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NB_Re3: A Novel Framework for Reconstructing
High-Quality Reflectance Time Series Taking

Full Advantage of High-Quality NDVI
and Multispectral Autocorrelations

Hongtao Shu , Zhuoning Gu, Yang Chen, Hui Chen , Xuehong Chen , and Jin Chen

Abstract—Multispectral reflectance—signals reflected from the
Earth’s surface across different wavelengths—is a primary data
source for most remote sensing applications. However, obtaining
complete cloud-free multispectral reflectance time series during
the vegetation growing season remains challenging due to cloud
contamination and limitations of existing reconstruction methods.
To address the challenge, this study proposed a novel normalized
difference vegetation index (NDVI)-guided bi-directional recur-
rent reconstruction model for multispectral reflectance time se-
ries (referred to as “NB-Re3”), which aimed to reconstruct dense
time series of reflectance images by exploiting the dependence of
NDVI on multispectral reflectance. NB-Re3 utilizes a temporal
convolutional network to capture the temporal trends in the NDVI
data and a bidirectional long short-term memory to integrate the
temporal features of the NDVI with the cloud-free reflectance data.
The architecture establishes a robust dynamic NDVI-reflectance
relationship while capturing temporal dependencies and multispec-
tral autocorrelations of multiple spectral bands. We compared the
performance of NB-Re3 with four representative methods (MNSPI,
HANTS, STAIR, and U-TILSE) in reconstructing multispectral
reflectance time series, ranging from the visible bands to near-
infrared and short-wave infrared bands, at two challenging sites:
the irrigated area of Colleambally, Australia, and the cultivated
area of Rikaze on the Southern Tibetan Plateau, China. The result
showed that NB-Re3 kept superiority with the lowest root-mean-
square error values and highest correlation coefficients values. The
effectiveness of integrating high-quality NDVI time series and using
multispectral autocorrelation to improve reflectance time-series
reconstruction was further confirmed by the ablation experiments.
It is concluded that NB-Re3 shows promise for generating long-term
cloud-free reflectance time-series products tailored for ecological
and agricultural applications.

Index Terms—Bidirectional long short-term memory (Bi-
LSTM), multispectral reflectance data, normalized difference
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vegetation index (NDVI), spectral autocorrelation, temporal
convolutional network (TCN), time series.

I. INTRODUCTION

MULTISPECTRAL reflectance, which represents the sig-
nals reflected from the Earth’s surface across different

wavelength ranges, is a fundamental data source for most re-
mote sensing applications, such as the calculation of vegetation
indices [e.g., normalized difference vegetation index (NDVI)],
classification and change detection, target detection, and the
derivation of biophysical and biochemical parameters. An in-
creasing number of Earth observation satellites, such as MODIS,
VIIRS, Landsat, and Sentinel, have collected and released time-
series surface reflectance (SR) data in different spectral bands.
These high spatiotemporal resolution data provide irreplace-
able opportunities to monitor the continuous, dense dynamics,
and capture accurate spatial details of the Earth’s surface in
various applications, such as disaster management, ecosystem
and biodiversity conservation, urban planning and infrastructure
development, as well as agriculture and crop monitoring [1], [2],
[3], [4], [5], [6], [7], [8].

Unfortunately, the actual acquisition of SR time series is
often discontinuous and incomplete in time due to cloud con-
tamination and other disturbances [9], [10], [11], [12]. More
importantly, most satellite sensors are designed with tradeoffs
between spatial and temporal resolution under technical and
budgetary constraints. These two aspects account for the lack
of cloud-free SR time series with both high spatial and temporal
resolution when using single sensor data [13]. Recently, newly
developed commercial satellite systems, such as the PlanetScope
constellation [14], with a spatial resolution of 3 m and a daily re-
visit cycle, have largely alleviated this shortage. However, given
the high cost of acquiring and preprocessing such constellation
data, there is still a widespread need to generate cloud-free SR
time series with 30 or 10-m spatial resolution, especially for
historical data.

In response to these shortcomings, a number of methods have
been developed in recent years to produce cloud-free SR time
series with finer spatial resolution. These methods can be divided
into two types based on whether they make use of multisource
image data: single-sensor-based methods and multisensor-based
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methods. The single-sensor-based approach consists of two
main strategies: the “Filling” strategy and the “Fitting” strategy.
The “Filling” strategy aims to fill in the cloud-contaminated
(hereafter referred to as “missing”) values of a pixel using
the values of cloud-free pixels in images taken by the same
sensor at temporally close dates. Neighborhood similar pixel
interpolator (NSPI) method is a typical one belonging to this
strategy with the function of filling the missing values of pixels
caused by the failure of the scan-line corrector (SLC) and cloud
contamination in the Landsat ETM+ images [15], [16]. Another
spectral-angle-mapper (SAM)-based spatiotemporal similarity
(SAMSTS) method is designed to fill large area gaps in Landsat
data using a SAM metric for identifying similar pixels [17].
Unlike the “Filling” strategy, the “Fitting” strategy assumes
that there is a temporal change pattern in the original SR time
series that can be fitted using a mathematic function, such as
linear harmonic model [18] or the Whittaker smoother [19]. For
example, Zhu et al. [18] introduced a linear harmonic function to
generate synthetic Landsat time-series images based on all avail-
able Landsat reflectance time series. In general, the “Filling”
strategy is more suitable for generating single synthetic image,
while the “Fitting” strategy is more suitable for generating image
time series. In addition, some hybrid methods have also been
proposed to integrate their advantages, respectively. Yan and Roy
[20] proposed a hybrid fill-and-fit approach, which integrates
the “Filling” strategy and the “Fitting” strategy in two steps,
and applied it to reconstruct analysis ready data time series.
Nonetheless, methods based on a single sensor are inherently
constrained by the number of available cloud-free images and
their temporal distribution, due to the limited observations a
single sensor can provide. This limitation is apparent in both
the “Filling” strategy, which requires a substantial number of
spatially or temporally adjacent cloud-free pixels, and the “Fit-
ting” strategy, which heavily depends on a dense sequence of
temporally cloud-free observations.

To address the limitations of single-sensor-based methods,
multisensor-based methods have recently gained increasing at-
tention by combining the advantages of data from two or more
sensors. These methods employ the “Fusing” strategy, generat-
ing images with both high spatial and temporal resolution by
integrating data with high spatial resolution but low temporal
resolution (e.g., Landsat imagery, called fine imagery later) and
data with high temporal resolution but low spatial resolution
(e.g., MODIS imagery, called coarse imagery later). The spatial
and temporal adaptive reflectance fusion model (STARFM) was
the first method to fuse multisensor data based on spatiotemporal
fusion (STF) idea [13]. Since then, more than 100 STF methods
have been developed based on different assumptions [21], ex-
amples including: ESTARFM [22] as a spatial-weight-function-
based method, MMT [23] and STDFA [24] as unmixing-based
methods, Fit-FC [25] and FIRST [26] as regression-based meth-
ods, SPSTFM [27] and ELM [28] as machine-learning-based
methods, and FSDAF [29] and Agri-Fuse [30] as hybrid methods
integrating two or more aforementioned categories. In addition
to these STF-based multisensor methods, some hybrid methods
integrating “Fusing” strategy and other strategies have also been

proposed. One notable example is the satellite data integra-
tion (STAIR) [31], a hybrid automated method that integrated
time-series “Filling” and “Fusing” strategy into a two-step
mode to generate high-frequency, high-spatial resolution, and
high-quality reflectance time series. Although the multisen-
sor methods show considerable advantages in combining the
strengths of data from different sensors, they rely on some rigid
assumptions, such as that all coarse pixels are considered pure
and that temporal changes within the same land cover class
are consistent across different resolutions. These assumptions
do not hold in real-world scenarios, especially when dealing
with heterogeneous landscapes and complex land cover changes.
Moreover, they set parameters empirically, leaving room for
further improvement in their fusion accuracy.

Recent advances in deep learning (DL) models have sig-
nificantly improved remote sensing data reconstruction ca-
pacity [32], [33], [34]. The abilities of DL-based models to
automatically extract high-dimensional features and establish
nonlinear relationships have led to remarkable improvements
over traditional models [35]. These DL-based approaches often
incorporate ancillary information, such as synthetic aperture
radar (SAR) signals [36], [37], [38] to reconstruct multispectral
reflectance images. Most of these works have focused on better
exploitation of the complex relationships between ancillary data
and multispectral reflectance through the use of different net-
work architectures, including multibranch networks [39], [40],
[41]; attention-based networks [42], [43]; generative adversarial
networks [44], [45]; transformer encoder–decoder-based net-
works [46], [47]; and hybrid networks integrating two or more
architectures [48], [49], [50]. However, to our knowledge, only a
few studies [46], [47], [51], [52], [53] have focused on exploring
the distinct long-term temporal trends inherent in reflectance
time series to reconstruct reflectance time series. Moreover, the
introduced ancillary data, such as SAR data, may not always be
beneficial due to the instability and fluctuating noise from its
active coherent imaging systems, which could degrade visual
appearance [54].

Compared to multispectral reflectance time series, NDVI
time series, derived from near-infrared (NIR) and red (R) re-
flectance, are the most common representative indicators of
leaf chlorophyll content and vegetation cover, and they are
closely related to ecological issues under different scenarios,
e.g., drought conditions and greenness exposure [55], [56],
which could help to understand the ecosystem response to
climate change. Therefore, the reconstructions of NDVI time
series have received more attention. In addition, given the strong
correlation between NDVI values and reflectance values in cer-
tain spectral bands, such as green, red, and near infrared bands
[57], this shed light on the possibility of utilizing high-quality
NDVI time series as a complementary data to help reconstruct
multispectral reflectance time series. The principles of existing
NDVI reconstruction methods are mainly based on the periodical
nature of the vegetation growth state, and the consistent impacts
of noise factors, such as clouds and shadows, which typically
reduce NDVI values. Thus, NDVI time series can be effectively
denoised and smoothed more directly by applying an upper
envelope smoothing process with various temporal filters. These
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temporal filters, such as Harmonic (Fourier) models [58], [59],
[60], [61] and Savitzky–Golay (SG) filter [62], [63], have been
widely used to obtain a continuous time series NDVI derived
by single sensor. “Fusing” strategies such as the linear mixing
growth model and singular value decomposition have been
employed to facilitate the blending of NDVI time series from
multiple sensors [64], [65]. Chen et al. [66] further proposed an
innovative approach by combining the “Fusing” and “Fitting”
strategies, synthesizing 30-m cloud-free NDVI time series from
MODIS and Landsat observations, and then, filtering with a
weighted SG filter. Beyond these traditional methods, DL-based
methods have also been employed in the NDVI reconstruction
recently, most introducing complementary data (e.g., meteo-
rological and topographic data, SAR) to fill NDVI gaps [67],
[68], [69], while the complexity of SAR and other ancillary data
remains a challenge to exploring a stable relationship between
NDVI and these ancillary data. Overall, an unclear and complex
relationship between ancillary data and multispectral reflectance
could increase the difficulties of constructing stable features in
models, which requires the exploration of a stable and reason-
able ancillary data to guide the reconstruction of multispectral
reflectance time series.

In light of the aforementioned review, we proposed a novel
NDVI guided bidirectional recurrent reconstruction model for
multispectral reflectance time series (called NB-Re3) to re-
construct high-quality multispectral reflectance time series by
taking full advantage of high-quality NDVI time series. The
new method is designed to capture the temporal trend of re-
flectance itself and the potential relationship between reflectance
and NDVI time series. In summary, we expect the NB-Re3

can address the following challenges in previous reconstruction
methods for high-quality multispectral reflectance time series:

1) the relationship between existing introduced ancillary data
and multispectral reflectance remains unclear and com-
plex;

2) most of the existing reconstruction methods do not fo-
cus on the long-term temporal dependence of reflectance
itself, as well as the dynamic relationship between multi-
spectral reflectance and ancillary data.

In the following sections, we first introduce the NB-Re3, and
then, apply it to two commonly used datasets, Landsat-8 and
Sentinel-2, to investigate its stability and validity in complex
missing scenarios.

II. METHODOLOGY

To reconstruct high-quality multispectral reflectance time se-
ries, our approach attempted to establish a stable relationship
between multispectral reflectance and NDVI time series, the
latter providing a continuous pattern of temporal variation.
Specifically, it consisted of three main modules (see Fig. 1):
a cloud and shadow identification module based on the au-
tomatic time series analysis (ATSA) method [70], an NDVI
reconstruction module based on the state-of-the-art gap filling
and Savitzky–Golay filtering method (GF-SG) [66], which gen-
erated cloud-free NDVI time series, and a DL-based module
for reconstructing high-quality multispectral reflectance time

Fig. 1. Framework of the NB-Re3 with three modules using Landsat-8 data
as an example.

Fig. 2. Flowchart of the cloud-shadow detection using ATSA.

series, in which temporal convolution network (TCN) was used
to extract high-level temporal trend features from NDVI time
series, and bidirectional long short-term memory (Bi-LSTM)
was used to build the complex relationship between NDVI and
reflectance time series and the temporal trend of reflectance
itself.

A. Cloud and Shadow Detection Module

For each image in the input multispectral reflectance image
time series, pixels contaminated by clouds and cloud shadows
must first be detected as missing values for subsequent recon-
struction. To reduce cloud and shadow detection errors (e.g.,
misdetection of bright objects as cloud, omission of thin clouds,
and failure to detect cloud shadows) in existing methods due to
the imperfections of cloud detection algorithm [71], [72], [73],
the ATSA method was used to automatically detect clouds and
cloud shadows in this study (see Fig. 2). ATSA was specifically
designed to detect clouds and cloud shadows in multispectral
reflectance image time series based on the spectral character-
istics of the clouds, as well as continuity feature of the land
surface dynamics represented by the multispectral reflectance
time series. The method first calculated the haze optimal trans-
formation (HOT) index [74] from each multispectral reflectance
image. This HOT index then served as input to the unsuper-
vised classifier to identify clouds over land surfaces and water
bodies. A thresholding method was further used to eliminate
the misdetection of bright objects and missing thin clouds.
In addition, ATSA calculated potential cloud shadows from
the geometric relationship between clouds and cloud shadows
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Fig. 3. Flowchart of the NDVI reconstruction using GF-SG.

using information about the sun’s position [75]. The potential
cloud shadows were further refined by time-series analysis of
a shadow index, which was constructed based on the property
that shadowed pixels are much darker than surrounding clear
pixels in certain bands [73]. Thus, we adopted ATSA based on
its excellent performance on Landsat-8 images and Sentinel-2
time-series images [70].

B. NDVI Reconstruction Module

GF-SG served as an effective way to generate cloud-free
NDVI time series with both high spatial and temporal resolu-
tions. It combined the advantages of coarse imagery and fine
imagery of different sensors (see Fig. 3), and further applied a
weighted SG filter to reduce the residual noise in the synthesized
NDVI time series.

To reconstruct cloud-free NDVI time series, GF-SG involved
three key steps. First, the coarse NDVI time series calculated
from coarse images were filled by linear interpolation, and then,
smoothed by the SG filter to remove as much cloud contam-
ination as possible. Bicubic interpolation was used to further
resample the coarse NDVI time series to fine resolution with
fewer artifacts. Second, a linear transfer function was used to
correct the shape and amplitude mismatch between the coarse
and fine NDVI time series, which was mainly due to the mixed
pixel effect and different spectral response functions between
two sensors. The resampled and corrected NDVI time series
were then used to fill missing values in the fine resolution NDVI
time series. Finally, the residual noise was further reduced using
a weighted SG filter.

We adopted GF-SG here because of its significant advan-
tages. First, it improves the reconstruction quality of long-term
continuous missing values in fine-resolution NDVI time series,
whereas the other methods are less reliable for reconstructing
these long data gaps. Second, the performance of GF-SG is less
affected by the residual noise caused by cloud detection errors in
the fine resolution images, which is due to the incorporation of
the weighted SG filter. Third, GF-SG is simple and can be imple-
mented on the computing platform Google Earth engine (GEE),
which is particularly important for the practical applications at
a large spatial scale.

C. Reflectance Reconstruction Module

We developed two complementary modules, TCN and Bi-
LSTM, to achieve two specific objectives (see Fig. 4). The

Fig. 4. Two complementary modules for reconstructing high-quality re-
flectance time series, taking the reconstruction of image at t6 (Ref6 in red
presents the missing value) as an example. (a) TCN schematic diagram based on
the 1-D fully convolutional network architecture. (b) Framework of Bi-LSTM in
both forward and backward directions. (c) Detailed architecture of the forward
direction in Bi-LSTM (the solid lines represent the paths through the input
variables, and the dashed lines represent the paths not through the input vari-
ables. The red lines represent the “complement” operation, which preserves the
values of the original cloud-free observations or the predictions based on the
cloud-shadow flag).

TCN was tailored to extract high-level temporal trend fea-
tures from NDVI time series across different temporal scales,
while the Bi-LSTM was designed to capture the temporal
trend of reflectance time series and to establish a robust dy-
namic relationship between NDVI and cloud-free reflectance
values.

A TCN module was introduced to effectively extract temporal
features and long-term dependencies from the reconstructed
NDVI time series [76]. This module was structured based on a
three-layer 1-D fully convolutional network framework, which
incorporated dilated convolutions and residual connections [see
Fig. 4(a)]. The first convolutional layer targeted capturing the
local temporal trends of the reconstructed cloud-free NDVI time
series, and as the number of layers l increased, the network
gradually incorporated longer time series to learn the longer
term dependencies of NDVI time series. In each layer, the dilated
convolution employed a dilation factor d to effectively expand
the receptive field of the network by skipping d steps in the
input time series. This structure not only considered the temporal
neighborhood information, but also broadened the scope of
temporal features that can be captured. The residual connection
was used to interlink two layers, incorporating temporal features
of different layers, which helps to effectively learn long-term de-
pendencies and improve network stabilization [77]. Specifically,
each layer applied a filter f(i) : {i = −k−1

2 , . . . , 0, . . . , k−1
2 }

with the dilation factor d and the kernel size of k to the
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time-series input as follows:

st =

k−1
2∑

i=− k−1
2

f (i) · NDVIt+d·i

O
(
st
)
= Activation

(
st + F (

st
))

(1)

where O(st) represents the output feature. st is the dilated
convolution operation on the NDV I value at time step t. F(st)
represents a 1-D convolutional operation on st with the kernel
size of k set to 1, which was designed to unify the channel
numbers of input and output. Activation(∗) represents activation
function from the combination of residual connections, st and
F(st). Overall, our TCN module aimed to learn NDVI tem-
poral features at different scales, from local temporal trends to
long-term temporal trends.

The Bi-LSTM network was conducted to establish a robust
long-term temporal relationship between NDVI and multispec-
tral reflectance time series, as well as to capture the interre-
lations among the multispectral reflectance bands themselves.
The network learned the NDVI-reflectance long-term temporal
relationship in both forward and backward directions, effectively
mitigating gradient vanishing, explosion problems and captur-
ing temporal trend at different temporal scales when training
long-term time series [78]. Taking the forward direction as
an example, a recurrent imputation module consisted of the
following components [see Fig. 4(c)]: an input layer; an LSTM
recurrent layer that obtained the hidden-state features; and a
prediction layer that transformed the hidden-state features to
the prediction values at next time step through a fully connected
layer.

The input layer provided the necessary input data for the
following hidden layer. It consisted of three key input variables at

time step t, NDVI temporal features ˜NDVIt from TCN, original
reflectance value Reft and binary cloud-shadow flag M t (with
the cloud-free observations labeled as value 0 and the missing
observations as value 1) Due to the missing values in the original
reflectance time series, it would result in the LSTM recurrent
layer not being able to back-propagate. Instead, Reftc calculated
from the following equation was input (“complement” operation
in Fig. 4), where Reft with the cloud-shadow flag M t equal to
1 (missing) was replaced by the predicted reflectance value.

Reftc = R̂ef
t ×M t + Reft × (

1−M t
)

(2)

where R̂ef
t

presents the prediction reflectance value at time step
t by the LSTM model from the previous time step. Reft presents
the original reflectance at time step t, if it is cloud free.

The LSTM recurrent layer aimed to build the NDVI-
reflectance dynamic relationship and update the hidden-state

features ht from Reftc and ˜NDVI
t

as follows [79]:

ht = σ
(
Wh · ht−1 + Uh · xt + bh

)
(3)

where σ is the sigmoid function. Wh and Uh are the learnable
weight parameters, and bh is the learnable bias parameters. xt

is the concatenation of input variables Reftc and corresponding
˜NDVIt.

Considering that the missing patterns caused by random
clouds and cloud shadows in the time series are irregular, a
temporal decay factor γt [80], [81] was introduced based on the
temporal decay interval δt to consider the temporal dependence
that the closer cloud-free observation have a higher contribution
to ht as follows:

δt =

{
doyt − do yt−1 +M t−1 × δt−1, if t > 1
0, if t = 0

γt = exp
{−max

(
0,Wγ · δt + bγ

)}
(4)

where δt is defined as the time intervals at time step t between the
last clear observation and the corresponding date doyt. M t−1 is
the cloud-shadow flag at previous time step. bγ is the learnable
bias parameters along with the learnable weight parameters Wγ .
Finally, the modified recurrent network was updated from (3) as
follows:

ht = σ
(
Wh · [ht−1 × γt

]
+ Uh · xt + bh

)
. (5)

Next, the LSTM recurrent layer transformed the hidden-state

featuresht to the prediction values R̂ef
t+1

at next time step t+ 1
through a fully connected layer as follows:

R̂ef
t+1

= Ŵ · ht + b̂ (6)

where b̂ is the learnable bias parameters along with the learnable
weight parameters Ŵ obtained by the training process.

The process described previously is to predict individual spec-
tral band only using its temporal self-dependence. In fact, when
our task is to predict the reflectance of multiple bands, spectral
autocorrelation between multiple spectral bands is valuable for
improving prediction accuracy [25], [26]. Accordingly, in the
prediction layer, the spectral autocorrelation between multiple
bands were then considered to construct more robust predictions.
These spectral autocorrelations were estimated using a linear

regression block in Fig. 4 after the reflectance R̂ef
t+1

was
predicted.

R̂ef
t+1

f,i =

n∑
k=1

(
Wf,i∗R̂ef

t+1

f,k + bf,i

)
(7)

where R̂ef
t+1

f,i is the regressed ith band prediction in the forward

direction at the time step t+ 1. Here, R̂ef
t+1

f,k represents the
reflectance value predicted for each spectral band according
to (6); n is the band number; and bf,i is the learnable bias
parameters along with the learnable weight parameters Wf,i.

Moreover, recognizing the potential instability of unidirec-
tional prediction, we used a learnable weighting combination of
the predictions [derived from (7)] of both forward and backward
directions in the prediction layer

R̂ef
t+1

w = W t+1
f · R̂ef

t+1

f +
(
1−W t+1

f

)
· R̂ef

t+1

b (8)

where R̂ef
t+1

w is the weighted prediction at the time step t+ 1.

R̂ef
t+1

f and R̂ef
t+1

b are final predictions of all bands obtained
from both forward and backward directions, respectively. W t+1

f
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represents the learnable weight of the forward directions learned
by network itself.

The loss function Lf in one direction (i.e., forward direction)
was estimated from the mean absolute error (MAE) between the

predicted reflectance values R̂ef
t

f and the corresponding original
cloud-free reflectance values Reft.

Lf =
1

T

T∑
t = 1

((
1−M t

)× ∣∣∣R̂ef
t

f − Reft
∣∣∣) (9)

where T is the length of the time series. At the same time, same
operation was performed to calculate the loss Lb in the back-
ward direction. Furthermore, the weighted prediction combined
forward and backward prediction was also considered in loss
calculation. Thus, we used a weighted loss, Lw, to calculate the
MAE between cloud-free reflectance values Reft and weighted

prediction R̂ef
t

w obtained from (8). The final loss function was
obtained by adding the forward loss Lf , the backward loss Lb,
and the weighted loss Lw as follows:

Lw =
1

T

T∑
t = 1

((
1−M t

)× ∣∣∣R̂ef
t

w − Reft
∣∣∣)

Lfinal = Lf + Lb + Lw. (10)

D. Model Implementation

The proposed model was trained using an adaptive moment
estimation (Adam) optimizer [82]. We set a batch size of 256
and a learning rate of 0.001 to optimally determine the network
weights, aiming for the global minimum of the loss function.
The training process spanned ten epochs, after which the training
loss stabilized and stopped decreasing. For the TCN, the kernel
size was configured constant to 3, and the corresponding dilated
convolution was set to (1, 2, 4) over (32, 64, 128) units. The
hidden unit of the LSTM was set to 96. These methods were
implemented using the PyTorch DL package and trained on an
Intel Core i9-10850K CPU at 3.60 GHz, equipped with 56 GB
of RAM and an NVIDIA GeForce RTX 3070 GPU with 8 GB
of memory.

NB-Re3 is an end-to-end model with self-training function. It
means that in practice, users only need to input cloud and shadow
data generated by the ATSA method, high-quality NDVI time
series generated by GF-SG and original multispectral reflectance
time series, and then, obtain the reconstructed multispectral
reflectance time-series images. In detail, the model was lo-
cally trained using the training pixels obtained by a uniformly
distributed spatial sampling strategy (see Fig. 5), the pixels
selected as the training pixels were input to NB-Re3 to obtain
the learnable parameters of the model using the cloud-free ob-
servations of these pixels to calculate loss function, and then, the
well-trained NB-Re3 was applied to predict the remaining pixels.
Here, we adopted a uniformly distributed spatial sampling strat-
egy instead of using all pixels for training, based on the fact that
both clouds and land cover are locally spatially continuous, and
the sampled pixels centered in the sampling window (e.g., 3 ×
3) are somewhat representative of the surrounding pixels. Such

Fig. 5. Uniform spatial sampling strategy. The red dotted box represents the
sampling window (the window size was set to 3 as an example). The stars in the
center of the box represent the sampled pixels, which were treated as training
samples and fed into the NB-Re3 network.

Fig. 6. Locations and observation conditions of testing areas. (a) CIA, the
southern New South Wales, Australia. (b) Rikaze crop land (RKZ), the southern
Qinghai-Tibetan plateau, China. All images use NIR–Red–Green as RGB. The
top right plot indicates the proportional of images in the time series with different
cloud coverages, and the bottom right plot indicates the percentage of pixels with
different valid observation ratios in time series.

a training process cannot only significantly reduce the training
time, but also cover almost all possible conditions.

III. DATA PREPARATION AND EXPERIMENTS

A. Testing Areas

We validated the NB-Re3 at two distinct areas that represent
homogeneous and heterogeneous landscape, respectively, each
with different levels of cloud contamination (see Fig. 6). The first
site is Colleambally Irrigation Area (hereafter called as “CIA”)
(145.50°E, 33.67°S), located in the southern part of New South
Wales, Australia. The area is dominated by large, homogeneous
paddy fields, cultivated from October one year to May the next,
with significant temporal variations as the crop grows. Based on
the statistics from the satellite images, about half of time series
in CIA were cloud-free and only about one-fifth were heavily
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TABLE I
IMAGE INFORMATION OF DIFFERENT DATASETS AT THE TWO SITES

contaminated with cloud coverage over 80%. The second site
is near Rikaze city (hereafter called as “RKZ”) (89.05°E,
29.20°N), located in southern Qinghai-Tibetan plateau, China.
It presents a heterogeneous mix of natural and agricultural land-
scapes, such as alpine shrub meadow, highland barley (grown
from March to August) and rapeseed (grown from August of
the current year to May of the following year). RKZ had worse
observational conditions than CIA (see Fig. 6), only about 20%
images in the time series were cloud-free due to the unique geo-
morphic and climatic features of the plateau, posing significant
challenges for data reconstruction.

B. Datasets

To validate the effectiveness and robustness of NB-Re3 across
sensors with different spatiotemporal resolutions, we collected
Landsat-8 and Sentinel-2 SR product from the GEE platform,
respectively. All bands in Sentinel-2 were resampled to 10 m.
The specific details of these images are summarized in Table I.
In addition, MODIS SR product (MODIS Terra MOD09Q1 col-
lection 6) collected from the GEE platform was used as the input
of GF-SG. Since the time intervals of the generated NDVI time
series do not coincide with those of the reflectance time series,
we applied temporal linear interpolation to the reconstructed
NDVI time series to make them coincidence.

C. Performance Comparison of Benchmark Methods

The proposed NB-Re3 was compared with four typical ap-
proaches, MNSPI [16], HANTS [61], STAIR [31], and U-
TILISE [46], as representatives of “Filling,” “Fitting,” “Fusing,”
and “DL-based” strategies, respectively. MNSPI is a typical
filling approach based on the assumption that similar pixels in
the spatial neighborhood have similar temporal variation pat-
terns and predicts the missing data using weighted similar pixel
values. HANTS is an improved fitting method based on the fast
Fourier transform. It decomposes the time series into sine and
cosine curves of different phases, frequencies, and amplitudes.
These curves are then selectively integrated to remove cloud
contamination. STAIR is an automatic fusing method based on
the assumption that SR changes linearly in the short term, and it
corrects the temporal change according to different land covers
types. U-TILISE is a state-of-the-art DL-based approach that
employs U-Net architecture [83] with a convolutional spatial
encoder and an attention-based temporal encoder to capture the
spatial and temporal dependencies, and a convolutional decoder
to decode the high-level features back into the reconstructed time
series. Detailed descriptions of these four methods are available
in their original studies.

Fig. 7. Manual cloud simulation schematic for our experiments.

D. Experiments

Experiment I was designed as the reconstruction of random
missing reflectance time series. To evaluate the performance of
the models in scenarios with different levels of random missing
data (the percentage of cloud pixels in the time-series images
equal to 40%, 60%, and 80%, respectively), we performed cloud
simulation process. Specifically, the missing percentage in the
original time-series images was first calculated.

MP =

∑T
t=1

∑X
i=1

∑Y
j=1 M

t
i,j

T∗X∗Y × 100% (11)

where MP is the ratio of the number of missing pixels to the total
number of pixels. M t

i,j represents the binary cloud-shadow flag
at the spatial location (i, j) and time step t (with the cloud-free
observations labeled as value 0 and the missing observations as
value 1). T is the length of time series. X and Y are the size of
one single image. If the original MP was less than our scenarios
(40%, 60%, and 80%), cloud pixels were randomly added to each
image by Perlin Noise and Fractal Brownian Motion approach
[84], [85] until MP, including the original missing pixels and the
simulated missing pixels, reached the scenarios [see Fig. 7(a)–
(c)]. The simulated cloud pixels serve two purposes, first as
missing pixels to simulate our scenarios in the training process,
and second as ground truth for performance validation.

The continuous missing cases are common in heavily clouded
areas and also pose a challenge to the reconstruction process.
Therefore, we designed Experiment II on both Landsat-8 and
Sentinel-2 datasets that specifically simulated a scenario of
continuous missing data during the growing season. These con-
tinuous missing gaps were simulated by setting all images to be
missing during a certain period, such as the growing seasons (for
CIA, from January–February and April–May in 2020, and for
RKZ, from April–May and July–August in 2022) [see Fig. 7(d)],
while keeping the original missing pixels for the remaining
images.

To evaluate the effects of ancillary NDVI and improved net-
work blocks on the reflectance time-series reconstruction, we
conducted an ablation study (Experiment III) in four scenarios.
In the first scenario, the NB-Re3 was set as the baseline. The
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Fig. 8. Diagram illustrates the method comparison using the APA diagram.
Each point represents a comparison method; the RMSE value is represented by
the radial distance; the CC value is indicated by the color of the points; and
the Edge index is proportional to the azimuth angle α that ranges from 180° to
0°. A point closer to the center of the circle with a redder color indicates better
performance of the method.

second scenario, denoted as “baseline-no-TCN,” removed the
NDVI high-level features extraction block (TCN) after input
NDVI time series. In the third scenario, “baseline-no-NDVI,” we
only input reflectance time series and considered multispectral
correlations, excluding NDVI data. The final scenario was de-
noted as “baseline-no-regression,” in which the linear regression
block across multispectral bands was removed. Specifically, we
selected one scenario from Experiment I (random missing 60%).

D. Evaluation Indices

Two typical spectral accuracy indices and one spatial accu-
racy index were used to evaluate the performance of different
methods using the simulated clouds but actual cloud-free pixels.
The first spectral index was the root-mean-square-error (RMSE)
between the predicted reflectance value and the reference re-
flectance value for each simulated cloudy pixel in the time series,
which shows the average prediction errors of the contaminated
pixels. The second spectral index was the linear correlation
coefficient (CC) between the predicted reflectance time series
and the reference reflectance time series, which indicates the
trend similarity between predicted and the reference reflectance
time series. The spatial index was a normalized edge index
(Edge), which is calculated by Robert’s edge and defined as
follows:

E(i,j) =
∣∣D(i,j) −D(i+1,j+1)

∣∣ +
∣∣D(i,j+1) −D(i+1,j)

∣∣
Edge(i,j) =

Epredicted − Ereference

Epredicted + Ereference
(12)

where E(i,j) represents the Robert’s edge of the pixel at the
ith row and jth column, and D(i,j) represents the correspond-
ing reflectance value. This index mainly describes the edge
information (e.g., boundaries of land parcels). Negative values

Fig. 9. Quantitative accuracies from both spectral and spatial perspectives
(RMSE and Edge) on the reconstructed images by different methods at both
sites for different random missing scenarios. RMSE and Edge values are the
mean values of all simulated cloudy pixels.

indicate oversmoothed edges, while positive values indicate
oversharpened edges.

In addition, an all-round performance assessment (APA) di-
agram (see Fig. 8) was employed [86] for a better visual cross
comparison among different methods, with various evaluation
indices into a single Taylor diagram [87].

IV. RESULTS

A. Reconstruction of Random Missing Scenarios

Fig. 9 shows the quantitative assessments in both spectral and
spatial dimensions. Despite a general trend of decreasing overall
accuracy with increasing cloud coverage, the NB-Re3 performs
most robustly and excellently in different random missing sce-
narios (40%/60%/80%) and datasets (Landsat-8 and Sentinel-2)
at two different challenge sites (CIA and RKZ), both in terms
of RMSE and Edge metrics. As another DL-based approach, U-
TILISE achieves the averaged second-best score on the RMSE
metric, but the worst score on the Edge metric. The performance
of MNSPI, HANTS, and STAIR are less satisfactory than the
DL-based methods, especially STAIR, due to their inability to
use high-quality NDVI data and inherent flaws in the design of
the methods. More importantly, all methods generally perform
better on Sentinel datasets than on Landsat datasets, mainly due
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Fig. 10. Spatial patterns of the reconstructed Landsat-8 images by different
comparison methods for 60% random missing scenario at two sites. The second
row presents the subimages zoomed from the first row. All images are displayed
in false-color composites (NIR, red, and green as RGB). The third row shows the
gray-scaled cumulative absolute error for reflectance bands in the subimages.

to the fact that Sentinel datasets has a higher spatiotemporal
resolution, which increases the input information.

Fig. 10 shows the spatial patterns by different methods at
two testing sites, using a set of Landsat-8 images reconstructed
under the scenarios with 60% random missing images. Com-
pared to other benchmarks, NB-Re3 accurately captures spatial
details, avoiding the “the salt and pepper noise” or “blocking
effect.” This superiority is attributed to the continuous spatial
detail of the NDVI time series reconstructed with GF-SG and a
specifically designed framework based on TCN and Bi-LSTM.
However, other methods without high-quality NDVI data show
inferior visual performance. For MNSPI, the selection of cloud-
free neighboring pixels based on spectral similarity can intro-
duce unexpected small patches. For HANTS, the fitting method
struggles to account for all possible combinations of temporal
trend patterns, resulting in oversmoothed spatial patterns at
the homogeneous CIA site and degraded spatial consistency at
the heterogeneous RKZ site. Although STAIR uses additional
temporal information from MODIS, its low spatial resolution
poses a challenge for spectral unmixing in highly heterogeneous
regions, resulting in spatial inconsistencies. In contrast to NB-
Re3, U-TILISE does not use NDVI as an auxiliary guide for
model training, and thus, exhibits significant discontinuity in
local spatial patterns. In summary, the images reconstructed by
the benchmark method show spatial discontinuities or smooth
blurring of spatial details in the visual representation.

Fig. 11 illustrates examples of the spatial patterns of a re-
constructed Sentinel-2 image at two testing sites, employing

Fig. 11. Spatial patterns of the reconstructed Sentinel-2 images by different
comparison methods for 60% random missing scenario at two sites. The second
row presents the subimages zoomed from the first row. All images are displayed
in false-color composites (NIR, red, and green as RGB). The third row shows the
gray-scaled cumulative absolute error for reflectance bands in the subimages.

different methods under a scenario with 60% random missing
images. Similar to the visual performance on Landsat-8 datasets,
NB-Re3 demonstrates continuous spatial details. It is noteworthy
that as the spatial resolution increases from 30 to 10 m, Sentinel-
2 images reveal more spatially local details than Landsat-8.
This enhancement in ground complexity contributes to unsta-
ble reconstruction accuracy for traditional benchmarks such as
MNSPI, HANTS, and STAIR. Among them, STAIR performs
worst, because the increased coarse-fine spatial resolution ratio
leads to extremely instability in pixels unmixing and residual
distribution. Likewise, U-TILISE exhibits spatial discontinuity
and loss of spatial details at the two testing sites without NDVI
for guiding model parameters training.

B. Reconstruction of Continuous Missing Scenario

The averaged accuracies at two testing sites for simulated
continuous missing scenarios are further quantified and shown
in APA diagrams, respectively (see Fig. 12). Similar to the
performance of random missing scenarios in Experiment I, the
reflectance images reconstructed by NB-Re3 outperform those
of the other four methods in band-averaged accuracy. Especially
in the heterogeneous region such as RKZ, the denser time series
available in the Sentinel-2 datasets contributes to slightly higher
accuracy for all methods on the Sentinel-2 datasets compared to
the Landsat-8 dataset. Compared with NB-Re3, the performance
of other benchmarks is more sensitive to long-term missing
gaps and varying degrees of landscape heterogeneity, ultimately
limiting their reconstruction accuracy.
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Fig. 12. APA diagrams displaying the performance of the five comparison
methods for the continuous missing scenarios in different datasets at two sites.
Results were averaged over all testing dates.

Fig. 13. Spatial patterns of the reconstructed Landsat-8 images by different
comparison methods for continuous missing scenario at two sites. The second
row presents the subimages zoomed from the first row. All images are displayed
in false-color composites (NIR, red, and green as RGB). The third row shows the
gray-scaled cumulative absolute error for reflectance bands in the subimages.

In the challenge scenario with continuous missing of time-
series images, the NB-Re3 consistently demonstrates superior
visual performance, consistent with the quantitative perfor-
mance (see Figs. 13 and 14). Similar to the Experiment I, images
reconstructed by other benchmarks exhibit discontinuous spatial
details and show great disadvantages. Long-term missing pattern
is the main reason for the lower quality visual performance, espe-
cially in the region with fragment and heterogeneous landscape.
For MNSPI, the limited observations lead to the increasing
difficulty in finding spectrally similar neighboring pixels; for

Fig. 14. Spatial patterns of the reconstructed Sentinel-2 images by different
comparison methods for continuous missing scenario at two sites. The second
row presents the subimages zoomed from the first row. All images are displayed
in false-color composites (NIR, red, and green as RGB). The third row shows the
gray-scaled cumulative absolute error for reflectance bands in the subimages.

TABLE II
ABLATION STUDY OF PROPOSED MODEL

HANTS, it leads to the failure to capture the true temporal trends
of the time series using only the early and late observations. The
long missing observations also lead to the problem of linear
interpolation for each fusion date in STAIR, and to the difficulty
of modeling the temporal dependence of the reflectance time
series in U-TILISE. Overall, benchmark methods present poorer
performances with continuous missing scenario compared to
those with random missing scenarios.

C. Assessment of Ablation Study

In the ablation study, “baseline” achieves the best recon-
struction accuracy, while “baseline-no-NDVI” has the worst
performance at both sites, in terms of both spectral and spatial
accuracy (see Table II). This emphasizes the critical role of
high-quality NDVI as an auxiliary input that provides valuable
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insights into vegetation dynamics, especially when correspond-
ing reflectance observations are sparse. Compared to “baseline-
no-NDV,” adding NDVI, and then, using either the regression
module or the TCN module can improve the performance of the
model to some extent, with the regression module outperforming
the TCN module in homogeneous regions and the TCN module
being more effective in heterogeneous regions. The best results
can only be achieved by combining the TCN and regression
modules to create a “baseline.” That is, the regression and TCN
modules have complementary strengths.

V. DISCUSSION

A. Superiority of the NB-Re3 Model

The proposed NB-Re3 model aims to overcome the limited
cloud-free observations by incorporating ancillary NDVI time
series into the reflectance reconstruction. Compared to existing
“Filling,” “Fitting,” and “Fusing” strategies, NB-Re3 signif-
icantly outperformed these traditional methods in its ability
to learn high-dimensional features and construct the NDVI-
reflectance dynamic relationship and spectral autocorrelation
between multiple spectral bands. The end-to-end framework also
allows the network to learn the functional relationship directly
from the data, without the assumptions made in traditional
strategies. Moreover, a better NDVI auxiliary information and
a suitable network structure could be the reason why NB-Re3

outperformed other “DL-based” methods.
NB-Re3 has two significant superiorities based on its design

principle. First, it integrates high-quality NDVI time series to
support the reconstruction of reflectance time series. This is
necessary because relying solely on incomplete reflectance time
series makes it difficult to accurately capture temporal trends,
especially when the available cloud-free observations are sparse
and unevenly distributed over the time series. High-quality
NDVI time series provide additional information during cloudy
periods when reflectance observations are not available. More
importantly, high-quality NDVI time series are easier to recon-
struct with the sophisticated methods. This is because the NDVI
time series has an obvious seasonal periodicity and can thus
be modeled more directly with higher reconstruction accuracy,
regardless of whether single-sensor or multisensor methods are
used [59], [64], [66]. Given the value of high-quality NDVI
time series, the TCN module is applied to capture the deep
temporal features of NDVI at different time scales. Then, the
Bi-LSTM is used to construct the dynamic relationship between
NDVI and reflectance time series. Overall, NB-Re3 focuses
on learning the temporal dependence within reflectance time
series and the robust relationships between the reflectance and
high-quality NDVI time series, thereby enhancing the guidance
for reflectance reconstruction. The results of Experiment III
highlight the critical role of NDVI as an auxiliary input that,
together with the TCN module, provides valuable insights into
vegetation dynamics.

Second, NB-Re3 takes full advantage of the spectral autocor-
relation of multiple spectral bands. It is very often the case that
spectral values in multiple bands change simultaneously, and
in a certain pattern, rather than independently. Therefore, using

Fig. 15. Spatial patterns of the reconstructed Sentinel-2 images at CIA site in
“NB-Re3_multi” and “NB-Re3_single” scenario. Images below each image are
the zoom-in subimages. All images are false-color images (NIR, red, and green
as RGB).

multiple bands in a regression block rather than a single band can
provide more information, leading to more accurate prediction.
Another major benefit of using multiple bands is that the method
is less sensitive to the quality of the input data [26]. With
Bi-LSTM, we obtain reflectance predictions for each band, but
the quality of the reflectance predicted by Bi-LSTM is different
for each spectral band, i.e., differences in prediction accuracy.
This is because the correlation between NDVI and reflectance
is not the same for each band, and the original reflectance is
affected differently by noise (e.g., haze and thin clouds) across
bands (typically the longer wavelength shortwave infrared bands
are less affected). By building the multiple regression model,
reflectance predictions by Bi-LSTM for higher accuracy bands
can be used to improve reflectance predictions for lower ac-
curacy bands. To demonstrate this advantage more clearly, we
repeated the randomly missing 60% scenario in Experiment I
using multiple bands (referred to “NB-Re3_multi”) versus each
single band (referred to “NB-Re3_single”) as input respectively
(see Fig. 15). It is evident that using multiple bands can capture
more complex temporal change patterns and spatial details than
using each single band.

B. Robustness of NB-Re3 Against False Cloud Masks

Automatic cloud and cloud shadow detection algorithms offer
an effective approach for generating cloud mask data. However,
these methods still suffer from omission and commission errors,
where some clouds may be missed or certain bright land surface
objects may be misidentified as clouds. These unavoidable errors
may further affect the performance of NB-Re3. To evaluate the
sensitivity of NB-Re3 to cloud mask errors in real-world applica-
tions, we performed sensitivity experiments using the Sentinel-2
dataset from the CIA site, with the same parameter settings as
in Experiment I, but with the cloud mask that contains omission
and commission errors. The results show that the NB-Re3 recon-
structed images show very similar spatial patterns to the ground
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Fig. 16. Spatial patterns of the reconstructed Sentinel-2 images at CIA site
using different mask flag data as input (“NB-Re3_True” and “NB-Re3_ ATSA”).
White polygons represent the accurate true cloud flag, red dotted polygons
represent the generated cloud mask by the ASTA algorithm, omission error, and
commission error are marked, respectively. All images are false-color images
(NIR, red, and green as RGB).

truth, whether using the manually generated accurate cloud
masks (called “NB-Re3_True”) or the error-prone cloud masks
generated by the ASTA algorithm (called “NB-Re3_ATSA”) (see
Fig. 16). This suggests that NB-Re3 can mitigate the impact
of inaccurate cloud masks on prediction accuracy to a greater
extent.

C. Impact of NDVI Reconstruction Quality on Reconstruction

Although high-quality NDVI time series are easier to re-
construct because of their apparent seasonal periodicity, the
accuracy of NDVI time series reconstructed by different methods
varies in different scenarios [88], especially in areas of heavy
cloud coverage. To investigate the sensitivity of NB-Re3 to
NDVI time-series reconstruction quality, we repeated Experi-
ment I using the CIA site Sentinel-2 dataset, where NB-Re3 input
NDVI time series reconstructed by different methods, including
the four most typical NDVI reconstruction methods: the GF-SG
[66], SG filter [63], HANTS [61], and IFSDAF [89]. The results
show that the higher the quality of the reconstructed NDVI time
series, the higher the accuracy of NB-Re3 (see Fig. 17). This
not only confirms that choosing GF-SG in NB-Re3 is a better
option, but also suggests that any method to improve the quality
of NDVI reconstruction will be beneficial in improving NB-Re3

performance.

D. Limitation and Future Work

It is important to recognize that NB-Re3 still has its limita-
tions; first, while high-quality NDVI time series can be very
helpful in reconstructing reflectance, their effectiveness may be
degraded in nonvegetated areas with minimal seasonal variation,
such as bare soil and impervious surfaces. Second, some new
DL architectures, such as the Transformers [90], have emerged
and achieved great success in processing sequential data. These
newly developed models have substantial potential to replace the
role of Bi-LSTM, although they require more training samples

Fig. 17. APA diagrams displaying the performance of the NB-Re3 using
different NDVI time series as input for the random missing 60% images in
Sentine-2 datasets at CIA site.

and computational resources. We call for greater efforts to
explore this potential.

VI. CONCLUSION

This study proposed a novel high-quality reflectance time-
series reconstruction approach (NB-Re3) taking full advantage
of NDVI time series and spectral autocorrelation of multiple
spectral bands. Given high-quality NDVI time series are of
great value and easier to reconstruct, the TCN module is used
to capture the deep temporal features of NDVI time series at
different time scales. Then, a Bi-LSTM is used to construct the
dynamic relationship between NDVI and reflectance time series.
In addition, NB-Re3 fully exploits the spectral autocorrelation
of multiple spectral bands, which not only provides more in-
formation, but makes NB-Re3 less sensitive to Bi-LSTM’s pre-
dicted reflectance quality of each spectral band. The experiments
showed that this novel NB-Re3 model outperformed other four
existing state-of-the-art methods (MNSPI, HANTS, STAIR, and
U-TILISE) under different missing observation scenarios. In
conclusion, NB-Re3 has great potential to generate cloud-free
reflectance time-series products for user-specific applications.
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