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Simulated Data-Guided Incremental SAR ATR
Through Feature Aggregation

Ziyang Tang ", Yuli Sun

Abstract—Applying synthetic aperture radar automatic target
recognition (SAR ATR) in open scenario based on deep learning
(DL) is challenging due to the difficulty in incrementally recogniz-
ing new targets with limited samples. To address this challenge, we
introduce simulated data that reflects the structure and scattering
features of the new target to supplement measured data for better
performance, and then, we propose a novel class incremental SAR
ATR method guided by simulated data through feature aggregation
(SGFA). Due to the gap between simulated and measured data, DL-
model prefers extracting simulated-specific features in incremental
learning, resulting in misclassification of new targets. In order to
avoid the bias learning of simulated data, SGFA utilizes feature
aggregation to extract scattering and structural features that are
present in both simulated and measured images, which consists of
measured data-anchored minibatch construction strategy (MDA)
and feature-level contrastive loss. Specifically, the MDA can reduce
the high sampling probability of a large number of simulated
samples in each minibatch. The feature-level contrastive loss can
aggregate the feature distributions of simulated and measured
data, which is obtained by automatically constructing sample pairs
through cyclic shifts of feature vectors in the minibatch. In addition,
a small amount portion of simulated data is retained to resist severe
forgetting caused by the difficulty of adequately representing the
data distribution with limited measured data. The experiments on
SAMPLE dataset demonstrate the effectiveness of the proposed
method.

Index Terms—Automatic target recognition (ATR), class
incremental learning, simulation, synthetic aperture radar (SAR).

I. INTRODUCTION

YNTHETIC aperture radar (SAR), is an active earth obser-
S vation sensor that can image the area of interest in all-day
and all-weather conditions [1]. It offers unique advantages for
both military and civilian applications. The development of
SAR imaging technology has made it more feasible to obtain a
large number of high-resolution SAR images. When presented
with massive SAR data, efficient SAR automatic target recog-
nition (SAR ATR) algorithms are urgently needed due to the
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low timeliness of manual interpretation alone. The powerful
automatic data processing capabilities of deep learning (DL)
have reinvigorated SAR ATR and advanced results have been
obtained [2], [3]. These DL-based methods rely on closed-world
assumptions, where the class and number of samples in the
training set are fixed. However, sensors increasingly acquire new
target images in open scenarios. In order to recognize new class
targets, historical data are generally retrained together with new
data, which results in significant time consumption and waste of
storage resources.

Class incremental learning enables the continuous acquisition
of knowledge of new classes while accessing minimal or no
historical data, which is considered to be more suitable for open
scenarios where the data is gradually increased. In recent years,
numerous incremental learning algorithms have emerged due
to the rapid development of this field [4], [5]. Among them,
the algorithm based on preserving a small portion of old class
data as exemplars is effective for preventing forgetfulness and
simple to execute. Therefore, number of incremental learning
methods for SAR ATR improve upon retaining old samples. For
instance, HPeclL [6] utilized multimodel knowledge distillation
to correct the accumulative errors of old classes, and unstruc-
tured pruning initialization to improve the plasticity of model.
Dang et al. [7] proposed class boundary exemplar selection to
select more diverse samples for incremental SAR ATR. Li et al.
[8] proposed incremental class anchor clustering to address the
confusion between the representations of new and old classes in
the feature space. Li et al. [9] presented density coverage-based
exemplar selection to pick those samples that can cover the class
distribution to the maximum extent as exemplars. The algorithms
described above produce satisfactory results on SAR benchmark
datasets, such as MSTAR. However, these methods are based on
the condition that the training samples of the new target are
sufficient and do not consider the situation where the measured
samples are limited.

In real-world scenarios, access to limited training samples for
certain targets is often the norm, such as noncooperative military
targets. Learning new targets incrementally under such limited
training data condition can be challenging. On the one hand,
the limited amount of measured data poses a challenge for the
model to effectively extract information about the features of
new targets. On the other hand, when processing subsequent
new data, it can be difficult to avoid the model’s tendency to
forget this class, even if all limited measured data is retained.
Although some studies have introduced prototype learning to
alleviate the overfitting problem caused by limited samples [11],
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Visualization results for incrementally learning 1 (Top) and 2 (Bottom) new classes using iCaRL [4], WA [5], and Replay respectively, where new classes

contain small amount of measured data and sufficient simulated data from SAMPLE dataset [10]. The number of base classes is 4, and new class of each incremental
task is 1. Inside the black circle are the sample points of the simulated data. (a) iCaRL-5. (b) WA-5. (c) Replay-5. (d) iCaRL-6. (e) WA-6. (f) Replay-6.

[12], sufficient data is a more effective support for DL which is
a data-driven algorithm, particularly for SAR images, which are
greatly affected by imaging conditions.

SAR image simulation technology is another important way
to obtain SAR images. A large number of simulated images
of specified target can be generated by computer aided design
(CAD) model and electromagnetic calculation tools, which can
well simulate the geometric and scattering feature of the target.
However, simulated images are influenced by the realism of the
CAD model and the accuracy of the electromagnetic calcula-
tions, which may differ from the measured data [13]. As shown
in Fig. 2, there is a discernible disparity between the measured
and simulated images, both in terms of the background clutter
and the distribution of strong scattering points. This discrepancy
ultimately results in the divergence of the two distributions in the
deep feature space, as shown in Fig. 1. Numerous studies have
aimed to reduce the disparities between simulated and measured
data to effectively utilize simulated data for SAR ATR, and the
results are positive in limited measured data [14], few-shot [15],
and zero-shot [16] conditions.

The successful application of simulated data in SAR ATR
inspired the introduction of simulated data into the incremental
SAR ATR. In the incremental learning, sufficient simulated data
can aid in the acquisition of new knowledge by providing a
comprehensive and detailed characterization of the target struc-
ture. In addition, the structural and scattering features present in
the simulated images exhibit better stability, which is beneficial
for preserving old knowledge. However, very few scholars have
conducted research on this.

M35

Fig. 2. Selected measured images (Top) and simulated images (Bottom) of
M2 and M35.

In this article, we consider a scenario in which a model,
trained on classes with ample measured data (base classes),
incrementally learns new classes that contains a small amount
of measured data and sufficient simulated data. Two issues were
found as follows.

1) Simulated-Feature Preference: When directly introducing

simulated data, the model may extract simulated-specific



13604

features to achieve a high degree of separability between
the new and old classes in training set. This can result in
differences between the simulated and measured data in
the feature space, as shown in Fig. 1. For similar target,
the difference can be even greater than the difference of
interclass.

2) Catastrophic Forgetting: Incremental learning faces the
problem of forgetting-a significant decline in the ability to
discriminate old classes while learning new knowledge.
Although retaining a small amount of old classes data can
provide some resistance to it, too little measured data for
incremental classes make them more forgettable than the
base classes.

In light of above issues, a novel method guided by sim-
ulated data through feature aggregation (SGFA) is proposed
for SAR image class incremental learning with simulated data
supplementation. Specifically, feature aggregation is performed
at each minibatch to ensure that the model extracts scattering
and structural features that are present in both simulated and
measured images. To tackle the issue of severely forgetting
incremental classes, we retain a portion of the simulated data, in
addition to the measured data, to prevent forgetting. The primary
contributions of this article can be induced as follows.

1) A novel class incremental SAR ATR framework guided
by SAR simulated data is proposed to address the issue
of limited samples for new targets. Adequate simulated
data was used to supplement the limited measured data
for the new classes. By aggregating the feature distribution
of both, the simulated data can better guide the learning
from new classes. When subsequent data arrives, a small
portion of simulated data is retained to resist forgetting.

2) A feature aggregation method is proposed to avoid bias
learning of simulated data, which contains measured data-
anchored min-batch construction strategy (MDA) and de-
signed feature-level contrastive loss. The MDA ensures
that each minibatch contains measured data for subsequent
contrastive loss calculation. The feature-level contrastive
loss minimizes the Euclidean distance between simulated
and measured data in each minibatch by cyclic shifts to
extract their common features.

3) A herding-based selection method for simulated data is
proposed to resist severe forgetting of incremental classes.
It is designed to choose new classes of simulated samples
to add to the exemplar set for preventing severe forgetting.
To select representative simulated exemplars efficiently,
We consider the center of the measured data sample as
class center and then select the simulated samples that are
closest to the class center in the feature space by herding.

II. RELATED WORK

A. Incremental Learning

Class incremental learning aims to design machine learning
models with continuous learning capabilities for new class data.
The prevailing class incremental learning methods can be sum-
marized at three levels: 1) data; 2) model; and 3) algorithm [17].
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1) Class Incremental Learning Methods: Data-centric meth-
ods construct exemplar set for old class [18], [19] or generate
pseudodata [20], [21] for participation in model updates to
combat forgetting. The methods of directly retaining a small
amount of old data are widely used due to their simplicity and
effectiveness, despite the fact that they consume a certain amount
of memory. For the latter, they rely on the quality of the pseu-
dodata and require constant updates to the generative network,
increasing requirements for algorithm design. In addition, some
works utilize exemplar set to constraint optimization direction
for retaining previous knowledge [22], [23]. The practical appli-
cation of these methods is hindered by overreliance on unverified
assumptions. Model-centric methods continuously adapt to new
data by limiting updates to important parameters [24], [25] or
by dynamically adjusting the network structure [26], [27]. For
the former, they need to save a parameter importance matrix
for each incremental task, which will linearly consume storage
resources, while the parameter importance matrices of different
tasks may be contradictory for model updating, impeding its
evolution. Algorithms that rely on dynamic model structures
require task identifiers to specify the selection of subnetworks,
which can make it difficult to meet practical requirements.
Algorithm-centric methods work on designing specific algo-
rithm to maintain the model’s knowledge of past tasks, such as
knowledge distillation [28] and model rectify [5], [29]. Although
algorithm-centric methods increase the complexity of algorithm
design, they can be well integrated with the first two levels
of methods [30], [31]. Therefore, they have received a lot of
attention.

2) Class Incremental SAR ATR Methods: Currently, research
on class incremental learning for SAR ATR is still in its early
stages. And most methods improve upon popular class incre-
mental learning algorithms. Tang et al. [6] combined the three
mainstream algorithms mentioned above. The algorithm utilized
multimodel knowledge distillation on exemplar set to correct
the accumulative errors of old classes, and unstructured pruning
initialization to improve the plasticity of model. Li et al. [8]
considered that SAR images exhibit significant intraclass differ-
ences and small interclass differences due to the fact that targets
of the same class at different azimuths have large differences,
while targets of different classes at the same azimuth have
certain similarities. To address this, the incremental class anchor
clustering was proposed to eliminate confusion between old and
new classes. In addition, CBesIL [7] and DCBES [9] have em-
phasized the crucial role of selecting appropriate class exemplars
for data-centric methods. CBesIL [7] screens samples from the
boundary region using geometric and statistical information.
The boundary samples are then used to synthesize samples rep-
resenting the interior region for new task. Li et al. [9] presented
density coverage-based exemplar selection to pick those samples
that can cover the class distribution to the maximum extent as
exemplars. SSF-IL [32] replaces conventional knowledge distil-
lation with intraclass clustering loss to cluster around the saved
class centers, maintaining the separability among the old class
features. In addition, some studies have considered incremental
SAR ATR under limited samples condition [11], [33]. Zhao et al.
[11] proposed cosine prototype learning to resist overfitting on
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new classes. Wang et al. [33] further proposed a hybrid dis-
tance classifier and pseudoincremental learning strategy to resist
forgetting. Although these algorithms achieved good results,
they did not consider supplementing the measured data with
simulated data under limited samples condition in incremental
learning. This motivated our research on the topic.

B. Utilization of SAR Simulated Data

SAR image simulation is a technique used to replicate SAR
image features or the SAR system’s work process, producing the
simulated SAR image. It can be classified into three categories:
1) feature-based; 2) raw signal-based; and 3) SAR image-based
[34]. The feature-based approach focuses on the simulation of
geometrical and radiometric features of the images, and seeks the
similarity between the simulated image and measured images,
such as the shape and distribution of scattering points. Given the
challenge of acquiring measured data, it is not surprising that
numerous methods have been developed to enhance SAR ATR
performance by incorporating simulated data into the training
set [35], [36], [37].

1) Transfer Learning: One dominant way of utilizing sim-
ulated data is through transfer learning [14], [35]. For these
methods, the model is pretrained on simulated data and then fine-
tuned using a small amount of measured data to learn more useful
and generalized features of the simulated data. This enables the
model to quickly adapt during retraining with measured data.
In addition, some methods extract more generalized feature by
domain adaptation. Sun et al. [38] designed a multiscale feature
extraction module to extract domain-invariant feature. Further,
He et al. [39] proposed a task-drive domain adaptation transfer
method to alleviate the degradation of recognition caused by the
variance of depression angle between training and test data.

2) Transform and Augment: Some research considers trans-
forming simulated images to be more similar with measured
images in image domain. Cha et al. [40] proposed refining
simulated data based on deep residual networks. Liu et al.
[41] introduced CycleGAN [36] to perform style migration on
simulated data. Camus et al. [42] trained a cGAN [43] to refine
simulated data by adding MSTAR-specific features. In contrast
to simulated image realism, some studies have focused on aug-
menting the simulated data to improve classifier performance.
Song et al. [16] proposed utilizing nonessential factor suppress
for preprocess of simulated data. This removes the effect of
unimportant textual information from the simulated data. Sellers
et al. [44] applied the phase error of measured data to the
augment of simulated data. Further, Inkawhich et al. [13] used
data augmentation, model construction, loss function choices,
and ensembling techniques to enhance the representation learned
from the simulated data, and ultimately achieved over 95%
accuracy on the SAMPLE dataset.

3) Other Methods: Zhang et al. [37] proposed a multisimi-
larity fusion (MSF) classifier to comprehensively measure the
correlation between the hard samples and the training images.
Zhang et al. [15] incorporated SAR domain knowledge related
to the azimuth angle, the amplitude, and the phase data of ve-
hicles under few-shot condition. Zhang et al. [45] considers the
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significance of target scattering features during style migration
and modifies the loss function to better retain structural detail
information.

In summary, simulated data can effectively assist SAR ATR
under small amounts of measured data, few-shot, or zero-shot
conditions. This further illustrates the feasibility of applying
simulated data to incremental SAR ATR. The simulated data’s
electromagnetic scattering characteristics benefit both the incre-
mental model’s stability and the extraction of new knowledge.
However, these methods rarely bridge the gap between simulated
and measured data from a class alignment perspective, which is
a difficulty that must be overcome by class incremental learning
that requires constant processing of unknown data.

III. PROPOSED METHOD

In this section, we describe the overall framework of SGFA,
as shown in Fig. 3, and explain how to implement incremental
recognition with measured and simulated data. Section III-A
describes the design of feature aggregation. Section III-B details
the incremental learning process.

A. Feature Aggregation

1) Contrastive Loss Design: To extract target-related fea-
tures that are common to both simulated and measured data,
it is necessary to aggregate the distribution of simulated and
measured data in the feature space. Metric learning is a use-
ful approach to consider this issue. However, metric learning
necessitates the constant construction of positive and negative
sample pairs, which increases the complexity of algorithm de-
sign. To address this issue, we introduce cyclic shifts, which can
automatically construct positive and negative samples in each
minibatch [46]. We perform it on feature vectors of minibatch.
Specifically, all vectors are shifted back one position, and the
final vector is moved to the first position in the minibatch. As-
suming that the output vectors of data is [f1, f2, f3], the result
of acyclic shiftis [f3, f1, f2]. Upon completion of this process,
the feature vectors at the designated location constitute an ex-
act sample pair ([(f1, f3), (f2, f1), (f3, f2)]). Subsequently,
the Euclidean distance between samples of the same class is
calculated according to the corresponding labels to obtain the
contrastive loss by

1 N
Lcont = N;yzdz (1)

where N denotes the number of feature vectors in the minibatch,
d; denotes the Euclidean distance between the feature vectors
at position ¢ in the shift and nonshift feature vectors. If they fall
into the same class, y; is 1, otherwise 0. We solely concentrate
on the samples of the same class in the minibatch and minimize
their distance in the feature space. We do not introduce negative
samples because increasing the distance between classes con-
tradict the feature aggregation between simulated and measured
data. Repeat above operations until the first vector is shifted to
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Fig.3. Framework of SGFA.

Algorithm 1: Compute Contrastive Loss for Minibatch.

Input: labels, features
Output: contrastive loss of minibatch
141
sum_loss <+ 0
N « len(lables)
features_cyc < features
labels_cyc < labels
while : < N do
features_cyc + Cyclic( features_cyc)
labels_cyc < Cyclic(labels_cyc)
y < labels_cyc.eq(labels)
d « || features_cyc — features||
loss + y * d?
sum_loss < loss + sum_loss
1 1+1
end while
return sum_loss/[N x (N — 1)]

the last and then calculate the final loss by

N-—
Z 2)

LL—|—

where L. denotes the cross entropy loss, Lgom denotes con-
trastive loss of jth cycle shift, A is a hyperparameter. Algorithm 1
shows the detailed processing flow.

2) Measured Data-Anchored Minibatch: The amount of sim-
ulated data per class is much larger than the measured data,

making it difficult for the measured data to participate in each

v Input data Classifier

‘##-

Feature space

o base class
- -

added class 1
A N -, i added class 2

Fig. 4.  Schematic diagram of network structure.

minibatch build. The direct feature aggregation of minibatches
constructed by random sampling is more about clustering simu-
lated data than aggregating feature distribution of simulated and
measured data. Hence, we propose a MDA. Specially, we add
all the measured data and randomly selected simulated data to
each minibatch, which is for the effective feature aggregation.
In addition, we found that aggregating features only for the new
classes of simulated and measured data causes the model to
overlook the separability of the new classes from the old ones.
This leads to unsatisfactory recognition of new classes. Hence,
a portion of exemplars is added to the minibatch to maintain
the separability of the different classes. The specific operation
is shown in Fig. 5. Separate minibatch streams are created for
the simulated data and the exemplar set. These two streams
output minibatches one-by-one, which are then concatenated
to the measured data to construct a training minibatch.

B. Incremental Learning

1) Data Format: For typical class incremental leaning, it
aims to learn from a data stream with incoming new classes. The
data stream can be divided into a sequence of recognition tasks
{Th,Ts,...,Ty},and { D1, Ds, ..., D, } are the corresponding
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Ilustration of measured data-anchored minibatch construction. The blue rectangles and yellow rectangles represent the minibatch of the simulated data

and the exemplar set, respectively, which are concatenated with the measured data (orange rectangle) in parallel to form the training minibatch.

labeled training set, with D, = (x;,¥;),i < Np, where z; is
image sample, y; € C,,, IV}, is the number of training samples
in D, and C), is the label space of D,, the label spaces of
different tasks do not overlap. In each incremental task, the
model processes the current data while accessing or failing to
access only a small portion of the past data, and at the end of the
task, the model has to maintain its ability to discriminate the old
classes while learning discriminative knowledge about the new
ones. In this article, Dy, as base class data, only includes mea-
sured images. The follow-up data (D5, Ds, ..., D,,) consists of
limited measured images and an adequate number of simulated
images of new classes.

2) Network Architecture: As a foundation support, our
method makes use of convolutional neural network. We think of
the network a trainable feature extractor followed by a classifier
which has as many output nodes as classes observed so far. The
network in our method is ResNet18, with the last linear layer as
classifier f(-) and the other layers as feature extractor ¢(-). As
shown in Fig. 4, the input image is fed into the network, and the
output of the final convolutional layer is flattened to obtain the
feature vector, which is subsequently fed into the linear layer to
get the prediction. Since our method is not limited to specific
network structures, it can be replaced with other CNN networks.

3) Initial Learning: Asshown in Fig. 3, in the initial learning
phase, a model is trained directly using the cross entropy loss,
since the base class data is all measured data. After initial
training session, all of the data is once again fed back into the
feature extractor to get the feature vectors. Further, we compute
prototypes for each class in preparation for subsequent exemplar
set construction. The prototype can be calculated by

1
Py =5 > o) (3)

y| reD,

where D, is the training data of class y. Then, exemplars for
each class are selected by herding, which makes the center of

the feature vectors of the samples in the exemplar set closest to
which of the entire training set. The operation is shown as below

k—1
ek:arg?inﬂpy—E (b(x)—i—Z(z)(ei)] k=1,2,--- ,q
wE€Dy i=1

“)
where ey, is the kth selected exemplar for class y and ¢ is the
number of exemplars for each class.

4) Learning From New Tasks: In the incremental learning
phase, exemplar set are included in model training in addition
to the new classes of measured and simulated data. Initially,
the training minibatch is conducted by measured data-anchored
minibatch construction strategy. Then it is delivered to the
feature extractor to acquire feature vectors. The feature vectors
are fed into the classifier to calculate the cross entropy loss.
Naturally, the output nodes of the classifier increase to the same
number of known classes. Specifically, when new classes of data
are introduced, a new classifier is instantiated whose number of
output nodes is the sum of the number of new classes and the
number of existing classes. Subsequently, the parameters of the
previous classifier are allocated to the corresponding nodes of
the new classifier, with no operations being conducted on the new
nodes. This process preserves to some extent the knowledge of
the previous classes.

For feature aggregation, cyclic shifts are performed on these
feature vectors of minibatch to compute contrastive loss. The
contrastive loss and cross entropy loss synchronized to model
update. After training, similarly we select samples to be added to
the exemplar set. However, since the limited measured samples
of new class make the model susceptible to overfitting, even re-
taining all measured data as exemplars was difficult to sustain the
model’s ability to recognize this target in subsequent incremental
tasks, resulting in dramatic forgetting of the model’s knowledge
about it. With this in mind, a small amount of simulated data is
added to the exemplar set to resist forgetting. For the selection of
simulated data, we hope to select which is closer to the measured
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Fig. 6. Schematic of classification results for strong classification boundaries.

data. Inspired by herding, we utilize the mean of the feature
vectors of the measured data instead of the center of the entire
training set to select the simulated data. Details of incremental
training step is shown in Algorithm 2. Subsequent incremental
tasks are carried out according to the above flow path.

5) Classification: At the test stage, although the classifier
can directly predict the probability of classes, the strong clas-
sification boundaries of classifier will cause misjudgment of
the classes of measured data when there is a certain distance
between the measured data and simulated data in the feature
space, as shown in Fig. 6. Hence, we use it only for representation
learning. For classification, we rely on exemplar set to establish
a prototype for each class. The prototype can be calculated by

> ¢(m) )

meM,

_ 1
Py =10,

where M, is the exemplar set of class y. For a image  should
be classified, assuming the space of classes observed so far is
Co, we assign the class label of the most similar prototype to it

y* = argmin [[¢(x) — py||. (6)

yeC,

IV. EXPERIMENTAL EVALUATION

In this section, experiments are carried out to evaluate the
effectiveness of the proposed method. We use publicly available
subset of the Synthetic and Measured Paired Labeled Experi-
ment (SAMPLE) for experimental evaluation.

A. Dataset and Experimental Setup

1) Dataset: The SAMPLE dataset, supported by air force
research laboratory (AFRL), consists of measured SAR images
from the MSTAR data collect and is paired with simulated
SAR images of ten classes of military vehicles, i.e., 2S1,
BMP2, BTR70, M1, M2, M35, M60, M548, T72, ZSU23-4.
The measured images and simulated images of ten classes in the
SAMPLE dataset are shown in Fig. 7. The publicly available
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Algorithm 2: Incremental Training.

Input: X,,, X, M, ¢t !, f©=1 [/ measured data,
simulated data, exemplar set, feature
extractor and classifier of previous
task
Output: ¢!, ft // feature extractor and
classifier of current task
¢t — ¢t71
ft+ ft"1' +0.// add output nodes
for i < N do
b+ MDA(X,,, Xs, M)
feature < ¢*(b)
L¢ont < Compute contrastive loss by feature
logits < f'(feature)
L + Compute cross entropy loss by logits
L <+ Lo+ A% Leont
Update ¢, ft by L
end for

TABLE I
EXPERIMENTAL SETUP OF SAMPLE DATASET

class Train Test
measured simulated measured
2S1 35 0 139
BMP2 22 0 85
BTR70 18 0 74
M1 26 0 103
M2 3 128 125
M35 3 129 126
M60 3 176 173
M548 3 128 125
T72 3 108 105
ZSU23-4 3 174 171

SAMPLE data are sampled in azimuth from 10° to 80° and in
elevation from 14° to 17°. The measured data was divided into
training set and test set in a 1:4 ratio for base classes (2S1,
BMP2, BTR70, M1). As to incremental classes, the training
set comprises all simulated images and three randomly selected
measured images, and the remaining measured images constitute
the test set. Detailed information is listed in Table I. The original
image size is 128x128. To reduce the impact of background
clutter, the images are cropped to 88 x 88.

There are three incremental experimental scenarios, where
the number of newly added classes is 1, 2, and 3 each time and
the number of base classes is 4. The tasks for each scenario are
divided as shown in Table II.

2) Evaluation Metrics: The average recognition accuracy of
all known classes for each incremental task can be used as one of
the evaluation indicators, which reflects the overall performance
of the algorithm. However, the stability and plasticity which is
the main focus of performance in incremental learning of these
methods cannot be reflected in average accuracy. Therefore, the
accuracy of each class per incremental task can be one of the
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Fig. 7. Measured images (Top) and simulated images (Bottom) of SAMPLE dataset. The class order is: 2S1, BMP2, BTR70, M1, M2, M35, M60, M548, T72,
7ZSU23-4.
TABLE II
INCREMENTAL EXPERIMENTAL SCENARIOS
Scenario 251 BMP2 BTR70 Ml M2 M35 M60 M548 T72 ZSU23-4
Scenario 1 TASK 1 TASK 2 TASK 3 TASK 4 TASK 5 TASK 6 TASK 7
Scenario 2 TASK 1 TASK 2 TASK 3 TASK 4
Scenario 3 TASK 1 TASK 2 TASK 3
o0 2 ? ot
74 WA
z o]
~+-A-GEM
: 7 |l --csceT
o 72 || -~FOSTER
62 70 || <~SGFA
« 4 5 6 7 8 9 10 o 4 7 10
Number of classes Number of classes Number of classes
Fig. 8. Incremental recognition accuracies of scenario 1 (Left), 2 (Middle), and 3 (Right).

metrics. In addition, to verify whether the algorithm can extract
common features between simulated and measured data, t-SNE
is given to be a considerable metrics.

3) Implementation Details: All experiments are performed
on PyTorch framework, which use a personal computer with
NVIDIA RTX 3090 on Windows 10 system. In our method,
each training phase contains 1000 batches for initial learning and
incremental learning. The minibatch size is 20 for scenarios 1,
2, and 30 for scenario 3. In the incremental learning, each mini-
batch contains measured data for all the newly added classes,
and an equal number of simulated data, with the remainder being
exemplars. Specifically, the number of simulated and measured
data for each category is both 3, and the number of exemplars is
14, 8 and 12 for scenarios 1, 2, and 3. The number of exemplars
per class is 15, with the base classes consisting of measured
images and the incremental classes consisting of three measured
images and 12 simulated images. The stochastic gradient de-
scent is applied as an optimizer, where the learning rate is 0.001
and the momentum factor is 0.9. The hyperparameter A = 0.5.

B. Incremental Recognition Performance

In this section, experiments are conducted in different incre-
mental conditions to validate the effectiveness of our approach.

Since SGFA belongs to data-centric method, we mainly com-
pared it with prior data-centric methods—iCaRL [4], WA [5],
A-GEM [23], FOSTER [30], CSCCT [31]. Furthermore, to ver-
ify the validity of the feature aggregation, a baseline Replay was
also added to the comparison, which was trained purely using
the exemplars and new data without any other manipulations.
1) Performance Under Different Scenarios: Fig. § illustrates
the average accuracy of the above method after each incremental
task in the three experimental scenarios. As seen in Fig. 8, our
method achieves the best recognition accuracy in all incremental
tasks. iCaRL, WA, Replay, and CSCCT based on direct training
of the replay data perform similarly in different incremental sce-
narios. Although FOSTER has devised a more intricate learning
methodology to address the issue of forgetting, the intricate
algorithmic design is inadequate in the context of the com-
plex data distribution, resulting in suboptimal outcomes. Since
these methods do not account for the distributional differences
between simulated and measured data, the overall recognition
results are unsatisfactory and unstable. It can be seen that a
dramatic drop in recognition rate occurs at the first incremental
task in all scenarios. This phenomenon occurs because, when
simulated data is initially added for training, the model tends
to extract simulated-specific to separate new and old classes
due to the large amount of simulated data in the new class



13610

I miCaRL WA =Replay ®A-GEM =CSCCT ®FOSTER mSGFA |
100
[
-
é %0
5 8
£ w
2
<
70
65
60 L
4 5 6 7 8 9 10
Number of classes
(a)
Fig. 9.

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

| miCaRL WA =Replay ®A-GEM uCSCCT ®FOSTER usSGFA
100
]
o
S 8
& 8
£
g n
< e
60
5
50 L
4 5 6 7 8 9 10
Number of classes

(b)

Incremental recognition accuracies under different incremental class order, where the number of incremental classes is 1 for each task. (a) The order is

M60, M548, T72, ZSU23-4, M2, M35. (b) The order is T72, ZSU23-4, M2, M35, M60, M548.
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compared to the measured data in the base class. In addition,
the proximity of M2 and BMP?2 in the feature space is notable.
The distance even smaller than that between simulated and
measured data, leading to misclassification. This can be further
verified in the subsequent visualization results. This similarity
may be attributed to shared structures, such as high hulls, short
gun barrels, and tracks. Instead, SGFA extracts fine structural
features through feature aggregation, improving the separability
of M2. A-GEM, on the other hand, uses the exemplar set to
standardize the direction of model gradient updating, which rely
on the accuracy of its assumptions. In the presence of a complex
distribution of new class data, significant forgetting occurred,
leading to poor overall performance.

In addition, in scenario 3, the model’s performance declines
rapidly in the final task. This is due to the fact that SGFA
primarily focuses on the learning of new classes, with minimal
attention paid to the problem of forgetting old classes containing
simulated exemplars. In contrast, in scenario 3, the maximum
number of new classes is added in each task, leading the model
to prioritize the new classes, which exacerbates the forgetting
process.

2) Performance Under Different Incremental Conditions:
Fig. 9 illustrates the experimental results for different incremen-
tal classes order conditions in scenario 1. It can be found that
under two different incremental classes orders, SGFA achieved
the highest recognition accuracy at the end of the final task. As
shown in Fig. 9, there is some degradation in performance when
processing simulated data for the first time. However, the degree
of degradation varies. As described in the analysis of Fig. 8,
the recognition accuracy is affected by the similarity between
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Incremental recognition accuracies of scenario 1 under different number of simulated exemplar (E5). (a) Es = 7. (b) Es = 2.

new and old classes, which causes this phenomenon. The SGFA
effectively reduces the distribution of simulated and measured
data in the feature space and is less affected by it. Therefore, this
abrupt change did not occur in both conditions.

For data-centric methods, the number of exemplars has a
significant impact on the performance of the algorithm. Thus,
experiments were conducted under various exemplar set size
(only for simulated exemplars) conditions. As shown in Fig. 10,
although SGFA’s performance decreases with fewer simulated
examples, it still outperforms other methods overall. It is impor-
tant to note that, even with varying numbers of simulated exem-
plars and different orders of incremental classes, the recognition
performance after processing the final class of data is second
only to SGFA and even exceeds it in some tasks. This suggests
that specific incremental algorithms may not be helpful when
introducing simulated data.

3) Recognition Accuracy per Class at Each Task: Table 11T
exhibits the recognition accuracy per class at the end of each
incremental task of iCaRL, WA, Replay, SGFA in scenario 1.
It can be seen that the recognition accuracy of the base classes
is not much affected as new data is continuously processed in
SGFA, Replay, iCaRL, and WA (except for last task). This is
mainly because the SAMPLE dataset only includes a portion of
the azimuthal samples. Therefore, a small number of exemplars
can effectively characterize the class features. In addition, at
the end of each incremental training, SGFA achieves the highest
recognition accuracy for newly added classes. Other methods are
less effective without aggregating the feature distribution of the
simulated and measured data. After the first incremental task,
SGFA’s recognition performance for M2 is 58.4%, 52%, and
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TABLE III
RECOGNITION ACCURACY PER CLASS OF ICARL, WA, REPLAY, SGFA IN SCENARIO 1(%)

TASK iCaRL WA

2SI BMP2 BTR70 MI M2 M35 M60 M548 T72 ZSU23-4 | 2SI BMP2 BTR70 MI M2 M35 M60 M548 T72 ZSU23-4
Ty 9712 97.65 98.65 100 96.40 98.82  98.65 100
T, |9424 100 100 100 26.40 94.40 98.82 100 100 32.80
Ty | 9553 100 100 100 4320 80.95 96.40 98.82 100  99.03 48.80 84.13
T, [9568 100 98.65 100 3520 92.06 64.16 94.40 100 100 99.03 49.60 89.68 93.06
Ts | 9469 9882 100 100 57.60 39.68 90.75 99.20 96.40 100 100 99.03 40.80 4921 90.75 99.20
Ts | 9496 97.65 9595 99.03 4240 30.95 8324 99.20 89.52 92.09 97.65 98.65 98.06 41.60 53.97 8671 928 98.1
Ty 19353 9529 100 99.03 28.00 50.79 98.84 9520 91.43  97.08 |78.42 80.00 8649 97.09 20.00 58.73 83.82 85.60 87.62  97.08

Replay SGFA

T, |97.12 9647 97.30 100 97.12 97.65 98.65 100
T, |95.68 9882 100 100 20.80 95.68 100 100 100 84.80
Ty 9568 9882 100 100 5520 92.06 95.68 100 100 100 80.00 96.83
T, |96.40 9882 100 100 44.00 93.65 98.84 96.40 100 100 100 7920 9524 100
T5 9640 9882 100 100 3840 73.81 98.84 99.20 96.40 100 100 100 84.00 80.16 100 100
Ts 9640 9882 100 100 41.60 57.14 82.66 100 100 95.68 100 100 100 6480 73.81 79.77 100 100
Ty | 9640 98.82 100 100 3600 6508 90.17 100 100  94.74 |9568 98.82 100 100 52.80 79.37 8844 9920 100  97.08

Bolded numbers indicate the highest recognition accuracy for incremental class across all incremental tasks.

64% higher than that of iCaRL, WA, and Replay, respectively.
In general, the model performs best at recognizing the added data
when it first occurs. However, the simulated data have introduced
bias, leading to different results in iCaRL, WA, and Replay. For
example, as shown in Table III, the recognition accuracy of M2,
M35, M60 at first processing is lower than that of follow-up
task. In contrast, SGFA performs at its best when it initially
learns classes using simulated data. This further illustrates the
ability of SGFA to mitigate the effects of biased knowledge of
simulated data.

4) Visualization Results: Fig. 11 shows the t-SNE results of
the simulated and measured data after each incremental task in
scenario 1. Four phenomena can be found in Fig. 11. First, in
SGFA, the distribution difference between simulated and mea-
sured data is significantly reduced compared to other methods.
Second, there is still a tendency for the feature distributions of
the simulated and measured data of the old classes to converge
when dealing with the new data. However, other methods do
not have this effect, such as M35 from task 4 to task 6. This is
because exemplars are being added to the training minibatch for
feature aggregation. Third, although there are differences in the
feature distributions of the measured and simulated data for M2
among the four methods in task 2, SGFA effectively suppresses
confusion by increasing the class spacing between the new class
and the base class through feature aggregation. As a result, the
recognition accuracy of M2 is significantly higher in task 2
compared to the other three methods. Finally, the distribution
of features in aggregated simulated and measured data also
has a clustering effect. For example, although Replay does not
suffer from base class confusion in WA and iCaRL, however,
the distribution of feature points of the same class in Replay
is significantly more spread out, which is more concentrated in
SGFA.

C. Ablation Experiment

1) Effectiveness of Different Components: In order to ana-
lyze the impact of each component of the proposed method, the
experimental results for each scenario with different components
are presented in Table IV. Herd denotes the herding selection
method. It can be observed that in the preincremental task,
which is the initial introduction of the simulated data, MDA and
Lc¢one demonstrate a notable enhancement in the performance
of the model. Conversely, Herd exhibits enhanced stability in
the subsequent incremental tasks as the number of categories
increases. Ultimately, the highest average recognition accura-
cies are achieved in both scenario 1 and scenario 2 with the
integration of all three. Although the optimal outcomes were not
attained in scenario 3 under the role of the three components, it
is evident that these three components play a more pronounced
role in the incremental tasks at different stages (highest accuracy
rate in task 2 with MDA and Lo, highest accuracy rate in task
3 with only Herd).

2) Influence of the Number of Simulated Exemplars: To fur-
ther validate the effectiveness of adding simulated data to the ex-
emplar set, we conduct experiments under different exemplar set
size in three scenarios. Table V shows the recognition accuracy
under different number of simulated exemplars (Es =0,2,7, 12
per class only for simulated data). It can be seen that the model’s
recognition performance is not greatly affected for short-term
incremental tasks. However, with the addition of new classes,
the model recognition accuracy drops dramatically in the smaller
settings of the exemplar set. At the end of the last incremental
task, SGFA-O was 11.59%, 9.30%, 10.11% lower than SGFA-12
in the three scenarios, respectively. This difficulty arises from the
challenge of accurately representing the old classes distributions
with a limited number of exemplars. As a result, the incremental
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Fig. 11.  t-SNE results of iCaRL, WA, Replay, SGFA in scenario 1.

TABLE IV
EXPERIMENTAL RESULTS FOR DIFFERENT COMBINATIONS OF COMPONENTS IN THREE INCREMENTAL SCENARIOS(%)

Scenario 1 Scenario 2 Scenario 3

Ty T T3 Ty Ts Te T AA Ty Ty T3 Ty AA Ty Ty T3 AA

MDA Leont  Herd

' 98.25 89.73 9294 9248 91.37 91.00 8948 92.18 | 9825 9034 9284 90.70 93.03 | 98.25 8848 8532 90.68
v 98.25 9259 9034 91.88 93.16 86.82 89.31 91.76 | 9825 9141 91.05 8744 9204 | 9825 9333 8744 93.01

v 98.25 81.94 90.80 93.58 9232 90.14 90.54 91.08 | 9825 83.13 8884 90.62 9021 | 9825 86.18 90.62 91.68

' v 98.25 9525 93.87 9345 91.05 8588 8540 91.88 | 9825 8880 90.53 87.19 91.19 | 9825 95.03 8695 9341
v v 98.25 8859 88.80 89.70 8642 84.17 86.70 8895 | 9825 8850 9126 89.56 91.89 | 9825 87.39 8442 90.02
v ' 98.25 8745 86.81 8824 8379 81.04 7847 86.29 | 9825 8727 9337 9258 9287 | 9825 90.79 88.09 92.38

' v v 98.25 9525 94.63 9552 9474 88.82 90.38 93.94 | 9825 8926 9221 9299 93.18 | 9825 92,12 87.68 92.68

Bolded numbers indicate optimal results.
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TABLE V
EXPERIMENTAL RESULTS FOR DIFFERENT NUMBER OF SIMULATED EXEMPLARS IN THREE INCREMENTAL SCENARIOS(%)
5. Scenario 1 Scenario 2 Scenario 3
T Ty T3 Ty Ts Tg Ty AA T Ty T3 Ty AA T To T3 AA
0 9825 9525  89.57 9394 8853 7649 7879 8869 | 9825 8926 8600 8369 8930 | 9825 9212 7757 893l
2 9825 9525  89.88 9527 9179 8427  87.II 91.69 | 9825 8926 9032 8450  90.58 | 9825 9200 8254  90.93
7 9825 9525 9156  94.91 93.16 8938 9258 9358 | 9825 8926  90.11 87.85 9137 | 9825 9200 87.6 92.62
12 9825 9525 9463 9552 9474 8882 9038  93.94 | 9825 8926 9221 9299 9318 | 9825 9212  §7.68  92.68
Bolded numbers indicate optimal results, the red numbers indicate the recognition accuracy for the task 2.
TABLE VI
RECOGNITION ACCURACY PER CLASS OF SGFA-0 IN SCENARIO 1(%)
Task 281 BMP2 BTR70 Ml M2 M35 M60 M548 T72 7SU23-4
T 97.12 97.65 98.65 100 - - - - - -
T 95.68 100 100 100 84.80 (-) - - - - -
T3 95.68 100 100 100 53.60 (26.40J) 96.83 (- ) - - - -
Ty 94.96 100 100 100 69.60 (9.60) 96.03 (0.797) 100 (-) - - -
Ts 96.40 100 100 100 72.00 (12.00J) 45.24 (34.92)) 100 (-) 100 (-) - -
Ts 95.68 100 100 100 54.40 (10.40]) 45.24 (28.57)) 32.37 (47.40)) 100 (-) 100 (-) -
Ty 92.81 100 100 100 32.80 (20.004) 47.62 (31.751) 43.35 (45.09)) 100 (0.801) 99.05 (0.95.) 99.42 (2.341)

Parenthesis content is the difference in recognition accuracy between SGFA-0O and SGFA-12, with 1 denoting higher, | denoting lower than SGFA-12 and ( - )

denoting equal.

TABLE VII
EXPERIMENTAL RESULTS FOR VARIOUS VALUES OF A IN THREE INCREMENTAL
SCENARIOS(%)
N Scenario 1 Scenario 2 Scenario 3
T AA Ty AA T3 AA

0.0 86.70 88.95 89.56 91.56 84.42 90.02
0.1 88.91 91.41 91.19 92.90 84.42 90.87
0.2 88.25 92.62 90.54 93.33 83.52 90.69
0.3 89.40 92.78 89.56 92.22 86.22 91.95
0.4 85.97 93.24 92.33 93.25 87.28 92.23
0.5 90.38 93.94 92.99 93.18 87.68 92.68
0.6 89.97 93.34 92.21 93.16 90.13 94.07
0.7 89.31 92.19 89.31 90.85 88.99 93.32
0.8 91.84 92.52 90.46 92.33 88.25 93.36
0.9 91.19 91.79 91.52 91.94 88.09 92.78
1.0 92.41 92.30 91.84 92.66 90.29 94.08

Bolded numbers indicate optimal results.

classes, which only has three measured images as exemplars, is
particularly susceptible to forgetting.

As shown in Table VI, the learning ability for new classes is
essentially the same for both SGFA-12 and SGFA-0, but the
accuracy of recognizing incremental classes that retain only
measured exemplars declines rapidly when subsequent data
arrives. In addition, the model’s performance in task 2 (red
value in Table V) remains consistent across various exemplar
set sizes in all scenarios. There are two reasons for this. First,
SGFA can effectively bring the feature distributions of simulated
and measured data closer together. Second, the herding-based
exemplar selection method can select simulated samples closer
to the feature centers of the measured samples. This ensures that
the class prototype are not affected too much by the introduction
of simulated exemplars.

3) Influence of A: In order to study the effect of A on the
performance of incremental recognition, we assign A values
from O to 1 at 0.1 intervals. A = 0 means that no computation of
contrastive loss is performed and only a measured data-anchored
minibatch is constructed. Finally, we get the results as shown in
Table VII. From the table, it can be seen that the accuracy of
the recognition can be significantly improved even if the A is
set to a relatively small value. Although model can learn from
newly added data effectively with feature aggregation operation,
the issue of degraded recognition performance for old classes
that contain simulated data is not been adequately addressed.
Therefore, as the value of A increases from 0.6 to 1, there is no
significant improvement in overall recognition accuracy.

V. CONCLUSION

In this article, simulated data is introduced into class incre-
mental learning to address the issue of limited new target samples
in open scenario. We found that incremental models tend to favor
simulated-specific feature learning to differentiate simulated
data of new classes from measured exemplars of old classes. This
hinders the effective extraction of knowledge about new classes.
To tackle this problem, a novel method SGFA for incremental
SAR ATR is proposed. In each minibatch, SGFA aggregates
the feature distributions of both simulated and measured data
of same class through cyclic shifts, with the aim of guiding
the model in learning the target-related features. Then, a small
amount of simulated data is retained as exemplars to resist
catastrophic forgetting. The experiment on the SAMPLE dataset
shows that SGFA outperforms mainstream data-centric incre-
mental learning methods. The visualization results of simulated
and measured data further demonstrate that it can effectively
eliminate the distribution discrepancy of them. However, the
recognition accuracy of classes containing simulated exemplars
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decreases more severely compared to base classes with the
addition of new classes. This could be a result of inadequate
utilization of the simulated exemplars. The authors will try to
address this issue in future work.
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