ map
to the approximate buffer areas where households can be
found in DHS-like surveys.

3) We show that local environments bring interesting insights
for public health issues related to malaria exposure. More
specifically, we highlight that there are intrarural and
intraurban factors impacting malaria propagation, which
goes beyond the traditional dichotomous urban/rural char-
acterization.

4) Our approach opens new perspectives for population stud-
ies: as we use freely available data, this method is repli-
cable and offers new avenues to explore the interaction
between population and environment.

Section II describes the method used for mapping LCZs in
Burkina Faso. The application of this method on Burkina Faso
is presented in Section III. Section IV addresses the creation and
assessment of Burkina Faso LCZ maps and their integration into
a demographic analysis procedure. The impact of our proposed
method for the mapping of LCZs and its association with de-
mographic data is discussed in Section V. Finally, Section VI
concludes this article.

II. METHOD

Although LCZs have been proposed as a universal tool,
their mapping from remote sensing imagery depends on the
background landscape and seasonal changes [26]. To tackle this
problem, we propose an SSDA method that takes advantage
of the seasonal changes of countries in Sub-Saharan Africa to
extract spatial and temporal information about the target areas.
Our objective is to define a mapping process taking a set of
images of spatial size 32×32 with 10 channels and returning a
series of LCZ labels. The resulting map will be created from
this set of images. To this effect, we define a neural network
F (.) taking 32×32×10 images as input and yielding a 1-D
vector s = [s1, s2, . . . , s17]

t of 17 elements. Each element is
a prediction score of the 17 LCZ classes for a given input. To
start with, we provide a description of the source and target
datasets used in this process. Then, we describe our method,
named seasonal-SSDA (s-SSDA), to train F (.) on the spatial
DA problem.

A. Source and Target Datasets

DA methods aim to learn relevant features from a labeled
source dataset and transfer them to the target dataset. In this
work, the target dataset is not labeled. Both datasets are made of
Sentinel-2 images with 10 spectral bands at resolutions of 10 m
and 20 m, up-sampled at 10 m using a bicubic interpolation. Let
us define the source dataset DS = (xi, yi)i∈[[1,nS ]] where xi is
a 32×32×10 image, yi its associated ground truth LCZ class,
and nS is the number of samples in the dataset. In this work,
the source dataset is the So2Sat dataset [28]. We supplement
DS with a target dataset that contains the areas covered by
the demographic survey of interest, Burkina Faso. We denote
this dataset as DT = (zs1i , zs2i )i∈[[1,nT ]] made of nT pairs of
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32×32×10 images (zs1i , zs2i ) from the same area at seasons s1
and s2.

B. Seasonal Semisupervised DA

In order to extract seasonal features from the target images
without requiring labels, we use the contrastive loss and teach
the model to be invariant to the seasons. This loss has been
widely used for self-supervised learning [56], [57] and aims to
train the model to increase a similarity measure between positive
(similar) pairs while decreasing this similarity measure within
negative (dissimilar) pairs

Li,j = − log
exp(sim(F (zi), F (zj))/τ)

∑2B
k=1,k �=i exp(sim(F (zi), F (zk))/τ)

(1)

where B is the number of pair of images, sim(·, ·) is the cosine
similarity, τ is the temperature, (i, j) ∈ [[1, B]]2, (zl)l∈[[1,2B]]

samples from a batch of B samples, and (zi, zj) is a positive
pair. In our case, the positive pair is made of two images of the
same area in different seasons and the negative pair is made of
other two images of different areas.

This loss is integrated into a two-tracks SSDA process involv-
ing the labeled source datasetDS and the unlabeled target dataset
DT . This process is shown in Fig. 1. The first track is a regular
supervised learning process using DS to minimize a supervised
cross-entropy lossLS : the modelF (.) is trained to classify LCZs
on various regions of the world. The second process, using the
unlabeled samples from DT , is done simultaneously. F (.) is
used as a Siamese neural network similarly as shown in [56] and
[58] to classify two different images from the exact same spatial
area but at two different seasons s1 and s2. The image from the
second season zs2i can be seen as a seasonal augmentation of zs1i .
To keep the model training simple, we do not consider possible
new settlements that are built between the recording dates of
the two images, which could change the LCZ class of a defined
area. For example, we assume that an area classified as “low
plants” in the first season will remain “low plants in the second
season, even if houses have been built. Then, the contrastive loss
LT is computed between the outputs of the positive pair and the
negative pair. It is worth noting that rural LCZ labels can change
throughout the year due to seasonal variations. However, urban
areas should remain unaffected by seasonal changes, despite
having a different visual aspect. We introduce this prior by
adding weights to the contrastive loss to penalize inconsistency
in urban area predictions. This second track aims to enforce
robustness to the seasons as well as transferring its knowledge
to unseen areas, which are not present in DS . The loss used for
the training of the model F (.) is a combination of the results of
the two tracks with a regularization coefficient α ∈ [0, 1]

L = α× LS + (1− α)× LT . (2)

This regularization term is determined empirically.

C. Temporal Regularization

Sentinel-2 products are available at a very high frequency
(maximum five days). LCZ maps of the target areas can be
generated not only at the designated time but also during the

same month in years preceding the year of interest. We take
advantage of Sentinel-2 temporal data to ensure temporal conti-
nuity between years using a Markov chain. We, thus, define the
following.

1) IN ∈ R32×32 an array built upon be the output of F (.) at
time N , where each coefficient of IN is the class with the
highest score given by F (.).

2) LCZN the LCZ class (cN ∈ [[1, 17]]) of the patch at time
N .

3) M ∈ R17×17 a matrix wheremr,c∈[[1,17]]2 is the coefficient
of M at row r and column c.

mi,j is the probability in the first Markov process to go from
LCZN−1 = i to LCZN = j, (i, j) ∈ [[1, 17]]2. These probabili-
ties are dependent upon the environmental and political context
of the target area. The definition of these weights is discussed in
Section III.

If the LCZ classification of a specific area at time N (i.e.,
LCZN ) follows a first-order Markov process (from two consec-
utives years at the same season), for all N

P (LCZN = cN ) = mcN−1,cN × P (LCZN−1 = cN−1) (3)

then, according to the Bayes theorem

P (LCZN = cN |IN )

=
P (IN |LCZN = cN )

P (IN )
×mcN−1,cN

× P (LCZN−1 = cN−1). (4)

P (IN |LCZN = cN ) is the prediction vector of the model.
After predicting mono-temporal LCZ scores withF , the Markov
chain can be applied to obtain the final LCZ maps. This regu-
larization process is shown in Fig. 2. In the following section,
we explain how this was used for generating an LCZ map of
Burkina Faso in early 2018, during the survey period.

III. GENERATION OF AN LCZ MAP OF BURKINA FASO

A. Target Dataset Creation

This section describes the procedure employed to generate the
target dataset for the SSL part of the training process. To reduce
the domain gap between available training data and Burkina
Faso, we supplement the source dataset So2Sat by Sentinel-2
images over Burkina Faso at the end of the dry and of the wet
seasons. We use level L1C images in order to match the So2Sat
template. This target dataset has been created using the following
procedure.

1) Downloading of L1C sentinel-2 tiles: Linked to each of
Burkina Faso’s region’s capital cities at the end of the dry
and of the wet seasons to maximize variances between
the two tiles. The two tiles of the same region at different
times were selected to have under 5% of cloud coverage
to reduce errors caused by clouds.

2) Selection of regions of interest: Where areas of interest
can be found: cities, villages, industries, natural parks,
forests, lakes, or rivers. Tiles are cropped into rectangular
shapes centered on areas of interest and large enough to
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TABLE I
TRANSITION WEIGHTS FOR THE MARKOV PROCESS DURING THE LCZ MAP GENERATION

include nearby environments. The same regions of interest
are selected for both tiles from the dry and wet seasons.

3) Splitting of the regions of interest: Into patches of 32 ×
32 pixels to match the patch size of the So2Sat dataset.
Patches pairs (same patch region, different seasons) are
created to feed the neural network during training.

This procedure results in 225K patch pairs distributed
throughout all of Burkina Faso, as shown in Fig. 3. As it can
be seen on the spatial distribution of the samples, all regions and
climates are included in the training dataset.

B. Training Settings

We use ResNet50 architecture [30], pretrained on the com-
plete So2Sat dataset. This pretraining stage is performed to
initialize the model weights for the subsequent semisupervised
training step. For this second step, the Adam optimizer is used
with a learning rate of 0.001. The batch size for both the super-
vised and unsupervised phases is set to 256. The temperature
parameter τ is set to 0.5. Based on our experiments, we set the
parameter α from (2) to 0.9 in this work.

C. Transition Weights

The assumption that LCZs follow a Markov chain requires
the definition of transition weights, which represent the prob-
abilities of moving from one state, i.e., LCZ class, to another.
The context of the country highly influences these probabilities,
as they may result from urbanization (e.g., the transition from
“open low-rise” to “compact low-rise”), forest management
(e.g., prohibition of deforestation), or the geographical situation
of the country. For instance, in Burkina Faso, urbanization is
proceeding rapidly and the country’s terrain is predominantly
flat. Thus, cities are likely to expand horizontally rather than
vertically, suggesting that the transition weights to “compact
high-rise” should be very low. Transition weights have been
set empirically regarding Burkina Faso’s spatial and political
features, such as the urbanization plan. Transition weights can
be found in Table I.

D. Resulting Map

Malaria indicator survey (MIS) data were collected in Burkina
Faso from November 2017 to March 2018—from the end of the
wet season to the dry season. However, we generate the map
for early 2018 as the majority of interviews were conducted in
January and February. We gather Sentinel-2 images from early
2017 and 2018 to perform the Markov process. Only images
with a cloud cover of less than 5% are selected. To match the
model’s input size of 32×32 pixels, each Sentinel tile is gridded
into 320 m × 320 m image patches. Patches from 2017 and
2018 are classified and used for the Markov process. The map
is produced by concatenating all the generated LCZ patches and
is shown in Fig. 4.1 One map of Burkina Faso, halfway through
the survey period (early 2018) when most of the interviews
have been done, has been generated to link to the demographic
survey. The initial map has a resolution of 320 m×320 m and is
upsampled to the input Sentinel image resolution, 10 m×10 m,
within the subdivision of the initial pixels (320 m×320 m) into
smaller pixels (10 m×10 m). As expected, the map is divided
into 3 main parts (4 if we consider cities/urban areas), which
correspond to the climate profiles of Burkina Faso. The southern
wetter part is mostly covered by “scattered trees” areas, and the
more temperate part is mostly covered by “bush/scrub” areas,
except for the nature reserves in the eastern part of the country.
The LCZ classification of northern dryer areas presents a greater
challenge for classification. The precision of this classification,
through the use of Sentinel-2, is restricted by its 10 m resolution
and the up-sampling of the 20 m resolution bands to 10 m.
This may result in the inability to detect small settlements or
houses smaller than the Sentinel-2 resolutions. The absence of
this detection leads to a misinterpretation of areas with a very
low rate of construction, e.g., the LCZ class “sparsely built,”
and areas without any buildings, e.g., “bare soil or sand” and
“low vegetation,” which can be found in the desert-like part in
the north. This confusion is reinforced by the use of SSL that
struggles when input samples are difficult, such as “sparsely
built” samples as indicated by Bechtel et al. [59].

1The LCZ map can be downloaded from the following link: https:
//drive.google.com/file/d/1KkpZfNJ0DGOZuuVb-6nvOCWCvCp2ClQk/
view?usp=sharing

https://drive.google.com/file/d/1KkpZfNJ0DGOZuuVb-6nvOCWCvCp2ClQk/view{?}usp=sharing
https://drive.google.com/file/d/1KkpZfNJ0DGOZuuVb-6nvOCWCvCp2ClQk/view{?}usp=sharing
https://drive.google.com/file/d/1KkpZfNJ0DGOZuuVb-6nvOCWCvCp2ClQk/view{?}usp=sharing
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Fig. 5. Visual comparison of LCZ maps of 3 cities (Ouagadougou, Bobo-Dioulasso, and Fada-Ngourma). In addition to a map from OpenStreetMap, different
methods are shown: the proposed s-SSDA, supervised training on So2Sat (Baseline), Global LCZ map [27], and GUL [29], from left to right.

E. Comparison With Other LCZ Products

Several LCZ products have been introduced in recent years.
In particular, So2Sat Global Urban LCZ (GUL) [29] and global
LCZ map [27] enabled a global overview of the morphology
of the Earth’s surface. So2Sat GUL is a set of 1642 cities
worldwide, based on So2Sat LCZ42. A two-track model has
been trained in a supervised manner. The first track is a residual
network taking as inputs Sentinel-2 images of an area. Several
seasons can be used as input and the model is asked to predict
the LCZ class for each season. The second track is a different
residual network taking as input a Sentinel-1 image of the same
area. The mean of the prediction vectors is then computed to
obtain the final prediction vector. The model is used to generate
LCZ maps of unseen cities all around the world. Two maps for
Burkina Faso are available: The capital city, Ouagadougou, in
the center of the country, and Bobo-Diolasso, the second biggest
city in the country, in the southwest.

The Global LCZ map covers all the planet surface [27] with a
resolution of 100 m. It is the result of pixel-based Random Forest
classifiers trained on 46 spatial features on training areas pre-
viously made by urban experts or in crowd-sourcing platforms
using guidelines [60]. The whole surface of Burkina Faso was
mapped.

The validation of land cover maps in intertropical Sub-
Saharan Africa presents significant challenges. First, the region’s
diverse and complex ecosystems contribute to a wide range of
land cover types. This variability makes it difficult to develop
generalized validation approaches, especially for LCZs. Second,
few references are available in Sub-Saharan Africa due to the
lack of resources. To validate the effectiveness of our training
approach, we gathered images over large areas over four cities
in the different climate zones of Burkina Faso: Ouagadougou,
Bobo-Dioulasso, Fada-Ngourma, and Ouahigouya [55]. These

images are split into patches and manually labeled from VHR
remote sensing images.

Fig. 5 is a visual comparison of the LCZ maps of Oua-
gadougou, Bobo-Diolasso, and Fada N’Gourma generated using
different models. Maps from the baseline and the proposed s-
SSDA model have been generated from the same Sentinel-2 tiles
for early January 2018. As expected, the baseline model strug-
gles to predict urban areas in Ouagadougou and Fada N’Gourma,
as such information may not be included in the training data.
Similarly, So2Sat GUL does not predict the whole of Oua-
gadougou as an urban area. Interestingly, the two previous mod-
els yield good visual results over Bobo-Diolasso. Moreover, we
quantitatively validated these products using the validation set
used in the ablation study in [55]. Four Sentinel-2 images from
early 2018 were collected and cropped over Ouahigouya, Bobo-
Dioulasso, Fada-Ngourma, and Ouagadougou. The resulting
images were gridded into 32 × 32 pixel areas and labeled using
very high-resolution (VHR) satellite images. As So2Sat GUL is
only publicly available for areas over Ouagadougou and Bobo-
Dioulasso, metrics have been computed on the 186 overlapping
patches with the validation set. As GUL and the Global LCZ map
are available at a lower resolution than the validation patches,
we compute the validation metrics for two different aggregation
procedures.

1) We consider that the area is well classified if the majority
of the pixels image area has the same label as our validation
set (MR).

2) We consider that the area is well classified if at least one of
the subpixels has the same label as our validation set (IS).
This second aggregation method is, therefore, the most
favorable for GUL and Global LCZ map.

Quantitative comparison results are given in Table II. Both
s-SSDA methods outperform So2sat GUL in all cases and for
all metrics. In the best-case scenario, the temporally regularized
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TABLE II
COMPARISON RESULTS

s-SSDA outperforms GUL by more than 30%. These results
highlight the necessity to perform DA during training in unseen
areas of the world, even after training on a global dataset.
The global LCZ map, when taking the best scenario, achieved
further improvements, obtaining an overall accuracy of 0.447,
an F1-score of 0.481, and an IoU of 0.329, which are similar
but slightly better than s-SSDA without regularization. The
temporal regularization enables better mapping results, with
a close to 10% improvement for each metric. The results on
our validation set highlight the potential of taking advantage of
seasonal features to perform DA.

IV. APPLICATION: MALARIA IN BURKINA FASO

In this section, we explore the integration of high-resolution
LCZ characterization of the environment into a demographic
analysis procedure. Specifically, we investigate malaria in Burk-
ina Faso using the MIS 2017–2018. This section is structured
as follows: In Section IV-A, we present the MIS survey: the
collected data and the approximated geolocalization of the
households. In Section IV-B, we provide a novel characterization
of the households’ environment at the finest spatial granularity
based on the LCZ map produced. In Section IV-C, we estimate
the presence of malaria among households according to four
categories of environment. In Section IV-D, using univariate
and multivariate analysis, we estimate the correlation between
malaria and the environment, considering socio-economic char-
acteristics that could interfere in the interaction.

A. MIS 2017–2018

In Burkina Faso, malaria is one of the most important cause
of death (the first one in 2019 according to IHME2). A MIS
from the DHS Program was conducted in 2018–2018 in the
country [61]. In the survey, the sample was built so that results
on malaria prevalence for 6–59 month-old children are repre-
sentative of each of the 17 study areas (administrative regions
and big cities, e.g., Ouagadougou). In total, 252 enumeration
zones (EZs, i.e., geographic areas for conducting structured
population surveys) were selected from the national sampling
frame. EZs are the smallest spatial units where geolocations are
available. While some of the selected EZs could not be visited

2[Online]. Available: https://www.healthdata.org/research-analysis/health-
by-location/profiles/burkina-faso

for safety reasons, 245 EZs were visited, and a total of 6322
households were interviewed. Among households, information
about socio-demographic characteristics, preventive behaviors,
health care related to fever occurrence, and knowledge on
malaria were collected. Among each household, several tests
were done on all eligible children aged 6–59 months with their
legal representatives’ consent, starting with a malaria rapid test,
providing the first results in 15 min. A hemoglobin test was also
performed in order to detect anemia, which is highly correlated
to malaria. When the rapid test proved positive, a treatment for
malaria was freely provided to the parents/legal representatives,
and another blood sample was collected for a laboratory test
to confirm the rapid test result and characterize the malaria
parasite. In order to preserve household confidentiality, their
spatial coordinates are not public. For each EZ, the average
geolocation of households is computed and randomly displaced
in an area of radius R depending on the type of EZ (R = 2 km
for urban EZs, R = 5 km for rural EZs, except for 1% of the
latter for which R = 10 km).

B. Characterization of Households’ Local Environments

To account for the displacement of the EZs geolocations,
we model buffer areas around each EZ centroid by disk Ce

(with e being the EZ identifier) of radius of two or five kms
depending on the urban or rural type of the EZ. As only 1% of
rural EZ centroids are displaced within a circle of 10 kms, we
make the assumption that reducing the buffer area to five km
disks will not alter the results. Different processes can be used
to model the EZ environment. DHS experts suggest averaging
the value of interest on the buffer area Ce [62], i.e., taking
the mean LCZ distribution in the context of this study. This
method implies considering pixels that contradict survey data
on whether the area is urban or rural, as urban areas can be
included in rural 5 km disks. Furthermore, it yields artificially
heterogeneous environment indicators as the large area of Ce

is taken into account. Grace et al. [63] suggested using VHR
images or existing global population database as from World-
Pop3 to select interesting pixels. In this study, we rely on the
urban/rural characterization of the EZ provided in MIS data.
For each EZ e, we semirandomly sample nrandom squared areas
of size A = 10×10 (100 m×100 m) inside Ce to model the
potential true geolocations of interviewed households. To ensure
sampling consistency with MIS information on the urban/rural
type of e, these nrandom areas have been selected to contain at
least δ = 10% of pixels, which LCZ classifications belong to
the urban or rural area. This semirandom sampling procedure
results in a total ofnrandom areas that cover all EZs. Thesensampled

areas give a global view on the local environment in which the
households were interviewed, excluding impossible values yet
preserving borderline cases as city borders and urban parks. A
visual example of such a semirandom area selection is given in
Fig. 6.

3[Online]. Available: https://www.worldpop.org/datacatalog/

https://www.healthdata.org/research-analysis/health-by-location/profiles/burkina-faso
https://www.healthdata.org/research-analysis/health-by-location/profiles/burkina-faso
https://www.worldpop.org/datacatalog/
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Fig. 6. Semirandom selection of potential location of households. Example of
a rural EZ near Dédougou, Burkina Faso. The locations are randomly sampled
in the rural part of Ck .

C. Environment and Malaria Rates at the EZ Level

For a first visualization of the effects of the environment on the
presence of malaria with our map, we find correlations between
types of environment and malaria rate. We do not attempt to
directly predict malaria prevalence from LCZ distributions as
it would obscure socio-economic disparities potentially treating
two households—one wealthy and one poor—as equals, despite
socio-economic factors such as mosquito nets, types of sanita-
tion facilities, and others potentially influencing the outcomes.
Then, we clustered the EZs’ LCZ distribution into nE = 4 types
of environments using the fuzzy C-means algorithm [64]. The
LCZ distributions of the centers of each cluster, or types of envi-
ronment, are depicted in Fig. 7. The definition of clusters using
the LCZ distribution goes beyond the urban/rural dichotomy
and takes advantage of the variety of classes in the classification
scheme. Each cluster is highly polarized by a single LCZ class.
Clusters 1 and 2 tend to be urban, and clusters 3 and 4 tend to be
rural. Cluster 1 is highly urban and mostly includes “compact
low-rise” LCZs. This cluster can be associated with towns and
cities. Cluster 2 is less urban, mostly made of sparsely built
areas, as can be found in the outer part of towns and cities
and in the northern part of the country. Clusters 3 and 4 are
two rural clusters dominated by scattered trees and bush/scrub,
respectively.

MIS data provide rapid test results for each child tested in
all EZs. In this work, we define malaria rate as the number
of positive cases among children aged 6–59 months divided
by the total number of children aged 6–59 months. We plot
in Fig. 8, the distribution of malaria rates for each type of
environment. Visually, malaria rates seem associated to the type
of environment.

Fig. 7. LCZ distributions of clusters centers (up) and 2-D representation using
t-SNE (down) [65].

TABLE III
P -VALUES IN STUDENT’S T-TEST RESULTS

On average, households located in clusters 1 and 2 show lower
malaria rates than rural clusters 3 and 4. Within these urban
clusters, the most urban one presents lower rates. Cluster 3 shows
slightly higher rates than cluster 4, but the difference is not sig-
nificant according to the Student’s t-test shown in Table III. That
nonsignificance may be explained by the over-representation of
the bush/scrub class in the map presented in the mapping section.

D. Environmental and Socio-Economic Influences on Malaria
at the Household Level

This section introduces the method to link the local environ-
ments of households and their socio-economic data to malaria.
First, we describe the dependant covariate that we want to
explain: the presence of malaria cases in households. Then,
we present the households’ characteristics, which will be used
to explain the dependent covariate. Finally, we show that the
influence of the environment on malaria is significant, even when
considering household socio-economic data.

1) Dependent Covariate: Malaria rapid diagnostic test for all
tested children are provided in MIS data. These malaria tests are
blood-based tests detecting specific antigens (proteins) produced
by malaria parasites in the blood of infected individuals. To
study malaria at the household level, we now define our depen-
dent covariate as the presence of at least one malaria-positive
case, according to these tests, among the children aged 6–59
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Fig. 8. Distribution of EZs malaria rates (left) and proportion of malaria rates by intervals, grouped by cluster.

months in the household. Thereafter, we use the expression
positive household to refer to such households. Thus, this co-
variate is binary and is explained using a logistic regression and
household-related data. The logistic regression aims to estimate
the probability of an event occurring based on a given set of
independent covariates. In this work, we estimate the probability
of having at least one positive case in a household according
to the covariates described as follows. That model allows us to
analyze the interactions of the environment with other covariates
at the household level.

2) Households’ Characteristics: As mentioned in the sur-
vey description, MIS data provide socio-economic information
about households in addition to malaria test results. Our ex-
planatory covariates, at the household level, include information
about wealth, type of toilets used, source of drinking water, the
children’s mother’s level of education and the total number of
children between 6 and 59 months in the household. The wealth
index represents financial well-being. In this study, it is split
into quintiles (poorest, poor, middle, rich, richest). According
to the MIS data report [61], the types of toilets fall into three
categories: no facility, nonimproved (e.g., bucket toilet, hanging
toilet/latrine), and improved (e.g., flush toilet to piped sewer
system, composting toilet). Sources of drinking water were also
split into similar categories: nonimproved (unprotected spring
or well, river), improved sources (e.g., piped water), and other
sources (e.g., tanker truck, protected well). The mother’s level
of education cannot be indicated trivially. In the context of this
article, one household may be composed of several children
with different mothers. To be as close as possible to reality, we
define the level of education of the mothers in a household as
the most represented level (no education, primary, secondary,
and higher) within the mothers present in the household. If there
are two mothers in the household or if there is equality, we
choose the highest level of education. The number of children
aged 6–59 months is also computed and used as an explanatory
covariate.

We use the clusters described in the previous section as our
first environmental variable. The type of environment for house-
holds is determined by the cluster in which their corresponding
EZs are classified. Our generated map has a label resolution of

320 m × 320 m, which may be too high for classifying small
water bodies that may increase the population of mosquitoes in
the area. To compensate for that lack, we add the presence of
water in the buffer area using OpenStreetMap data. Table IV
gives a summary of the considered covariates. In this table,
“Rate+” is the proportion of households in each category where
at least one child between 6 and 59 months have been tested
positive to malaria.

3) Results: After deleting invalid values, i.e., households
with missing data, there are 4357 households with at least one
child between 6 and 59 months in the survey dataset. Their
socio-economic backgrounds are given in Table IV. All these
households are given a binary label according to their malaria
positivity: 0 being negative and 1 being positive. Univariate as-
sociation results are shown in Table V and multivariate analysis
results, using all the explanatory covariates are given in Table VI.
No weight was used to balance the households depending on the
number of children under 5 years old. The effect of the number
of children is controlled in the final regression model.

Association between malaria and socio-economic covariates:
Taken independently, most of the socio-economic covariates
have a significant association with the positive households. The
level of education of the mother has a negative association with
the presence of malaria: households with more educated women
is less likely to be positive households compared to less educated
mothers. The source of drinking water also shows a similar
association. Interestingly, only improved toilets are significantly
associated with positive households whereas having nonim-
proved toilets does not seem to reduce malaria rates. Similarly,
only the richest quintile of the population is associated with
lower malaria presence. Contrary to what could be expected,
differences between the other quintiles are not significant. This
can be explained by the construction of the EZs where the
prevalence is similar for the 4 poorest quintiles as shown in
Table IV.

Association between malaria and environmental covariates:
The presence of water in the buffer area, i.e., presence of water
near the households’ locations, is not significant. The types of
environments defined above are all significant when the refer-
ence covariate is the type “sparsely built.” “compacted low-rise”
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TABLE IV
SOCIO-ECONOMIC AND ENVIRONMENTAL BACKGROUND OF HOUSEHOLDS

TABLE V
RESULTS OF UNIVARIATE LOGISTIC REGRESSIONS

TABLE VI
RESULTS OF A MULTIVARIATE LOGISTIC REGRESSION
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is associated with lower rates, “bush/scrub” with higher rates and
“scattered trees” with the highest rates.

V. DISCUSSION

This study aims to estimate the impact of the local environ-
ment on a major health issue in a Sub-Saharan African country,
by the following:

1) characterizing local environmental data from freely avail-
able satellite data and using LCZs classification;

2) linking this information with demographic and health
data collected from household-based surveys that provide
approximated geolocalization of surveyed households;

3) assessing interaction between environment and health,
taking into account socioeconomic factors.

In Section V-A, we discuss the LCZ mapping method using
DA presented in Sections II and III, and in Section V-B, the
impact of the environment on malaria depicted in Section IV.

A. LCZ Mapping

The framework presented in this article aims to map LCZs in
a country where no ground truth is available using contrastive
deep learning methods applied to Sentinel-2 images. It makes
use of seasonal variations in the target country to extract useful
information for LCZ mapping. To focus the training step on
that very country, a specific training dataset is created. For this
study, we chose to work on Burkina Faso where a recent DHS
was conducted and collected data as well as geolocalization
ones were available for such analysis. It is worth noting that the
resulting model is significantly focused on the target country
and loses its adaptive capacity in other areas. For example,
its classification performance on the So2Sat dataset drops by
40%. The training step has, therefore, reversed the DA problem:
the model is now focused on the target country and cannot be
generalized to other areas. However, creating training datasets
on other countries (areas with similar climate characteristics)
should allow models to accurately classify these new areas.

In addition, the distribution unbalance between the source and
target LCZ classes can lead to data bias. The So2Sat dataset
was indeed built on cities and around, which may limit the
characterization of more rural environments. Rural areas such
as “bare areas” may be under-represented in this data. However,
our seasonal dataset includes data from all over Burkina Faso
from very urban areas to very rural ones. This difference in the
number of classes in each dataset may limit the performance
of the model after DA. Moreover, Burkina Faso has specific
areas that are not considered in So2Sat (e.g., Saharan desert
areas in the north) and, thus, are more challenging to classify
accurately. Maps generated using this data may alter the result
of the multivariate analysis in rural areas, as the population in
Burkina Faso is mostly rural.

The OA being 56% suggests that the accuracy of the LCZ
maps could be improved. Having 17 classes, the results suggest
a fine level of classification and above other state-of-the-art
methods. Moreover, it still provides valuable insight into land
cover and use patterns. Classification errors are smoothed by the

random selection of pixels performed in Section IV-B. Nonethe-
less, results on the link between environment and malaria are in
line with our expectations.

B. LCZ and Malaria

A significant association between the type of environments
as defined above and malaria presence has been found for this
survey even after controlling for demographic and socioeco-
nomic factors as the number of children in the household, the
type of drinking water source, the types of toilets, the level
of education of the mother, and the presence of water bodies.
Some covariates included in this study provide results that
differ from our expectations. The poorer populations are often
associated with higher malaria rates due to the lack of facilities
(medical center, improved toilets) and knowledge [66], [67] but
no significant association between low wealth and malaria rates
was found in this study. The sampling of the survey resulted
in the 4 lowest wealth quintiles’ populations (poorest, poorer,
middle, and richer) having similar malaria prevalence. The only
significant association has been found for the richest quintile,
with lower presence of malaria in comparison to the other quin-
tiles. The presence of water bodies in the buffer area also yields
conflicting results. In general, mosquitoes are more common
in regions where the humidity is high and where water can be
found. In this study, due to the voluntary spatial displacement of
household locations, it is not possible to compute the distance
of households to small water bodies, indicated on OSM data, for
example, which may indicate a greater presence of mosquitoes.
As mosquitoes are unlikely to travel very high distances, the
modified geolocations of EZs are not precise enough to conclude
on this covariate. MIS data also provide a “proximity to water”
covariate for each EZ, based on international databases such as
the lakes dataset and the shoreline dataset. This covariate does
not include the proximity to small water bodies as can be found
in OSM data and does not give further information about the
proximity to water bodies.

The associations between positive households and types of
toilets or sources of drinking water lead to similar results. The
associations with positive households are only significant for the
“improved” covariates taking as reference the absence of facility.
Indeed, improved sources of water are protected and associated
with a reduced malaria presence. For the case of sources of
drinking water, improved facilities lead to less stagnant water,
reducing the presence of mosquitoes. However, unimproved (not
protected) sources or the absence of sources leads to a greater
presence of mosquitoes. The same reasoning can be applied to
the types of toilets used, as improved facilities be more protected,
and reduce the presence of mosquitoes. In this study, there is no
evidence, however, that having unimproved facilities contributes
to the reduction of malaria presence in the households, compared
with households with no facilities at all.

The association results are in line with the data given by
MIS and current knowledge about malaria prevalence in Burkina
Faso. Malaria risk clusters can be found in the southern part of
the country, mostly covered by “scattered tree” areas. However,
we also found that using the climate regions (south, center, north)
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does not lead to significant associations. Unlike other covariates,
the characteristics of households’ local environment remain
invariant when including other explanatory covariates. Interest-
ingly, the association between types of environments and malaria
positivity is significant in both univariate and multivariate setups.
This consistent significance of the environment characterization
in both univariate and multivariate logistic regression analyses
strengthens the evidence for its association with the presence
of malaria, indicating a robust and persistent relationship even
after controlling for other household covariates. This finding
suggests that it possesses a genuine and independent effect on
the outcome covariate. This significance is lost between the two
rural types of environment (scattered trees and bush/scrub) when
considering one of them as a reference. As indicated in Table III,
those two clusters are not significantly different, it is, therefore,
not surprising. Both LCZ classes can be found in similar regions
of the country, and bush/scrub areas are substantially represented
on the map. Likewise, another classification of the north of
Burkina Faso than the unexpected sparsely built areas may lead
to different clusters. In particular, more “bare soil or sand” or
“low plants” areas were expected. A more accurate classification
of some areas, together with the current one may refine the
logistic regression results. The conclusions of this work should
remain the same, as northern areas do not suffer from high
malaria rates.

This study suggests that the use of the LCZ classification
system is suitable for population data analysis, following the
generation of a map with a 320 m resolution. Moving to a finer
resolution, resulting in a more precise map (as for Global LCZ
map [27]), may alter the results. LCZ classes definitions are
based on the built and impervious surface fractions and then
are directly linked to the total surface area covered by the input
image of the model. Further studies are required to analyze the
effect of the map resolution of the results on population data.

VI. CONCLUSION

This work introduces a new strategy to link population data to
up-to-date remote sensing images in Sub-Saharan Africa. First,
we propose an SSDA strategy that takes advantage of the large
amount of Sentinel-2 data as well as the seasonal variations in
the target country. The deep neural network is taught to transfer
its knowledge from the So2Sat dataset to a specific country
by extracting useful features thanks to contrastive learning.
Finally, we demonstrate that LCZs can be successfully linked
to the population at the country level. Our work also highlights
the necessity to consider local characteristics, such as seasonal
variations, directly into the training of our models to overcome
DA challenges. This innovative method offers new avenues for
exploring population and environment interactions, especially
in the growing concern of climate change.
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