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A Small-Ship Object Detection Method
for Satellite Remote Sensing Data
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Abstract—Satellite remote sensing technology can achieve real-
time observation of ships at sea, and the remote sensing images ob-
tained have the advantages of high contrast and low noise and have
become one of the important means of marine monitoring. For the
satellite remote sensing image data, there are two main problems:
first, remote sensing data class-imbalance problem, and second the
existing target detector in the presence of clouds, islands, farmed
nets, and other interferences on the small-target ship, and there is
a leakage of detection and wrong detection problem. To address
the above problems, first, a new dataset containing 3881 images of
remotely sensed ships in a variety of complex environments is con-
structed, which contains a total of 8418 ship instances. Second, we
propose CSDP-YOLO for the small-target ship detection method
with remote sensing data class imbalance. In order to enhance the
performance of neural networks for small-target ship detection in
remote sensing images, the innovative CSDP module is proposed,
which uses deep large kernel convolution to enhance the sensory
field of shallow features and mixes the channel positions using
point convolution to obtain a more excellent feature extraction
performance. Finally, the MPDIoU loss function is introduced to
solve the class-imbalance problem between remote sensing small
target ships and the background. We compare the performance
with other state-of-the-art algorithms. The experimental results
show that the proposed CSDP-YOLO algorithm can significantly
improve the performance of small-target ship detection for private
datasets. Its average precision, recall, and AP50 are improved
to 90.1%, 86.6%, and 91.4%, respectively. For the SSDD public
remote sensing dataset, its metrics can reach the highest 93.6%,
93.7%, and 96.8%, respectively.

Index Terms—Class-imbalance, satellite remote sensing ima-
gery, ship detection, small object detection, YOLOv7.

I. INTRODUCTION

SHIPS are vital components of military and defense activi-
ties, and their movements must be closely observed since

they are vital sea transit vehicles. The identification of ships
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is of utmost importance in the fight against illicit fishing, port
trade, and marine traffic safety. At the moment, radar, optical and
infrared reflectance, thermal infrared sensors, satellite remote
sensing, and hyperspectral imaging are the main data sources
used for the monitoring of small-sized ships in the ocean [1],
[2]. The capacity of the satellite remote sensing technology to
provide high-resolution, low-noise remote sensing photographs
has attracted a lot of interest.

Small-target detection is an open problem in the field of
remotely sensed imagery for a wide range of applications,
including large-scale monitoring of marine ships, intelligent
marine traffic, and ship position-based services. Traditional ship
detection methods are mainly based on constant false alarm
detection (CFAR) [3] to detect ships in remote sensing images.
These methods first do a land–ocean segmentation, which allows
land pixels to be suppressed and prevents interference with the
CFAR step, thus limiting the speed required to acquire small-
target ships. Finally, after CFAR prescreening, discriminators
need to be designed to suppress noise. In addition, these methods
usually rely on the statistical distribution of sea clutter, resulting
in poor robustness of the new remotely sensed images [4].

With the development of deep learning-based target detection
algorithms in computer vision (CV), researchers in the field
of remote sensing also began to explore methods for detecting
small-target ships from deep learning algorithms [5]. Due to the
difficulty in acquiring remote sensing images and the fact that
no researcher had yet developed a specialized remote sensing
dataset at that time, deep learning-based detection methods could
not be applied to remote sensing ship detection at the beginning.
With the opening of the SSDD public dataset [6], a trend in
the field of deep learning-based remote sensing ship detection
was set off. SSDD provided researchers with a large amount of
remote sensing data and evaluation criteria, which solved the
problem of the lack of data for deep learning algorithms. By
now, more and more researchers have adopted deep learning-
based methods in this field. Sun et al. [53] focused on the
complex environment and diverse ship scales of SAR images.
An anchor-free detection method is proposed. It provides a better
method for SAR ship detection. Wang et al. [54] proposed an
MFFN multifeature fusion network, which can obtain ship seat
texture information from the background of remote sensing
images. Zhou et al. [55] proposed a network specifically for
detecting small ships in remote sensing images to address the
difficulty of detecting small ships. Gong et al. [56] proposed
the enhancement strategy of SSPNet network and small ships,
which contributed to the detection of SAR ships. Li et al. [7] used
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Fig. 1. Challenges of detecting small ships in complex backgrounds and
proposed methods.

the improved Faster RCNN, a two-stage target detection method
for ship detection, to improve the accuracy of small-target ship
detection, but its detection time is long and it cannot detect ships
in real time. Subsequently, the SSDD [8] detection algorithm and
you only live once (YOLO) [9] single-stage detection algorithm
have been introduced, which centralizes the target detection task
and target category task into a single neural network model,
achieving high accuracy and fast target detection performance.
However, these generic target detectors have some problems
when applied directly to small-target ship detection in remote
sensing datasets.

1) First, there are fewer datasets used for the ship detection
of small targets in the field of remote sensing imagery, and
the datasets in recent years, such as SSDD, MSDS, and
AIR-SAR Ship, the ship objects in these datasets suffer
from the problems of ship multiscale and low-pixel value
of the dataset, and the simple environment in which the
ships are located, which cannot satisfy the ship detection
task in the complex environment. Therefore, there is a need
to establish a small-target ship dataset for remote sensing
images in complex marine environments.

2) Second, current mainstream detection models often miss
detecting ships with small or ambiguous targets. Our
detection task faces challenges in the case of farmed
nets, trailing trajectories, cloud cover, and ships in close
proximity (as shown in Fig. 1). Since smaller ships usually
occupy only a few pixels of the image [10], after a number
of feature extractions, it will lead to the network’s ability
to lose the small-target features and the spatial layering
information of the neural network.

3) Finally, remote sensing datasets are interfered by back-
ground noise, such as mariculture nets in near-shore har-
bors, lighthouses on the sea surface, and islands, which
usually lead to false alarms for ship detection. Traditional

algorithms use features to distinguish between small-
target ships and other disturbances, but they usually lack
accuracy and effectiveness.

Based on the above analysis, this constructs a dataset of
remote sensing images of small-target ships. This dataset of
remote sensing images is mainly from Hainan 1, after cutting,
data enhancement, and other operations. In total, 3831 selected,
high-quality remote sensing images were obtained, and we used
horizontal bounding boxes and labeled 8418 instances of 1
category (ships). Second, YOLOv7, as a single-stage detector,
still has the advantages of high detection accuracy and speed
on small-target objects. In this article, we try to apply YOLOv7
to small-target detection of ships in remote sensing images. At
the same time, we further explore optimize its accuracy and
speed so that it can identify small targets with fuzzy ships more
accurately and efficiently. To enhance the detection performance
of small-target ships, we propose the CSDP-YOLO algorithm,
which makes up for the shortcomings of YOLOv7 [11] in the
performance of detecting small-target ships. The main contribu-
tions of the work are as follows.

1) A dataset of small-targeted ships from satellite remote
sensing images in complex sea areas was constructed.
The dataset contains 3831 remotely sensed images with
8418 labeled instances. This dataset does not require land
and sea segmentation, which is helpful for the dynamic
monitoring of ships in the sea and harbors.

2) Aiming at the problem that remote sensing small targets
have few pixels, and when feature extraction is performed
on the feature map, tiny pixel offsets will lead to a de-
crease in detection accuracy. In this study, we propose a
CSDP structure based on deep convolution. The CSDP
module consists of a full convolution block composed
of large kernel deep convolution and point convolution,
which replaces part of the extended high-efficiency layer
aggregation network (ELAN) aggregation layer of the
original YOLOv7 and enhances the model’s ability of
feature extraction for small targets. The large kernel deep
convolution captures a wider range of contextual informa-
tion and helps to identify complex patterns of ocean–land
interaction in the image. Point convolution helps reduce
computational cost and provides interchannel interaction
while maintaining computational efficiency.

3) Aiming at the serious data class-imbalance problem be-
tween small-target ships and background, we introduce
MPDIoU as the loss function of the penalty. So that
the bounding box loss function can make full use of
the geometric properties of the bounding box regres-
sion to speed up the convergence of the model and im-
prove the detection accuracy by minimizing the distances
of the top-left vertices and the bottom-right vertices be-
tween the predicted bounding box and the real bounding
box.

The rest of this article is organized as follows. In Section II, the
proposed dataset and the current methods used for ship remote
sensing image detection are described in detail. Section III
presents the detailed structure of the proposed CSDP-YOLO.
Section IV describes the dataset and the experimental setup,
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Fig. 2. Number of representative datasets of remotely sensed images from
different backgrounds (The ship’s target area has been magnified.)

verifies the improvement of the proposed algorithm through
comparative experiments and analyses the experimental results,
and verifies the generalization of the model on a publicly avail-
able dataset. Finally, Section V concludes this article.

II. RELATED WORK

A. Remote Sensing Datasets

In the past few years, many target detection datasets, such
as SSDD, OpenSARship [13], SAR-Ship-Dataset, AIR-SAR
Ship, HRSID, LS-SSDDv1.0, FUSARv1.0, and MSDS, have
been proposed in the field of aerial imagery to advance the
research on ship detection in remote sensing imagery. However,
the objects in these datasets have multiple scales, and there-
fore, these datasets are more suitable for evaluating detectors
designed for multiscale object detection rather than small object
detection. Although some work on small-target ship detection
from remotely sensed imagery uses mainstream remote sensing
data for training, the ocean is complex and most of the existing
datasets do not have small-target ships in a variety of complex
situations, such as cloudy, undersea nets, nearshore of harbors,
islands, and so on, so this study constructs a small-target ship
dataset in response to the complexity of the ocean environment
in which small-target ships are located.

The construction strategy of the ship dataset in this study
is as follows. We obtained 70 original remote sensing images
from “Hainan No.1 Star 01,” with a resolution of 28 000 ×
28 000 pixels, and we set the resolution of the cropped images
to 1024 × 1024 pixels, and the corners of the original remote
sensing images are less than 1024 pixels. We set the resolution
size of the cropped image to 1024 × 1024 pixels, and for the
part of the original remote sensing image whose edges are less
than 1024, we save it as the original image without filling. To
facilitate network training, the cropped remote sensing images
are manually filtered, and finally, 3831 high-definition remote
sensing images are obtained. Our proposed dataset contains only
one ship category object and 97% of the small target ship objects
are less than 40 pixels, which pushes the difficulty of small-
target detection to the extreme and meets the needs of practical
scenarios for applications. Fig. 2 shows some representative
samples of remote sensing images of ships, including cloud
cover, harbor docking, and marine aquaculture nets, including

harbors, cloudy climates, underwater nets, and other scenarios.
Finally, the whole dataset is randomly split into training dataset
(70%), validation dataset (20%), and test dataset (10%)

B. Deep Learning Object Detection

Since deep neural networks can automatically learn the
threshold features and shape features of the target, they are of
great research value in ship detection in remote sensing images.
Object detection algorithms based on deep learning can be
divided into two categories: two-level detectors and single-level
detectors. The single-stage detector uses the full convolutional
network to perform classification and regression tasks on the
anchor frame only once to obtain detection results [14]. The
two-stage detector uses a deep neural network to perform two
classification and regression tasks on the anchor frame to obtain
detection results.

So far, common two-level detectors include R-CNN, Faster
R-CNN, feature pyramid network [15], Mask RCNN, etc. Most
of the design ideas of the latter two-level detectors are based
on the improvement of the previous network, and the starting
point of improvement is mostly from the backbone network,
regional suggestion network, etc. Although the two-level detec-
tors are more accurate in detecting objects, the detection time
has increased because of the method of extraction of boundary
boundaries using enveloped neural networks. Common single-
stage detectors include SSD [8], YOLO [9], and RetinaNet [17].
In addition, Zhang et al. [52] proposed a multiscale global
scattering feature association network for remote sensing prop-
agation target identification. It gave us important inspiration for
ship identification technology in remote sensing images. Kang
et al. [57] proposed a multilayer fusion convolutional neural
network to solve the difficulty of detecting small-scale ships in
SAR images. Sun et al. [58] aimed at the characteristics of mul-
tiscale and dense array of ships in high-resolution SAR images.
A bidirectional fusion module is proposed for YOLO, which
makes the model have better robustness and generalization.

The YOLO series is widely used in the field of ship detection
of remote sensing images. Deng et al. [18] used YOLOv2 to
detect ships in remote sensing images, and proposed YOLOv2-
reduced, mainly by reducing the partial neural networks of
YOLOv2, and it has achieved greater efficiency than the
YOLOv2 detection (the AP of YOLOv2-Reduced is 89.76%)
and low loss of accuracy (the AP of YOLOv2 is 90.05%). Zhang
et al. [6], [52] have used the DarkNet-19 network to replace the
original YOLOv3 backbone network, and the new network has
greatly improved the detection efficiency of the sensing remote
imaging ship. Subsequently, Wang et al. [20] proposed an SSS-
YOLO network, cleverly designed the feature extraction layer
of the neural network, and enhanced the semantic information
of small target ships. Zhou et al. [27] proposed a multiscale
ship detection network based on the YOLOv5 model, which
achieved a good balance between the complexity of the model
and the reasoning time. Tang et al. [28] proposed a convolved
block attention mechanism with a multiscale receptive field
based on the YOLOv7 and made full use of the information of
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Fig. 3. Ship detection methods for remote sensing images with one-stage and
two-stage detectors.

feature maps to accurately capture useful regions in the feature
maps. The ship detection method of remote sensing images
with single-order detector and double-order detector is shown in
Fig. 3. Nowadays, the high accuracy and real-time performance
of YOLOv7 is particularly prominent in the task of target de-
tection, and YOLOv7 adopts a multilevel pyramid structure for
target detection, which means that it can simultaneously predict
the target location and category on the feature map of different
resolutions. To better train the model, it allows auxiliary heads
to be attached to the pyramid of the middle layer for training.
The advantage of this training strategy is that it helps make up
for information that might be lost in the next level of pyramid
prediction. In other words, by making predictions on the pyramid
of the middle layer, the model can better capture features at
various resolution levels, thus improving the accuracy of target
detection.

However, the performance of YOLOv7 on remote sensing
image datasets is not very good. In order to improve its per-
formance, CSDP is used as part of the backbone network of
YOLOv7 based on the YOLOv7 model in this article. Deep
packet convolution is used in the CSDP module to divide the
input channels into multiple groups, and the channels in each
group are convolved only with the convolution kernel in the
corresponding group. The CSDP module is used for processing
channel features, which can be regarded as a channel attention
mechanism. This helps the model to better capture important
information in the input features and improve the performance of
small-target ship identification. At the same time, the MPDIoU
loss function is also introduced to solve the problem of the
imbalance between prospects and background classes, further
improving the efficiency and accuracy of the model boundary
frame regression.

III. PROPOSED METHODS

YOLO is the most advanced single-stage target detection
algorithm that has undergone multiple iterations [9]. In addition
to the original version of YOLO, there are many derivative
algorithms based on YOLO architecture, which are optimized
and improved based on YOLO to meet the needs of different

application scenarios. YOLOv7 is also an optimized version of
the YOLO architecture, it adopts the extended high-efficiency
layer aggregation network (ELAN) strategy [40]. By combining
cardinality to combine different features, the neural network can
learn and converge more effectively by controlling the shortest
gradient path, and enhance the learning ability of the network
without destroying the original gradient path. The excellent
learning ability of YOLOv7 is more suitable for deployment
in the detection of small-target objects. Based on YOLOv7,
CSDP-YOLO, a method for small-target ships in remote sensing
images, is proposed in this study.

A. Proposed CSDP-YOLO Framework

The CSDP-YOLO network architecture is shown in Fig. 4.
First, two high-efficiency layer aggregation network (ELAN)
modules of the backbone module of YOLOv7 are removed,
and the CSDP layer is introduced into the backbone part to
enhance the model’s performance of extracting low-level feature
maps. Low-level feature maps have higher resolution, containing
information on the tail and shape of the small-target ship, as well
as the location and details of the islands. It is helpful to improve
the discrimination of the model and the accuracy of detection.
Second, based on the imbalance between the background and
foreground of small-target ships, MPDIoU is introduced as a loss
function to solve the problem of small loss and slow gradient
convergence in the training process. The proposed network
architecture can be categorized into CBS, MPC, ELAN, and
CSDP modules. CBS is a basic volume module, consisting of
variable lengths of volume blocks. Cat acts as a multivoltage
module that uses outputs from other volume layers to perform
concat operations to improve the accuracy of the network. CSDP
is the low-level feature map extraction layer proposed by the
authors. Specifically, the DP module is a full convolution block
composed of large core deep convolution and point convolution.
We choose deep convolution to mix spatial locations, and point
convolution to mix channel locations. Therefore, in the process
of low-level feature extraction, there is a larger receptive field to
pay attention to more detailed information, such as ship ends and
shapes, so that the model can better take into account the global
information, and at the same time, restrain the interference of
islands, clouds, and other factors on small-target ships [48]. MP
is a downsampling module, which helps to gradually reduce the
size of the feature map, so that the network can detect the target at
different resolutions, thus improving the detection ability of the
model for the target of different sizes. SPPCSPC is an improved
spatial pyramid pool structure that helps to handle objects at
different scales, making the model more robust.

In summary, small-target recognition from remote sensing
images is achieved using the trained CSDP-YOLO model. The
training process is summarized in Algorithm 1.

B. CSDP Feature Extraction Architecture

Although the extended efficient layer aggregation network
(ELAN) of YOLOv7 learns the features of the ships using differ-
ent layer weights, it enhances the learning capability of the net-
work by introducing the operations of expanding, shuffling, and
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Fig. 4. Proposed small-target ship detection method: The CSDP-YOLO architecture.

Algorithm 1: Training Strategy of CSDP-YOLO.

Input: Given training samples X = {x1, . . ., xk} and
labels Y = {y1, . . ., yk}, k ∈ N+

Output: An adeptly trained CSDP-YOLO model.
1: An adeptly trained CSDP-YOLO model is shown in

Fig. 4.
2: Initialize the parameters θ = (w, b, r, α)
3: repeat
4: Randomly select a batch of instances Xb from X
5: Pass training samples forward through the

CSDP-YOLO model
6: Compute the training loss L by

L = box_loss+ object_loss+ class_loss
7: Propagate L back through CSDP-YOLO and update

the parameters with SGD
8: Determine θ by minimizing the cost function L using

Xb

9: Until the end of model convergence

merging bases while ensuring the continuity of the gradient paths
to improve the performance and generalization [48]. However,
these operations also increase the computational complexity of
the network, while undergoing multiple convolutions can lead
to a situation where the neural network loses information about
small-target ships under remote sensing datasets.

To better integrate the small-target ships, islands, and other
detailed information on the shallow feature map, for the re-
mote sensing of small-target fuzzy, irregular shapes, and poor
existing conditions [41], the CSDP feature extraction layer is

constructed, and the module in the case of satisfying the com-
putational parameters relative to the ELAN network is less, the
grouping convolution of each input channel, so that the number
of grouping is the same as the number of input channels. As
a result, a point convolution is performed to mix the features
of each output channel, to improve the ability of the neural
network in the shallow feature map for small-target ships infor-
mation acquisition so that better performance for the detection
of small-target ships task. Dot convolution is performed to mix
the features of each output channel, to improve the ability of the
neural network to acquire information about small-target ships
in shallow feature maps, and to achieve better performance for
the task of small-target ship detection. As shown in Fig. 5, our
proposed CSDP feature fusion structure consists of three feature-
variable convolutional layers, a deep convolutional module, and
a point convolutional module. The CSDP layer first accepts an
input feature map, and then performs feature transformations
through two 1 × 1 convolutional layers (CV1 and CV2) to
adjust the dimensionality of the input feature map and passes it
to the subsequent DP module and the CV3 convolutional layer,
respectively. We set the input passed into the path of the DP
module as X, the output is Z1 after CV1 convolution, the output
is Z2 after CV2 convolution, and the size of the input feature
map X is P × P × Cin. The kernel size of the convolution is
1 × 1 with a step size of 1, which is expressed in the following
equation:

z1 = BN(σ {Conv1cin →h
(X, s = 1, k_size = 1)}) (1)

z2 = BN(σ {Conv2cin →h
(X, s = 1, k_size = 1)}) (2)
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Fig. 5. Proposed CSDP network architecture, where CV1, CV2, and CV3 are
1×1 convolutional networks.

where zl is the output of the residual structure, which can
extract and fuse the features of remote sensing image after deep
grouping convolution and shallow features, so that the deep
network can better learn the small-target features. Cin is the
number of channels into the CSDP structure. Kernelsize is the
size of the convolution kernel.

The DP block is composed of deep convolution (the number
of grouped convolutions is equal to the number of channels
h) and point convolution (the size of the convolution kernel is
1 × 1), and the DP module works well with a huge kernel (the
convolution kernel is 9 × 9× Cin). We inserted the DP1 and DP2

modules into two parts of YOLOv7, and the number of channels
of the inputs to the two modules is 128 and 1024, respectively.
Each convolution is followed by a GELU activation function
and a BatchNorm, which are expressed as follows:

z′l=BN (σ {ConvDepthwise (z1, s = 1, k _size =9)}) + z1
(3)

zl+1 = BN(σ {ConvPointwise (z′l, s = 1, k _size = 1)})
(4)

where Z′
l denotes the residual structure output after convolution

with a large kernel (k = 9), the output of grouping convolution
on each channel is mixed by pointwise convolution for channel
mixing, and the 1×1 convolution is used to realize the exchange
of information between the channels, which is specifically real-
ized in the section is shown in Fig. 5. Finally, in order to enrich
the expression of the shape features of the small-target ship, the
output feature map of CV2 (the two output paths are independent

Fig. 6. CIoU failure when the predicted box (red) has the same aspect ratio as
the real box (yellow).

of each other) is spliced with the output of the DP module after
the channel mixing operation in terms of the channel dimensions
(dim = 1), which fully integrates the feature information of
the two paths to form a richer expression of the features of the
small-target ship, as shown below:

CSDP = BN (σ {concat (zl+1, z2)}) (5)

where zl+1 is the output of the DP module (4), and z2 denotes
the second independent path (the one passing through CV2)
for the processing of the input feature map, which directly
performs the convolution operation on the input feature map,
and finally splice it again in the channel dimensions through the
concat function to generate a richer representation of the features
of the small ships.

Compared with the ELAN high aggregation network, our
proposed CSDP module has the following advantages. First, it
uses large kernel deep convolutional hybrid spatial locations as
well as point convolutional hybrid channel locations, to fully
utilize the feature information of small-target ships between
convolutional groupings, and to improve the network’s ability to
extract the characterization of the small-target ships in complex
environments. Second, all network layers of the module maintain
the same resolution size of input and output, and there is no
downsampling operation of the feature maps at the continuous
network layer, which prevents the loss of small-target ship
information. Finally, the number of parameters of the network
is reduced due to the use of deep convolution versus point
convolution for feature extraction, making CSDP-YOLO require
less computational resources.

C. MPDIoU Loss Function

In the task of small-target detection in remote sensing images,
for the problem of serious regional imbalance between the small-
target ships and the background, the CIoU loss function used
leads to the problem of small loss and slow convergence of the
gradient of the network during the training process when the
aspect ratio of the preframe and the real frame is the same. We
introduce MPDIoU as the loss function of the penalty, which
can minimize the class-imbalance problem. CIoU is used as the
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Algorithm 2: Intersection Over Union With Minimum
Points Distance.

Input: Two arbitrary convex shapes:A,B ⊆ S ∈ R

Output: MPDIoU.
1: For A and B,(xA

1 , y
A
1 ), (x

A
2 , y

A
2 ) denote the

coordinates of the upper-left and lower-right points of
A, and (xB

1 , y
B
1 ), (xB

2 , y
B
2 ) denote the coordinates of

the upper-left and lower-right points of B.
2: d21 = (xB

1 − xA
1 )

2 + (yB1 − yA1 )
2,

d22 = (xB
2 − xA

2 )
2 + (yB2 − yA2 )

2

3: MPDIoU =A∩B
A∪B - d2

1

w2+h2 - d2
2

w2+h2

loss function of the penalty in YOLOv7 as follows:

CIoU = IoU − ρ2 (Bgt,Bprd)

C2
− αV (6)

V =
4

π2

(
arctan

wgt

hgt
− arctan

wprd

hprd

)2

(7)

where ρ2(Bgt,Bprd) is the Euclidean distance between the cen-
troids of the predicted bounding box and the groundtruth bound-
ing box, C is the area of the outer matrix covering the predicted
box and the groundtruth bounding box, α is a weight parameter,
and V is a similarity parameter measuring the aspect ratio [48].
However, when the predicted box and the groundtruth bounding
box have the same aspect ratio (e.g., Fig. 6), the value of
V of CIoU is 0 at this point, thus degenerating into DIoU,
and the loss function of the bounding box regression fails, at
which time the loss function cannot provide a good gradient
for the model, thus limiting the speed of model convergence
and detection accuracy. CIoU for the problem that the weight
parameters of the network are difficult to update effectively
when the neural network is updating the gradient. We make full
use of the geometrical characteristics of the horizontal rectangle
of the anchor box, and introduce the MPDIoU as the model’s
loss function for bounding box regression by minimizing the
distances of the upper left and lower right points between the
predicted bounding box and the groundtruth bounding box [12],
which takes into full consideration the existing loss function of
overlapping and nonoverlapping regions, height deviation, and
the distance between the centroids of the bounding box, and
simplifies the calculation process. The calculation of MPDIoU
is summarized in Algorithm 2.

The MPDIoU metric simplifies the similarity comparison
between predicted bounding boxes and groundtruth bounding
boxes, allowing regression with and without overlapping bound-
ing boxes. During training, the model’s predicted bounding box
Bprd = [xprd, yprd, wprd, hprd]T approximates the groundtruth
bounding box Bgt = [xgt, ygt, wgt, hgt]T by minimizing the loss
function, as in the following equation:

L = min
θ

∑
Bgt∈Bgt

L (Bgt,Bprd | θ) (8)

whereBgt is the set of bounding boxes,Bprd is the set of predicted
bounding boxes, θ is the regression parameter, and L is the ln
paradigm. Based on the previously mentioned Algorithm 1, we

Fig. 7. We introduce the parameters ofLMPDIoU with the computational factors
of the bounding box regression metrics.

define the loss function as follows:

LMPDIoU = 1− MPDIoU. (9)

Meanwhile, the parameters of bounding box regression can
be determined by four coordinates, the regression factors are
shown in Fig. 7, and the regression parameters are calculated in
the following equation:

|C| =
(

max
(
xgt
2 , x

prd
2

)
− min

(
xgt
1 , x

prd
1

))

×
(

max
(
ygt
2 , y

prd
2

)
− min

(
ygt
1 , y

prd
1

))
(10)

xgt
c =

xgt
1 + xgt

2

2
, ygt

c =
ygt
1 + ygt

2

2

xprd
c =

yprd
1 + yprd

2

2
, xprd

c =
xprd
1 + xprd

2

2
(11)

wgt = xgt
2 − xgt

1 , hgt = ygt
2 − ygt

1

wprd = xprd
2 − xprd

1 , hprd = yprd
2 − yprd

1 (12)

where |C| is the minimum outer join matrix between the bound-
ing box and the real box, and (xgt

c , y
gt
c ) and (xprd

c , yprd
c ) are the

center coordinates of the real box and the bounding box. wgt

denotes the width of the real box, and hgt denotes the height of
the real box. wprd denotes the width of the predicted bounding
box, and hprd denotes the height of the predicted bounding
box. We used MPDIoU parameters, as shown in Fig. 7. When
the predicted bounding box has the same aspect ratio as the
groundtruth bounding box, LMPDIoU has a lower value in the
case where the predicted box is contained in the groundtruth
bounding box. Hence, the introduction of MPDIoU ensures the
accuracy of the bounding box regression. Algorithm 3 for the
bounding loss box for both IoU and MPDIoU are as follows.

In Algorithm 3, Bgt denotes the matrix area of the bounding
box, then Agt > 0 as in Algorithm 3(d). We set the conditions
as Aprd ≥ 0 I ≥ 0 (predicted area and intersection area are
nonnegative), so for any state of the predicted bounding box
Bprd = (xprd

1 , yprd
1 , xprd

2 , yprd
2 ), the intersection area of the pre-

dicted box with the groundtruth bounding boxμ > 0, andμ > I
(the area of the concatenation is greater than the area of the inter-
section). Then, LMPDIoU is a bounded function. Thus, LMPDIoU is
a bounded function, and for any predicted box with IoU = 0 (the
predicted box does not overlap the groundtruth bounding box),
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Algorithm 3: IoU and MPDIoU as Bounding Box Losses.
Input: Predicted B_prd and ground truth B_gt bounding
box coordinates,width and height of input image:w,h.
where B_prd and B_gt are represented by B_prd =
[xprd

1 , yprd1 , xprd
2 , yprd2 ], B_gt = [xgt

1 , ygt1 , xgt
2 , ygt2 ]

Output: LIoU ,LMPDIoU

1: Determine the predicted bounding box(B_prd) and
ensure that xprd

2 > xprd
1 , yprd2 > yprd1

2: d21 = (xprd
1 − xgt

1 )2 + (yprd1 − ygt1 )2,
(xprd

2 − xgt
2 )2 + (yprd2 − ygt2 )2

3: Calculate the area of the groundtruth bounding box
and the predicted bounding box. Agt =
(xgt

2 − xgt
1 )× (ygt2 − ygt1 ), Aprd =

(xprd
2 − xprd

1 )× (yprd2 − yprd1 )
4: Calculate the intersecting area of the groundtruth

bounding box and the predicted bounding box I =
(min(xprd

2 , xgt
2 )−max(xprd

1 , xgt
1 ))×

(min(yprd2 , ygt2 )max(yprd1 , ygt1 ))
5: IoU = I

μ , μ = Agt +Aprd − I
6: L = 1 - IoU, LMPDIoU = 1 -

(
IoU − d2

1

h2+w2

− d2
2

h2+w2

)

for the loss of MPDIoU, we have LMPDIoU = 1− MPDIoU =

1 +
d2
1

d2 +
d2
2

d2 , at which point the process of minimizing LMPDIoU

is minimizing d2
1

d2 +
d2
2

d2 (the distance between the top-left corner
point of the bounding box and the bottom-right corner point).

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Datasets

The remote sensing dataset used in this study is derived
from the Hainan-1 satellite, originating from Hainan province,
China. This satellite has provided a wealth of remote sensing im-
agery for various maritime applications and ocean management,
thereby enabling dynamic ship detection. We sliced the original
remote sensing images into frames of 1024×1024 pixels. Due
to the potential difficulty of accurately observing small-target
ships with the naked eye, we carried out color depth changes on
the original images. Subsequently, based on AIS information,
we used labeling software to annotate the small-target ships,
ultimately yielding 3831 images. We found that many small-
target ships were hidden in complex backgrounds, exhibiting
conditions, such as trailing ship trajectories, crowding, cloud
cover, and proximity to the shore, among others (as shown in
Fig. 2). Concurrently, approximately 97% of the targets do not
exceed more than 0.15% of the image area. Because of this,
the detection of smaller object targets necessitates augmented
inference of both shallow and deep features. This dataset pushes
the difficulty of small-target detection to the extreme, which
fulfills the requirements of practical application scenarios. Fig. 2
illustrates several representative images. In the experiment, the
training set, test set, and validation set were divided at a ratio

TABLE I
EXPERIMENTAL SETTING

of 7:2:1, respectively, encompassing 5795, 837, and 1786 in-
stances. The image size input to the network is uniformly set to
640 × 640 pixels.

B. Experimental Setup

We implemented CSDP-YOLO on PyTorch 2.0.1 and trained
and tested using the integrated Matrox G200eW3 Graphics
Controller. During training and testing, the operating system
is Ubuntu. Specific details are given in Table I.

To ensure adequate neural network training, the batch size was
uniformly set to 16 with an initial learning rate of 0.01, carried
out over 300 rounds of training. The stochastic gradient descent
(SGD) optimizer was selected to minimize the MPDIoU loss.
During the training phase, partial pretrained models of YOLOv7
were not used. Although CSDP-YOLO and YOLOv7 share part
of the network architecture, their use for the detection of small-
target ships in remote sensing images may result in negative
transfer, that is, a decline in performance. Initial training from
scratch can avoid such circumstances as it prevents the model
from being restrained by previous training experiences.

C. Experimental Metrics

To demonstrate the advantages of CSDP-YOLO, we use
precision (P), recall (R), F1 score, average accuracy [mean
average precision (mAP)], mAP at 0.5 intersection over union
(mAP@0.5), and mAP@0.5:0.95 to evaluate the parameter
equations as follows:

precision(P ) =
TP

TP + FP
(13)

Recall(R) =
TP

TP + FN
(14)

APi =

∫ 1

0

Pi(Ri)d(Ri) (15)

mAP =
1

n

n∑
i=1

APi. (16)

In the above equations, TP is defined as samples correctly
identified in the positive class, FP is defined as samples incor-
rectly identified as the positive class in the negative class, FN
is defined as samples incorrectly identified as the negative class
in the positive class, and TN is defined as samples correctly
identified as the negative class in the negative class. Typically,
precision (P) refers to the proportion of true positives (TP)
among all samples predicted as the positive class, whereas recall
(R) refers to the proportion of true positives (TP) among all true
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TABLE II
RESULTS OF DIFFERENT METHODS

positives (actual targets) [51]. F1 is used to assess the model’s
precision and recall performance. mAP represents the average
value of AP and is used to measure the overall detection accuracy
of object detection algorithms. mAP@0.5 is used to quantify the
model’s average performance at different IoU thresholds [49].

D. Experimental Results and Analysis

We evaluated the CSDP-YOLO on an Integrated Matrox
G200eW3 Graphics Controller. To thoroughly validate the ef-
fectiveness of our proposed methodology, we compared our
network with the original YOLOv7, YOLOv7x, and a version
of YOLOv7 enhanced with an attention mechanism.

The attention mechanism is a deep learning technique inspired
by the human visual system, analogous to our inclination to focus
on specific areas while observing the world. This mechanism
allows computational models to focus on the most critical part
of the task at hand. This is achieved by allocating weights to
different inputs, thereby assigning higher weights to informa-
tion relevant to the task and downscaling information that is
irrelevant. Such a technique permits the model to better deal
with complicated data, reaping substantial advancements across
various applications. Wang et al. [42] proposed incorporating
a CBAM module into YOLOv5, enhancing the detection per-
formance of remote sensing image object detection. CBAM
is a convolutional neural network-based attention mechanism
module that introduces spatial attention and channel attention
mechanisms, assisting CNN models in better understanding
and utilizing the features of input data to enhance detection
performance. Zhu et al. [43] introduced the BiFormer attention
mechanism module, a dynamically sparse attention mechanism
that filters redundant information, retaining only the integral
parts of interest, greatly boosting the identification of small
targets. Both of these methods are highly representative algo-
rithms of the attention mechanism [49]. We introduced them into
YOLOv7 to explore their performance in detecting small-target
ships in remote sensing data [50], comparing them with the
improvements proposed in this article. The entire network is
illustrated in Fig. 4.

The detection results of various algorithms on the remote
sensing small-target ship dataset are shown in Tables II and
III, and Figs. 9 and 10 display comparison results of different
methods. Fig. 8 illustrates the mAP and recall curves of YOLOv7
and CSDP-YOLO, respectively. Fig. 10(a) and (b) represents the
detection results in near-shore ports and dense ship conditions,
respectively, while Fig. 10(c) and (d) shows the detection results
in the case of cloud cover and ocean waves, respectively. Since

TABLE III
NUMBER OF MISSES, TIME, AND MODEL PARAMETERS

Fig. 8. Training process for five different methods. (a) Precision curve.
(b) Recall curve.

Fig. 9. MPDIoU and CIoU loss function training process. (a) Bounding box
loss. (b) Overall loss.

Fig. 10. Detection results of different methods for different scenarios in our
early dataset. (a) Near-shore harbors. (b) Ship density and close proximity.
(c) Cloud cover. (d) Ocean waves.
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ships are the sole detection targets in the remote sensing dataset,
precise localization of ship targets has more value than target
classification. Compared with the original YOLOv7 network,
the ELAN aggregation network layer of YOLOv7X is wider than
the original ELAN layer, slightly enhancing detection accuracy
and recall. However, this introduces more computations that sig-
nificantly decrease FPS from 5.1 to 7.7 (as given in Table III), and
the model’s parameters increase from 141.8 to 270.1 M, which
makes it harder to deploy on terminal devices. BiFormer [43], a
dynamically sparse attention mechanism, filters most irrelevant
key–value pairs in coarse area features. This retains only a small
portion of the routing area, highlighting crucial information on
small targets and substantially improving ship feature extraction.
However, due to excessive focus on global information, many
ships are omitted (up to 167 ships) and the FPS is notably
affected [e.g., ships are not detected under circumstances of
cloud and fog obstructions and proximity of ships, as shown
in Fig. 10(c) and (b), respectively]. The CBAM model, which
emphasizes important spatial information features, still does not
improve false detection and omission in complex environments
[as in Fig. 10(d), where ship omission occurs in a crowded port].

On the other hand, CSDP-YOLO significantly reduces ship
omission (as given in Table III), and the parameter quantity of
CSDP is less than that of the original YOLOv7 network, reach-
ing 140.4 M, effectively reducing the required computational
resources. Moreover, the class-imbalance problem between the
background and foreground of small-target ships was solved
through the CSDP layer in the backbone network and the MP-
DIoU loss function, maintaining stable detection performance
under adverse weather or complex maritime conditions (as seen
in Fig. 10). In comparison to YOLOv7, accuracy is improved
by 8.6%, and recall rate by 11%. Among the detection tests on
the test set (inclusive of 837 instances), CSDP-YOLO has the
least omissions and no significant damage to the FPS, which is
as high as 5.5.

Furthermore, Fig. 10 illustrates the mAP and recall curves of
YOLOv7 and CSDP-YOLO. The comparison chart shows that
the proposed CSDP-YOLO outperforms YOLOv7 in terms of
average detection accuracy and recall rate. This indicates that
the overall ability of CSDP-YOLO to recognize small-target
ships in complex environments surpasses that of YOLOv7. Fig. 9
presents a comparison of boundary loss and overall loss between
the proposed model and YOLOv7. Our proposed model uses
MPDIoU, the boundary loss and overall loss of which are lower
than YOLOv7’s CIoU. The model that utilizes the MPDIoU loss
function predicts frames more accurately.

E. Ablation Experiments

In this research, some high-aggregation network layers
(ELAN) in YOLOv7 are replaced with the proposed CSDP
network layer (as shown in Fig. 4). To assess the effectiveness
of the proposed CSDP network and the introduced MPDIoU
loss function, we independently examined each replacement
of the CSDP module in the backbone network of YOLOv7,
focusing on AP values as well as recalls. The results of the
ablation experiments are given in Table IV. The ELAN network

TABLE IV
ABLATION STUDY OF SMALL TARGET DETECTION TASK IN REMOTE

SENSING IMAGES

TABLE V
EXPERIMENTAL RESULTS OF DIFFERENT METHODS ON THE SSDD DATASET

aggregation layer proposed in the original YOLOv7 did not
deliver ideal detection results for small-target ships; however,
our proposed CSDP network layer addresses the problem of
information loss during the multiple feature extraction processes
of small targets. This is achieved by using a mix of large kernel
depth convolution and point convolution to blend channel and
spatial position, which more accurately captures the details of
small target ships. From the ablation experiment, we discov-
ered that the model’s performance was optimized when two of
YOLOv7’s ELAN aggregation network layers were replaced
with the proposed CSDP layers in YOLOv7’s backbone net-
work. Consequently, the model’s average detection accuracy
reached 91.4%, and the recall rate amounted to 86.6%. This
suggests that the introduction of the CSDP module has enhanced
the feature extraction capability of neural networks and reduced
instances of false detection and omission. Lastly, the application
of the MPDIoU loss function significantly improved the recall
rate of the neural network, reaching 83% without the addition
of the CSDP module. As the MPDIoU adequately considers the
geometric properties of bounding box regression, minimizing
the distances between the top left corner vertices and bottom
right corner vertices of the predicted and actual bounding boxes,
it ultimately outperforms the original YOLOv7’s CIoU loss
function.

F. Generalizability Verification

To evaluate the generalizability of the proposed CSDP-YOLO
model, we used the publicly available SSDD remote sensing
dataset for ship detection. We compared the mainstream remote
sensing ship detection models, namely, Faster RCNN, SSD,
FCOS, YOLOv3, and YOLOv7, with the proposed CSDP-
YOLO model under the same environment and conditions. The
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experimental results are given in Table V. The experiment re-
sults demonstrate that the CSDP-YOLO detection accuracy and
recall rate have, respectively, improved to 93.6% and 93.7%,
securing the best detection performance. The CSDP network
layer mixes the spatial information of small-target ships by
applying convolution to each input channel in groups, setting
the number of groups equal to the number of input channels.
Finally, point convolution is used to mix the features of each
output channel, allowing the network to pay more attention to
the finer details of small-target ships and reducing interference
from irrelevant information in remote sensing images, such as
islands and lighthouses.

G. Discussions

The results in Tables II and III give that in the detection
task of our proposed dataset, our proposed CSDP-YOLO ap-
proach to target detection outperforms other existing algorithms
when compared with the detection performance using only the
YOLOv7 algorithm, and as can be seen from the detection
results in Fig. 10, the CSDP-YOLO algorithm achieves accurate
detection for the case of ships nearby and cloud occlusion, which
are better than the other algorithms. The results in Table V give
that CSDP-YOLO still outperforms other existing algorithms
in the SSDD public dataset. Tables II and III give that the
target detection network proposed in this article can still miss
or misdetect the detection of small targets. On the one hand, the
dataset may have fewer remote sensing images for certain com-
plex backgrounds (e.g., mariculture nets, ship trailing), which
leads to the model learning less information from these complex
backgrounds during the training process. On the other hand, the
pixels of some small-target ships in the dataset presented in
this article are too small, pushing the difficulty of small-target
detection to the extreme, which means that the model inevitably
loses feature information during the training process.

Considering the different traveling volumes of ships in the
South China Sea region in different seasons, bad weather may
cause the remote sensing images taken by the satellite to be
not clear enough. The experimental images are selected in the
harbor as well as the principle Hainan land marine conditions,
and the harbor in and out of a large number of ships, for the
effective detection of ships close to each other, can prevent the
ship hitchhiking to carry out smuggling activities, see Fig. 10(b).
And for far away from the land of Hainan Province marine
territory, see Fig. 10(c) and (d), the sea situation is sudden and
changeable, so the detection of ships in poor conditions can
effectively ensure the safety of the ship, and the emergence of
accidents can be realized accurately locate and quickly out of
the police.

The use of deep learning technology to detect small-target
ships can, on the one hand, greatly improve the accuracy of
detecting ships under adverse conditions and reduce the false
alarms of marine safety systems. On the other hand, introducing
deep technology is conducive to constructing a new model of
modern intelligent detection of ships. From the point of view
of maintaining marine safety, in a situation where many ships

are entering and leaving the port and the degree of density a
large, efficient, and scientific analysis of the ship’s situation can
reduce the investment of marine traffic management resources.
At the same time, it can reduce the human subjective judgment
and the false alarm rate of marine safety brought afterward. This
innovative style has an important role in promoting efficient ship
detection, rational allocation of marine traffic management re-
sources, and realizing intelligent management of marine traffic,
and can provide favorable technical support for the policy of
marine ship management.

V. CONCLUSION

In this article, we construct a new dataset of remotely sensed
ship images containing 3881 remotely sensed images in complex
situations, such as harbors, cloud occlusion, ships close by,
farmed nets, and so on, with at least one instance of small
target ships in each remotely sensed image, and this dataset
kind of contains 8418 instances. In addition, we propose a
CSDP network layer based on the ELAN high-aggregation
network layer for small-target ships in the problem of unsat-
isfactory feature extraction, especially in the case of harbors,
dense ships, proximity, and cloud cover, and use a large kernel
deep convolution to mix the spatial and channel positions of
the small-target ships to capture a wider range of contextual
information without downsampling the continuous layer, even in
the case of complex environments. The proposed model remains
valid for small-target ships even in complex environments. In our
proposed private dataset, studies comparing multiple advanced
detection models (YOLOV7, YOLOv7-X, BiFormer-YOLOv7,
and CBAM-YOLOv7) are compared. The experimental results
show that the proposed CSDP-YOLO algorithm can effectively
improve the average precision, recall, and AP50 of detecting
small ship data to 90.1%, 86.6%, and 91.4%, respectively.

Small-target ships occupy few pixels in complex environ-
ments and for the problem of imbalance between foreground
and background categories of small target ships. The MPDIoU
loss function can still be optimized when the predicted box
has the same aspect ratio as the groundtruth bounding box and
achieves a more efficient and precise bounding box regression
by minimizing the distance between the predicted upper left
point and the lower right point. We compare the bounding box
losses of CIoU and MPDIoU, and the experimental results show
that the trained MPDIoU bounding box loss is lower than that of
CIoU, indicating that MPDIoU motivates the model to predicted
bounding boxes more accurately.

Finally, to verify the generalization of our proposed model,
we do 300 rounds of training on the SSDD remote sensing
dataset under the same conditions as before, while comparing
a variety of models commonly used for remote sensing ship
detection (Faster R-CNN, SSD, FCOS, YOLOv3, YOLOv5s,
and YOLOv7), and the experimental results show that our pro-
posed model detects the indicators are optimal, and the average
precision, recall, and AP50 of detection are improved to 93.6%,
93.7%, and 96.8%, respectively. In future research, we will
continue to explore the application of deep learning on our



FAN et al.: SMALL-SHIP OBJECT DETECTION METHOD FOR SATELLITE REMOTE SENSING DATA 11897

proposed remote sensing dataset and further expand the remote
sensing dataset, and we will investigate the lightweight of the
model and its deployment on end devices.
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