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HR and LiDAR Data Collaborative Semantic
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Abstract—Semantic segmentation using cross-modal data is a
hot topic in the field of Earth observation. Compared with single-
modal strategies, cross-modal networks fuse multiaspect informa-
tion and yield higher segmentation accuracy, which is widely used in
urban planning, environmental monitoring and so on. In this study,
an end-to-end adaptive cross-modal fusion network (ACFNet) is
proposed for semantic segmentation task using high resolution
and light detection and ranging images, because of the difference
of sensor resolution, different modal data have different abilities
of ground object expression. Therefore, multimodal data fusion
should consider the features with different spatial scales, while
most existing methods simply use the same spatial scale features for
fusion. In this work, we first design an adaptive scale fusion module
that can automatically choose the features with optimal spatial
scales, making full use of the representation properties of ground
object details. Second, the important feature guidance module is
designed, which can evaluate the influence weights of deep semantic
features and shallow spatial detailed features, achieving adaptive
deep and shallow feature fusion, and reducing the semantic-spatial
information dilution caused by layer-by-layer up and down sam-
pling. Finally, we introduce a divide Fourier context learning
(DFCL) module to transform the feature maps from spatial do-
main to frequency domain. Compared to the limited perception of
current spatial convolution kernels, the DFCL module can easily
model the contextual dependencies of cross-modal features, which
will improve the segmentaion accuracy for complex ground objects
of cities, especially for occlusion. To demonstrate the generalisation
performance of our module, we conduct extensive experiments
and ablation studies on three datasets: Potsdam, Vaihingen, and
IEEE GRSS DFC 2018. Results show that the proposed ACFNet is
effective in semantic segmentation.

Index Terms—Adaptive learning, aerial imagery, cross-modal
fusion, semantic segmentation.

I. INTRODUCTION

H IGH resolution (HR) images have meter-level or even
submeter-level spatial resolution [1], [2], which can
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clearly express the spatial structure and surface texture char-
acteristics of ground targets [3], [4], [5], [6]. Semantic seg-
mentation in remote sensing is to interpret HR images into
pixel-level semantic annotations [7]. Currently, semantic seg-
mentation tasks involve in precision agriculture, urban planning
and natural resource inventory [8], [9], [10], [11], [12], [13].
Although significant progress has been made in semantic seg-
mentation for HR images, their accuracy will be constrained
by some factors, such as shadows, noise, obstacles, geometric
distortion and height displacement of tall buildings. Light detec-
tion and ranging (LiDAR) images can complement the elevation
information of objects [14], so the joint application of HR
and LiDAR is considered to obtain more refined segmentation
results [15], [16], [17].

The development of sensor technology has led to the emer-
gence of cross-modal data that can express the ground sur-
face in various aspects. This has significantly improved the
interpretation accuracy of Earth observation and has become
a research hotspot, especially in the deep learning community.
For example, Yuan et al. [16] proposed a fully convolutional
network (FCN) based on residual structure to jointly extract
target features from HR and LiDAR images to improve the
detection accuracy of buildings. Piramanayagam et al. [18] in-
troduced a deep convolutional neural network (DCNN) based on
FCN-32 for merging multi-sensor features for semantic segmen-
tation, which can obtain better segmentation performance than
traditional CNN-based network. Hazirbas et al. [19] proposed
FuseNet algorithm, which uses SegNet architecture proposed
by Badrinarayanan et al. [20] to segment cross-modal data by
incorporating a cross-fusion algorithm into the encoder part.
Zhang et al. [21] proposed a feature-level fusion network based
on hybrid attention-aware fusion network (HAFNet), in which
an attention-aware fusion block is designed to better fuse cross-
modal information.

The results of these previous studies show that the combina-
tion of cross-modal feature extraction with DCNN can improve
the accuracy of semantic segmentation [22], [23], [24], but there
are still some room for improvement. The following issues can
be discussed.

1) Due to the differences in sensor resolution, the abilities
of geophysical information expression of different modal
data are different. When fusing cross-modal data, it is
important to consider features with different spatial scales,
instead of considering single spatial scale as most DCNNs
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do. Can we design an architecture to dynamically select
the appropriate spatial scale features of HR and LiDAR
for fusion?

2) Many DCNNs used for semantic segmentation are based
on encoder–decoder architecture. In the baseline, down-
sampling layer by layer will lead to the continuous atten-
uation of spatial details, and up-sampling layer by layer
will lead to the continuous dilution of semantic informa-
tion. Can we design a network to capture spatial-semantic
information at each layer of the network?

3) Current DCNNs use spatial convolution kernel strategy in
decode stage, which only focuses on local pixels and has a
limited perception. Therefore, the global dependencies of
the multiscale features are overlooked. Can we construct
a model to obtain global context information and then
enhance the representation of feature mapping?

In response to the above questions, we try to give the following
answers. Since encoding operation yields multiscale features
on cross-modal convolutional layers, the joint application of
these features should be divided into two cases. On the one
hand, when the features of different modals at the same scale
(that is, the cross-modal features from the same coding layer)
are fused, it is considered to fully extract the spatial details of
the cross-modal data. On the other hand, in order to effectively
retain important semantic-spatial information dilution caused by
layer-by-layer up and down sampling, multiscale feature reuse
(MFR) and information selection can be used to fine-grained
semantic-spatial information dilution caused by layer-by-layer
up and down sampling with different scales (that is, cross-modal
features from different coding layers). In addition, traditional
CNNs adopt spatial convolution kernels to decode the final result
layer-by-layer. However, the local perception of that could not
exactly decode the context information, which influences the
accuracy of results under complex ground objects of cities, es-
pecially for occlusion. This problem can be solved by decoding
global information of multiscale features layer by layer. Thus,
we study a common network for semantic segmentation using
HR and LiDAR images. The primary contributions of this article
are as follows.

1) We propose an adaptive cross-modal fusion network
(ACFNet). In order to fully extract the complementary and
interactive information of HR and LiDAR images, a cas-
cade network is designed with multiple skip connections
in encoder–decoder network.

2) Adaptive scale fusion (ASF) modules, each of which is
implemented by an adaptive scale block and a residual
block, are constructed to fuse the cross-modal features
from the corresponding encoders. Adaptive scale block
adaptively learns cross-modal features from HR and Li-
DAR data with different spatial scales, and residual block
retains more spatial details in the form of upsampling and
residual convolution.

3) Important feature guided (IFG) module contains a MFR
block and an information selection block. IFG can eval-
uate the influence weights of deep semantic features
and shallow spatial detailed features, achieving adap-
tive deep and shallow feature fusion, and reducing the

semantic-spatial information dilution caused by layer-by-
layer up and down sampling.

4) The divide Fourier context learning (DFCL) module uses
two odd–even 2-D fast Fourier transforms (FFT) to trans-
fer the feature mapping from the spatial domain to the
frequency domain. In addition, for the frequency domain
information, we adjust the phase and amplitude to learn
the context features layer by layer. Then, the global depen-
dencies from semantic to spatial features can be decoded
exactly and accurately.

The rest of this article is organized as follows. Section II
describes the proposed ACFNet and its constituent components
in detail. An overview of the experimental data and setup is
presented in Section III. In Section IV, we show the experimental
results, ablation studies, as well as a detailed analysis of ACFNet.
Finally, Section V concludes this article.

II. PROPOSED METHOD

In this section, we describe the structure of the proposed
ACFNet, an overview of which is shown in Fig. 1. First, HR-
derived red–green–blue (RGB) image and LiDAR-derived dig-
ital surface model (DSM) image are input into the dual-branch
network, capitalizing on the ResNet-34 network [25] as the
backbone of encoder, in which the ASF module is designed to
fuse different spatial scale features of different modal data on the
premise of retaining enough spatial details. Then, the important
feature guided (IFG) module is designed to learn the multiscale
fine-grained features and evaluate the influence weights of deep
semantic features and shallow spatial detailed features, achiev-
ing adaptive deep and shallow feature fusion, and reducing the
semantic-spatial information dilution caused by layer-by-layer
up and down sampling. Finally, the DFCL module is used to
further decode the global features through the frequency domain
layer-by-layer and generate the final prediction map.

A. Network Architecture

As mentioned above, coding operations are performed on a
HR branch and a LiDAR branch with ResNet-34 as the backbone
network, shown as Fig. 1(a). The encoding process for both the
RGB-branch and the DSM-branch follows the same setup. The
LiDAR-branch sets single-channel input (for a single image in
DSM) and the HR-branch sets three-channel input (for three
images in RGB). The specific structure and layer sizes of the
encoder are shown in Fig. 1(b) and Table I, respectively. The first
encoder block involves a 7× 7 convolutional layer with a stride
of 2, followed by a batch normalization (BN) layer and a rectified
linear unit (ReLU) layer. The second encoder block includes a
3× 3 maximum pooling layer with a stride of 2 and the initial
residual layer of ResNet-34. Subsequently, the remaining three
residual layers are added successively. With the exception of
the first residual layer, all three residual layers incorporate a
residual unit that downsamples the feature map and doubles
the feature channels. Thus, the resolution of the final output
produced by the encoding is 1/32 of that of the original input
data. For the decoder, as shown in Fig. 1(a), three 2 × and a
4 × upsampling operations are performed, in conjunction with
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Fig. 1. (a) Overall framework of the proposed ACFNet. (b) Specific structure of encoder.

the FCL modules to ensure that the size of final output matches
that of the original input. In addition, to the backbone encoder–
decoder structure described above, this section also covers the
three designed modules.

Because of the difference of sensor resolution, different modal
data have different abilities of ground object expression. There-
fore, multimodal data fusion should consider the features with
different spatial scales, while most existing methods simply use
the same spatial scale features for fusion. To solve this problem,
we propose an ASF module adaptively learns cross-modal fea-
tures from HR data and LiDAR data in different spatial scales.
Let L(m) denote the output of the mth layer of ASF, which can
be expressed as

L(m)=

⎧⎨
⎩

ASF
(
E

(m)
rgb , E

(m)
dsm

)
, m = 1

ASF
(
E

(m)
rgb , E

(m)
dsm

)
+ L(m−1), m = 2, . . .. . ., 5

(1)
where ASF denotes the implementation of ASF; E(m)

rgb denotes
the output feature of the mth encoder in the RGB branch; and

E
(m)
dsm denotes the output feature of the mth encoder in the DSM

branch.
In the task of semantic segmentation, most CNN-based net-

works are based on encoder–decoder architecture. Due to the
up-sampling and down-sampling process in this architecture,
the features extracted in deep layers contain high-level semantic
information, but the spatial details are insufficient. On the con-
trary, features of shallow layers have sufficient spatial details, but
contain low-level semantic information. In order to ensure that
each layer retains important spatial and semantic information
and weakens unimportant information, this article proposes an
important feature guided (IFG) module to obtain important
information from cross-modal fusing features. For the output
of fifth encoder, only MFR is conducted instead of IFG module.
The output information of the first decoder can be expressed as

M (1) = MFR(L(5)) (2)

where L(5) is the output of the fifth layer of encoder. Then, for
layers 2–5 of the encoder, each layer will contain two inputs (the
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TABLE I
LAYER SIZES OF THE ENCODER

outputs of ASF of this layer and the last output information of
IFG / MFR). The output of MFR/IFG module is

M (n) = IFG(L(m),M (n−1)), n = 2, . . .. . ., 5 (3)

n = 6−m (4)

where n denotes the order of decoder layers; andL(m) represents
the output of the mth encoder layer of cross-madal fusion.

Since global context information is crucial for semantic seg-
mentation, we employ DFCL module to learn the global infor-
mation of cross-modal data and to model the context dependen-
cies in different layers of the decoder stage. DFCL module adds
the features of F (n) to each layer of the decoder, enabling the
decoder network to obtain a more fine-grained feature mapping.
Combined with upsampling, DFCL module transforms the ex-
tracted multiscale features in frequency domain to extract deep
semantic information while retaining shallow spatial context
information, thus improving the global awareness and decoding
accuracy of the decoder. The FCL operation in the first layer of
decoder can be expressed as

O(1) = DFCL(M (1)) (5)

where O(1) denotes the output of layer 1 of the decoder. On the
layers 2–4 of the decoder, the input of the FCL modules is the

Algorithm 1: Pseudocode for our Method Training.
1: Input: HR data Xh, LiDAR data Xl, Ground truth Y ,

number of training epochs.
2: Output: Classification map O.
3: Parameter setting and weights initialization.
4: for epoch < epochs do
5: Extract cross-modal fusion features L(m) of HR data

and LiDAR data according to Eq. (1), where m
represents layer order of encoder.

6: Concatenate L(m) and the output of IFG to obtain M (n)

by Eq. (3), where n represents the layer order of decoder.
Next, feed M (n) into DFCL and upsampling moduls.
Then, classification map will be obtained by Eqs.
(5)–(7).

7: Update parameters and weights via Adamax optimizer.
8: end for
9: Obtain the probability distribution and classification

map.

output of decoder from the previous layer and M (n), so as to
realize the fusion of semantic information and spatial details.
The output of layers 2–4 of decoder can be expressed as

O(n) = DFCL(UP(M (n) +O(n−1))), n = 2, . . .. . ., 4
(6)

whereO(n) denotes the output of the nth layer of the decoder; UP
denotes 2× upsampling; and FCL represents the implementation
of Fourier context learning. The last layer of decoder, which
only uses 4× upsampling to ensure the size of final output
matching that of the original input without FCL module for
feature learning, can be expressed as

O(5) = UP(O(4) +M (5)). (7)

B. Cross-Modal Information Fusion

Due to the differences in sensor resolution, the abilities of
geophysical information expression of different modal data are
different. When fusing cross-modal data, it is important to con-
sider features with different spatial scales, instead of considering
single spatial scale as most DCNNs do. This module can be
divided into two stages: adaptive scale block and residual block,
as shown in Fig. 2.

In adaptive scale block,Xh andXl are considered to represent
the outputs of the feature maps of the RGB and DSM encoders,
respectively, with consistent number of feature channels for dual
branches. First, the output features of LiDAR branch and HR
branch are conducted by parallel 3× 3, 5× 5, 7× 7, and 9× 9
depth separable convolution (DSC) followed by spatial attention
(SA). Next, add operation is used for multiscale fusion, and
concatenation operation is used for cross-modal fusion. Then,
a 5× 5 DSC and a 3× 3 DSC are employed to calculate the
correlation of the features. Subsequently, the sigmoid activation
is employed to obtain the weighted probability matrix W, and
the LiDAR-branch adaptive featuresAl and HR-branch adaptive
features Ah are multiplied with (1−W) and (W), respectively.
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Fig. 2. (a) Architecture of the proposed ASF module including an adaptive
scale block and a residual block. (b) SA.

Finally, these features are concatenated. The process can be
expressed as

Al = ADD(SA(D3(Xl)),SA(D5(Xl)),SA(D7(Xl)),

SA(D9(Xl))) (8)

Ah = ADD(SA(D3(Xh)),SA(D5(Xh)),SA(D7(Xh)),

SA(D9(Xh))) (9)

SA = S(f1(C[Max(X),Mean(X)]))×X (10)

F = C[Al, Ah] (11)

W = Sigmoid(D3(D5(F ))) (12)

Xf = C[(W )�Ah, (1−W )�Al] (13)

where D3, D5, D7, and D9 denote 3× 3, 5× 5, 7× 7, 9×
9 DSC operation, respectively; W denotes the obtained weight
matrix; C denotes concatenation; and � denotes the Hadamard
product.

In residual block, first, the fused features are upsampled and
the number of channels is increased using a 5× 5 DSC in
order to preliminarily extract cross-modal features; second, four
identical depth-wise separable residual (DSR) modules are used
to fully extract the cross-modal information; finally, a 1× 1
standard convolution is used to ensure the consistency of the
output and input feature sizes. The process can be expressed as

Xfusion = f1(D5(UP(Xf )) + 4× DSR(D5(UP(Xf )))) (14)

DSR = ReLU(BN(D3(D3))) (15)

where f1 denotes 1× 1 standard convolution; UP denotes 2×
upsampling; and BN denotes BN.

The proposed ASF module is important from two points of
view. On the one hand, parameters and calculation cost of a
DSC perform (1/n + 1/k2) times lesser than a standard convo-
lution [26], where k denotes the kernel size and n denotes the
number of the output channels for DSC. On the other hand, an
adaptive scale block can adaptively choose the features with
optimal spatial scales, making full use of the representation
properties of ground object details.

Fig. 3. Architecture of the proposed IFG module including a MFR block and
an information selection block.

C. Multiscale Feature Extraction

As described in Section II-A, in order to fully extract the
complementary and interactive information of HR and LiDAR
images to achieve high-precision segmentation and keep impor-
tant features during encoding and decoding operations, impor-
tant feature guidance (IFG) module is divided into two blocks:
MFR block and information selection block.

Inspired by Res2Net [27] and EPSANet [28], MFR enlarges
the receptive fields in a multi-scale way by using feature reuse to
extract fine-grained multi-scale feature maps. Each MFR layer
splits the input feature map into three partitions along the channel
dimension. As an example, Fig. 3 illustrates the framework of
MFR. That is, in Fig. 3, the input feature map Z is splited by
function S(·); i.e.,

{Z1, Z2, Z3} = S(Z) (16)

such that the a channels of Z are partitioned into Z1, Z2, and
Z3, with a/3 channels each, where a should be divisible by 3.
Then, Z1 is conducted by a 3× 3 dilated convolution, yielding
the spatial feature map

Y1 = H(Z1) (17)

where H(·) represents the dilated convolution.
Next, we concatenate Y1 and Z2 generating cascade features

map Z1
2 , which effectively enables feature reuse. Z1

2 is then
performed the dilated convolution obtaining the multi-scale
spatial features Y2. That is

Z1
2 = C[Y1, Z2] (18)

Y2 = H(Z1
2 ) (19)

where C[·] is channel-wise concatenation.
We then concatenate Y1, Y2, and Z3, generating cascade

features Z1
3 . Z1

3 is conducted by a dilated convolution again
to obtain Y3, which can be described as

Z1
3 = C[Y1, Y2, Z3] (20)

Y3 = H(Z1
3 ). (21)
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Finally, these feature maps from different channels are con-
catenated by

Y = C[Y1, Y2, Y3]. (22)

In this process, we employ feature reuse to increase the infor-
mation interaction between different partitions. That is, consider
the output Y1 of the first partition, on the one hand, the output
Y1 of the first partition is cascaded to the input Z2 of the second
partition, while, on the other hand, Y1 is also concatenated to the
output of the other partitions to obtain the final output Y ; thus,
the network uses feature Y1 multiple times. The MFR employs
similar feature reuse for Y2 as well.

Furthermore, the MFR enlarges the receptive field in a multi-
scale dilated convolution manner. More specifically, traditional
multiscale feature extraction methods are often designed as
networks of multiple parallel branches, each with a CNN of
a fixed kernel size, such that by using different kernel sizes
in the different branches, extraction of features with multiple
scales is accomplished. In contrast, in the MFR as proposed here,
each partition uses the same kernel size of dilated convolution.
The multiscale nature of MFR arises instead from the fact that
the dilated convolution is used, which expands the effective
receptive field. Take the first partition as an example: kernel
size is 3× 3 and dilation rate (R) is 9, while the effective
receptive field of dilated convolution is 19× 19 (each output
value addresses 361 values in the original input feature map)
when stride is set to 1. The receptive field of dilated convolution
is larger than that of standard convolution even though the kernel
itself is the same size, this conclusion also applies to the second
and the third partitions. Thus, the receptive field is enlarged
without the cost of actually using the dilated convolution with a
larger kernel.

Inspired by GRRNet [29], this work also constructs an in-
formation selection block, which preserves the important in-
formation between upper and lower layers and removes the
unimportant information by calculating the cosine similarity of
two neighboring layers.

For information selection block, the output of MFR and the
output of IFG in the previous stage are employed to calculate the
cosine similarity. Thus, the information with high similarity will
be kept, and the information with low similarity will be removed.
As shown in Fig. 3, a A-upsampling and a 1×1 convolution are
performed to match the channel numbers between the upper and
lower stages. Since MRF features (Y) and IFG features (M(n))
have different importance, we design a gating mechanism to
allocate adaptive weight (W). The mathematical expression of
this block is as follows:

S
′(m) = f1(UP(M (n))) (23)

similarity = cosine(S
′(m), Y, dim = 1) (24)

weight = (similarity + 1)/2 (25)

S(m+1) = C[S
′(m) × (weight), Y × (1− weight))] (26)

where M(n) represents the output of MFR / IFG of the previous
layer; f1 represents 1× 1 convolution; Y represents the output

Fig. 4. DFCL module.

of MFR of this layer; and cosine represents cosine similarity
calculation.

D. Global Contextual Learning

Learning global contextual information of HR and LiDAR
images is beneficial to improve the performance of joint HR
and LiDAR segmentation networks. Inspired by GFNet [30],
the use of frequency-domain information can extract global fea-
tures. Based on this, we propose the DFCL module, which uses
parametric learnable filters for FFT to capture global context
information in frequency domains to improve the network’s
performance.

The DFCL module consists of two 2-D FFT, a Hadamard
product and a 2-D inverse FFT (IFFT), shown as Fig. 4. Given
a feature mapping from the backbone, and feed it into the
convolution layer to generate e∈ RH×W×C , where R, H, W,
and C represent real number set, image height, image width,
and image channel number, respectively. Then, we perform 2-D
FFT in odd–even form for guided features and use phase mod-
ulation omega to combine the modulated odd–even frequency
information. Assume transforming factor is e, the designed 2-D
FFT strategy can be described as

even = FFT(e[0 :: 2]) (27)

odd = FFT(e[1 :: 2]) (28)

t = omega ∗ ∗i ∗ odd[i] (29)

E[i] = even[i] + t (30)

E[i+ n//2] = even[i]− t (31)

where E contains all frequency components of the feature map
e. NoteE is a complex tensor and represents the frequency char-
acteristics of e, which is then multiplying parameter learnable
filter K∈ CH×W×C , where C represents the category to which
the image belongs, which is able to cover all the frequencies to
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E and we get result

Ẽ = E �K (32)

where � denotes the Hadamard product. Then, we adopt the
IFFT to transform the modulated Ẽ back to the spatial domain
by

ẽ← F−1 ∈ RH×W×C . (33)

Element by element, * represents multiplication, and e and
ẽ are summed for fusing spatial and frequency information
followed by a 3× 3 convolution. Finally, a 1× 1 convolution is
used to adjust the dimensionality of the channels. From the above
operations, FCL uses global context information to augment the
input feature mapping.

III. EXPERIMENTAL DATA AND SETUP

A. Datasets

1) Potsdam1: The Potsdam dataset consists of 38 sets of im-
ages. Each set contains a RGB image and a corresponding DSM
image. The spatial size of Potsdam dataset is 6000× 6000, while
the spatial resolution is 0.05 m. There are six main semantic
classes, namely, impervious surfaces, buildings, low vegetation,
trees, car, and clutter, which are described in details shown as
Fig. 10.

2) Vaihingen2: The Vaihingen dataset consists of 33 sets of
images. Each set also contains a RGB image and a corresponding
DSM image. The spatial size of the Vaihingen dataset is 2500×
2000 with 0.09 m spatial resolution, and it has the same identified
classes as that of the Potsdam dataset. The RGB, DSM, and
ground-truth map are shown in Fig. 11.

3) DFC20183: The IEEE GRSS DFC2018 dataset has 14
RGB images, and a united DSM image, from which we obtain
14 cropped DSM images corresponding to HR scenes. For this
dataset, the spatial size is 1192× 1202 and the spatial resolution
is 0.05 m. There are 21 classes in original dataset, namely, un-
classified buildings, residential buildings, nonresidential build-
ings, stadium seating, roads, pavements, pedestrian crossings,
main arterials, highways, railways, trains, water, evergreens,
deciduous trees, healthy grass, stressed grass, artificial turf,
paved car parks, unscored car parks, cars, and bare soil. The
images used in this article covers 9 classes, shown as Fig. 12.

B. Experimental Setup

1) Implementation Details: All the experiments were con-
ducted on a single NVIDIA GeForce RTX 3090 GPU and
PyTorch framework. Due to the GPU memory limitation, we
crop these images using a 640× 640 sliding window with no
overlap. For the Potsdam dataset, 50% of the cropped data was
selected as the training set, 20% as the validation set, and 30% as
the test set. For the Vaihingen dataset, 80% of the cropped data

1[Online]. Available: https://www.isprs.org/education/benchmarks/
UrbanSemLab/2d-Sem-Label-Potsdam.aspx

2[Online]. Available: https://www.isprs.org/education/benchmarks/
UrbanSemLab/2d-Sem-Label-Vaihingen.aspx

3[Online]. Available: https://hyperspectral.ee.uh.edu/?page_id=1075

Fig. 5. Binary-classes semantic segmentation results of DSR block with
different number of layers on DFC2018 dataset.

was selected as the training set, 10% as the validation set and
10% as the test set. For the DFC2018 dataset, 80% of the cropped
data were selected as the training set, 10% as the validation set
and 10% as the test set.

All methods presented in following experiments have the
same batch size and epoch. Since data enhancement technique
can solve the overfitting problem and artificially increase the
training sample when reading them from memory in each
epoch [25], we implement data enhancement by randomly ro-
tated the input images vertically and horizontally for all methods.

In training phrase, we use the AdaMax [31] algorithm for
optimization. The weight decay is set to 0.0009. A “poly”
policy [32] is used to optimize the learning rate. In all networks,
the initial learning rate is set to 0.001 and is multiplied by
(1− iter

max−iter )
power, where the “power” is set to 0.3, and the

“max-iter” can be computed by multiplying the number of
epochs with whole batches.

2) Evaluation Metrics: The networks presented in this article
are evaluated using three popular metrics: overall accuracy (OA),
mean intersection over union (MIoU), and frequency weighted
intersection over union (FWIoU).

OA: The total number of samples correctly classified are
divided by the total number of samples.

MIoU: It is a standard measure for semantic segmentation by
calculating the mean value of intersection over unions (IoUs) of
all classes.

FWIoU: This is an improved version of MIoU, which assigns
different weights to classes according to their occurence fre-
quencies. That is, FWIoU can be obtained by multiplying the
IoUs of different classes with their corresponding weights and
then summing the resulting products.

3) Parameter Setting: There are two parameters need to be
set. The first parameter is the number of layers in DSR blocks, in
Fig. 2. Taking the DFC2018 data as an example, the Fig. 5 shows
the experimental results of the proposed method for binary-
classification semantic segmentation with different layers in
DSR blocks. The number of layers is set to four in DSR blocks
yielding optimal segmentation results. The second parameter is
the dilation rate (R) in Fig. 3. Table II shows the experimental

https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-Sem-Label-Potsdam.aspx
https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-Sem-Label-Potsdam.aspx
[Online]. ignorespaces Available: ignorespaces https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-Sem-Label-Vaihingen.aspx
[Online]. ignorespaces Available: ignorespaces https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-Sem-Label-Vaihingen.aspx
https://hyperspectral.ee.uh.edu/{?}page_id=1075
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Fig. 6. Qualitative comparison of binary-classes semantic segmentation for different methods on Potsdam dataset. (a) RGB. (b) DSM. (c) Ground-truth.
(d) ResUNet++. (e) PSPNet. (f) Deeplab V3+. (g) CGSANet. (h) ACFNet-Single. (i) FuseNet. (j) RedNet. (k) HAFNet. (l) (MS)2-Net. (m) MCANet. (n)ACFNet.
Red area represents background and white area represents buildings.

TABLE II
BINARY-CLASSES SEMANTIC SEGMENTATION RESULTS OF DIFFERENT R ON

DFC2018 DATASET

results of the proposed method for binary-classes semantic
segmentation with different R. From the Table II, different R
of different branches are set to 9, 11, and 15, respectively.

IV. RESULTS AND ANALYSIS

A. Comparison to State-of-the-Art Methods

We selected a range of state-of-the-art deep semantic seg-
mentation models as competitors to fully validate the perfor-
mance of the proposed ACFNet. To compare the performance of
single-branch networks that only oriented to semantic segmen-
tation of HR images, discarding LiDAR-branch. We simplify
the structure of encoder in the proposed ACFNet to five layers
of downsampling operation and then feed the resulting features
into the IFG module. In the decoder stage, the cascade operation
is omitted and the output of the IFG module is combined with
four layers of DFCL with downsampling operation. We call
this proposed simplified network ACFNet-Single. As shown in
Tables III and IV, ACFNet-Single are compared with three
classical deep models for semantic segmentation, includ-
ing ResUNet++ [33], PSPNet [34], Deeplabv3+ [35], and
CGSANet [36]. To evaluate the performance of dual-branch
networks that joint using HR and LiDAR images, we compare
the proposed ACFNet with several state-of-the-art cross-modal
methods, including FuseNet [19], RedNet [37], HAFNet [21],
(MS)2-Net [38], and MCANet [39].

1) Binary-Classes Semantic Segmentation: The experimen-
tal results of the mentioned methods for building extraction
are shown in Table III. Building extraction is a binary-classes
semantic segmentation that treats the building class as the target
and all other classes as background information. It can be

observed that the proposed ACFNet produces the best OA,
FWIoU, and MIoU compared to the other competing methods.
For the Potsdam dataset, the OA/FWIoU/MIoU of ACFNet
results in gains of 1.3%/2.3%/1.8% compared to the best dual-
branch competitor (MS)2-Net [38]. For the Vaihinge dataset,
the OA/FWIoU/MIoU of ACFNet yields 1.0%/1.8%/2.8% per-
formance as compared to the best dual-branch competitor Red-
Net [37]. For the DFC2018 dataset, the OA/FWIoU/MIoU of
ACFNet notably higher than MCANet [39] by 2.1%/3.5%/3.1%.
While, these metrics of the ACFNet-Single also have highest
scores in single-branch methods.

Figs. 6– 8 visualize the semantic segmentation results for
binary classification for the optimally trained network. As can be
seen, ACFNet provides the most accurate and smoothest maps
for all three datasets, compared to the other methods. First,
although all algorithms generally perform well for large-area
building extraction, the proposed method can obtain smooth
maps, especially for retaining local information. Shown as the
first-row maps in Fig. 6, the bottom-right corner of the first-row
maps in Fig. 7, and the centre of the second-row maps in
Fig. 8, ACFNet has a strong ability to extract local details of
buildings. Second, ACFNet yields optimal extraction effect for
small buildings. Show as the second-row maps in Fig. 6, the
left of the first-row maps and the bottom-left of second-row
maps in Fig. 7, and the top-left corner of the first-row maps in
Fig. 8, ACFNet can get binary-classes semantic segmentation
results consistent with the actual situation. Third, ACFNet has a
satisfactory extraction effect on irregular buildings. Taking the
first-row maps in Fig. 6 and the second-row maps in Fig. 8 as
examples, although it is difficult for all algorithms to identify the
concrete shape of complex buildings, whose contour visualized
by ACFNet is the closest to their ground-truth.

In order to further evaluate the performance of the proposed
ACFNet, we conducted precision–recall (P-R) experiments. Pre-
cision represents the accuracy of positive predictions and is used
to measure the accuracy of binary-classes semantic segmenta-
tion in this work. Recall represents the proportion of positive
predictions out of all accurate predictions and is conducive
to compensate for missed positive predictions. In general, if
the P-R curve of model 1 is surrounded by that of model 2
or the area enclosed by the curve of model 2 covers a larger
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TABLE III
EVALUATION OF METRIC SCORES (%) OF BINARY-CLASSES SEMANTIC SEGMENTATION FOR THREE DATASETS

TABLE IV
EVALUATION OF METRIC SCORES (%) OF MULTI-CLASSES SEMANTIC SEGMENTATION FOR THREE DATASET

Fig. 7. Qualitative comparison of binary-classes semantic segmentation for different methods on Vaihingen dataset. (a) RGB. (b) DSM. (c) Ground-truth.
(d) ResUNet++. (e) PSPNet. (f) Deeplab V3+. (g) CGSANet. (h) ACFNet-Single. (i) FuseNet. (j) RedNet. (k) HAFNet. (l) (MS)2-Net. (m) MCANet. (n)ACFNet.
Red area represents background and white area represents buildings.

Fig. 8. Qualitative comparison of binary-classes semantic segmentation for different methods on DFC2018 dataset. (a) RGB. (b) DSM. (c) Ground-truth.
(d) ResUNet++. (e) PSPNet. (f) Deeplab V3+. (g) CGSANet. (h) ACFNet-Single. (i) FuseNet. (j) RedNet. (k) HAFNet. (l) (MS)2-Net. (m) MCANet. (n)ACFNet.
White area represents background and black area represents buildings.
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Fig. 9. P-R curves comparison of ResUNet++, PSPNet, Deeplab V3+, CGSANet, ACFNet-Single, FuseNet, RedNet, HAFNet, (MS)2-Net, MCANet, and
ACFNet. (a) Potsdam dataset. (b) Vaihingen dataset. (c) DFC2018 dataset.

area, the performance of model 2 is considered to be better
than that of model 1. Accordingly, the proposed ACFNet has
optimal performance of binary-classes semantic segmentation
for abovementioned three datasets, shown as Fig. 9.

To reflect the stability of the different algorithms, the per-
formance of binary-classes semantic segmentation for three
datasets as the training ratio varies is depicted in Fig. 10. It
can be seen that the performance of the various algorithms de-
creases with decreasing number of training samples, which is as
expected. However, ACFNet always produces higher accuracy
and better stability as compared to the other algorithms, even
with a small training ratio.

2) Multiclasses Semantic Segmentation: To verify the gen-
eralization ability of the proposed algorithm, experiments of
multiclasses semantic segmentation also were conducted. The
experimental results of different algorithms for multiclasses se-
mantic segmentation on the three datasets are shown in Table IV.
It can be observed that the proposed ACFNet produces the best
OA, FWIoU, and MIoU compared to the other competing meth-
ods. For the Potsdam dataset, the OA/FWIoU/MIoU of ACFNet
results in gains of 2.3%/2.5%/3.3% compared to the best dual-
branch competitor MCANet [39]. For the Vaihingen dataset, the
OA/FWIoU/MIoU of ACFNet yields 3.7%/4.2%/2.3% perfor-
mance as compared to the best dual-branch competitor MCANet.
For the DFC2018 dataset, the OA/FWIoU/MIoU of ACFNet
notably higher than MCANet by 3.3%/2.7%/4.2%. While, these
metrics of the ACFNet-Single also have highest scores in
single-branch methods for multiclasses semantic segmentation.

Figs. 11–13 visualize the multiclasses semantic segmenta-
tion results of the best-trained networks. As can be seen, the
proposed ACFNet provides the most accurate and smoothest
maps for all three datasets, compared to the other methods.
Fig. 11 shows visualization results of multiclasses semantic
segmentation for the Potsdam dataset. The abovementioned
methods have achieved good segmentation results for large
areas, especially for buildings and trees. However, in terms of
local details, the comparative models are not robust and effective
enough to accurately identify clutter, cars, and low vegetation.
For example, as shown in the box of the first-row maps, the trees
distributed in the large areas of low vegetation are segmented by
ACFNet accurately. This is also reflected in the following two
cases. In the second-row maps, trees are segmented from the
large areas of low vegetation; as shown in the red boxes in the
upper-right corner of the third-row maps, low vegetation are
segmented from the large areas of trees.

Fig. 12 shows visualization results of multiclasses semantic
segmentation for the Vaihingen dataset. Similar to the Potsdam
dataset, comparative models cannot segment local small objects,
while ACFNet can effectively segment clutter and provide more
accurate boundaries for buildings and cars. As shown in the
first-row maps, the classes of low vegetation, buildings, and
impervious surfaces can be segmented accurately by ACFNet.
As can be seen from the second-row and third-row maps,
ACFNet clearly outperforms the other networks for the classes
of trees, low vegetation, and cars. Fig. 13 visualize the results
of multiclasses semantic segmentation for the the GRSS DFC
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Fig. 10. OA of binary-classes semantic segmentation for varying training ratio. (a) Pastdam dataset. (b) Vaihingen dataset. (c) DFC2018 dataset.

Fig. 11. Qualitative comparison of multiclasses semantic segmentaion for different methods on Potsdam dataset. (a) RGB. (b) DSM. (c) Ground-truth.
(d) ResUNet++. (e) PSPNet. (f) Deeplab V3+. (g) CGSANet. (h) ACFNet-Single. (i) FuseNet. (j) RedNet. (k) HAFNet. (l) (MS)2-Net. (m) MCANet. (n)
ACFNet.

2018 dataset. As the RGB and DSM images were cropped, three
sets of them were selected. As shown in the first-row, ACFNet is
the best at identifying main arterials and residential buildings.
Shown as in the second-row and third-row maps, bare soil and
main arterials, respectively, incur fewer misclassifications from
ACFNet than the other techniques.

In short, since the fusion network of HR and LiDAR data
complements the elevation features compared to the single HR
network, it is more accurate in processing semantic categories
with elevation information, and this conclusion is reflected in
Table III and Figs. 6–8. In addition, the visual results from
Figs. 11–13 for multiclasses semantic segmentation show that
the fusion networks can handle most of the semantic segmenta-
tion categories (e.g., trees, buildings, cars, impervious surfaces,

low vegetation, etc.,) but they are not effective in handling a
few semantic categories (e.g., stressed grasses) with no obvious
elevation structure.

The OAs of multiclasses semantic segmentation for various
networks are studied under varying training ratios for three
datasets. Fig. 14 shows that the proposed ACFNet always
produce higher OA compared to competitors. While the per-
formance of all methods decreases as the number of training
samples decreases, which is to be expected. However, ACFNet
always achieves higher segmentation accuracy and better stabil-
ity than other techniques, even at very small training rates.

From all the above experiments, we can conclude that the opti-
mal algorithms in the comparison experiments are not consistent
for different tasks and datasets. For example, for binary-classes
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Fig. 12. Qualitative comparison of multiclasses semantic segmentaion for different methods on Vaihingen dataset. (a) RGB. (b) DSM. (c) Ground-truth.
(d) ResUNet++. (e) PSPNet. (f) Deeplab V3+. (g) CGSANet. (h) ACFNet-Single. (i) FuseNet. (j) RedNet. (k) HAFNet. (l) (MS)2-Net. (m) MCANet. (n)
ACFNet.

Fig. 13. Qualitative comparison of multiclasses semantic segmentaion for different methods on DFC2018 dataset. (a) RGB. (b) DSM. (c) Ground-truth.
(d) ResUNet++. (e) PSPNet. (f) Deeplab V3+. (g) CGSANet. (h) ACFNet-Single. (i) FuseNet. (j) RedNet. (k) HAFNet. (l) (MS)2-Net. (m) MCANet.
(n) ACFNet.

semantic segmentation, the optimal algorithm for the Potsdam
dataset is (MS)2-Net, the optimal algorithm for the Vaihingen
and the optimal algorithm for the DFC2018 datasets is MCANet.
However, the proposed ACFNet is the strongest performer for
all datasets and tasks compared to other methods, which reflects
the higher stability of our network.

B. Ablation Experiments

We conducted a series of ablation experiments to validate
the performance of the components in the ACFNet network for
semantic segmentation in Vaihingen dataset. Specifically, we
investigated the impact of using the ASF module, the important
feature guided (IFG) module and the DFCL module within
ACFNet. As shown in Table V, using binary-classes semantic
segmentation in Vaihingen dataset as an example, seven different
networks were designed to measure the impact of these three
main components in the proposed ACFNet. For Network A, B,
or C, only one module is employed to construct models, the OAs
of Network A and Network B are higher than that of Network
C, and the OA of Network B is higher than that of Network

TABLE V
EVALUATION OF METRIC SCORES (%) FOR ABLATION EXPERIMENTS

A. FWIoU and MIoU of these three networks have the same
trend. To evaluate the effect of ASF module in ACFNet, we
compare the experimental results of Network E and ACFNet. In
Network E, ASF is replaced by traditional summation and data
fusion strategy. The OA/FWIoU/MIoU of ACFNet is improved
by 0.7%/2.4%/2.3% by using the ASF module. To evaluate the
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Fig. 14. OA of multiclasses semantic segmentation for varying training ratio. (a) Pastdam dataset. (b) Vaihingen dataset. (c) DFC2018 dataset.

Fig. 15. Contrast result chart of ablation experiment. (a) Label. (b) Network A. (c) Network B. (d) Network C. (e) Network D. (f) Network E. (g) Network F.
(h) ACFNet.

impact of the IFG module on the performance of ACFNet,
we set up comparison experiments for Network F. It can be
seen that OA/FWIoU/MIoU of ACFNet gains 0.8%/2.8%/2.5%
comparing to that of Network F. To evaluate the impact of
the DFCL module on the performance of ACFNet, we design
Network D as comparative method. In Network D, traditional
2-D convolution is employed to instead of the DFCL module, and
OA/FWIoU/MIoU of ACFNet is higher than that of Network D
by 0.5%/2.0%/2.0%. Through the analysis of three factors, it can
be seen that ASF and IFG modules have greater contribution for
the performance of the proposed network. The separate use of
the DFCL module is unsatisfactory, but its collaboration works

effectively for binary-classes semantic segmentation. Semantic
segmentation for multiclasses tasks proposes rules that are fully
consistent with the binary-classes described above. Therefore,
we fully consider the characteristics of ASF, DFCL, and IFG
modules and combine them to improve the performance of the
proposed ACFNet.

To improve the readability of this work, we also show the
visualization maps of the fusion mixtures from different modules
or module combinations. As shown in Fig. 15, the first row shows
the corresponding binary-class semantic segmentation result for
each strategy, and the second row shows the probability density
maps. As can be seen from the Fig. 15, the visual effect of the
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TABLE VI
COMPUTATION OF TRAINING TIME, TESTING TIME, FLOPS, AND PARAMETERS FOR THREE DATASETS

fusion mixtures produced by ACFNet with all three designed
modules matches the actual situation best, both in terms of
high accuracy of the segmentation map and few noise of the
probability map.

C. Number of Parameters and Calculation Time

To demonstrate the effectiveness of different semantic seg-
mentation methods, training time, testing time, floating-point
operations (FLOPs) and the number of parameters (Params)
are shown as Table VI. The computational complexity of sing-
branch methods is usually lower than that of dual-branch meth-
ods, due to their model design without considering LiDAR
feature learning. In this work, ACFNet is designed as a dual-
branch method yielding outstanding performance of semantic
segmentation for binary classification and multicategorization.
Compared with other state-of-the-art methods, the computa-
tional complexity of ACFNet is acceptable.

V. CONCLUSION

In this article, we present a deep ACFNet that can segment
objects using HR and LiDAR images. The network performs
segmentation excellently by the following three key aspects.

1) The ASF module is introduced, which can adaptively
choose the optimal spatial scale for fusion according to
the feature quality of multimodal data, making full use of
the representation properties of ground object details in
different resolution modalities.

2) The designed IFG module is oriented to extract fine-
grained spatial-semantic information, and evaluate the
influence weights of deep semantic features and shal-
low spatial detailed features on the segmentation results,
achieving adaptive deep and shallow feature fusion, and
reducing the semantic-spatial information dilution caused
by layer-by-layer up-down sampling.

3) DFCL module is proposed to transform the feature map
from spatial domain to frequency domain. Based on the
traditional Fourier transform, two odd–even 2-D FFT are
used and the amplitude and phase in the frequency domain
are adjusted to ensure the computational volume and at the

same time better model the dependence of the contextual
information, so as to improve the segmentation accuracy
of the complex urban features, especially the occluded
features.

Comparative experiments and ablation studies of the semantic
segmentation for binary classification and multicategorization
tasks show that ACFNet has a strong competitive and general-
ization performance.
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