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Exploring the Potential of Reconstructed
Multispectral Images for Urban Tree
Segmentation in Street View Images
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Abstract—Deep learning has gained popularity in recent years
for reconstructing hyperspectral and multispectral images, offer-
ing cost-effective solutions and promising results. Research on hy-
perspectral image reconstruction feeds deep learning models with
images at specific wavelengths and outputs images in other spectral
bands. Although encouraging results of previous works, it should
be determined to what extent the reconstructed information can
lead to an advantage over the captured images. In this context, the
present work inspects whether or not reconstructed spectral images
add relevant information to segmentation networks for improving
urban tree identification. Specifically, we generate red-edge (ReD)
and near-infrared (NIR) images from RGB images using a condi-
tional Generative Adversarial Network (cGAN). The training and
validation are carried out with 5770 multispectral images obtained
after a custom data augmentation process using an urban hyper-
spectral dataset. The testing outcomes reveal that ReD and NIR can
be generated with an average structural similarity index measure of
0.93 and 0.88, respectively. Next, the cGAN generates ReD and NIR
information of two RGB-based urban tree datasets (i.e., Jekyll, 3949
samples, and Arbocensus, 317 samples). Subsequently, DeepLabV3
and SegFormer segmentation networks are trained, validated, and
tested using RGB, RGB+ReD, and RGB+NIR images from Jekyll
and Arbocensus datasets. The experiments show that reconstructed
multispectral images might not add information to segmentation
networks that enhance their performance. Specifically, the p-values
from a T-test show no significant difference between the perfor-
mance of segmentation networks.

Index Terms—Image to image translation, multispectral
features, neural networks, semantic segmentation, urban trees.
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I. INTRODUCTION

HYPERSPECTRAL and multispectral images are remotely
sensed data that retrieve spatial and spectral knowledge in

different electromagnetic spectrum bands. This information is
commonly captured by passive sensors that capture the energy
that is reflected or emitted by objects and can be used to improve
the recognition and characterization of objects [1]. For instance,
hyperspectral images, rich data cubes, have been widely used
to detect and recognize objects (e.g., buildings and highways)
and land covers [2], [3]. Furthermore, the reflectance captured
by hyperspectral/multispectral cameras can be used to charac-
terize vegetation, identify tree species, and infer water stress,
among other tasks [4], [5], [6]. Therefore, spectral information
is valuable for boosting the description of objects or regions of
interest.

Although the advantages that hyperspectral/multispectral im-
ages can yield, they are not always accessible. Spectral infor-
mation is retrieved by specialized sensors, which are high-cost
due to their manufacturing technology. Further, different mul-
tispectral camera manufacturers have different preferences for
central wavelengths and bandwidth, deriving different spectral
reflectance values for the same vegetation [7]. Since the restric-
tions that hardware availability can impose on capturing spectral
data, researchers have addressed the lack of it by software
strategies. In particular, deep learning models have become an
essential tool for inferring the object’s spectral reflectance [8],
[9], [10], [11], [12]. In recent years, the reconstruction of hy-
perspectral/multispectral images has been encouraged by the
new trends in image restoration and enhancement competi-
tions [13], [14]. Since the promising outcomes reported in these
events, recent works have pushed forward deep learning strate-
gies for multispectral reconstruction. For instance, Aslahishahri
et al. [12] showed that a conditional generative adversarial
network (cGAN) can be used for predicting near-infrared (NIR)
images from RGB images with a structural similarity index
measure (SSIM) of 92.28%. Furthermore, Deng et al. [8] has
proposed a multispectral to hyperspectral network for determin-
ing hyperspectral images within a more comprehensive spectral
range (380–2500 nm). The hyperspectral images can be esti-
mated with a root mean squared error between 0.010 and 0.016
[8]. The works mentioned before support the idea that deep
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Fig. 1. Tree segmentation challenges. Tree of interest in enclosed by cyan
lines. Unwanted objects that might affect tree segmentation are shown by
magenta regions. (a) Occluded tree. (b) Combined crowns. (c) Complex back-
ground.

learning approaches can predict reliable spectral knowledge,
which could be further exploited.

The generarion of hyperspectral images through GAN mod-
els have been crucial for classification task where there exist
few training samples [15], [16], [17], [18], [19]. In particular,
Alipour-Fard and Arefi [15] proposed a GAN for generating
virtual training samples of hyperspectral images such that the
identification of objects is improved. Specifically, a semisuper-
vised framework extracts spectral features using a custom GAN
for hyperspectral image classification. Further, GAN can also be
used to address target and anomaly detection on hyperspectral
images [18], [20], [21]. Regarding anomalies, GANs cannot
effectively reconstruct the spectral information of them; thus,
anomalies can be identified in areas where significant restora-
tion errors exist [18]. Therefore, generative models can yield
substantial spectral information to enhance the identification of
objects and areas of interest.

Despite the works mentioned before supporting the applica-
tion of generative networks, challenges remain and should be
explored and addressed [15], [19], [21]. In particular, most of the
previous works take advantage of generative models for boosting
the detection of artificial objects from aerial perspectives, leav-
ing aside the identification of individual trees or specific vegeta-
tion features from other perspectives rather than aerials. Based
on the literature review, just one work explores the application of
deep learning-generated spectral information for describing veg-
etation [7]. Specifically, the authors focused on characterizing
the vegetation using the normalized difference vegetation index
and normalized difference red-edge (ReD) index generated by a
GAN network. Note that vegetation characterization is carried
out using aerial images and detection tasks are not performed.

Since the works regarding tree and vegetation identifica-
tion (e.g., semantic segmentation and classification) using deep
learning-generated spectral images are still scarce, the current
work explores whether GAN models can yield spectral informa-
tion that improves the semantic segmentation of trees. The iden-
tification of trees is performed in urban scenes using street-view
images. In particular, we are interested in urban trees because
of their valuable ecosystem services (e.g., carbon capture) and
the remaining segmentation challenges [22].

Pixel-wise identification of trees from street-view images is
still arduous because of the inherent challenges to urban environ-
ments (e.g., tree occlusion and complex background); see Fig. 1.
Specifically, most of the artificial intelligence-based strategies

for the automatic identification of urban trees retrieve primary
information by enclosing trees with bounding boxes [23], [24],
[25], [26], [27], [28], [29]. Few works that address urban tree
segmentation by neural networks perform fine segmentation
of tree components, such as trunk and crown [22], [25], [27].
However, reliable segmentation of individual trees is achieved
on ideal tree images (the tree is detectable without occlusion or
overlapped by obstacles or other trees) [22].

In this context, the current work assesses whether or not recon-
structed multispectral images at the NIR and ReD bands improve
the segmentation of urban trees. In particular, we hypothesize
that the knowledge retrieved by ReD and NIR regions might
not be decoded by deep learning algorithms, which are trained
solely with RGB images. Thus, feeding synthesized multispec-
tral knowledge into segmentation networks might improve the
identification of urban trees. The multispectral images at NIR
and ReD regions are generated by a cGAN network known as
Pix2Pix [30]. Two generative networks were trained for retriev-
ing NIR and ReD images from RGB images, respectively. The
cGAN models are trained, validated, and tested using the HSIC-
ityV2 dataset [31]. Next, cGAN-trained models are employed
for generating multispectral images of urban tree datasets. The
RGB and reconstructed multispectral images are concatenated
to retrieve four-channel urban tree datasets, which are used for
training, validating, and testing two neural network segmenta-
tion networks (i.e., DeepLabV3 [32] and SegFormer [33]). The
strategy is validated by comparing the performance of segmen-
tation networks trained with four-channel images and networks
solely with RGB images. The experiments show no significant
differences in segmentation performance can be achieved by
reconstructing multispectral information.

The main contributions of the current work can be listed as
follows.

1) We provide a comprehensive analysis of the impact of
reconstructed multispectral information for pixel-wise ur-
ban tree identification in street-view images. Our findings
challenge the notion that more spectral data should leads
to better segmentation, offering critical insights into the
actual value of reconstructed multispectral images in ur-
ban scenarios.

2) Assessment of the semantic segmentation networks
(DeepLabV3 and SegFormer) when reconstructed mul-
tispectral images in ReD and NIR bands are used as addi-
tional sources of information alongside RGB images. We
not only test the performance of these networks in a new
context but also provide sharp perspectives regarding data
configuration for tree identification in urban scenarios.

3) The evaluation of cGANs for reconstructing NIR and ReD
channels from urban street-view RGB images. Through
rigorous training and validation processes with an ex-
tensive dataset, we establish clear benchmarks for the
expected reconstruction quality and its applicability in
broader urban analysis.

The rest of this article is organized as follows. Description of
publicly available and custom datasets and evaluation methodol-
ogy are presented in Sections II and III, respectively. Section IV
shows quantitative and quantitative results of the assessment.
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Fig. 2. Multispectral dataset generation based on the HSICityV2 dataset [31],
[34].

Discussions of the results are detailed in Section V. Finally,
Section VI concludes this article.

II. DATA ACQUISITION

To answer our researh questions we employed one multispec-
tral and two RGB-based urban tree datasets. The multispectral
dataset are used to train, validate, and test the cGAN multispec-
tral reconstruction models. On the other side, the RGB-based
datasets allow to fine-tune the urban tree segmentation models.
Further details about each datasets are as follows.

A. Hyperspectral City Dataset (HSICityV2)

The HSICityV2 published by the authors in [31] and [34] is
an urban dataset collected in Shanghai at different light condi-
tions using the LightGene Hypespectral sensor. This dataset is
conformed by 1329 RGB images and hypercubes, where each
one has 128 channels with in a spectrum range 450–950 nm and
spectral resolution of 4 nm.

Based on the hypercubes, we determined a multispectral
dataset. Specifically, the ReD and NIR multispectral images
are determined by a weighted average of the hyperspectral
images within the ReD (705–745 nm) and NIR (760–900 nm)
regions [35], [36]. The weights are computed as a normal dis-
tribution with mean μ and standard deviation σ. It is essential
to highlight that μ represents a central wavelength, which is
computed randomly. This strategy is also used to generate new
RGB images and simulate different sensors’ spectral response.
The blue, green, and red regions wavelengths are defined as
follows 450–510, 530–590, and 640–670 nm, respectively. In
this sense, we get a multispectral dataset that comprises more
than five thousand RGB, ReD, and NIR images with different
central wavelengths. The multispectral dataset is then divided
into three subsets for ReD and NIR regions, training (5270),
validation (500), and testing (880) datasets. These datasets were
created by random selection of samples. Fig. 2 shows a general
pipeline for generating these datasets.

Fig. 3. Urban tree samples from the Jekyll dataset. Each RGB image’s binary
mask is displayed at its right.

Fig. 4. Urban tree samples from the Arbocensus dataset. Each RGB image’s
binary mask is displayed at its right.

B. Urban Tree Dataset

1) Jekyll: Dataset is a comprehensive tree dataset of urban
street view images covering over three thousand images of 22
tree species [37]. Specifically, this dataset is built by high-
resolution images acquired with mobile devices in China’s ten
cities in spring, summer, fall, and winter; further information
about data collection can be found in [37]. It is important to
highlight that tree pixel-wise labeling was performed by a team
of professional image annotators using LabelMe software [38].
The Jekyll dataset samples are grouped in three subsets of
3168, 395, and 386 samples for training, validation, and testing,
respectively. Note that these sets are not divided randomly to
guarantee tree species balance [37]. Jekyll dataset samples are
shown in Fig. 3

2) Arbocensus: This is a custom dataset composed by RGB
images that are captured by volunteers using smartphones. The
volunteers (citizen scientists) capture about 3000 images of 100
species. The urban trees were mapped from Las Condes, and
La Reina communes under the project Arbocensus in Santiago
metropolitan region, Chile. Image labeling process was per-
formed by Supervisely software [39] using polygons to outline
individual objects. The arbocensus dataset generation is shown
in Fig. 4. A total of 317 images were annotated and splited
in 253, 32, and 32 subsets for training, evaluating, and testing
segmentation algorithms, correspondingly. Samples for creating
each set are selected randomly.

III. METHODOLOGY

Once the multispectral and urban tree datasets are generated,
they are used to determine the cGAN multispectral reconstruc-
tion and urban tree segmentation models. Specifically, the cGAN
model uses the multispectral dataset for learning a mapping from
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Fig. 5. General scheme of the proposed methodology for evaluating reconstructed ReD and NIR images in urban tree segmentation context.

RGB images to multispectral images in an urban environment.
Next, the trained and validated cGAN model estimates the ReD
and NIR spectral reflectance from the Jekyll and Arbocensus
RGB images. In this sense, two new reconstructed multispectral
datasets are generated for fine-tuning urban tree segmentation
models. The outcomes achieved by the multispectral fine-tuned
segmentation models are compared against RGB fine-tuned
tree segmentation (baseline) models. The overall procedure is
depicted in Fig. 5 It is essential to highlight that deep neural
networks (segmentation models) are pre-trained with two urban
datasets (ADE20k [40] and CityScapes [41]), which include
urban vegetation instances.

A. ReD and NIR Reconstruction

Multispectral images are reconstructed by exploiting the po-
tential of generative adversarial networks for mapping a pixel
from a source image to a target image [30]. The outputs of a
generator and discriminator achieve this mapping—the former
attempt to produce an image similar to the target image. Next, the
discriminator classifies the generated image as real or generated.
The generation and discrimination process continues until the

discriminator can not distinguish the real from the generated
image [42]. Note that in cGAN, the generator and discriminator
stages are conditioned on the source images. Therefore, in our
case, the cGAN learns to reconstruct (generate) ReD and NIR
images from the information retrieved by an RGB image. A
general description of cGAN network is presented in Fig. 5.

1) Generator: Attempts to output a realistic multispectral
image based on the RGB available information. Since the source
and generated images represents the same objects, spatial details
have to be kept; thus, an encoder–decoder network with skip
connections is used as generator. This network is constructed
by eight downsampling and upsampling blocks on the encoder
and decoder sections. Specifically, each downsampling block
performs a 2-D convolution, leaky linear rectification, and batch
normalization. Conversely, each decoder block is composed of
2-D transposed convolution, batch normalization, and rectified
linear unit layers. It is essential to highlight that skip connections
are added between the i and n− i layers.

2) Discriminator: Evaluates if the generator output image
can be labeled as natural or generated. To perform the classifica-
tion process, the discriminator classifies 70 × 70 pixels patches
and averages all the individual patch outcomes to classify the
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image as real or generated. This procedure is performed by a
Markovian discriminator, which can model the image as Markov
random field. Note that pixels separated by more than a patch
diameter are assumed to be independent.

In the current work, the implementation of generator and
discriminator is achieved by following the guidelines exposed
in [30] and [43]. Further details about generative adversarial
networks can be found in [42].

B. RGB Segmentation Models

The pixel-wise identification is performed by two state-of-
the-art semantic segmentation deep networks implemented in a
PyTorch open-source toolbox MMSegmentation [44].

1) DeepLabV3: Is a deep convolutional neural network that
exploits the potential of atrous convolution for improving its
performance in semantic image segmentation tasks [32].

2) SegFormer: Is a semantic segmentation deep network that
unifies transformers with lightweight multilayer perceptron de-
coders, which avoids complex decoders [33].

In particular, we select the DeepLabV3 with R-50-D8 back-
bone and SegFormer with MIT-B0 backbone from the MMSeg-
mentation model zoo. These networks are chosen because of
their performance in tree identification task ([25], [45]) and light
computational requirements and acceptable mean intersection
over union on ADE20k [40], and Cityscapes [41] datasets; see
Benchmark and model zoo [44]. The former is a densely anno-
tated dataset, which includes scenes, objects, parts of objects,
and parts of parts pixel-wise annotations for scene understand-
ing. We are interested in this dataset because it has more than
10 000 annotated instances of trees, buildings, persons, and
walls [40]. The CityScapes dataset is a large-scale dataset of
street scenes from 50 cities with fine and coarse pixel-label
annotations. Specifically, it has more than 108 pixels finely
annotated of nature (i.e., vegetation and terrain) [41]. Therefore,
the DeepLabV3 and SegFormer networks pretrained on the
datasets above should be capable of identifying trees. We used
the segmentation models pretrained on the before-mentioned
datasets in the present research. The pretrained models are
publicly available in [44].

C. ReD/NIR Segmentation Models

Once the ReD and NIR reconstruction models are tested,
they generate ReD and NIR new datasets using each urban tree
dataset (see Section II-B). Using these new datasets DeepLabV3
and SegFormer models pretrained on ADE20 k and CityScapes
dataset are fine-tuned with the new multispectral datasets. It is
important to highlight that ReD and NIR channels are directly
fed to segmentation networks; thus, the input layer of each net-
work is modified to be capable of getting a four-channel image.
This strategy, increasing the channels of the input layer, has been
implemented by a previous work, which proposes a multispectral
segmentation network and evaluates RGB-based segmentation
models implemented on the MMSegmentation framework [46].
In contrast to [46], we use pretrained parameters as initial
guesses. The pretrained parameters are the ones obtained using
ADE20 k and Cityscapes datasets.

TABLE I
QUANTITATIVE METRICS FOR EVALUATING THE PERFORMANCE OF CRF

Fig. 6. Multispectral dataset generated from the HSICityV2 hyperspectral
dataset. Dataset generation is described on Section II-A.

D. Training and Validation

1) ReD and NIR Reconstructions: These models are deter-
mined by training, validating, and testing the cGAN using the
multispectral dataset described in Section II-A. In particular,
one model is generated for ReD reconstruction and the other
for NIR reconstruction, as described in Fig. 5. Note that both
reconstruction models are trained from scratch using a batch size
of one and 3000 epochs. We set up batch size to one according to
the optimization and inference configurations followed by [43].
Specifically, Zhu et al. [43] suggested setting the batch size to
one and performing batch normalization because of its benefits
for image generation tasks. The performance of these models is
evaluated using the SSIM, Pearson product-moment correlation
coefficients (R), and peak signal to noise ration (PSNR), between
natural and generated images. These metrics are computed by
the python image processing toolbox (Scikit-image) [47]. The
multispectral assessment is performed using testing samples not
seen in the training or validation stages.

2) Segmentation Models: Using urban tree datasets, we took
advantage of the transfer learning procedure for training, validat-
ing, and fine-tuning RGB segmentation models. These models
are used as a segmentation baseline to further evaluate the
performance of ReD/NIR segmentation networks. In both RGB
and multispectral segmentation cases, the networks are trained
and validated with Jekyll and Arbocensus urban tree samples;
see Section II-B. The fine-tuning description of segmentation
models is illustrated in Fig. 5. Note that these models were
trained and validated using MMSegmentation framework de-
fault parameters. Specifically, DeepLabV3 is trained with 80
thousand and SegFormer with 160 thousand iterations with a
batch size of one. After training and validating segmentation
models, we evaluate them using IoU, precision (P), and recall
(R) quantitative metrics detailed in Table I and testing sets with
samples that have not been seen in previous stages.

IV. RESULTS

Fig. 6 shows samples of the generated multispectral dataset
using the HSICityV2 hyperspectral dataset. Four RGB and
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TABLE II
SSIM, PSNR, AND R OUTCOMES FOR RED AND NIR RECONSTRUCTED

IMAGES USING MULTISPECTRAL DATASET

Fig. 7. Best ReD reconstructed images obtained by the cGAN model. The last
row shows the current (black solid line) and reconstructed (magenta solid line)
image histograms. The SSIM value is shown in the histogram figure.

five multispectral images with random central wavelengths are
generated to simulate different sensors’ spectral responses and
light conditions for the same environment. The remaining RGB
images are available with HSICityV2 dataset. Fig. 6 shows
three different urban locations with two RGB and multispectral
augmented instances.

A. ReD and NIR Reconstruction

The cGAN was implemented, trained and validated using
PyTorch framework following guidelines presented by Isola
et al. [30]. The training and validation of the reconstruction mod-
els take four days for each model (ReD and NIR reconstruction
models). However, the inference of multispectral images takes
about one second per image. Quantitative outcomes about the
performance of multispectral reconstruction models are shown
in Table II. Figs. 7–10 show the best and worst multispectral re-
constructed images using the HSICityV2 original RGB images.

The cGAN shows an acceptable reconstruction performance
of Red and NIR images; see Table II. For instance, the average
SSIM is 0.93 and 0.88 for ReD and NIR channels, respectively.
Both SSIM values are within the range reported by previous
works, 0.799–0.936, [7], [9], [12]. Moreover, the average PSNR

Fig. 8. Worst ReD reconstructed images obtained by the cGAN model. The
last row shows the current (black solid line) and reconstructed (magenta solid
line) image histograms. The SSIM value is shown in the histogram figure.

Fig. 9. Best NIR reconstructed images obtained by the cGAN model. The last
row shows the current (black solid line) and reconstructed (magenta solid line)
image histograms. The SSIM value is shown in the histogram figure.

Fig. 10. Worst NIR reconstructed images obtained by the cGAN model. The
last row shows the current (black solid line) and reconstructed (magenta solid
line) image histograms. The SSIM value is shown in the histogram figure.
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Fig. 11. Jekyll and Arbocensus Multispectral dataset generated using the
cGAN trained with the multispectral dataset described in Section II-A. (a) Jekyll.
(b) Arbocensus.

values for ReD and NIR images are 30.8 and 28.5 dB, cor-
respondingly. These values also support that the trained and
validated cGAN models are appropriate for reconstructing mul-
tispectral data. Specifically, PSNR values between 30 and 50 dB
are considered satisfactory; higher values are better [48]. Note
that PSNR below 20 dB might not be considered desirable. In
our case, most PSNR values for ReD and NIR images are over
20 dB. Thus, reconstructed images can be viewed as acceptable
representations of actual multispectral images in the context of
the PSNR metric. Finally, the R values are above 0.9, reveal-
ing that the natural and generated multispectral images have a
solid linear relationship. Therefore, the quantitative outcomes
advocate applying cGAN models for generating multispectral
images based on RGB data.

On the other side, qualitative results shown in Figs. 7–10 allow
to realize that lousy lighting conditions affect the multispectral
reconstruction of ReD and NIR bands. Specifically, Figs. 8 and
10 indicate that in low illumination conditions, the sensor Light-
Gene Hyperspectral might not retrieve adequate ReD and NIR
information, the images captured in these regions are very dark.
Conversely, the cGAN model generates multispectral images
in low illumination, as the illumination conditions might be
sufficient. The histogram comparison between the actual and
generated multispectral images shows the pixels’ value offset
of the generated image; see the last row on Figs. 8 and 10. We
consider that cGAN models’ response in different illumination
conditions should be further investigated. However, urban tree
images are expected to be captured in adequate light conditions.
In addition, the deep analysis of cGAN outcomes is out of the
scope of the current works.

Based on the quantitative and qualitative performance of
the multispectral reconstruction models, both of them (ReD
and NIR cGAN models) are considered suitable for generating
multispectral information of Jekyll and Arbocensus datasets.
The Jekyll and Arbocensus generated multispectral information
is described in Fig. 11.

TABLE III
QUANTITATIVE METRIC VALUES FOR SEGMENTATION MODELS TRAINED WITH

JEKYLL AND ARBOCENSUS DATASET

TABLE IV
P-VALUE FROM T-TEST FOR EVALUATING MEAN DIFFERENCE OF IOU METRIC

VALUES

B. Segmentation Models

The performance of segmentation models trained and
validated with Jekyll and Arbocensus datasets are shown in
Table III. On average, the DeepLabV3 and SegFormer models’
segmentation network training and validation take 3 h and
30 min, respectively. Note that each model’s inference takes
less than a second. The RGB segmentation outcomes are used
to evaluate whether reconstructed multispectral images add
relevant information to improve urban tree segmentation. In
general, the quantitative outcomes shown in Table III indicate
that the segmentation networks (DeepLabV3, SegFormer) yield
similar average metrics values (IoU, P, R) even if they are
trained with predicted multispectral images. In particular, there
is no significant difference between the outcomes retrieved
by segmentation networks trained with RGB, RGB+ReD, or
RGB+NIR; see p-values from the t-student test in Table IV. It is
essential to highlight that for the SegFormer network pretrained
with DeepLabV3 and fine-tuned using Jekyll RGB+NIR, the
null hypothesis is rejected when compared with the same
model fine-tuned solely by RGB images. However, in this case,
the RGB+NIR segmentation model performs worse than the
segmentation model solely trained with RGB images.

Since segmentation networks perform similar outcomes, we
selected the SegFormer network for executing new experiments
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TABLE V
QUANTITATIVE METRIC VALUES FOR SEGFORMER NETWORK TRAINED USING

JEKYLL AND ARBOCENSUS DATASET

Fig. 12. Worst qualitative outcomes of segmentation networks. The cyan area
represents the true positive pixels, magenta regions are false positive pixels, and
yellow are false negative sections. Note that white solid line represent the ground
truth boundaries.

because it is less expensive computationally. Specifically, we de-
termined new segmentation models without a pretraining dataset
(ADE20 k, Cityscapes). Table V shows quantitative metrics for
the SegFormer network. Based on Table V, one can be aware
that, using a pretraining dataset, one can expect better IoU
metrics than not using a pretraining set. However, similar IoU, P,
and R metric values are obtained with or without the information
of reconstructed ReD and NIR images.

In general, the multispectral images generated by cGAN seem
not to add information to segmentation networks to improve
the identification of individual urban trees. Fig. 12 shows the
worst qualitative outcomes for RGB and multispectral-based
segmentation models. The worst outcomes are segmentation
outputs with an IoU value within the first IoU quartil. Note
that with or without multispectral information segmentation
models do not overcome individual tree segmentation challenges
(occluded trees, combined crowns, and complex background).
Specifically, all networks fail to segment individual urban trees

finely. In this sense, further experiments and studies are required
to boost pixel-wise identification of urban trees.

V. DISCUSSION

Similar to previous works, quantitative metrics, Table II,
shows that cGAN models can be used for generating ReD and
NIR images [8], [9], [10], [11], [12]. In particular, the SSIM for
ReD and NIR channels is 0.93 and 0.88, respectively. Further, the
average values of PSNR and R metrics advocate the potential of
the implemented cGAN for retrieving multispectral information.
It is essential to highlight that the best reconstruction outcomes
could be achieved at adequate environment illumination as
shown in Figs. 7 and 10. Note that the pixel distribution of
actual and reconstructed images depict similar waveforms,
supporting the cGAN reconstruction of multispectral images.

Although the encouraging multispectral reconstruction out-
comes, it should be highlighted that inadequate illumination
affects the generation of reliable images. Figs. 8 and 10 show
urban images at low environmental light. In most cases, ReD and
NIR images captured in bad lighting are very dark, which does
not allow to discriminate the image’s object visually. However,
the guess about poor results on inadequate illumination might
be sound because the last column in Figs. 7 and 10. The former
shows an image with bad lighting, which ReD reconstructed
channel yields an SSIM value of 0.949. The latter illustrates an
image with good illumination, in which the NIR reconstructed
channel outputs an SSIM value of 0.539. The lack of multispec-
tral samples captured by different sensors hinders a deep analysis
of these outliers. Nevertheless, further studies are encouraged
to investigate multispectral reconstruction at low illumination
conditions.

Previous works that address multispectral reconstruction
might overcome bad lighting because of the environments
mapped and data availability. For instance, the authors in [7],
[9], and [12] train, evaluate, and test their reconstruction models
using aerial photographs of vegetated areas. Specifically, they
take advantage of diverse datasets captured by different sensors
to generate reliable multispectral information on vegetated areas.
Conversely, we computed RGB, ReD, and NIR images with dif-
ferent central wavelengths from a single sensor; see Section II-A.
Despite the computed dataset having more than five thousand
RGB, ReD, and NIR images, they might not reflect the actual
response of RGB and multispectral commercial imagers. How-
ever, the data augmentation process helps to partly resolve the
lack of street-view multispectral samples of urban environments.

Since the reconstruction metrics on the testing set, see
Table II, support the application of cGAN for generating mul-
tispectral images; we computed two new multispectral datasets
for urban tree segmentation using Jekyll and Arbocensus RGB
datases, see Fig. 11. Despite no multispectral reference informa-
tion for this new dataset, few guesses regarding the reconstructed
multispectral channels can be made. First, the ReD and NIR
images’ vegetation has brighter pixels on top areas of branches
and leaves. Higher reflectance on the vegetation’s top would
possibly be coherent since most reflectance is from the top
of vegetation due to sunlight incidence. However, a contrast
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exists in reconstructed pixels for the same canopy tree, which
might not be consistent with actual multispectral images. For
instance, in actual ReD and NIR information from HSICityV2
retrieve similar pixels intensity for tree canopies disregarding
the sunlight incidence; see Figs. 7 and 9.

The reconstructed pixel value differences within the same
canopy can be explained because of the image’s perspectives.
Specifically, the Jekyll and Arbocensus datasets record urban
trees from bottom to top, focussing on capturing one tree per
image. In this context, vegetation and tree canopy could be
populated by shadows in areas where there is no direct sunlight
incidence. The salient tree’s branches generate shadows within
the tree canopy. Conversely, the HSICityV2 images capture
vegetation from a broader perspective; they are not focused
on capturing single trees. The samples that retrieve information
about canopy shadows are scarce. Therefore, the cGAN models
might need to be further trained and fine-tuned to map RGB to
multispectral information when shadows exist within the same
tree canopy. Actual ReD and NIR images of urban trees could
corroborate the latter. However, the authors have not found
publicly available data comprising RGB, ReD, and NIR of urban
trees with image perspectives similar to those presented in Jekyll
and Arbocensus datasets. This lack of multispectral information
from street-view perspectives is encouraged to be addressed in
future works.

Regarding pixel-wise tree identification and conversely to
our expectations, Table III shows no significant difference in
network segmentation outputs. Both models (DeepLabV3 and
SegFormer) yield similar performance when fed with RGB,
RGB+ReD, and RGB+NIR images, which is supported by the
p-values shown in Table IV. The affinity on segmentation results
reveals that the reconstructed ReD and NIR channels might not
add valuable information to segmentation networks for improv-
ing the identification of urban trees. It is important to highlight
that the training samples make no difference in DeepLabV3
and SegFormer performance. Both networks achieve similar
outcomes, with IoU greater than 0.89 for the Jekyll dataset and
greater than 0.75 for the Arbocensus dataset. Although the recon-
structed multispectral images do not add relevant information for
boosting tree segmentation, it should be noted that increasing the
number of samples from about 300 (Arbocensus dataset) to 3000
(Jekyll datasets) improves the segmentation metric in about 0.1,
0.07, and 0.04 for IoU, P, and R, respectively. The boosting
of segmentation metrics by increasing dataset samples can be
considered as an expected behavior.

Furthermore, Table V shows segmentation metric values for
the SegFormer network, which is not pretrained with ADE20 k or
Cityscapes datasets. Those outcomes also depict that the recon-
structed multispectral information might not be required for the
network to improve its performance. In some cases (e.g., Arbo-
census dataset), introducing a reconstructed multispectral chan-
nel could be ineffective and yield lower IoU values; see Table V.

The similar performance of segmentation networks (RGB and
RGB+multispectral) might be a sign that, for segmentation pur-
poses, the reconstructed multispectral channels are not useful. In
other words, segmentation networks could probably decode the
same information inferred by a cGAN model. The results of a

previous work can support the latter. In particular, Deng et al. [8]
proposed a deep-learning network for retrieving hyperspectral
information based on several input bands (multispectral image).
The consistency of reconstructed hyperspectral images is inves-
tigated by classifying their pixels using an unsupervised method
(iterative self-organizing data analysis techniques algorithm,
IsoData). The reported outcomes show no significant difference
between the classification results of reconstructed hyperspectral
pixels and actual multispectral pixels. Note that hyperspectral
images are reconstructed using multispectral information. More-
over, the classification noise in multispectral images (recorded
information) is advocated for extracting the multispectral bands
from noisy bands in the original hyperspectral images. Note that
our work and the proposed in [8] use different deep learning
networks for inferring spectral information–furthermore, the
study areas and images used in each work. For instance, our
work uses street-view images, and Deng et al. [8] employed
aerial-view images.

Since our work and previous research suggest that segmen-
tation and classification outcomes might not be significantly
improved by reconstructed reflectance, we advise performing
new experiments regarding the application of reconstructed
hyperspectral/multispectral images. For example, new research
could focus on recording hyperspectral/multispectral images
with a single sensor and investigate which electromagnetic
spectrum bands retrieve reflectance information that leads to
improvements in the semantic segmentation of trees. This could
address one of our limitations; only reconstructed reflectance
in the ReD and NIR bands was tested in the current work.
For the data collection procedure, we suggest capturing images
at different light conditions and perspectives of trees to get a
heterogeneous dataset and tree representation. Generating a hy-
perspectral/multispectral dataset of urban trees from street-view
perspectives will benefit the scientific community since such
datasets are currently scarce. Moreover, future works are advised
to investigate the behavior of generative models for inferring tree
reflectance on different light conditions and irregular shadows.
In the current work, we do not explore the effects of illumination
or irregular shadows on the reconstruction performance of the
cGAN network. Finally, it should be noted that the current
work uses segmentation networks initially developed for using
RGB images as input; thus, future works are encouraged to
determine dedicated hyperspectral/multispectral semantic seg-
mentation networks such that process reflectance information
effectively for outperforming current semantic segmentation
metrics.

It is essential to highlight that for urban tree segmentation,
further studies are suggested to employ either DeepLabV3 or
SegFormer pretrained with ADE20 k or CityScapes. Specifi-
cally, we recommend SegFormer because it is computationally
less expensive. For instance, the pretraining of DeepLabV3 and
SegFormer networks with ADE20 k requires 8.9 and 2.1 Gb of
memory from graphical processing unit [44]. Further, it should
mentioned that IoU reported in the current work using the Jekyll
dataset is slightly similar to the ones reported by Yang et al. [37].
In particular, the best IoU value, obtained by Yang et al. [37], is
0.88 while our best IoU result is 0.90.
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VI. CONCLUSION

The outcomes reported in this work support the generation of
images at ReD and NIR regions from RGB street-view images by
deep learning networks. In particular, we obtained average SSIM
values of 0.93 and 0.88 for ReD and NIR images using cGAN
models. These values are within the range of the ones presented
in previous works that address hyperspectral or multispectral
image reconstruction. A HSICityV2 was used to train, validate,
and test cGAN models. Once the cGAN models are tested,
we exploit them to generate ReD and NIR information from
RGB-based urban tree datasets (Jekyll and Arbocensus). After
visual inspection of generated ReD and NIR images, we became
aware that the top face of the canopy and vegetation yield higher
pixel values than lower or shadowed areas. This behavior might
be expected since the top sections of tree canopy and vegetation
reflect most solar light. Another factor influencing the pixel
intensity values in a single canopy might be the perspective
for taking tree pictures in Jekyll and Arbocensus datasets. It
differs from the perspective used on the hyperspectral dataset.
In this context, we suggest developing a multispectral urban tree
dataset to analyze further and investigate multispectral genera-
tion’s advantages in urban environments. Concerning the seg-
mentation networks, we found that DeepLabV3 and SegFormer
networks pre-trained with ADE20 k and Cityscapes datasets are
appropriate for segmenting individual urban trees using RGB,
RGB+ReD, and RGB+NIR images. Although the segmentation
networks could retrieve acceptable IoU values (> 0.89 for the
Jekyll dataset and > 0.75 for the Arbocensus dataset), incor-
porating multispectral information could have made more of
a difference. Specifically, quantitative outcomes suggest that
the reconstructed ReD and NIR images do not add practical
knowledge that DeepLabV3 or SegFormer could manipulate to
boost their performance. The results of segmentation networks
are said to be similar based on p-values from a T-test. Be-
sides the quantitative outcomes presented in this work, previous
work has reported similar pixel classification metrics for actual
and reconstructed spectral information. Therefore, reconstructed
multispectral information might not be advised as an extra
source of information for improving urban tree segmentation
performance.
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