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Abstract—Nowadays, there is growing interest in applying arti-
ficial intelligence (AI) on board Earth observation (EO) satellites
for time-critical applications, such as natural disaster response.
However, the unavailability of raw satellite data currently hinders
research of lightweight preprocessing techniques and limits the
exploration of end-to-end pipelines, which extract insights directly
from the source data. To fill this gap, this work presents a novel
methodology to automate the creation of datasets for the detection
of target events (e.g., warm thermal hotspots) or objects (e.g.,
vessels) from Sentinel-2 raw data and other multispectral EO
pushbroom raw imagery. The presented approach first processes
the raw data by applying a pipeline consisting of a spatial band
registration and georeferencing of the raw data pixels. Then, it
detects the target events by leveraging event-specific state-of-the-
art algorithms on the Level-1 C products, which are mosaicked and
cropped on the georeferenced correspondent raw granule area. The
detected events are, finally, reprojected back on the corresponding
raw images. We apply the proposed methodology to realize thermal
hotspots in raw Sentinel-2 data (THRawS), the first dataset of
Sentinel-2 raw data containing warm thermal hotspots. THRawS
includes 1090 samples containing wildfires, volcanic eruptions, and
33 335 event-free acquisitions to enable thermal hotspot detection
and general classification applications. This dataset and associated
toolkits provide the community with both an immediately useful
resource to speed up future research on energy-efficient prepro-
cessing algorithms and AI-based end-to-end processing systems on
board EO satellites.

Index Terms—Onboard artificial intelligence (AI), raw dataset,
Sentinel-2, volcanic eruption, wildfire.

I. INTRODUCTION

THE ability of artificial intelligence (AI) to autonomously
glean insights from remote sensing data has sparked re-

search into its deployment onboard spacecraft [1]. Furthermore,
its application has proven effective in curtailing downlink data
rates by preventive filtering of cloud-covered, corrupted data [1],
[2], or with higher image compression rates [3], [4].
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Most of the previous works relying on AI onboard Earth obser-
vation (EO) satellites were demonstrated on high-level satellite
optical products [5], [6], [7], [8], which exploit calibrated, or-
thorectified, and further processed images to lower instrumenta-
tion noise and other sources of radiometric distortion. Since such
processing chains are designed for ground-based use, they are
unsuited for onboard applications. The computational burden
of the ground-based processing chain renders its implementa-
tion on small-satellites—especially nanosatellites—impractical.
Furthermore, it is essential to note that this processing chain
alters the raw signal and is susceptible to potential information
degradation and loss. Finally, optimizing preprocessing steps is
necessary to minimize the computational complexity, potentially
reduce the requirement for extra onboard hardware, and enhance
mission duty cycles.

In this scenario, a relatively limited number of works have
explored the capability of AI models to directly process raw
data with minimal preprocessing to reduce the need for com-
putationally intensive onboard operations [9], [10]. This is
primarily due to the scarcity of literature containing datasets
made of raw data and methodologies to produce such datasets
for applications relevant to onboard AI processing. Indeed,
increasing the availability of datasets comprising raw im-
agery could potentially diminish the reality gap prevalent in
contemporary studies. This could be achieved by facilitating
the training of AI models on satellite data, processed via
methodologies that are congruent with the constraints of on-
board power and memory capacities. Furthermore, this could
stimulate research into more efficient processing techniques.
These lightweight techniques could offer enhanced tradeoffs
between energy consumption, processing time, and output qual-
ity, as compared to solutions that were initially conceived for
terrestrial applications.

This work addresses the limited availability of raw imagery
for multispectral pushbroom imagery. To this aim, we propose
for the very first time a methodology to datasets for the detection
of “events” or target objects (e.g., thermal anomalies, vessels)
applied to Sentinel-2 raw data and that can be excited to other
multispectral EO pushbroom raw imagery. To this goal, the
proposed approach capitalizes on existing datasets and algorith-
mic solutions designed for Level-1 C (L1C) products to extract
and identify the corresponding raw images containing the target
events and speed-up the dataset creation.
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In the case of Sentinel-2 data, “raw” refers to decompressed
Sentinel-2 Level-0 (L0) data with additional metadata, which
better represents the “raw” data produced by the multispectral
sensor.

To automate and make our methodology fully reproducible,
we implemented an open-source Python package named Python
for RAW Sentinel-2 data (PyRawS)1 that includes utilities for
Sentinel-2 raw and L1C data processing.

To showcase the validity of the proposed methodology, we
applied our methods for the realization of thermal hotspots in
raw Sentinel-2 data (THRawS), a dataset comprising a collection
of Sentinel-2 raw data for detecting warm temperature hotspots.
We considered this specific application because of its potential
to enhance early warning systems and prevent fires from spread-
ing [6], [11], contributing to the safety and security of people in
high-risk areas and critical infrastructures, e.g., power lines and
oil pipelines.

Since the objective of using raw data is to foster the research
of lightweight preprocessing methods, for the implementation
of THRawS, we leveraged a lightweight CSC approach. Such
coarse spatial coregistration (CSC) method has the potential to
be applied on board because of its timing and accuracy tradeoffs.

The rest of this article is organized as follows. Section II
provides a state-of-the-art analysis of the processing pipelines
designed for multispectral pushbroom imagery, differentiating
between missions performing processing on the ground and on
board. Moreover, an insight on the availability of raw multi-
spectral data and their use in current missions leveraging AI
onboard EO data is provided. Section III overviews the proposed
dataset creation methodology. Section IV showcases how we ap-
plied the proposed methodology to design THRawS. Section V
presents the results in terms of the number of thermal hotspot
patches included in the THRawS dataset. Moreover, it provides
a description of their spatial and time coverage. Section VI
discusses our results and the suitability of using raw data for
future usability for onboard AI applications. Finally, Section VII
concludes this article. Finally, we provide more details on the
Sentinel-2 mission and a comparison in terms of accuracy and
latency of the CSC technique adopted to design THRawS to
other band-to-band (B2B) alignment solutions in the Appendix.

II. BACKGROUND AND MOTIVATION

A. Multispectral Data Processing Chain

In missions such as Sentinel-2 [12] or Landsat-8 [13], signifi-
cant postprocessing is applied to enhance satellite multispectral
pushbroom imagery prior to their use for the creation of high-end
applications-specific products. Typical correction steps include
radiometric, geometric, and orthorectification algorithms [14];
most of these steps are applied at ground-segment level. Since
our dataset methodology targets Sentinel-2 imagery, this section
dedicates particular focus to Sentinel-2 data. However, although
the implementation of such processing solutions and product

1PyRaws, GitHub repository. Data is available online at: https://github.com/
ESA-PhiLab/PyRawS. Last accessed on 22 June 2024.

nomenclature differ among various missions, fundamental op-
erations, such as band coregistration, image georeferencing,
radiance to top-of-atmosphere (TOA) reflectance conversion are
common steps for many of these data processing chains [15]2.

For what concerns Sentinel-2 images are downloaded and
processed to be distributed to the end-users through a processing
chain, whose schematic representation is depicted in Fig. 1. Data
sensed during a given acquisition are organized into granules,
each one encompassing the area captured by each of the 12
detectors in a 3.6 s interval [15]. Since the satellite operates in
pushbroom mode, a granule encapsulates data from all the bands
a sensor acquires. Data produced by the sensor are equalized and
compressed onboard before the downlink.

After the download, data available on the ground are defined as
L0. The latter are, first, processed to produce metadata, including
geographical information, a quick look, and other ancillary
information. Then, with their additional metadata, L0 data are
decompressed.

In the frame of this article, the data obtained at this point of the
processing, including metadata, are defined as “raw data.” Level-
1 A (L1A) products are then generated by applying a coarse spa-
tial band coregistration process to the raw data. This is followed
by processing L1A data to compute radiometrically corrected
radiances through various processing steps, including—among
others—the inversion of onboard equalization. In addition, the
radiometric corrected geometric model is refined and appended
to the radiometric corrected L1A data to produce Level-1B
(L1B) products.

Lastly, L1C data are derived from L1B products through a
process of geometric correction, which includes subpixel mul-
tispectral spatial registration, orthorectification, and calculation
of TOA reflectances. Cloud and land masks are also generated
within this step. Various geometric and radiometric periodic cal-
ibration activities are performed to ensure high-quality products,
as detailed in [16].

Note that L1C products are delivered for predefined 100×
100 km2 tiles, and a given acquisition may have partial or
complete data coverage of a certain area of interest (AOI) in
a certain raw data granule. Therefore, in general, multiple L1C
tiles shall be mosaicked to cover the whole raw AOI.

Since the inversion of the onboard equalization is performed
only at L1A data level, its effects are still present for raw
data. Similarly, as previously mentioned, the equalized satellite
data has undergone on board a process of equalization before
compression [12], which aims at minimizing the effect of the
wavelet-based compression algorithm on the accuracy/integrity
of the detector measurements provided after decompression
on the ground. The effects of onboard compression cannot be
compensated because of the lossy nature of the used compression
scheme. Consequently, eventual distortions due to onboard com-
pression and calibration represent the main difference between
raw and data produced by the sensor.

2Landsat 8 (L8) Data Users Handbook. [Online]. Available at: https://d9-wret.
s3.us-west-2.amazonaws.com/assets/palladium/production/s3fs-public/atoms/
files/LSDS-1574_L8_Data_Users_Handbook-v5.0.pdf. Last accessed on 22
June 2024.
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Fig. 1. Illustration of the Sentinel-2 processing chain from satellite data to L1C data. The images in the raw and L1C format show an eruption of the Etna volcano,
Italy, for the two processing levels as RGB-like images.

Note that the products in the chain from L0 to L1B in-
cluded have not been available to users at the time of writing,
whereas L1C, atmospheric-corrected bottom-of-atmosphere
(BOA) Level-2 A data as well as higher level derived products
for different domain applications, such as marine ecosystem
monitoring3 and land cover/land use assessment4 are available
from Copernicus and ESA projects. However, the release of
lower-end Sentinel-2 products to the public is foreseen. Products
including and beyond Level-2 A (L2A) are out of the scope of
this study, which focuses on the combined use of raw and L1C
data to create a dataset made of raw data.

B. Multispectral Processing Chains for EO Missions
Leveraging Onboard ML

The application of AI on board satellite constitutes an estab-
lished scientific and commercial venture. In particular, the re-
mote sensing community has heightened the potential to directly
handle unprocessed data through the techniques of machine
learning (ML) [17] and deep learning (DL) [2], [6]. Prior to
the application of ML models, current and upcoming missions
predominantly favor the application of preprocessing schemes
as a prerequisite [6], [7], [8], [18]. Such solutions usually consist
of streamlined workflows that apply only a simplified subset of

3[Online]. Available: https://help.marine.copernicus.eu/en/articles/5194057-
introduction-to-ocean-colour-sentinel-2-high-resolution-products; last acces-
sed on 22 June 2024.

4[Online]. Available: https://seom.esa.int/page_project025.php; last accessed
on 22 June 2024.

geometric and radiometric corrections of the ones performed on
the ground.

An illustrative example is the case of the 6-UΦsat-1 [2] Cube-
Sat, the first satellite inferring convolutional neural networks
(CNN) on a commercial off-the-shelf (COTS) edge device, i.e.,
the Intel-Movidius Myriad 2 visual processing unit (VPU). Its
target application was to perform onboard pixel-level cloud
detection by processing three selected bands of the hyperspectral
cube. The image processing workflow involves creating the
hyperspectral data cube and undertaking B2B spatial registration
on three selected bands. Another example is the hyperspectral
smallsat for ocean observation (HYPSO-1), a CubeSat equipped
with a hyperspectral payload targeting the observation of ocean
color to detect algal blooms along Norwegian coasts [17]. The
hyperspectral image processing chain on board HYPSO-1 uses
the methodology described in [19], which implements radiomet-
ric and geometric corrections as linear operations.

A more complex processing chain is planned for the upcoming
Φsat-2 mission [20]. Φsat-2 imager is providing seven multi-
spectral bands covering near-infrared (NIR) and visible ranges
with 4 m spatial resolution and a panchromatic band (submeter
spatial resolution). The payload processing chain processes raw
data and provides three processing levels: L1A, consisting of un-
registered and no-georeferenced radiance data, L1B, which are
fine-georeferenced and fine registered radiance data (<10 m root
mean square error), L1C, which are registered and georeferenced
TOA reflectance data. Differently from Sentinel-2 data, L1C
data are not orthorectified. Given the unavailability of Φsat-2
imagery, emulated sensory data at L1A, L1B, and L1C levels

https://help.marine.copernicus.eu/en/articles/5194057-introduction-to-ocean-colour-sentinel-2-high-resolution-products
https://help.marine.copernicus.eu/en/articles/5194057-introduction-to-ocean-colour-sentinel-2-high-resolution-products
https://seom.esa.int/page_project025.php
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were provided to the competitors of the Orbital AI challenge5 to
investigate different applications for onboard AI. One of the
main novelty of Φsat-2 and Orbital AI is the investigation of
lower end products for onboard ML applications. However, no
emulation of raw data is provided to the end users nor a use of
raw data is foreseen in the mission concept of operation.

As stated above, current approaches engage data process-
ing with the intention of reconstructing higher level products
onboard, thereby not directly exploiting raw products. The
deficiency of raw datasets and the unavailability of methods
to treat them inadvertently ease the pathway for higher level
products onboard processing. Nonetheless, the adoption of such
an approach contributes considerably to the computational cost
within the processing workflow and introduces temporal la-
tencies. Indeed, following the empirical assessment of the in-
ference time-lapse on various hardware accelerators, such as
NVIDIA Jetson Nano, Google Coral, and Myriad X, Garcia
et al. [21] asserted that the time overhead associated with
the initial processing stages of Sentinel-2, encompassing B2B
alignment—i.e., spatial registration of a band with respect to a
reference band—radiometric calibration, and granular coregis-
tration, merit a scrupulous evaluation.

To the best of the authors’ knowledge, the first work to
directly address the problem of using raw data in an end-to-
end fashion for onboard ML applications was conducted in
the frame of “the OPS-SAT case” competition [22], [23]. This
data-centric competition hosted on the European Space Agency
(ESA) Kelvins platform was investigating few-shot learning for
onboard satellite applications [24]. The competition was based
on the images produced by the OPS-SAT satellite, equipped with
an 80 m × 80 m resolution RGB via on-sensor Bayer pattern
camera [25]. In this case, only one frame is acquired from a
single snapshot by placing a color filter on top of every sensor
pixel. A so-called demosaicing or debayering process is applied
to reconstruct a full-color image from a sampled one-color pixel
camera. Thereby, images were not affected by misregistration
errors due to multispectral B2B alignment processes, obviating
one of the most critical preprocessing constraint for the data
stack’s formation.

Similarly, the work by Fanizza et al. [10] investigated the
effect of band misalignment for ship detection on 768×768
pixels RGB images from the Airbus Ship Detection dataset was
used for both training and testing. Because of the lack of raw
data, the band misaligment was emulated.

To the best of the authors’ knowledge, our previous work [9] is
the first work investigating the feasibility of using multispectral
raw imagery. To this aim, our previous work [9] relies on a
dataset containing Sentinel-2 raw coarsely-registered granules
to perform onboard vessel detection through an end-to-end
pipeline. Despite the preliminary findings of the work show that
processing raw data in an end-to-end fashion is possible, the
difficulty of extending these results for different applications is
raised by the lack of a methodology to automate raw dataset
creation and labeling. Indeed, the dataset used for our study was

5Orbital Φsat-2. [Online]. Available at: https://platform.ai4eo.eu/orbitalai-
phisat-2. Last accessed 22 June 2024.

manually labeled by using a Sentinel-2 L1C dataset as reference.
Because of that, the methodology proposed hereby extends our
previous work by enabling an automated labeling of raw data by
using annotations on the correspondent L1C tiles.

Despite not addressing this problem specifically, the need for
raw data availability also emerges from the work [21], which
describes the WildRide mission. The latter aims to illustrate
that the onboard application of AI is instrumental in minimizing
latency, thereby, accelerating the delivery of essential flood map-
ping information. The DL-based model utilized to perform flood
detection had to process RGB data provided by a miniaturized
camera.

Nonetheless, given the lack of raw data, Worldfloods was
initially trained on Sentinel-2 L1C images by using all 13
bands. As a result, Worldfloods faced challenges arising from
the data-shift problem due to the significant difference in terms
of radiometric and spectral resolution between the Sentinel-2
sensor and the onboard RGB imager. Therefore, the authors
retrained the model on four acquisitions from the used RGB
camera to obtain acceptable performance on the raw uncali-
brated RGB images, which were manually labeled after the
satellite’s deployment. This underlines the importance of having
raw satellite datasets for the training of AI models to take into
account: 1) the impact of the lack of calibration, 2) domain-gap
problems, 3) misregistration errors, and 4) other nonideal effects
affecting raw data.

III. DATASET CREATION METHODOLOGY

The process of creating a Sentinel-2 raw dataset for the
specific purpose of detecting “events” or target objects can be
comprehensively understood through the graphical representa-
tion depicted in Fig. 2, which showcases all three steps required
to create the dataset. The first step is procuring a list of events
from online databases or other sources. Each event in the list
shall correspond to one or more raw granules. To download such
raw data, it is necessary to specify a polygon marking the AOI
surrounding the event and a range of dates (start acquisition - end
acquisition). Such a polygon used to specify the raw granules is
created by visually inspecting the L1C products. This procedure
leads to the download of all the compressed raw granules whose
reference band (B02) intersects the polygon and whose sensing
date is included in that range.

Appropriately selecting the area of the polygon requires con-
sidering that for a specific point, the entire collection of the
bands could be located in different granules before the spatial
registration. Therefore, to collect all the bands for the events of
interest, one can use a polygon area of 28× k km2 centered at
the coordinates of the events, where k is application-specific,
which is equal to the double of the maximum bands parallaxes
for a single acquisition. For what concerns the parameter k,
it shall be higher than the maximum West–East size of the
target events. A size of 14 km corresponds to the maximum
along-track distance commonly covered by all spectral bands
of multispectral instrument (MSI). Therefore, since the satellite
track approximately extends from north to south with a smaller
closer to the Equator, selecting a polygon that extends 14 km

https://platform.ai4eo.eu/orbitalai-phisat-2
https://platform.ai4eo.eu/orbitalai-phisat-2
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Fig. 2. Overview of the dataset creation methodology consisting of three main steps. 1) Procurement of the list of events by visual inspections of other existing
databases, 2) data download, and 3) filtering of useful granules by using state-of-the-art algorithms designed for L1C data, which are mosaicked and cropped on
the areas of the raw granules of interest.

vertically toward north and south will ensure that all the bands
for the center of the event will be downloaded.

Once the first step is complete, it is possible to download the
raw granules and all the related L1C products intersecting the
download polygons for each granule. After downloading, the
compressed raw data shall be decompressed and reformatted as
TIFF files. The download and the decompression of the interest
data lead to the conclusion of the second step.

However, the granules downloaded through this procedure
generally cover an area higher than AOI. Indeed, since the
polygon is not exactly oriented along the satellite track line and
because the real AOI could be much smaller than the polygon,
this procedure generally leads to a higher number of raw data
granules than required. This can be seen in the left image
of Fig. 3, which shows the granules downloaded (rectangular
shapes numbered 0 to 5) for the volcanic eruption of Etna on
30 August, 2021 included in the THRawS dataset. The polygon
used to specify the AOI is shown in light blue. But, clearly,
only the raw data granules in green and red actually contain
the event. Therefore, there is the need to identify and label the
granules containing the events of interest.

To this aim, we conceived a methodology that filters the raw
data granules containing the events of interest by processing L1C
tiles by relying on the availability of state-of-the-art algorithms
for L1C products.

Such state-of-the-art algorithms usually exploit a subset of
the 13 bands included in Sentinel-2 data. Let us define as
BS � [Bx, By, . . ., Bz] the ordered list of the bands used by
the identified algorithm, where Bx is the first band of the
collection. Then, for each event in the dataset, every granule is
processed as follows. First, we perform the coregistration of the
different bands of BS with respect to Bx. Spatial coregistration
algorithms are designed to eliminate displacement between

bands, errors in skewness, rotation, and warping [26]. In our
case, this step is mainly necessary since the bands in a granule
feature a displacement due to the pushbroom nature of the sensor
and additional nonideal effects [15]. Such band shifts will make
it difficult to retrieve and visually inspect events on raw data after
being identified. By applying the band spatial coregistration with
respect to Bx, among other effects, all the bands of BS will be
shifted along and across track to match the area covered by the
band Bx. The missing pixels due to the shift procedure could be
cropped, filled by zeros, or by pixels of adjacent granules when
available. After applying the band coregistration, we performed
georeferencing of the first band in the granule. This step is
needed since only the coordinates of the corners of the entire
granule footprint are provided in the granule metadata, but not
for the different bands [15].

Once the band Bx has been georeferenced, it is possible to
crop L1C data on the same area of its band Bx. To this aim,
all the L1C tiles intersecting the polygon used to download raw
data are mosaicked and cropped on the same area of the band
Bx. To this aim, the information provided by Bx coordinates as
a common reference for L1C and raw data.

After cropping, these adjusted L1C tiles are processed using
the identified reference algorithm to search for events of interest.
One or more bounding boxes are created on the L1C data for
each event. When finding a bounding box is impossible, the cor-
respondent granule is discarded. Otherwise, the bounding boxes
are warped back on the granule using an affine transformation
and manual fine-tuning.

We mark useful granule as a granule whose band Bx includes
at least one bounding box. It is necessary to remark that this
definition of useful granule depends on the band collection
used. In the case of the volcanic eruption “Etna_00” of the
THRawS dataset shown in Fig. 3, the volcanic event is included
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Fig. 3. Example showcasing the downloaded granules for a specific event of the THRawS dataset. The polygon used for data retrieval (light blue) intercepts
several granules marked in red, green, and white. The volcanic eruption is included only on the granules whose boundaries are marked in green and red. On the
right, a zoomed view shows the band B8A (the first of the collection) of the green and red granules in yellow and pink. Since the band B8A of the green granule
only includes the volcanic eruptions, the green granule is the only “useful granule.” On the contrary, despite the red polygon partially surrounds the event of interest,
this happens for other bands than B8A. Because of that, the event is “nonuseful” for our definition of the band collection BS = [B8A, B11, B12].

in both the granules 0 and 2, respectively, marked in red and
green. However, since for the THRawS dataset Bx = B8A,
the procedure previously described will lead to selecting only
granule 2 as a useful granule. Indeed, when considering the area
covered by the band B8A in granule 0 (yellow rectangle), one
can see that it does not include the volcanic eruption6.

IV. THRAWS CASE STUDY

This section demonstrates how we applied the proposed
methodology described in Section III to create the THRawS.

As mentioned in Section III, the first step to creating a dataset
according to the proposed methodology is to identify the event’s
location and time ranges by relying on existing datasets or online
databases. More specifically, THRawS contains volcanic erup-
tions and wildfire events, for which we identified two different
sources.

The starting point for selecting tiles with eruptions is the
Smithsonian Institution database [27], providing detailed infor-
mation on global volcanism. From the database, we selected
only events occurring during the Sentinel-2 A (S2-A) launch
until the time of writing, i.e., from 2016 to 2022, and we aimed
to sample different latitudes and seasons. From the database,
we only selected more intense and explosive eruptions, with
volcanic explosive index (VEI) larger than 1, since effusive

6In the THRawS dataset, granules 4 and 5 of the event Etna_00 are also marked
as useful granules since they contain small warm thermal hotspots that are not
visible in the image. This fact is omitted in the text for the sake of explanation.

eruptions are less dangerous [28]. As events can last for several
years, we initially selected up to three volcanic events for each
eruption and up to three eruptions for a single location to ensure
the diversity of the dataset. However, during the revision of the
dataset, some raw data granules originally marked as Not-events
were found to contain volcanic thermal hotspots, leading to more
than three volcanic events for some of the eruptions.

For shorter (days-months) eruptions, we selected acquisitions
as close as possible to the event starting date to test the detection
capability in the early stages. From the list of eruptions, we
visually inspected the candidate L1C tiles to confirm that the
event was captured. For each of the selected L1C, we marked
the location of the volcanic event. We used its coordinates as a
center of the rectangular polygon to download raw data granules,
as detailed in Section III. In particular, we selected the horizontal
size of the download polygon to be k = 10 km since it was
sufficient to contain the broadest warm temperature hotspot in
the dataset.

Compared to volcanic eruptions, fire events are challenging to
detect as they are short-lived and their locations are not known
in advance compared to volcanic eruptions. We compiled a list
of events starting from the Copernicus Emergency Monitoring
System database7 and integrated the resulting list of events with
real-time detection services8 and information available online

7[Online]. Available at: https://emergency.copernicus.eu/mapping/list-of-
activations-rapid; last accessed on 22 June 2024.

8[Online]. Available at: https://firms.modaps.eosdis.nasa.gov/map; last ac-
cessed on 22 June 2024.

https://emergency.copernicus.eu/mapping/list-of-activations-rapid
https://emergency.copernicus.eu/mapping/list-of-activations-rapid
https://firms.modaps.eosdis.nasa.gov/map
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from space and environmental agencies. As for eruptions, candi-
date L1C acquisitions have been visually inspected to verify the
presence of a firefront or extensive smoke. Finally, we retained
a number of fire events roughly equal to that of eruptions to
balance the dataset distribution.

Both wildfire and volcanic eruptions events were selected by
visual inspection independently and, then, crosschecked by two
experts to ensure reliability and mitigate the effect of human bi-
ases. In addition to granules containing L1C data, we specifically
introduced hard negatives to optimize model performances by a
proper selection of Not-events. This approach aims to establish
consistent relationships between thermal anomalies and network
outputs as it enables the identification of specific anomalies in the
image not necessarily related to volcanic eruptions, e.g., crater
rim edges. Selecting Not-events involves visually inspecting
each granule and manually selecting to ensure the absence of
hotspots. It is worth noting how this is important to allow for
a more accurate ingestion of the data in deep neural networks
(DNN) models.

After selecting the reference warm temperature hotspots
events, we proceeded with the download and filtering of the
corresponding raw and L1C data.

In particular, we selected BS = [B8A, B11, B12], given the
choice of the reference algorithm to detect warm thermal
hotspots in thermal anomalies by Massimetti et al. [29].

The next required step is the coregistration of the different
multispectral bands in the bands collection BS . Indeed, given
two generic bands Bn and Bm of a granule, the band Bn is
generally shifted of a certain number of pixels SBn_Bm

with
respect to Bm. In general, it is possible to assume that SBn_Bm

is made of two components as shown in the following:

SBn_Bm
= SBn_Bm

+ΔSBn_Bm
(1)

where SBn_Bm
is the systematic shift due to pushbroom ac-

quisition mode and additional offset [15], whilst ΔSBn_Bm
is

an aleatory component due to mechanical vibrations and other
nonideal effects.

Spatial coregistration algorithms are generally designed to
eliminate both the components of SBn_Bm

so that the spatial
displacement between Bn and Bm can be minimized [30], [31],
in addition to errors in skewness, rotation, and warping [26].
To achieve these objectives, as detailed in Section II, spatial
coregistration techniques rely on a suite of algorithms that are
generally computationally intensive and could require dedicated
additional hardware to be implemented on board satellites [2],
[30], [31], [32]. Since one of the objectives of this work is to fos-
ter the study of lightweight and energy-efficient preprocessing
algorithms, to design the THRawS, we adopted a coregistration
solution designed to compensate only the systematic shift error
component SBn_Bm

by shifting Bm of a fixed value equal to
SBn_Bm

.
To this aim, as for [19], our solution uses one-time pre-

calculated spatial shift values to compensate for the average
spatial displacements both along and across the satellite track
due to the sensor’s pushbroom nature and additional sensor
offsets. An example of this precomputed calculation is reported
in Table IV in the Appendix. The thus developed approach does

Fig. 4. Pictorial view of a granule with Prior and Afterwards coordinates.

not require using ground control points nor other ancillary data.
In addition, it does not require to perform keypoints extraction
and matching, typical of features-based technique [33], [34],
[35], [36], [37]. These shift values do not consider effects due to
noise, attitude disturbances, or depending on the surface char-
acteristics. However, as shown later in Table IV, for Sentinel-
2 data SBn_Bm

� ΔSBn_Bm
, especially for the along-track

component (along-track shift). Owing to its limited precision,
we term our coregistration technique “coarse.” As outlined in
Appendix, the average registration errors remain smaller than
the smallest identified thermal hotspots. Because of that, the
use of the proposed CSC does not lead to loss of events. In
addition, the proposed approach is lightweight, which makes it
promising for onboard satellite applications and accelerates the
dataset creation. The methodology to estimate the shift values
used for the CSC is detailed in Appendix.

After applying the band coregistration, we adopted a custom
band coarse georeferencing (CG) scheme based on the fixed B2B
displacement values used for the CSC applied to the granule
corner coordinates to determine the coordinates of each band’s
corners. Being a lightweight solution, this approach is promising
to be adopted for onboard satellite applications. However, it
assumes that the coordinates of the four granule corners are
known. This information is contained in the granule metadata
and requires additional processing steps to be made available on
board, which were not investigated in this study.

Although we applied the following methodology to band
B8A only, our approach is general, and, therefore, we provide a
description for a generic bandBk ∈ BS . We initiate this process
by extracting the coordinates of the four corners of a granule,
which constitute the essential ancillary information provided in
the metadata of the Sentinel-2 raw product. Referring to Fig. 4,
we define two key variables for our methodology. The first, prior
coordinates (PC), represents the initial two corner coordinates
scanned by the pushbroom system. The second, afterward coor-
dinates (AC), denotes the final two corner coordinates scanned.
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Given the known location of PC for band B02 (PCB02), our
method utilizes the coarsely estimated offsets SBk_B02

from this
reference band to determine the PC, PCBk

for any arbitrary
band Bk.

For a band Bk, we can estimate the offsets from the reference
band using the following:

PCBk
= PCB02 + |SBk_B02

| · RBk

RB02

· Ga

GL
(2)

where SBk_B02
represents the shift value between band Bk and

the reference bandB02,Ga is the granule length expressed in arc
of latitude/longitude, prompted from the polygon coordinates at
positions 0 and 1 of the granule (see Fig. 4), GL is the granule
length expressed in px at 10 m resolution. Essential to note is
that, given the variations in spatial resolution between bands,
the shift values are scaled specifically for each band with the
resolution scale factor RBk

/RB02
, where RBk

and RB02
are

the spatial resolutions of band Bk and B02, respectively. This
equation allows us to calculate the PC for each band, facilitating
the process of band georeferencing.

The AC are, instead, prompted using ancillary information by
applying the following linear proportion:

GL : Blk · RBk

RB02

= Ga : ΔBk
(3)

where Blk is the length of the k band expressed in px.
Solving the proportion in (3) gives the offset ΔBk

referred to
a generic k band as follows:

ΔBk
=

RBk

RB02

· Blk ·Ga

Gl
. (4)

In the end, the AC can be calculated as follows:

ACBk
= PCBk

+ΔBk
. (5)

The set of AC and PC enables the coarse georeferencing of
each pixel within the k spectral band.

After computing the coordinates of the band Bk = B8A, it is
now possible to crop collate the various L1C products and crop
them on the area of the band B8A. To retrieve the same area on
the L1C products, for each band in BS , we extract and collate
the correspondent band in each of the L1C tiles that intersect
the polygon used to download granules. The resulting mosaic is
then cropped on the AOI by using the geographical coordinates
retrieved by using the CG scheme. Then, the cropped mosaic
of the various bands is resampled to match the band with the
coarsest resolution.

Finally, to detect thermal hotspots in L1C data, we used a sim-
plified implementation of [29] to generate a hotmap containing
thermal hotspots and extract bounding boxes. This algorithm
relies on the bands BS = [B8A, B11, B12], which we selected
as band collection. Therefore, we cropped and mosaicked the
bands in BS of the L1C products using the coordinates of the
georeferenced and coarsely registered raw granules. To spot ther-
mal hotspots on L1C data, as for the original implementation of
Massimetti et al. [29], we derived a hotmap containing candidate
anomalies fulfilling four logical conditions that are calculated by

applying fixed thresholds on the ratios of TOA reflectance of the
different bands.

More specifically, as in the original work [29], the logical
equation to activate a pixel p in the hotmap is as follows:

p = α⊕ β ⊕ S ⊕ γ (6)

where ⊕ is the logical sum between the logical conditions α,
β, S, and γ. The latter are calculated as a function of the TOA
reflectance values of the bands B8A, B11, and B12 (ρ8a, ρ11,
and ρ12) as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α =
(

ρ12

ρ11
≥ 1.4

)
⊗ ( ρ12

ρ8A
≥ 1.2)⊗ (ρ12 ≥ 0.15)

β =
(

ρ11

ρ8A
≥ 2

)
⊗ (ρ11 ≥ 0.5)⊗ (ρ12 ≥ 0.5)

SR � SUR{α⊕ β}
S = [(ρ12 ≥ 1.2)⊗ (ρ8A ≤ 1)]

⊕ [(ρ11 ≥ 1.5)⊗ (ρ8A ≥ 1)]

γ = (ρ12 ≥ 1)⊗ (ρ11 ≥ 1)⊗ (ρ8A ≥ 0.5)⊗ SR

(7)

where SUR{}, ⊕ and ⊗ are, respectively, the surrounding, the
logical OR, and the logical AND operations.

Then, we extracted a bounding box for every cluster of pixels
in the hotmap using scikit-image [38]. Finally, to minimize the
false detection rate, we filtered those bounding boxes surround-
ing a number of active pixels in the hotmap lower than 9 to
discard small clusters of pixels as suggested in [29].

In the original implementation, the authors extracted sta-
tistical information related to each cluster of pixels to set
cluster-dependent thresholds to reduce the false positive rate.
We omitted this step in our implementation since we are not
interested in pixel-level information. Indeed, the creation of a
hotmap is used only for binary classification and bounding box
extraction.

The work by Massimetti et al. [29] was initially implemented
for a volcanic eruption. However, other works such as [39]
consider volcanic eruptions and wildfires as thermal anomalies
using the same Sentinel-2 bands and threshold-based detection
methods.

Given the methodological similarity, we also used the ap-
proach of [29] to detect fire events in L1C tiles.

After extracting the bounding boxes on the mosaicked and
cropped L1C tiles, we reprojected them on the raw products
using an affine transformation and manual tuning. Indeed, it
is essential to note that the bounding boxes extracted from
the L1C products cannot be straightforwardly used for the raw
data due to their different projections. While the raw products
are represented in azimuth-range coordinates (EPSG : 4326),
L1C products are in latitude-longitude projected in the WGS84
system. A further issue is added by the geometrical correction
applied to the L1C images, in which a resampling using a 90 m
DEM (PlanetDEM 90)9 is employed. In order to exploit the
L1C bounding boxes, we warped the points from the L1C to
the raw coordinates with an affine transformation. We defined
the transformation matrix from L1C to raw coordinates using the

9[Online]. Available. Reference Document: GMES-GSEG-EOPG-TN-09-
0029 (v2.3)
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Fig. 5. Each row shows all the processing steps for the bands B8A, B11, and B12 of the various raw data granules: First image from left of each row displays
the raw data granule, the second image shows a spatially registered granule, the third image shows the correspondent L1C tiles cropped on the coordinates of first
band of the raw data granule band collection with the detected bounding boxes, and the rightmost image showcases the bounding boxes warped on the raw data
granules.

coordinates of three corner points. After applying the correction,
our results showed that there still exists a discrepancy between
the bounding box and the actual event in several cases. In order
to rectify the issue, we manually tuned the bounding boxes
for eruptions and created a buffer for fire events. Finally, we
performed a visual inspection to validate each presence/absence
of events in the useful granules. Except for this step, all preced-
ing raw data processing procedures in our methodology can be
automated through the PyRawS package, which offers suitable
API functions to implement the described CSC, CG techniques,
L1C manipulation, and detected events transfer between L1C
and Raw data. It also includes the simplified implementation of
the Massimetti [29] algorithm previously reported.

An example of applications of the different methodology steps
by using PyRawS on raw granules and L1C data of THRawS are
depicted in Fig. 5.

V. RESULTS

This section provides a quantitative analysis of the THRawS
dataset, covering aspects spanning from the composition of its
granules to its representation in time and space.

TABLE I
NUMBER OF EVENTS, USEFUL GRANULES, AND DISCARDED GRANULES IN THE

DATASET

A. Granule Distribution

As detailed in Table I, THRawS comprises 88 thermal hotspot
events initially selected as 58 volcanic eruptions, 20 fire events,
and 10 Not-events. It is crucial to notice that each of the 88 ele-
ments corresponds to one or more useful granules, i.e., granules
containing thermal hotspots that were appropriately annotated
through the proposed approach. Furthermore, eruption events
do not necessarily correspond to granules containing volcanic
eruptions only but also wildfires. This is due to using a standard
algorithm by Massimetti et al. [29] to identify useful granules
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Fig. 6. Decomposition of a raw granule into 256×256 patches with 25% of
patch overlap.

that do not distinguish between volcanic eruptions and wildfires.
This issue could be easily solved by manually reviewing the
useful granules. However, since the goal of THRawS is to
create a thermal hotspot dataset and not to differentiate between
volcanic or wildfires, this step was not performed.

Hence, the total number of useful granules in the THRawS
dataset is 146, of which 135 correspond to thermal anomalies,
and 11 granules depict the volcanic areas where no thermal
hotspot was observed. Furthermore, when the discarded granules
by the proposed methodology are considered, the total number
of granules included in the THRawS dataset is 905.

Notably, the number of images containing the events
can be significantly increased by cropping the bands BS =
[B8A, B11, B12], whose size is 1152px × 1296px, into patches
of smaller size. This step is typically implemented in current
smallsats missions to isolate patches containing different spatial
features and ensure meeting the onboard memory requirements
by limiting the size of patches provided as input to ML mod-
els [4], [2], [22], [23]. Fig. 6 illustrates this concept by demon-
strating the effect of employing 256px × 256px patches with a
25% overlap in raw granule patches decomposition.

Therefore, the number of dataset samples can be significantly
increased depending on the dimensions of the patches and their
degree of overlap. Table II presents a comprehensive analysis of
the impact of patch sizes on the THRawS dataset using varying
patch sizes and degrees of overlap.

In the computational methodology employed for this study,
a patch is deemed to encompass an event if the spatial extent
delineated by its annotation exceeds a threshold of 5 pixels
within the patch coverage. As shown by Table II, decomposing
the single granules into patches as requested by the typical
onboard hardware requirements leads to a significant increment
in the number of samples containing thermal hotspots from
hundreds (i.e., number of granules) to several thousand (i.e.,

TABLE II
PATCH STUDY ANALYSIS HIGHLIGHTING THE NUMBER OF EVENTS AND

NOT-EVENTS, AS WELL AS THE PROPORTION OF EVENTS, AS THE OUTPUT OF

THE DIFFERENT PATCH DECOMPOSITION PROCESS

Fig. 7. Pictorial view of the geographical distribution of the “fire” and “erup-
tion” raw useful granules in the THRawS dataset.

number of patches) depending on the overlap and patch size. To
generate THRawS, we opted for 25% overlap and patch sizes of
(128×128), leading to more than 1000 hotspot sample patches
without significantly increasing the correlation among patches
due to large overlap sizes.

However, applying such a patch decomposition strategy
would lead to a high imbalance in training patches between the
dataset’s thermal hotspot/no-thermal hotspot classes. Because of
that, class imbalance shall be adequately handled by upsampling
the event or downsampling the Non-event class.

B. Temporal and Geographical Coverage

Fig. 7 shows the geographical distribution of volcanic erup-
tions and wildfires. Volcanic eruptions are primarily concen-
trated in Central/South America, Africa, Indonesia, the Philip-
pines, and some European islands (such as Sicily, the Canary
Islands, and Iceland).
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Wildfires scenes are, instead, concentrated in Europe, Aus-
tralia, Africa, Greenland, and Central/South America. When
considering both wildfires and volcanic eruptions, the thermal
anomalies contained in THRawS have almost global coverage
in the various continents except for continental Asia, North
America, and Antarctica.

It is worth noticing that given the nature of thermal hotspots
included in the dataset, most of the images focus on rural areas far
from urban centers. In particular, wildfire hazards are more likely
in areas where abundant biomass build-up in the wet season can
be converted into fire fuel during the local dry season [28], such
as in tropical countries. Because of that, eventual AI models
aiming to detect thermal anomalies in urban areas might require
additional complementary granules depicting wildfires in such
areas.

For what concerns time representativeness, volcanic eruptions
were selected by picking up to three volcanic events for each
eruption as defined in the Smithsonian Institution database [27].
In particular, by picking up the Sentinel-2 granules whose sens-
ing times match the day of the eruption starting date, we included
volcanic events in their early phase to enable studies on the early
detection of volcanic eruption. Furthermore, given the presence
of other events whose sensing times are successive months or
years to the first event, THRawS features volcanic events in
different stages to enlarge its time representativeness. Instead,
wildfires in vegetated areas are more likely during the local
afternoon since air has warmed and the ground drier than in the
morning hours [40]. Given the Sentinel-2 orbit characteristics,
this implies that the database will mostly contain more severe
and more protracted fire events. In general, the sensing time
of events included in THRawS ranges from 16 January 2017
until 01 June 2022, which spans the early stage of the Sentinel-2
sensor life until the dataset creation time, encompassing possi-
ble differences in the Sentinel-2 sensors calibration or mission
set-up.

C. Data–Label Representativeness

We implemented a comprehensive two-step approach to val-
idate the dataset. In the first step, we conducted a preliminary
selection process, followed by a thorough visual inspection of
the L1C data. This step was crucial for ensuring the initial quality
and relevance of the data. In the second step, we focused on a
detailed visual analysis of the useful granules. These granules
were specifically chosen by a well-regarded reference algorithm,
as detailed in the study by Massimetti et al. [29]. This allowed us
to assess the practical utility of the data as defined by established
algorithmic criteria. Visual inspection was performed by two
independent experts. No significant errors in labeling warm ther-
mal hotspots arouse from the application of our implementation
of the reference algorithm [29] on L1C products. Any errors in
bounding box warping from L1C to raw useful granules was
manually corrected at the best of the authors’ possibilities.

The overarching goal of this two-step validation process was
to confirm the accuracy and relevance of the events recorded
within the AOI. By cross-referencing with existing datasets, we
aimed to reduce the likelihood of false positives, which could

arise from the inherent limitations or biases of the reference al-
gorithm. This methodical approach enhances the reliability and
applicability of our dataset for further analysis and application.

VI. DISCUSSION AND FUTURE PERSPECTIVES

This section discusses the use of raw multispectral imagery
for ML-based onboard applications. Moreover, it discusses the
suitability of the proposed methodology to generate datasets
with sufficient fidelity in representing sensory-produced data.

A. Perspectives on Usability Raw Data

As previously mentioned, providing raw imagery is to investi-
gate lightweight onboard preprocessing algorithms or alternative
end-to-end solutions to reduce latency and energy consumption,
which are of utmost importance for early section systems. The
idea behind the use of raw data is that ML solutions could
be trained to handle possible disturbances due to the use of
raw imagery, curtailing the need for high-quality data. Some
preliminary studies have already demonstrated the potential of
DL models to appropriately handle registration errors [9], [10]
by including emulated misregistered data during the training.

In particular, our previous work [9] provides a prelimi-
nary demonstration of the feasibility of using coarsely regis-
tered Sentinel-2 real raw imagery for onboard vessel detec-
tion with coarsely registered images. For this reason, these
preliminary results, when combined with the advantageous
quality/latency tradeoffs of the proposed CSC technique used
to design THRawS (refer to Appendix), represent a valuable
example on the value of raw data can be used to investigate
lightweight energy-efficient tradeoffs. A detailed benchmark-
ing of different registration techniques in terms of timing and
accuracy on THRawS is provided in the Appendix.

In addition to lightweight processing experimentation, similar
to our previous work [9], the provided THRawS dataset can
be a useful tool for the training ML models for end-to-end
processing onboard thermal hotspot detection and classification
on Sentinel-2 raw imagery on rural areas.

However, differently from THRawS, the dataset used in our
previous study [9] was built via manual labeling because of the
lack of an automated procedure to handle dataset creation. In
view of that, due to the possible upcoming release of further
raw Sentinel-2 data, we believe that the presented methodology
could play a fundamental role in fostering future research on
raw multispectral imagery by significantly curtailing the time
for dataset preparation, whose impact on research in terms
of development time is already discussed in numerous stud-
ies [25], [41]. As previously mentioned, the fundamental steps
of the proposed methodology are made reproducible through our
dedicated open-source software PyRawS, which facilitates the
handling of raw data significantly.

Hence, the provided methodology could be a useful instru-
ment to start filling the gap in raw data availability by providing
an automated procedure for dataset creation and labeling on
Sentinel-2 imagery and beyond. Indeed, although the present
methodology targets Sentinel-2 raw data, its usability is not
limited to Sentinel-2 onboard applications, being in principle
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applicable to other multispectral pushbroom imagery showing
similar processing chains [2], [20], although with opportune
modifications.

B. Fidelity in Representing Sentinel-2 Raw Sensory Data

As mentioned in Section II, the proposed raw data are de-
compressed L0 data with additional metadata. Because of that,
they differ from the data produced by the imager in terms of the
presence of such additional metadata and the noncompensated
effects due to onboard compression and equalization.

We used additional metadata only in the phase of dataset
preparation (e.g., the coordinates of the granule’s corners).
However, we do not require metadata information in the gran-
ule processing chain, for instance, to perform the proposed
CSC. Regarding the near-lossless compression applied on board
Sentinel-2 satellites before the data download, the scheme in-
troduces information losses that affect the other products in
the processing chain, such as L1C data. Since numerous works
relying on ML for the detection of specific events on L1C data
exist [5], [6], [8], it is possible to conclude this information loss
shall not hinder the usability of ML on raw data.

From what concerns onboard equalization, it consists of a
bilinear function [42] that is applied prior to the wavelet com-
pression to minimize its effects. Assessing the impact of onboard
equalization on the performance of a generic AI model and
comparing Sentinel-2 raw to sensory data without proper experi-
mentation is harsh. In general, however, being natively designed
to be performed on board satellites, such algorithms lead to a low
computational burden. Because of that, it is reasonable to assume
that such algorithms could be part of the onboard preprocessing
pipeline in case their presence will be proven to be fundamental
to ensure sufficient performance of onboard ML models.

C. Limitations of the Proposed Dataset Creation Methodology

Manual fine-tuning and visual inspection are still required to
correctly transfer the bounding boxes from L1C to raw products.
This fact currently represents the main obstacle to fully automate
the dataset creation procedure and is due to local deformations
in the spatial mesh of L1C products due to orthorectification and
geometric calibration procedures. To solve this issue, possible
solutions require the matching of local spatial features in the ar-
eas of the bounding boxes through key-points identification and
matching algorithms, such as SuperGlue [43], LightGlue [44],
and others. However, a detailed investigation of this problem is
beyond the scope of this work and will be investigated in a future
study.

D. THRawS Dataset Limitations

In our study, we identified several limitations that warrant
further investigation. The first pertains to the application of
the algorithm by Massimetti et al. [29] for detecting thermal
hotspots in both volcanic and wildfire events by using uniform
threshold value across all events and locations [39]. However,
our study did not implement the cluster-based thresholds that
were integral to the original algorithm by Massimetti et al. [29]

to reduce the false positive rates. Our choice is motivated by the
fact that we do not aim to provide an accurate pixel-level hotmap,
but a coarse detection of the events. However, this approach,
when combined with our simplified clustering solution and the
buffer created on fire events to mitigate the inaccuracies of
L1C/Raw warping, could influence the precision of bounding
box placements, necessitating additional tuning for applications
that demand exact positioning.

A notable shortcoming in our study stems from the uneven
representation of wildfire and volcano events within our dataset.
While we have included both wildfires and volcanic eruptions
to broaden the spectrum of thermal anomalies, our objective
does not encompass the differentiation between these types
of thermal anomalies. Despite that, we acknowledge that the
inclusion of additional wildfire events in North America, Asia,
and others with currently limited coverage could significantly
benefit our dataset by further enlarging the variety of thermal
anomalies included. Moreover, as detailed in Section V-B, the
dataset predominantly features severe and prolonged fire events
due to the operational characteristics of Sentinel-2, which may
limit the representation of less intense fires commonly found
in diverse ecosystems such as savannas and forests. Future
studies could consider integrating raw data from additional
available sensing platforms to enhance the diversity and rep-
resentativeness of thermal anomaly events in urban and natural
environments.

A dedicated follow-up study will address these limitations by
enlarging the population of thermal anomalies and by improving
the methodology to select the fire events to enable the delivery
of an accurate segmentation mask.

Finally, it is worth noting that such limitations do not affect the
quality of the proposed methodology to automate the design of
raw multispectral data but are, instead, specific to the approach
used to select target events on L1C for the THRawS dataset,
which simply represents a use case of the proposed methodology.

VII. CONCLUSION

This work addressed the lack of available datasets targeting
raw optical multispectral data for onboard satellite early de-
tection of target events. To fill this gap, we present the first
methodology to automate the creation of dataset containing raw
multispectral pushbroom data for target object/event detection.
The methodology was demonstrated on Sentinel-2 raw data for
the creation of the THRawS dataset, containing warm thermal
hotsposts. THRawS features a collection of elements between
volcanic, fire events, and Not-events that correspond to more
than 1000+ 128×128 patches containing events. To the best
of the authors’ knowledge, THRawS and the one provided by
our previous work [6] are the very first open-source database
including raw images from a multispectral pushbroom imager.

The high degree of reproducibility and automation in the ap-
plication of our methodology is ensured through our open-source
toolbox PyRawS.

The main motivation behind our work is fostering the research
on lightweight preprocessing or end-to-end processing solutions
prior to the application of ML processing on board satellites.
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TABLE III
DESCRIPTION OF SENTINEL-2 BANDS IN TERMS OF SPATIAL AND SPECTRAL RESOLUTION AND POSSIBLE APPLICATIONS [45]

To this aim, for the creation of THRawS, we adopted a
lightweight CSC solution for the processing of raw data, which
features interesting tradeoffs in terms of computational inten-
sity and quality of registration that makes it promising for its
application on board satellites.

Future studies will focus on improving the automation of
the proposed methodology and on refining and augmenting the
THRawS dataset with a particular emphasis on enhancing the
validation approach for label generation. This initiative will
involve the rigorous evaluation of label accuracy and the in-
corporation of advanced techniques to improve the reliability of
training data. Critical to this process will be the establishment of
robust validation protocols that can effectively handle the inher-
ent complexities and variability of the data sets used. Moreover,
we will investigate the suitability of the raw data to be processed
by ML on board satellite with minimal pre-processing and
compare the obtained trade-offs in terms of application-specific
performance and energy efficiency to the current state-of-the-art
techniques.

APPENDIX

A. Sentinel-2 Mission

The Sentinel-2 mission is part of the Sentinel constellation
and comprises two identical satellites, S2-A and Sentinel-2B
(S2-B), which provide data, respectively, since 2015 and 2017.
These satellites collectively provide five days of revisit time at
the equator, ensuring near-global coverage of land areas, the
Mediterranean and closed seas, and coastal waters globally.
Each satellite is equipped with a MSI sensor that consists of
12 detectors arranged in a staggered array perpendicular to
the flight direction of the satellite. The detectors capture light
reflected from the Earth’s surface in narrow strips, or “swaths”
(290 km width [12]), as the satellite moves forward, which are
then combined to create an entire scene.

Each detector measures the Earth’s radiance in 13 visible
and near-infrared (VNIR) and shortwave infrared (SWIR) bands
with a spatial resolution between 10 and 60 m and acquires data

with a pushbroom imaging mode in a sun-synchronous orbit
(SSO) [14], [15]. A description of Sentinel-2 bands in terms of
spatial resolutions, spectral content and resolutions, and possible
target applications is provided in Table III.

B. Coarse Spatial Coregistration Technique

As discussed in Section IV, to design THRawS we leveraged a
CSC solution that represents an example of effective lightweight
processing that can be applied to raw data. As mentioned in
Section VI, the proposed CSC was also applied to a parallel
study to perform onboard vessel detection on Raw Sentinel-
2 data [9]. This section provides details on the methodology
used to design the CSC algorithm and compares it to other B2B
alignment solutions in terms of accuracy and latency.

1) CSC Design Methodology: Let us define I the vector of
band indices as follows:

I � {02, 08, 03, 10, 04, 05, 11, 06, 07, 8A, 12, 01, 09} (8)

where I is sorted according to the time delays of the various
bands compared to the band B02[46]. Let us consider two
bands BI(n) and BI(m), with BI(n), BI(m) ∈ BS where BS �
[Bx, By, . . . , Bz] is the band collection of a granule that we want
to register spatially. To perform the CSC, we apply a shift along
and across the satellite-track SBI(n)_BI(m)

to the band BI(n)

measured with respect to the resolution of BI(n). SBI(n)_BI(m)

depends only on the couple of bands (BI(n), BI(m)), the
satellite and the detector number producing that raw data.

For any coupling of satellite, detector number, and couple of
bands, the value of SBI(n)_BI(m)

can be calculated by using the
relations in the following:
⎧⎪⎨
⎪⎩
SBI(n)_BI(m)

=
∑n

k=m NI(k+1)_I(k) ·
RBI(k+1)

RBI(n)

, n > m

SBI(n)_BI(m)
= −SBI(m)_BI(n)

· RBI(n)

RBI(m)

, n < m

(9)
where RBI(k+1)

is the resolution in m of the band BI(k+1), and
NI(k+1)_I(k) is the shift to apply to the band BI(k) to match
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the band BI(k+1) measured with respect to the resolution of the
band BI(k).

Given a specific coupling, the shift values NI(k+1)_I(k) are
fixed coefficients that we estimated for each of the band couples
(BI(k), BI(k+1)) by performing an analysis on volcanic events
and Not-events before the filtering of raw data granules. To this
aim, we ran a DNN-based method named SuperGlue [43] to
extract and match keypoints in a pair of bands (BI(k), BI(k+1))
having the same detector number and used the along-track and
across-track distance between the couples of matched key-points
to provide an estimation of NI(k+1)_I(k). More specifically, for
a couple of bands (BI(k), BI(k+1)) we proceeded as follows.

First, to ensure that keypoints that were located in adjacent
granules could be matched successfully, we first coupled all
the granules used for the study that could be stacked along the
satellite track. Hence, for a given along-track-stacked granule g,
we picked the couple of bands (BI(k)−g, BI(k+1)−g). Then, to
boost feature presence and distinctiveness without introducing
noise in the processing chain, we applied a contrast limited
adaptive histogram equalization (CLAHE) [47] algorithm to the
stacked bands (BI(k)−g, BI(k+1)−g). Then, we applied Super-
Glue to extract and match keypoints in the enhanced bands
(BI(k)−g, BI(k+1)−g) and calculated the average along-track
and across-track distance over each couple of matched key-
points. We removed the outliers (±2σ) and averaged the values
for both along and across-track offsets. The obtained result
provides a value for NI(k+1)_I(k)−g for the couple of bands
(BI(k)−g, BI(k+1)−g) of a couple of stacked granules g. Finally,
the NI(k+1)_I(k) is obtained by averaging the NI(k+1)_I(k)−g

over all the couples of stacked granules g. We iterated this
process for 13 predefined couples of bands.

Since no granule among the volcano events was generated
by detector number 6, to measure NI(k+1)_I(k), we used the
database inclusive of Not-events.

However, we found that band B10 was difficult to correlate
with the bands B03 and B04 because of the significant differ-
ence in the spectral content. This makes the estimated values
of N04_10 and N10_03 unreliable. To solve this problem, we
extracted two additional coefficients N10_09 and N10_03 and
used them to invert (9) and provide better estimates for N04_10

and N10_03. The extraction of N10_09 was possible because of
the higher correlation of the spectral contents of the bands B10

and B09.
Regarding settings, we used the superpoint neural network

as a feature extractor with outdoor weights as in the original
implementation [43]. To increase the detection and matching
capabilities, we tuned the hyperparameters for our problem,
and the best ones have been reported in our source code10.
In particular, we increased the matching threshold values to
increase the number of strongly matched keypoints, i.e., those
having higher probabilities of being the same in both bands.

Concerning the accuracy of the proposed method, Table IV
is a good indicator presenting the mean and standard deviation
of the across and along-track offsets for the B8A −B11 spectral

10[Online]. Available. https://shorturl.at/klJL7; last accessed on 19 December
2023: Pyraws matching config.

TABLE IV
MEAN AND STANDARD DEVIATION (ALONG- AND ACROSS-TRACK) OF

OFFSETS VALUES FOR EACH DETECTOR OF SENTINEL-2 OPTICAL IMAGERS

WHEN PERFORMIG THE REGISTRATION OF B8A −B11 SPECTRAL BANDS

bands. Such values were obtained by measuring the error due
to the proposed CSC method with respect to the shifts that one
can obtain using the SuperGlue method. Notably, the standard
deviation values exhibit a general trend of being below one
pixel for both along- and across-track directions. Although this
behavior has been reported for only the B8A −B11 spectral
bands, it is essential to note that this trend has been consistently
verified for each spectral band pair of the Sentinel-2 images.
Also, note that the results presented in the table have been
differentiated based on the satellite and detector number. This
differentiation is necessary due to the empirical observation of
dependence on the satellite.

Furthermore, an additional interesting pattern that is observ-
able in the results is a change in sign when transitioning from
odd to even detectors. This pattern is attributed to the fact that
the detectors are inverted on the satellite, resulting in an opposite
offset sign for even detectors compared to odd detectors.

It is worth noticing that the reported errors are obtained by
using the shift values NI(k+1)_I(k) matching the average values
on the volcanic events before being filtered, which include
granules having an acquisition date ranging from 2017 to 2022.

However, in a hypothetical mission scenario, it is possible to
recalculate NI(k+1)_I(k) periodically to optimize them toward
specific calibration settings or other possible temporary sensor
set-ups.

C. Quality of CSC

In this section, we assess the usability of the proposed CSC
for onboard satellite processing by comparing it to a reference
algorithm called SuperGlue [43] in terms of quality of registra-
tion. Such a study was performed across the entire postprocessed
THRawS dataset. This comparison is performed by applying
SuperGlue and the proposed CSC solution for the alignment of
the bands B8A and B11. As shown in Table IV, 17 of 24 cases
feature a pixel error [σ] smaller than a pixel for both the along and
across-track directions. In three cases, the coregistration error
is null. The maximum along-track and across-track errors are
1.47 px and 0.71 px, respectively. Such values are significantly
lower than the smallest thermal anomaly in the THRawS dataset,

https://shorturl.at/klJL7
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TABLE V
EVALUATION OF TIMING PERFORMANCE FOR SUPERGLUE, LIGHTGLUE

(ALIKED, DISK, SIFT, SUPERPOINT), AND TRADITIONAL SIFT-BASED

METHOD IN SPATIAL COREGISTRATION COMPARED TO THE DEVELOPED CSC
APPROACH, EXECUTED ON CPU (INTEL©R XEON©R GOLD 6248 CPU @

2.50 GHZ) AND GPU (NVIDIA A40-48 C WITH DRIVER VERSION 525.105.17
AND CUDA VERSION 12.0)

which was selected using the nine contiguous pixel criterion
implemented by Massimetti et al. to suppress false positives [29].
Therefore, no warm temperature hotspot is misaligned due to the
coregistration error.

These results showcase the potential of the proposed CSC
algorithm, not for its precision in B2B alignment but for its
energy efficiency and simplification of the problem. The primary
aim of CSC is to correct misalignments rather than performing
complex warping. We juxtapose the CSC method with other
techniques, noting that while others rely on feature detection
and matching, CSC efficiently bypasses these steps.

1) CSC Timing Performance: This section compares the pro-
posed CSC technique in terms of timing performance to Super-
Glue, and other coregistration solutions including the traditional
SIFT implementation [34], LightGlue [44] method, covering dif-
ferent feature descriptors, including Superpoint, ALIKED [48],
and DISK [49]. Differently from the described CSC, these tech-
niques are feature-based, i.e., they extract and match keypoints
from the bands to be aligned enabling a fine B2B alignment.
Results shown in Table V showcase the profiling of these meth-
ods. This comparison was conducted across the granules of the
THRawS dataset, highlighting the practical advantages of CSC
in onboard satellite processing contexts.

More specifically, we set up an experiment to compare the
time to register ten raw data granules.

For all the aforementioned methods, we measured the time
to register the bands B8A, B11, and B12. We profiled both the
methods by using PyTorch Profiler [50] both on an Intel©R
Xeon©R Gold 6248 CPU @ 2.50 GHz central processing unit
(CPU) and an NVIDIA A40-48 C graphics processing unit
(GPU) to test the dependency on the time performance on
the hardware device. Each test case was run three times, and
time performance was measured by averaging the results on the
three tests. All the tests were performed continuously with 15
warm-up cycles at the beginning of the test series with one raw
data granule.

Concerning the CSC, precalculated shifts were stored in mem-
ory before running the tests to reduce the overhead time due to
the storage memory access. When the other methods were used,
shift values were retrieved using the approach and the model
set-up described in Section B.

On both devices, all the methods show a linear increment of
the time to perform the band registration with the number of
images. In general, on both CPU and GPU, our method outper-
forms the other feature-matching techniques. In particular, for a
single granule with bands B8A, B11, and B12 our methodology
requires 17 ms and 1.65 ms on CPU and GPU, respectively.

DATA AVAILABILITY

The dataset associated with this study is available and can be
accessed through the following DOI: 10.5281/zenodo.8367083.
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