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Abstract—Deep learning has shown remarkable proficiency in
tasks related to synthetic aperture radar (SAR) interpretation.
However, several studies have highlighted the inherent vulnera-
bility of deep neural networks when faced with deliberately con-
structed adversarial examples (AEs). Current SAR adversarial at-
tack research only focuses on generating AEs in the image domain,
without considering SAR imaging systems. This approach can lead
to two issues. First, the generated SAR AEs lack visual coherence.
Second, they cannot be obtained as corresponding attack images
through real SAR imaging systems. In this article, we propose a
physically realizable SAR adversarial attack method, which in-
cludes two submodules based on optimization methods: Target
perturbation generation and background perturbation generation.
The former module utilizes attention mechanisms to extract the
target regions from SAR images, followed by selecting the optimal
small regions for perturbation placement. The latter module, on the
other hand, utilizes scattering models to generate realistic scatterer
images as perturbations, which are then optimized to identify the
optimal position in the background regions. The individual attack
performance of these two attack modules on five well-established
SAR automatic target recognition models is demonstrated to be
highly effective. Moreover, the combination of these attack modules
achieves a fooling rate of approximately 90% and demonstrates
superior adversarial transferability. The experimental results of
this study provide an effective foundation for physical realization
of SAR AEs.

Index Terms—Adversarial example (AE), automatic target
recognition (ATR), physical attack, synthetic aperture radar
(SAR).

I. INTRODUCTION

DUE to the imaging ability of day-and-night and weather
independence, synthetic aperture radar (SAR) has been

widely used for remote sensing for more than 30 years. It
plays a significant role in the geographical survey, climate
change research, environment monitoring, military information
processing, and other applications [1], [2], [3]. With the wide
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applications of SAR in the remote sensing field, target informa-
tion extraction from SAR data has become a hot research topic,
especially the automatic target recognition (ATR).

In recent years, there has been significant progress in deep
learning technology, particularly in the field of computer vision.
As a result, an increasing number of studies have begun to
explore the application of deep learning in SAR ATR [4], [5],
[6]. Chen et al. [7] achieved remarkable recognition performance
in SAR ATR using a fully convolutional network, achieving
an accuracy rate of 99%. Li et al. [8] also proposed a deep
neural network (DNN) called DeepSAR-Net, which achieved an
accuracy rate of 98.36% by incorporating multiple convolutional
layers, normalization layers, and pooling layers, along with the
ReLU activation function. In addition, Wang et al. [9] introduced
SSF-Net, which demonstrated an exceptionally high accuracy
rate of 99.55%. Chen et al. [10] presented three strategies for
network compression and acceleration in DNNs for SAR ATR,
addressing the challenges of long training periods and large
network sizes. These strategies achieve a 40× compression of
the networks without loss of accuracy and reduce the number of
multiplications by 15×. Zhang et al. [11] proposed an improved
DNN for SAR ATR that addresses the limited sample issue
through feature augmentation and ensemble learning strategies.
By concatenating cascaded features from selected convolutional
layers and utilizing the AdaBoost rotation forest classifier, the
proposed method achieves a 20% improvement in recognition
accuracy, even with only ten training samples per class. In the
future, SAR ATR algorithms will fully leverage the potential of
deep learning technology through continuous optimization and
iteration of network depth, parameter quantities, and module
utilization.

However, research has uncovered security vulnerabilities in
DNNs. Initially, Szegedy et al. [12] identified two intriguing
properties. Their findings indicate that semantic information in
a neural network is conveyed not by individual neurons, but
rather by the network’s holistic representation. Subsequently,
they proposed a perturbation method that takes advantage of the
nonlinear nature of neural networks, rendering it imperceptible
to human observers. However, when this perturbation is added
to the input, DNNs confidently make incorrect judgments. This
behavior of fooling DNNs by adding perturbations is called
adversarial attack, and the modified images are referred to as
adversarial examples (AEs). In contrast, Goodfellow et al. [13]
argue that the linear behavior of neural networks alone is
sufficient to induce AEs. Building on this insight, they proposed
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the fast gradient sign method (FGSM), which modifies the
input in the direction of the opposite gradient, consequently
resulting in misclassification. Then a series of gradient-based
adversarial attack methods has been introduced, such as iterative
FGSM [14], momentum iterative FGSM [15], and projected
gradient descent (PGD) [16].

Due to limitations in physical world, such as distance, viewing
angles, and lighting conditions, techniques exhibiting excellent
attack performance in digital simulations tend to yield subop-
timal results in real world. In order to carry out adversarial
attack in the physical world, Sharif et al. [17] proposed a method
targeted at face recognition systems. Attackers can wear eyeglass
frames that have adversarial perturbations in order to evade
face detection. Brown et al. [18] introduced adversarial patch,
which can be printed and placed near the target, misleading
recognition software. However, adversarial patch exhibits an
anomalous appearance. Duan et al. [19] took into account the
visual plausibility of adversarial patch and proposed AdvCAM,
which improved the stealthiness of perturbations in the physical
world. Liu et al. [20] introduced a generative adversarial net-
work (GAN) called perceptually sensitive GAN. The network
exploits the target model’s sensitivity to adversarial patch by
incorporating an attention mechanism to predict critical regions
for patch placement. As a result, the method produces AEs that
are not only more realistic, but also more aggressive.

Existing research has started to focus on the interpretability of
SAR ATR [21], and there are also security risks associated with
SAR ATR models [22], [23]. Li et al. [24] conducted a study
on adversarial attacks in remote sensing image recognition.
Their findings revealed that DNNs trained on SAR images
are susceptible to AEs. Zhang et al. [25] further proposed an
adversarial attack method by combining the characteristics of
SAR images. This method, based on the C&W [26] algorithm,
results in higher fooling rate, as well as lower perturbation
intensity and coverage range. Peng et al. [27] proposed the
Speckle-Variant Attack, which cleverly converts SAR speckle
noise into adversarial perturbation. Xia et al. [28] proposed a
systematic SAR perturbation generation method called SAR-
PeGA, which achieves excellent attack performance by utilizing
two-dimensional phase modulation interference. These studies
demonstrate the existence of various adversarial perturbations
in SAR images, posing a threat to the security of SAR ATR
models.

The mentioned SAR adversarial attacks mainly focus on the
image domain, involving fine-tuning at the pixel level. However,
compared to physical adversarial attacks on optical images,
SAR encounters more challenges. Specifically, when captured
at different pitch and azimuth angles, optical images exhibit
minimal changes, while SAR images show notable differences
under such variations. In addition, methods like printing can
be used to simulate adversarial perturbations in optical images,
but achieving the same effect for SAR adversarial perturbations
through imaging proves challenging. Therefore, successfully
executing SAR adversarial attacks necessitates a comprehensive
understanding of SAR image characteristics.

Due to the imaging characteristics of SAR, attempting to
mimic optical methods, where adversarial perturbations are

first computed and then optically implemented, is not feasible.
Therefore, we focus on the physical realizability and propose a
comprehensive method for generating SAR AEs. Our approach
starts by considering the addition of adversarial perturbations
on the target surface. Building upon the work in [25], we further
reduce the range of perturbations. Simultaneously, we relax con-
straints on perturbation intensity, allowing perturbations to be
visible. Moreover, the noise-rich background areas commonly
found in SAR images can also be leveraged. Following an optical
camouflage strategy, we envision adding strong scatterers to the
background. The overall method comprises the following two
modules.

1) Target perturbation generation based on SAR sticker. Due
to the fact that this adversarial perturbation ultimately
appears as a small sticker on the image, we refer to it
as the SAR sticker. Initially, an attention mechanism is
applied to position the sticker in the image region of
greatest concern to SAR ATR models. Following this,
optimization algorithms are utilized to iteratively improve
the appearance of the sticker, thereby improving attack
performance.

2) Background perturbation generation based on strong scat-
terer. First, a simulation of strong scatterer image is per-
formed based on the radar imaging parameters of the input
dataset. Subsequently, the particle swarm optimization
(PSO) algorithm is utilized to search for the optimal
arrangement position in the background region, aiming
to achieve the desired attack performance.

The two aforementioned modules generate two forms of ad-
versarial perturbations, namely, SAR sticker and strong scatterer.
SAR sticker can be implemented by placing special reflec-
tive materials on the target surface. On the other hand, strong
scatterer can be achieved by placing scatterers in the target’s
surroundings, such as corner reflectors. The main contributions
are given as follows.

1) We propose a comprehensive adversarial attack method
specifically designed for SAR ATR models, which offers
an initial solution to the challenge of implementing SAR
adversarial perturbations in real scenarios.

2) Our approach generates adversarial perturbations in both
the target and background regions of SAR images. These
perturbations can be implemented through the use of
corresponding imaging materials, providing a solid foun-
dation for enabling intelligent camouflage of targets in
practical applications.

3) A fooling rate exceeding 90% was achieved when attack-
ing five well-established SAR ATR models. In addition,
the method demonstrates good performance for adversar-
ial transferability.

The rest of this article is organized as follows. Section II
introduces the proposed method, which includes the target
perturbation generation module employing SAR sticker and
the background perturbation generation module utilizing strong
scatterers. Section III presents the individual attack effects of
each module on five well-established SAR ATR models, as well
as their combined attack performances. Section IV delves into
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Fig. 1. Illustration of our physically realizable SAR adversarial attack method.

the stability and universality of our method and compares various
adversarial attack strategies. Finally, Section V concludes this
article.

II. PROPOSED METHOD

This section presents the framework of our physically
realizable SAR adversarial attack method, illustrated in Fig. 1.
Two perturbation generation modules have been devised. One
generates SAR sticker in target surface, while the other generates
strong scatterer images in target’s surroundings. These perturba-
tions simulate real-world situations, utilizing special reflective
materials and corner reflectors for intelligent camouflage of
targets.

It is important to note that the two perturbation generation
modules depicted in Fig. 1 subsequently employ optimization
algorithms. However, there are distinctions between the two.
For the sake of coherence in the narrative, we have integrated
the specific optimization algorithms into the introductions of
each perturbation generation module.

A. Problem Formulation

Given an input image x ∈ Rh×w with its class label t0 and
a well-trained DNN classifier F : Rh×w → {1, . . . ,m}, it fol-
lows that F (x) → t0. Here, h and w represent the height and
width of the input image, respectively, andmdenotes the number
of classes of the classifier. Our objective is to generates AEs
x′ = x+ δ by strategically placing adversarial perturbations δ
onto specific regions of the input image x, thereby causing
misclassification F (x′) → t, t �= t0. Our objective function is

defined as

min Z(x′) = F (x′)t0 −max{F (x′)t : t �= t0}
such x′ ∈ [0, 1]h×w (1)

where F (x′)t0 represents the score of the image being classified
as the true class, and F (x′)t, t �= t0 represents the scores of
the image being classified as other classes. We simultaneously
optimize both functions, lowering the score of the true class
while increasing the score of the wrong class. Furthermore,
to enhance the effectiveness of the AEs pixels, we impose
constraints on the pixel range of perturbation δ.

In addition, during the design phase, we impose size limi-
tations on perturbations to primarily focus on improving their
attack performance. In this optimization process, we consider
objective functions such as content loss, style loss, and smooth-
ness loss. However, based on the experimental results, it is
observed that these objective functions have a negligible impact
on smaller-sized perturbations. Hence, we have chosen not to
consider them.

B. Framework of SAR Target Perturbation Generation Based
on SAR Sticker

Considering the actual resolution of SAR images, one pixel
often corresponds to an area of 0.3 × 0.3 m (significantly larger
than the commonly used optical datasets). It is essential to
compress the size of adversarial perturbations while ensuring
effective attack performance. Therefore, our initial focus is on
generating perturbations on the surfaces of target in SAR images.

Specifically, we begin by identifying the most advantageous
placement position for the SAR sticker on the input image.
The gradient-weighted class activation mapping (Grad-CAM)
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Algorithm 1: Method of Target Perturbation Generation.
Input:

SAR image X and its label t0;
Initial sticker perturbation δ0;
Number of iterations N .

Output:
SAR adversarial image X ′;
1st-stage: Sticker position Initialization

1: Extracting the target region of the input SAR image X
using Grad-CAM method;

2: Calculating the region with the highest weight in the
CAM, then X1 = X + δ0;
2nd-stage: Sticker pixel optimization

3: Input X1 into the SAR ATR model and calculate the
score of Z(X1);

4: If Z(X1) < 0 or current iteration count > N , proceed to
step 8; otherwise, proceed to execute step 5;

5: Backpropagation is used to obtain the gradient in δ0
region, which is then used to fine-tune that particular
area pixel, resulting δ′;

6: X ′ = X + δ′;
7: X ′ will serve as the new input for step 3;
8: return X ′.

method, as introduced by [29], is employed to extract the region
of interest for the SAR ATR model. Once the position for SAR
sticker is determined, a robust objective function (1) is employed
to ensure attack efficiency. Through continuous iterative opti-
mization of the sticker’s pixels, this process continues until the
generated AEs successfully fool the SAR ATR model. Fig. 2
provides an overview of this module.

1) Grad-CAM technique is a crucial tool for exploring the
interpretability of DNNs. This method effectively visual-
izes the correlation between the features extracted from
DNNs and the original image, providing a comprehensive
understanding of how the model produces predictions.
This aligns perfectly with our intention of finding the
optimal placement position for SAR sticker. It functions
by multiplying feature maps, acquired during forward
propagation, with gradient information obtained during
backpropagation. This multiplication results in a weighted
feature map that serves as the basis for visualizing the
model’s classification decisions. In this module, Grad-
CAM operates as a plugin, producing an attention map
for the SAR image from the model. The core formula for
Grad-CAM is as follows:

Lt
Grad-CAM = ReLU

(∑
k

αt
kA

k

)
. (2)

The left-hand side of the formula represents the CAM of
the model for class t.Ak represents the feature maps of the
selected convolutional layer, andαt

k is the weight obtained
by the model through backpropagation. The calculation

Fig. 2. Illustration of target perturbation generation module based on SAR
sticker.

formula for αt
k is as follows:

αt
k =

1

S

∑
i

∑
j

∂yt

∂Ak
ij

(3)

where i and j denote the width and height of the fea-
ture map Ak. The term 1

S

∑
i

∑
j represents the result

of a global average pooling operation on the calculated
gradients, while S corresponds to the product of i and
j. The remaining section of the equation specifies the
backpropagation of the loss for class t through the feature
map.

2) After extracting the CAM of input image, we perform
convolution using a kernel of the same size as the SAR
sticker, resulting in X1 as shown in Fig. 3. Subsequently,
we move on to the sticker pixel optimization. The newly
generated AEX ′ is continuously fed as input to SAR ATR
models until the objective function (1) is met. The detailed
process of this module is shown in Algorithm 1.

In addition, to meet the pixel constraint of AEs, we utilize
substitution variable and introduce a new variable ζ to replace
the perturbation variable δ. This mapping relationship ensures
that the pixel range of δ remains between 0 and 1 throughout the
optimization process. This can be expressed as

δ =
1

2
(tanh(ζ) + 1). (4)
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Fig. 3. Illustration of how CAM guides the optimal placement of the sticker.

C. Framework of SAR Background Perturbation Generation
Based on Strong Scatterer

In the previous discussion, we considered the characteristics
of SAR images and proposed placing small-scale perturbations
in the target surface. It is worth noting that SAR images often
exhibit background regions filled with speckle noise. Consider-
ing the complexity of real-world environments, we contemplate
generating perturbations in the background region as well to
further enhance the attack performance. We opt to use some
common strong scatterers in the SAR calibration field as pertur-
baters using their SAR images [30].

Fig. 4 provides an overview of our SAR background perturba-
tion generation module. This process involves three main steps.
First, using the simple scattering model, we simulate strong
scatterer images with controlled size and intensity based on the
relevant scattering coefficients of the input SAR image. Second,
by employing the PSO algorithm, we find the optimal positions
for placing these scatterer images on the SAR image, aiming
for the most effective attack. Finally, we halt the iteration upon
reaching the maximum count or when the desired performance
criteria are satisfied, and output the generated AEs.

1) The purpose of this module is to generate images of strong
scatterer, which exhibit high scattering capabilities in SAR
images, appearing as bright points. With a focus on physi-
cal realization, the images of strong scatterer we generate
must closely resemble actual SAR images. Therefore, we
opt for the simple scattering model for simulation. First,
we need to calculate its backscatter coefficient, and the
formula is provided by [31]

σ =
4πa4

3λ2
(5)

where σ represents the scattering coefficient of the strong
scatterer, while a represents its orthogonal side length. In
addition, λ refers to the wavelength of the radar wave.
After computing the backscatter coefficient, we simulate
the echo signals of strong scatterers using relevant param-
eters derived from the input image [32] to ensure authen-
ticity. Subsequently, we apply the classic Range-Doppler
algorithm (RDA) in SAR imaging to process these echo

Fig. 4. Illustration of background perturbation generation module based on
strong scatterer.

signals. The RDA, a well-known radar imaging technique,
captures variations in range and Doppler dimensions of
the echo signals to produce an image. By inputting the
previously acquired echo signals into the RDA, the image
representing strong scatterer is obtained, as shown in the
upper part of Fig. 4.

2) The PSO algorithm, inspired by swarm intelligence and
the foraging behavior of bird flocks, is an optimization
technique. It simulates the movement of individual parti-
cles within the search space to find the optimal solution
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Algorithm 2: Method of Background Perturbation Genera-
tion.

Input:
SAR image X and its label t0;
Parameters for PSO initialization:
u = 0.5, c1 = 1.5, c2 = 1.5; Number of iterations N .

Output:
SAR adversarial image X ′;

1: Retrieving the imaging parameters of the input SAR
image X;

2: Calculating the scattering coefficient σ of the strong
scatterer;

3: Computing the scatterer image using the SAR-RDA;
4: Initializing the PSO algorithm to generate a set of

potential adversarial images X1.
5: Input X1 into the SAR ATR model and calculate the

score of Z(X1);
6: If Z(X1) < 0, proceed to step 9; otherwise, proceed to

execute step 7;
7: Updating the particle parameters using functions (6) and

(7), resulting X ′;
8: X ′ will serve as the new input for step 5;
9: return X ′.

to a problem, without relying on gradient information.
This optimization approach offers three main advantages
for our purposes. First, since we have already obtained
specific perturbation images, our subsequent efforts focus
on strategically placing them on the input image. Second,
as mentioned in the introduction, adding subtle pertur-
bations to an image can disrupt the model’s prediction.
Considering the effectiveness of our attack, we cannot
modify other pixels. Finally, PSO algorithm is capable of
generating a batch of AEs with good attack performance,
making it a straightforward and powerful tool for our
application.

In PSO algorithm, a population of particles is maintained,
where each particle represents a candidate solution for function
(1) and possesses its own velocity within the solution space. In
this attack module, the search space encompasses all coordinate
positions within the input SAR image, and each particle carries a
set of coordinates for the placement of strong scatterer images. In
each iteration, particles continuously explore the solution space
by updating their velocities and positions using their current
position and velocity, as well as the best historical position of
the individual particle and the overall best position of the particle
swarm. The equations for updating particle velocity and position
are presented below. Velocity update formula

vk(n+ 1) = u · vk(n) + c1 · r1 · (pbestk − lk(n))

+ c2 · r2 · (gbest− lk(n)). (6)

Position update formula

lk(n+ 1) = lk(n) + vk(n+ 1). (7)

TABLE I
CONFIGURATION OF EXPERIMENT PLATFORM

The current iteration number is denoted by n, while lk(n) and
vk(n) represent the current position and velocity of the particle
k, respectively. The best individual position of the particle is
represented by pbestk, and the best position within the group
is represented by gbest. The inertia parameter is denoted by
u, while the learning factors are represented by c1 and c2. In
addition, r1 and r2 refer to random numbers that are uniformly
distributed between 0 and 1.

Finally, we evaluate the quality of each candidate solution
using a cost function, which corresponds to the score value of
function (1). If the score is less than 0 or reaches the maximum
number of iterations, we terminate the algorithm. The detailed
process of this module is shown in Algorithm 2.

III. EXPERIMENTAL RESULTS AND ANALYSIS

This main part of this section assesses the performance of
the proposed method across various experimental scenarios,
which are divided into three parts. First, the individual attack
outcomes of the two introduced modules are independently
analyzed and presented. Subsequently, the combined attack
results from their collaboration are provided. The performance
will be evaluated based on two key indicators: 1) the fooling
rate; and 2) transferability. The SAR ATR models used in the
experiments are implemented using the PyTorch backend. The
basic configuration of the platform is detailed in Table I.

A. Experimental Data and Evaluation Metrics

1) MSTAR Dataset [32]: We utilized the widely-used
MSTAR dataset in our experiments. Specifically, we selected
the MSTAR data with a depression angle of 17◦ as the training
set and the data with a depression angle of 15◦ as the test set. The
training set comprised 2747 images, while the test set consisted
of 2425 images. This choice ensured that both the training and
test sets were derived from distinct datasets, mitigating the risk
of overfitting. Fig. 5 depicts the correspondence between optical
and SAR images of ten categories. Table II provides a detailed
distribution overview of the MSTAR dataset.

2) Well-Trained CNN Model: To evaluate the attack perfor-
mance, we selected the lightweight network SAR-CNN, along
with VGG19, ResNet50, DenseNet121, and MobileNetV2 as
the target models. SAR-CNN consists of four overlapping con-
volutional and pooling layers followed by three fully connected
layers [25]. The remaining four models have been proven to
perform well in optical domain, and their specific structures are
not elaborated here.
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Fig. 5. Examples of ten types of ground vehicle targets in the MSTAR dataset.

TABLE II
MSTAR DATASET DETAILS

TABLE III
TRAINING AND TESTING ACCURACY OF FIVE SAR ATR MODELS

The experiments were conducted with an input image size of
128× 128. The training process utilized the SGD optimizer with
the following hyperparameters: learning rate of 0.01, decay of
1e-6, momentum of 0.9, epoch of 30, and batch size of 32. The
training results are presented in Table III.

3) Evaluation Metrics: The fooling rate is introduced as a
measure to validate the efficacy of the proposed method. It
quantifies the relationship between the number of successful
attacks, denoted asNsuccess, and the total number of AEs, denoted

Fig. 6. Comparison of CAM and original images in MSTAR.

as Nall. The fooling rate can be mathematically expressed as

fooling rate =
Nsuccess

Nall
· (8)

Second, Transferability assesses the fooling rate of AEs gener-
ated on one model when applied to other models. This parameter
is pivotal in both adversarial attacks and defenses, as a high
transferability signifies the AEs’ ability to consistently exert in-
fluence across different models. In the subsequent experiments,
we will input the AEs, generated for each SAR ATR model, into
the other four ATR models.We will record their fooling rates
and conduct an analysis of the results.

B. SAR Adversarial Attack Using Only the Target Perturbation
Generation Module

This subsection focuses on conducting attack experiments
aimed at perturbing the target region using SAR sticker. We
begin by introducing the process of extracting the target region
through Grad-CAM and showcasing the resulting visual effects.
Following that, we provide a thorough evaluation and discussion
of the generated set of AEs within this specific scenario.

Here, we showcase the identification of attention regions
using Grad-CAM. Among the ten categories, CAMs for seven
effectively aligned with the vehicle targets. Only three categories
displayed CAMs that partially covered the target regions and
shadow regions. For visual representation of the experiment,
one image from each category was randomly selected, and its
corresponding original image and CAM were presented. The
experimental findings are depicted in Fig. 6.

The SAR-CNN model was employed to generate AEs for
each image in the MSTAR test dataset. A subset of images
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Fig. 7. SAR AEs exclusively utilized target perturbation generation module.

misclassified by the SAR-CNN model was excluded. We defined
the size of the SAR sticker as 9 × 9, covering around 0.5%
of the total image pixels, with 20% of the pixels in the target
region. A total of 1740 AEs were generated, with an average
of 660 iterations per image. Consequently, the overall fooling
rate reached approximately 76%. To visually demonstrate the
effectiveness and stealthiness of SAR sticker, Fig. 7 displays
randomly selected images from five categories. Furthermore,
experiments were conducted on four other SAR ATR models,
resulting in fooling rates of 34.3% for VGG19, 69.6% for
ResNet50, 34.9% for DenseNet121, and 33% for MobileNetV2.
Fig. 8 illustrates the transferability performance of this module,
with an average fooling rate of approximately 10%. These
fooling rates were achieved by attacking the black-box target
model using AEs generated by the surrogate model.

C. SAR Adversarial Attack Using Only the Background
Perturbation Generation Module

In this subsection, we will discuss the results obtained from
background perturbation generation module on varying scat-
terer quantities, scatterer intensities, and transferability between
targeted models. Our findings highlight a significant decrease
in accuracy observed in widely-used SAR ATR models when
subjected to this module. Moreover, we note an enhancement in
attack performance corresponding to the increment in scatterers.
Modifying the size and intensity of the scatterer further am-
plifies the fooling rate. Finally, our transferability experiments

Fig. 8. Transferability of the generated AEs by target perturbation generation
module. The surrogate model refers to the one used to craft AEs, and the target
model denotes the unknown target victim classifier.

Fig. 9. SAR AEs generated by three different quantities of strong scatterer.

validate the effectiveness of using AEs generated by surrogate
models to attack black-box models. These results underscore the
practicality and effectiveness of introducing highly scatterers
into the background environment to achieve the intended attack
performance.

1) Results on Different Quantities of Scatterer: The perfor-
mance on the five evaluated models, considering varying quan-
tities of scatterers, is presented in Table IV. The key findings are
as follows: First, this module significantly fools the five SAR
ATR models. Even with just one strong scatterer measuring
24 × 24 (accounting for only 0.4% of the input image), the
fooling rate can reach an average of 45%. Second, as the number
of scatterers increases, the attack performance further improves.
Fig. 9 displays the AEs corresponding to the three different
quantities of scatterers reported in Table IV. Consequently,



ZHANG et al.: PHYSICALLY REALIZABLE ADVERSARIAL ATTACK METHOD AGAINST SAR TARGET RECOGNITION MODEL 11951

TABLE IV
FOOLING RATE OF FOUR DIFFERENT QUANTITIES OF STRONG SCATTERER ON FIVE SAR ATR MODELS

TABLE V
FOOLING RATE OF THREE INTENSITY LEVELS OF SCATTERERS ON FIVE SAR

ATR MODELS

Fig. 10. Transferability of the generated AEs by background perturbation
generation module.

incorporating more reflectors in practical scenarios can yield
a higher fooling rate.

2) Results on Different Intensity of Scatterer (Presented as
Size): In Table V, the impact of three intensity levels of scatterers
on five evaluation models is reported. We tested the attack
performance at three sizes: 24 × 24 (0.4% of the input image),
32 × 32 (1%), and 48 × 48 (2%). For the same model, as
we continuously increased the size of scatterer, the fooling rate
significantly increased. Overall, starting from an initial fooling
rate of 45.1%, continuously enhancing the scattering intensity
resulted in an average fooling rate increase of 20%.

3) Results on Transferability: Fig. 10 clearly illustrates
the transferability performance on various target models. It
is evident that the fooling rates of SAR-CNN and VGG19
are approximately 46% and 25%, respectively. Meanwhile,

Fig. 11. SAR AEs generated by combined attack. (a) Combined one-scatterer
and size 9 sticker. (b) Combined one-scatterer and size 7 sticker. (c) Combined
one-scatterer and size 5 sticker. (d) Combined three-scatterer and size 9 sticker.
(e) Combined three-scatterer and size 7 sticker. (f) Combined three-scatterer
and size 5 sticker. (g) Combined five-scatterer and size 9 sticker. (h) Combined
five-scatterer and size 7 sticker. (i) Combined five-scatterer and size 5 sticker.

the AEs generated on MobileNetV2 resulted in an aver-
age fooling rate of around 30% for the other four models.
These results indicate that, in practical scenarios, introduc-
ing some strongly scatterers into the background environ-
ment has the potential to achieve effective camouflage for the
target.

D. SAR Adversarial Attack Using Both Aforementioned
Modules

In this subsection, we conduct simultaneous SAR sticker
on the target surface and strong scatterer on the target’s sur-
roundings. As illustrated in Fig. 11, we experimented with nine
different combinations of attack strategies, aiming for a com-
prehensive exploration of outcomes. During these experiments,
we assess the fooling rate for the SAR sticker,strong scatterer,
and the combined attack individually. Finally, we visually
demonstrate the effectiveness of this method by transferability
experiment and providing accompanying data analysis.

1) Analysis of the Fooling Rate in Five SAR ATR Models: We
conducted a series of tests involving three quantities of strong
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Fig. 12. Fooling rates of proposed method with different sizes of stickers and different number of scatterers. (a) 5 × 5 sticker and one scatterer. (b) 7 × 7 sticker
and one scatterer. (c) 9 × 9 sticker and one scatterer. (d) 5 × 5 sticker and three scatterers. (e) 7 × 7 sticker and three scatterers. (f) 9 × 9 sticker and three scatterers.
(g) 5 × 5 sticker and five scatterers. (h) 7 × 7 sticker and five scatterers. (i) 9 × 9 sticker and three scatterers.

Fig. 13. Transferabiltiy of the generated AEs by combined attack. (a) Combined one-scatterer and size 5 sticker. (b) Combined one-scatterer and size 9 sticker.
(c) Combined five-scatterer and size 9 sticker.

scatterers (one-scatterer, three-scatterer, and five-scatterer) and
SAR sticker of different sizes (size 5, size 7, and size 9). In
total, we examined the performance of nine attack combinations.
Fig. 12 provides a detailed representation of the individual ef-
fects of the two modules in nine different scenarios, as well as the
performance of their combined attack. For instance, Fig. 12(f)

illustrates the attack performance of the three-scatterer (repre-
sented by the brown line), the SAR sticker of size 9 (represented
by the blue line), and their combined attack performance (rep-
resented by the orange line).

Overall, when employing the SAR sticker alone (with a focus
on changes in the blue line), the fooling rate increases by



ZHANG et al.: PHYSICALLY REALIZABLE ADVERSARIAL ATTACK METHOD AGAINST SAR TARGET RECOGNITION MODEL 11953

Fig. 14. Comparative analysis of baseline and proposed method performance.

Fig. 15. Display of SAR AEs from five repetitive experiments.

approximately 20% for each incremental increase in sticker size.
Conversely, when using only strong scatterers (with a focus on
changes in the brown line), the fooling rate remarkably improves
with an increasing number of scatterers, reaching saturation
at five scatterers. Even under the most stringent conditions of
combined attacks, such as the combination of a one-scatterer
and a size 5 sticker shown in Fig. 12(a), the fooling rate of
combined attacks can still be maintained at 60%. By further re-
laxing the size restriction on stickers, as illustrated in Fig. 12(c),
the fooling rate approaches 80%. Lastly, as depicted in Fig. 12(i),
increasing the number of scatterers in a combined attack yields
a fooling rate as high as 90%. This signifies that by altering
the pixel values of 20% of the target vehicle’s surface and
positioning five strong scatterers around the vehicle, we can
effectively camouflage our target.

2) Analysis of the Fooling Rate in Transferability: Fig. 13(a)
presents the combination of a one-scatterer and a size 5 sticker.
In this scenario, the fooling rate remains relatively low, usually

ranging from approximately 10% to 20%. Fig. 13(b) illustrates
the combination of a one-scatterer and a size 9 sticker. In this
setup, the fooling rate is generally approximately 10% higher
compared to the previous case. Lastly, Fig. 13(c) showcases the
combination of a five-scatterer and a size 9 sticker. Notably,
this configuration yields promising results, indicating that the
generated AEs possess universal attack performance.

IV. DISCUSSION

In the forthcoming discussion, we embark on a meticulous
exploration of our experimental results, shedding light on the
robustness and efficacy of our proposed methods. We commence
by establishing a baseline performance metric, providing a
benchmark for the methods discussed above. This is followed by
an indepth analysis of the stability of our methods, demonstrat-
ing their resilience under varying conditions. It is expected that
in operational scenarios, not just one algorithm is run over a SAR
image, but multiple ATR algorithms with different strategies are
employed. Therefore, we shift our focus to the performance on
non-DNN models and across different datasets. Finally, we draw
a comparison between our proposed method and state-of-the-art
methods. This comprehensive discussion aims to provide a
holistic understanding of our work.

A. Baseline Performance and Method Stability

In this subsection, we undertake a comprehensive evaluation
of our baseline experiments and rigorously test the stability of
our proposed methods. Initially, we establish a baseline perfor-
mance metric using a randomized generation method for both
position (for the SAR sticker and strong scatterer previously
discussed) and appearance (for the SAR sticker). This provides
a reference point for assessing the effectiveness of methods
in optimizing both position and appearance. Subsequently, we
conduct stringent stability tests on our methods, simulating
real-world scenarios where the setup of strong scatterers may
not be ideal. This ensures the robustness of our attack strategies
under complex conditions.

Fig. 14 presents a comparative analysis of the fooling rates
achieved by the baseline experiments and our proposed methods,
with each experiment being repeated five times. The solid lines
represent the baseline experiments. For the SAR sticker, we used
randomly initialized appearances and positions; for the strong
scatterer, we randomly placed five scatterers on the image in each
instance. These baseline methods achieved relatively low fooling
rates. In contrast, the dashed lines of the same color represent the
results of our methods, which incorporated optimizations for the
appearance and position. In five repetitions of the experiment,
our methods consistently achieved high fooling rates. Taking
the SAR sticker represented in Fig. 14 as an example, the
black solid line represents the baseline, which used randomly
placed and appearing stickers, achieving a fooling rate near 0.1.
However, observing the black dashed line, which represents our
method with optimized appearance and position, the fooling rate
consistently remained above 0.6. Fig. 15 presents the results
of the same image subjected to the proposed method across
five repeated experiments. Upon horizontal comparison, each
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Fig. 16. Visual demonstration of each stage in the scatterer brightness reduction experiment.

TABLE VI
EFFECT OF SCATTERER BRIGHTNESS REDUCTION ON THE CONFIDENCE OF MAXIMUM MISCLASSIFICATION IN A FIVE-SCATTERER SCENARIO

TABLE VII
VARIATIONS IN MODEL RECOGNITION ACCURACY WHEN APPLYING OUR

METHOD TO SAMPLE AND SARSIM

generated AE exhibits differences, yet they consistently achieve
effective target camouflage. These results demonstrate a sig-
nificant increase in the fooling rates achieved by our methods
compared to the baseline.

In real-world scenarios, the setup of corner reflectors may not
always be optimal. We tested the impact of this by simulating a
five-scatterer scenario where multiple reflectors were incorrectly
positioned, resulting in a reduction in scattering brightness. The
highest confidence level in the nonoriginal categories, given by
the SAR ATR model after the attack, will be recorded. Data from
Table VI shows that even with a stepwise decrease in brightness
of 15% for one or more scatterers, the attack performance largely
remains stable. It is only when all five scatterers significantly lose
brightness that the camouflage effect notably decreases (see the
bolded cases of 60% and 75% brightness reduction in Table VI).
This indicates that even if one or more corner reflectors are
not ideally placed, the overall camouflage effect is not greatly
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TABLE VIII
FOOLING RATES OF SAR AES GENERATED BY DIFFERENT METHODS ON MSTAR DATASET

Fig. 17. Performance degradation of classical machine learning models under
our attack methods.

impacted. To provide a more vivid illustration, Fig. 16 displays
the results at various stages of the scatterer brightness reduction
experiment, corresponding to Table VI.

B. Non-DNN Models and Cross-Dataset Performance

In this work, we undertake a comprehensive investigation
into the performance of our method on non-DNN models and
across various datasets. While adversarial attacks are primarily
employed to explore security concerns associated with diverse
DNNs, we are equally interested in exploring the efficacy of our
method when applied to non-DNN models. In addition, we also
validate its performance on other SAR datasets.

Fig. 17 illustrates the performance of five classical machine
learning models, namely random forest, k-nearest neighbors,
support vector machine, gradient boosting decision tree, and
multilayer perceptron, before and after the implementation of
our attack method. The orange bar chart represents the preattack
accuracy of various models on the MSTAR dataset, all hovering
around 0.9. The green bar chart illustrates a significant drop in
the accuracy of each model to approximately 0.4 postattack. This
striking contrast underscores the potency of our methods, even
when applied to non-DNN models. It suggests that while DNNs
are often the primary target of adversarial attacks, non-DNN
models are not immune and can also be significantly impacted.

Table VII provides a comprehensive depiction of the perfor-
mance of our methods on two supplementary datasets, namely

SAMPLE [32] and SARsim [33]. The second and third columns
present the training and testing accuracies, respectively, of the
SAR-CNN model on these datasets. The ensuing three columns
illustrate the accuracy following the execution of our attack
method. The results indicate that even with the application of
the SAR sticker alone, the accuracy significantly deteriorates
to below 0.2 on both datasets. Upon further implementation of
the strong scatterer and their combined assault, the SAR-CNN
model loses its ability to recognize effectively.

C. Performance Comparison

A comparative experiment with state-of-the-art methods is
designed to evaluate the performance of the proposed method.
The Adversarial Patch [18] and Pixle Attack [34], featured
in Table VIII, are classic physical attack methods designed
to introduce visually noticeable block-wise perturbations into
images. In recent years, Auto PGD [35] and Auto Attack [35]
have emerged as adversarial attack methods posing significant
threats to DNNs. Overall, our method demonstrates the best
average attack performance, with the highest fooling rates ob-
served in SAR-CNN, VGG19, and ResNet50. DenseNet121 and
MobileNetV2 lag behind by approximately 4 and 8 percentage
points, respectively. It is worth emphasizing that our method
places a greater emphasis on physical realizability compared to
Auto PGD and Auto Attack. The adversarial attack performance
of our method is significantly superior than the physically-based
Adversarial Patch and Pixle Attack.

V. CONCLUSION

In this article, we address the current research on SAR AEs. It
is noted that existing studies mainly focus on the image domain,
where the generated perturbations are difficult to implement in
the physical world. To overcome this limitation, we propose two
attack modules: 1) The SAR sticker, which focuses on the target
surface; and 2) the strong scatterer, which targets the background
region. Taking into account the physical characteristics of ad-
versarial perturbations, SAR stickers can be implemented by
incorporating specialized reflective materials onto the surface
of the target. Similarly, strong scatterers can be strategically
positioned around the target using materials such as corner
reflectors. We separately evaluate the attack performance of the
two types of AEs, as well as their combined attack performance.
The results show that these physically realizable AEs can achieve
a high fooling rate of 90% for SAR ATR models, along with
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notable adversarial transferability. The final discussion section
demonstrates the robustness and efficacy of the proposed meth-
ods across various experimental dimensions. In future work, we
will explore further refinement of the generation rules for SAR
images to improve the alignment between the perturbations in
the SAR sticker and the target vehicles.
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