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Abstract—Spaceborne global navigation satellite system reflec-
tometry (GNSS-R) is an emerging remote sensing technology that
utilizes Earth surface reflections of GNSS signals to monitor geo-
physical parameters. With its unique advantages of high spa-
tiotemporal resolution, low observational cost, wide coverage, and
all-weather operation, GNSS-R has found extensive applications
in ocean remote sensing. Recent successful launches of spaceborne
GNSS-R platforms, such as TechDemoSat-1 in 2014, Cyclone GNSS
in 2016, BuFeng-1 A/B in 2019, and FengYun-3E in 2021, have
opened up new opportunities in this field. This article provides a
comprehensive overview of the latest advancements in the appli-
cation of spaceborne GNSS-R in ocean remote sensing. It covers
satellite missions related to spaceborne GNSS-R and explores vari-
ous methods and techniques for ocean remote sensing applications,
including sea surface wind mapping, hurricanes, typhoons, and
tropical cyclones monitoring, tsunamis and storm surges detection,
sea surface altimetry and wave height measurement, sea ice sensing,
and rainfall estimation, among others. Furthermore, the article dis-
cusses the challenges, prospects, and future outlook of spaceborne
GNSS-R.

Index Terms—BuFeng-1 (BF-1) A/B, cyclone global navigation
satellite system (CYGNSS), FengYun-3E, geophysical parameters,
ocean remote sensing, spaceborne GNSS reflectometry, Tech-
DemoSat-1 (TDS-1).

I. INTRODUCTION

CURRENTLY, there are more than 100 operational
navigation satellites in space, including the four major

global satellite navigation systems: China’s BeiDou navigation
satellite system (BDS), the European Union’s Galileo, Russia’s
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GLONASS, and the United States’ global positioning system
(GPS). In addition, India’s Indian Regional Navigation Satellite
System and Japan’s Quasi-Zenith Satellite System (QZSS)
contribute to the global navigation satellite network. These
systems offer all-weather capability, near real-time data, high
accuracy, and continuous transmission of L-band signals,
making them widely used for positioning, navigation, and
timing applications [1].

As satellite constellations continue to improve and expand,
the applications of global navigation satellite systems (GNSS)
systems have become increasingly diverse. In addition to
their primary functions in positioning, timing, and navigation,
GNSS systems are also utilized for remote sensing by analyz-
ing surface-reflected GNSS signals. This technique, known as
GNSS-R remote sensing, is a relatively new and cost-effective
method that capitalizes on the processing and analysis of GNSS
signals reflected from the Earth’s surface to measure various
geophysical parameters [2].

GNSS-R can be classified into four types based on the plat-
forms receiving the signals: ground-based GNSS-R, shipborne
GNSS-R, airborne GNSS-R, and spaceborne GNSS-R. Each
type has its unique advantages and applications. In terms of
remote sensing applications, GNSS-R can be categorized into
three major domains: atmosphere remote sensing, ocean remote
sensing, and land remote sensing [3].

Atmosphere remote sensing using GNSS-R mainly focuses on
monitoring the ionosphere, which provides valuable information
for weather prediction and atmospheric studies. Ocean remote
sensing with GNSS-R enables the retrieval of essential oceanic
parameters, such as sea surface wind speed and significant
wave height, etc. This information is crucial for understanding
ocean dynamics, climate patterns, and maritime transportation.
Land remote sensing using GNSS-R encompasses applications
such as soil moisture retrieval, vegetation parameters retrieval,
soil freeze-thaw states monitoring, snow depth estimation, and
surface water detection, etc [4]. These applications contribute to
improved agriculture, hydrology, and climate modeling.

In 1988, Hall and Cordey [5] introduced the concept of GNSS
bistatic radar, which paved the way for using GNSS reflection
signals in remote sensing applications. In 1993, Martin-Neira [6]
proposed the use of GNSS reflection signals for ocean altimetry,
highlighting the potential of GNSS-R for ocean observation. In
1998, Garrison et al. [7] conducted airborne experiments that
validated the correlation between scattered GNSS signals and
sea surface roughness under different sea conditions.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see
https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0001-9412-3121
https://orcid.org/0009-0004-7276-412X
https://orcid.org/0000-0001-9153-1920
https://orcid.org/0000-0001-7710-3073
https://orcid.org/0000-0001-9622-5041
mailto:b_jinwei@kust.edu.cn
mailto:liuxinyu6@stu.kust.edu.cn
mailto:202210108133@stu.kust.edu.cn
mailto:lilinghui@stu.kust.edu.cn
mailto:lilinghui@stu.kust.edu.cn
mailto:zxq@kust.edu.cn
mailto:kegen.yu@cumt.edu.cn
mailto:weimin@mun.ca


13048 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Building upon these advancements, Zavorotny and Voro-
novich developed a two-dimensional delay-Doppler power
model for GNSS scattered signals using the bistatic radar equa-
tion, the Kirchhoff approximation, and geometric optics in 2000.
This model laid the theoretical foundation for retrieving sea
surface wind fields from scattered signals [8] as well as other
applications.

In 2002, Lowe et al. [9] accomplished the first detection of
GNSS reflection signals from a spaceborne platform, demon-
strating the feasibility of spaceborne GNSS-R for remote sens-
ing. In 2003, the United Kingdom Disaster Monitoring Constel-
lation (U.K.-DMC) satellite, equipped with a GPS-R receiver,
successfully received and processed GPS L1 C/A code reflection
signals, confirming its capacity for retrieving sea winds and sea
ice from spaceborne platforms [10].

In 2014, Clarizia et al. [11] proposed the minimum variance
(MV) estimator for GNSS-R wind speed estimation, achieving
an improved accuracy with a root-mean-square error (RMSE) of
1.65 m/s. In the same year, the U.K.’s TechDemoSat-1 (TDS-1)
satellite, carrying the Spaceborne GNSS Receiver for Sensing
the Earth’s Surface (SGR-ReSI), was launched. The SGR-ReSI
system coherently processed GPS L1 C/A code direct reflection
signals and obtained a significant amount of delay-Doppler map
(DDM) data. With the TDS-1 data, Foti et al. [12] successfully
retrieved sea surface wind speed with an accuracy of about 2.2
m/s for wind in the range of 3–18 m/s.

In December 2016, NASA developed the Cyclone Global
Navigation Satellite System (CYGNSS) which consists of
eight small satellites, providing more opportunities for utilizing
GNSS-R technology to retrieve sea surface wind speeds [13].
On June 5, 2019, China launched the BuFeng-1 (BF-1) A/B dual
satellite mission, i.e., China’s first dedicated GNSS-R satellite
mission. With the launch of these satellites, China became
the fourth country to deploy GNSS-R satellites in Earth orbit,
following the U.K., the U.S., and Japan. The BF-1 A/B mission
also obtained the world’s first spaceborne BDS DDM [14].
In addition, on July 5, 2021, China launched the FengYun-
3E meteorological satellite, which has been utilizing GNSS-R
data for sea surface wind speed retrieval [15]. This satellite
mission also focuses on GNSS radio occultation (GNSS-RO)
applications. Furthermore, a detailed overview of the GNSS
deflection, radio occultation, and scattering measurements on
board the International Space Station, proposed by European
Space Agency (ESA), is presented in the literature [16]. The
experiment is planned for oceanic, atmospheric, and terrestrial
remote sensing using GNSS signals of opportunity.

Several papers [1], [2], [3], [4], [17] reviewing the applications
of GNSS-R technology in various fields have been published.
However, each of these papers tends to focus only on a spe-
cific application rather than providing a comprehensive review
of all the ocean-related applications for spaceborne GNSS-R.
Therefore, there is a need for a comprehensive review paper
that encompasses a wide range of applications, including but
not limited to sea surface altimetry, sea surface wind speed and
direction estimation, and sea ice monitoring. Such a review paper
would provide valuable insights into the diverse applications of

spaceborne GNSS-R technology in monitoring and studying the
marine environment.

The rest of the article is organized as follows. Section II
provides an overview of the key messages of the spaceborne
GNSS-R mission. Section III provides an overview of the meth-
ods and research status of using spaceborne GNSS-R data to
retrieve sea surface wind speed and direction, as well as potential
applications in detecting hurricanes, typhoons, and tropical cy-
clones. Section IV provides an overview of the demonstration of
using spaceborne GNSS-R for sea surface height (SSH) and the
methods for retrieving sea surface wave height (i.e., significant
wave height and swell height), as well as its potential in detecting
tsunamis and storm surges. Section V provides an overview of
the advanced methods and current status of research on the
use of spaceborne GNSS-R for sea ice detection and retrieval
of sea ice concentration and thickness. Section VI provides
an overview of the current state of research and challenges
in spaceborne GNSS-R rainfall detection (RD) and rainfall
intensity (RI) retrieval. Section VII outlines other innovative
applications of spaceborne GNSS-R technology. Section VIII
presents conclusions and future research directions.

II. SPACEBORNE GNSS-R-RELATED SATELLITE MISSIONS

Currently, approximately ten satellite missions have payloads
specifically designed for GNSS-R ocean and/or land applica-
tions. Table I lists the key information, including the GNSS-R
types, frequency bands, polarizations, and associated GNSS sys-
tems, about these spaceborne GNSS-R missions. Each mission
is summarized as follows.

U.K.-DMC: The U.K.-DMC satellite, launched in December
2003, is the first GNSS-R satellite developed by Surrey Satellite
Technology Limited (SSTL). It carries four primary payloads,
one of which is specifically dedicated to experimental purposes
to showcase the potential applications of GNSS-R technology.
While the data collected by the U.K.-DMC satellite have not
been extensively utilized in remote sensing research likely due to
limited data available, the satellite has successfully sensed ocean
roughness [18]. The experiments and data collection conducted
by the U.K.-DMC satellite have played a significant role in
optimizing the design of SSTL’s new GNSS-R device [12].

TDS-1: On July 8, 2014, the U.K. launched the TDS-1 satel-
lite, which carried GNSS-R receivers also developed by SSTL.
The TDS-1 satellite was retired in December 2018. In four years,
TDS-1 recorded a large amount of spaceborne GNSS-R data,
which is widely used in scientific and technological research
[19], [20].

CYGNSS: Following TDS-1, on December 15, 2016, NASA
launched eight microsatellites to monitor tropical cyclones with
the primary goal of improving the accuracy of hurricane intensity
measurements and predictions [34], [35]. The project is led by
the University of Michigan in the United States. CYGNSS has
also generated a large number of data, which are also used to
retrieve various ocean and land parameters in addition to its
initially targeted ones.
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TABLE I
GNSS-R SPACEBORNE MISSIONS

3Cat-2: 3Cat-2 is a six-unit cube satellite demonstration mis-
sion for Earth observation using GNSS-R [22]. The space-
craft carries the main payload of P(Y) and C/A reflectome-
ter (PYCARO), and the 3Cat-2 payload is designed with dual
frequency (L1, L2) and dual 96 polarization (LHCP, RHCP)
3 × 2 patch antenna arrays to perform GNSS-R measurements
over oceans, land, and ice using multiple constellation sig-
nals (GPS, GLONASS, Galileo, and BDS). 3Cat-2 also aims
to provide scientifically valuable data in a very cost-effective
manner, which may open the door for future GNSS-R instrument
constellations.

SMAP: The soil moisture active passive detection (SMAP)
mission, launched in January 2015 and became operational
in April 2015, is designed to measure soil moisture levels on
regional and global scales. The mission aims to gather global
soil moisture data every two to three days. The frequent and
reliable measurements obtained by SMAP contribute to improv-
ing the prediction capabilities of weather and climate models.
The radar receiver of the SMAP mission was tuned to the GPS
L2 frequency (1227.6 MHz) to collect GPS signals reflected by
the Earth’s surface [23]. The SMAP mission utilizes reflected
GPS signals to obtain additional information about soil moisture
and other geophysical parameters. By utilizing the GPS signals,

SMAP enhances its capabilities to monitor and study soil mois-
ture dynamics, further enhancing our understanding of Earth’s
water cycle.

BF-1 A/B: On June 5, 2019, China Aerospace Science and
Technology Corporation launched the dual satellite “BuFeng-1”
from the Yellow Sea. The main focus of this satellite mission is
to test the ability of GNSS-R to monitor sea surface wind fields,
especially typhoons [14].

Spire: The Spire constellation conducts various GNSS Earth
observation missions, including radio occultation (GNSS-RO),
ionized layers, and space weather measurements, as well as
precise orbit determination [36], [37]. In December 2019, Spire
launched two new satellites to perform GNSS reflection mea-
surements. Compared to CYGNSS, Spire’s GNSS-R satellite
has been specifically optimized for land applications with hard-
ware and software improvements for better signal calibration
and increased data acquisition per satellite. With more Spire
satellites entering orbit, the potential for more powerful GNSS-R
soil moisture retrieval with finer spatial resolution in the near
future is promising. Current and future GNSS-R satellites from
Spire will provide unprecedented next-day global coverage at
subkilometer spatial resolution, making this intensive data col-
lection crucial for various land and marine applications.
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FengYun-3E/3G /3F: On July 5, 2021, China’s FengYun-3E
meteorological satellite was launched, carrying GNOS II GNSS
remote sensing instruments and 11 payloads, including inte-
grated GNSS-RO and GNSS-R payload for sensing ionospheric,
atmospheric, and oceanic parameters for the first time [38].
FengYun-3G is China’s first low-inclination orbit precipitation
measurement satellite, which was successfully launched on
April 16, 2023. The GNOS-II instrument (Global Navigation
Satellite Occultation Sounder-II) is one of the payloads of
China’s low-orbit meteorological satellite system, FengYun-3
(FY-3) series, and its main mission is to carry out the detection
of GNOS occultation signals and reflectance signals, and to pro-
vide the parameters of atmosphere and ionosphere, atmospheric
temperature profile and wet atmospheric profile, sea surface
wind speed, soil moisture, and to provide high-quality datasets
for numerical weather prediction, climate change, and space
weather. The FengYun-3F satellite was launched on August 3,
2023, which is a continuation of the GNSS GNOS-II on the
FY-3E satellite, and the GNOS-II on the FY-3F satellite is one
of the 3 batch of payloads, and its main mission is to carry
out the GNSS occultation detection and the ocean reflection
detection to provide the atmospheric and ionospheric parameter
profiles, sea surface wind speed, and to provide high-quality
datasets for numerical weather prediction, climate change, and
space weather. It provides high-quality datasets for numerical
weather prediction, climate change, and space weather.

3Cat-5 A/B (FSSCat): FSSCat is an innovative mission con-
sisting of two joint six-unit cube satellites (3Cat-5/A and 3Cat-
5/B) [28]. FSSCat was the first mission contributing to the
Copernican System (Land and Marine Environmental Services),
which was successfully launched on September 3, 2020, provid-
ing L-band GNSS-R measurements. It carries dual microwave
payloads (GNSS reflectometer and L-band radiometer with in-
terference detection/mitigation function) and multibeam spec-
trum optical payloads to measure soil moisture, ice cover range
and thickness, and detect melting pools on ice. It also includes a
technical demonstrator for optical intersatellite link and concept
validation for a federated satellite system.

3Cat-4: 3Cat-4 is the fourth member of the CubeSat series
from the nanosatellite laboratory at the University of Polytechnic
de Catalunya. This task aims to demonstrate the capabilities
of nanosatellites, especially those based on the unit cube satel-
lite standard, using GNSS-R and L-band microwave radiation
measurements for Earth observation and automatic recognition
services [29].

PRETTY: One of the purposes of the reflectometer payload
on passive reflectometry and dosimetry (PRETTY) is to demon-
strate the technical feasibility of phase height measurement (or
phase-delay height measurement), as done in [39] and [40],
at grazing incidence angles. PRETTY flies in low Earth orbit
(LEO) and measures reflected and direct GNSS signals for alti-
tude and scattering measurements at very high incidence angles
based on interferometry techniques. The signal processing core
of PRETTY is an on-chip system, consisting of a dual-core
ARM processor and an on-chip field programmable gate array
structure [31].

TRITON (FORMOSAT-7R): The FORMOSAT-7R (FS-7R)
program is a GNSS reflection measurement task for remote
sensing of ocean surface roughness and wind speed, attempting
to provide key data for severe weather research and prediction.
Compared with the GNSS-R receivers in TDS-1 and CYGNSS,
the GNSS-R payload has some distinct characteristics. The
GNSS-R payload is a powerful GNSS receiver because it can
handle scattered GPS, Galileo, and QZSS signals [32], [41].

HydroGNSS: With funding from the ESA Scout program,
SSTL is building hydrology using global navigation satellite
system reflections (HydroGNSS), a 55-kg small satellite used to
measure climate change variables [33]. HydroGNSS employs
GNSS-R technology, using existing signals from global nav-
igation satellites such as GPS and Galileo as radar sources,
to measure key hydroclimate variables, including soil mois-
ture, freeze/thaw surface state, floods and wetlands, and above-
ground biomass. HydroGNSS provides a new capability for
monitoring highly dynamic phenomena and helps fill the gaps
in monitoring Earth’s vital signs in the future. The HydroGNSS
mission aims to assist in climate change mitigation by leveraging
space technology to provide valuable measurements.

In addition to the aforementioned GNSS-R missions, there
are other spaceborne missions aimed at utilizing reflected GNSS
signals and other opportunistic signals for various geophysical
applications. For example, on July 5, 2019, the DOT-1 satellite,
which is the third satellite designed by SSTL for GNSS-R
research, was launched. The payload carried on the DOT-1
satellite is intended to test advanced electronic equipment such
as antenna technology, which can be utilized for future space-
borne technologies [42]. On July 3, 2021, the first commer-
cial satellite with a GNSS-R payload, Jilin-01B, was launched
into space. The GNSS-R payload is carried onboard the Jilin-
01B satellite developed by Changguang Satellite Technology,
Co., Ltd., and it is utilized for detecting a range of oceanic
parameters [43].

III. RETRIEVAL OF SEA SURFACE WIND SPEED AND

DIRECTION

A. Sea Surface Wind Speed Retrieval

Currently, there are four types of methods for retrieving
ocean surface wind speed using spaceborne GNSS-R: wave-
form matching, empirical modeling, intelligent optimization
algorithms, and machine/deep learning. Among these, ma-
chine learning approaches have shown the highest accuracy
in wind speed estimation. The waveform matching method
involves comparing the observed GNSS reflection signal to a
preconstructed simulated waveform to retrieve wind speed. This
method has been proven to provide high accuracy. For example,
Li and Huang [44] used the least squares (LS) method to fit the
two-dimensional simulated GNSSR DDM to measured data and
achieved a wind speed error of 1 m/s when the lower threshold
was set between 30% and 42% of the peak DDM point. However,
this method requires significant computation and manual work
to build and maintain waveform libraries, and it is limited in
extreme weather conditions or nonlinear retrieval problems.
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The empirical modeling method is fast and efficient for
estimating sea surface wind speed using statistical relation-
ships or empirical formulas. It offers simplicity, efficiency, and
practicality in real-time wind speed estimation compared to
the waveform matching method. For example, Clarizia et al.
[11] utilized empirical geophysical model functions (GMF) to
retrieve wind speed based on various parameters such as mean,
variance, Allan variance, leading edge slope (LES), and trailing
edge slope (TES) of the DDM. They also developed a minimum
variance estimator (MVE). Similarly, Rodriguez-Alvarez and
Garrison [45] compared the MVE method with the maximum
signal-to-noise ratio (SNR) method and the principal component
analysis (PCA) method. The results indicated that the PCA
method demonstrated better performance. In 2015, Foti et al.
[12] proposed a wind speed retrieval algorithm based on the
GNSS-R bistatic radar equation and SNR. They confirmed the
significant capacity of low-cost, low-quality, and low-power
GNSS-R receivers (e.g., ReSI) for global ocean wind speed re-
trieval at LEO heights. Furthermore, Bu et al. [46] classified the
waveforms in DDM into three categories: center delay waveform
(CDW), integral delay waveform (IDW), and differential delay
waveform (DDW). They developed a composite wind speed
estimation model using normalized bistatic radar cross-section
(NBRCS) and LES observables, which resulted in an RMSE of
2.1 m/s and a determination coefficient of 0.906. This model
exhibited improved accuracy and performance compared to
traditional single-parameter models.

The retrieval of ocean surface wind speed is indeed a com-
plex nonlinear problem influenced by various meteorological,
oceanic, and geographical factors. While traditional empirical
modeling approaches have their limitations in fully accounting
for these complexities, intelligent optimization algorithms offer
a more effective solution by incorporating global search and
adaptive adjustment techniques to handle nonlinear and intricate
problems. Guo et al. [47] proposed a novel approach using
particle swarm optimization (PSO) for wind speed retrieval
by combining the DDM observable with the MVE. The study
highlighted that the PSO-based method showed dependencies
on GPS constellation types and CYGNSS satellite identifiers,
which differed from the MVE-based techniques.

Thanks to the development of computer technology, machine
learning methods have further improved the processing of com-
plex nonlinear problems in ocean wind speed retrieval, with
their powerful nonlinear modeling capabilities that can capture
complex nonlinear relationships and enhance the accuracy of
ocean surface wind speed retrieval. Liu et al. [48] employed a
multi-hidden-layer neural network (MHL-NN) to extract four
different feature sets for ocean wind speed retrieval, resulting
in significant improvement compared to traditional empirical
models. Artificial neural networks (ANNs) enable fast com-
pletion of complex tasks by learning the relationship between
inputs and outputs. Reynolds et al. [49] conducted the initial
research on using ANN for wind speed estimation, Li et al. [50]
evaluated the performance of ANN-based wind speed retrieval
using CYGNSS data and analyzed the sensitivity of wind speed
retrieval performance to different input parameters, finding that
the geographical location of specular reflection points and the

height of uplift can significantly affect wind speed retrieval.
To enhance the comprehensiveness of data input, Chu et al.
[51] proposed an input composed of DDMs and all satellite
receiver state (SRS) parameters. To effectively integrate the
information of DDM and SRS, they introduced a heterogeneous
multimodal deep learning (HMDL) approach that utilizes the
heterogeneity of input data to retrieve wind speed. Asgarimehr
et al. [52] developed an efficient wind speed retrieval method
called CYGNSS net based on. Building upon this, Guo et al. [53]
introduced a statistical correction convolutional neural network
(CNN) with auxiliary information fusion. In this approach, the
convolutional layers extract effective DDM features, and an
adaptive polynomial form of cumulative distribution function
matching is performed to eliminate bias. Bu et al. [54] presented
an improved deep learning model called GloWS-Net, which
significantly enhances the retrieval accuracy of high wind speeds
compared to the CYGNSS net and MCNN models.

Liu et al. [55] utilized the characteristics of long short-term
memory (LSTM) models in extracting temporal features from
time series and proposed a recursive deep neural network (DNN)
using feature attention mechanism (FA-RDN) for global ocean
surface wind speed retrieval based on GNSS-R. However, FA-
RDN only involves time-related input features for wind speed
retrieval. Lu et al. [56] fully considered the spatiotemporal char-
acteristics of ocean wind speed and put forward a hybrid CNN-
LSTM network. Such a network can extract spatial features
surrounding the specular point (SP) from the two-dimensional
matrix of DDM through the CNN module, and extract temporal
features from the time series through the LSTM module, thus
better capturing spatiotemporal features and improving the ac-
curacy of ocean wind speed retrieval. Nevertheless, the main
challenge faced by deep learning models has been the poor
performance of wind speed retrieval in high wind speeds due
to the uneven distribution of wind speed samples. Therefore,
future studies should select samples within a wider range of wind
speeds to develop deep learning models for widely applicable
spaceborne GNSS-R wind speed retrieval.

Table II summarizes and compares the methods for space-
borne GNSS-R sea surface wind speed retrieval, mainly focusing
on the retrieval method, retrieval model, GNSS-R observables,
retrieval accuracy, and advantages and disadvantages. The table
only includes representative references, where “-” indicates that
the information is not covered.

B. Sea Surface Wind Direction Retrieval

Both wind speed and direction are key factors for the ocean.
Various techniques have been developed for determining sea
surface wind speed and direction. Traditional methods consist
of using microwave radiometers and scatterometers. Microwave
radiometers estimate wind speed and direction by detecting
changes in the roughness of the sea surface. On the other hand,
scatterometers send out electromagnetic wave signals toward the
ocean, receive reflected signals, from which can be applied to
retrieve wind speed and direction.

As an emerging remote sensing technology, GNSS-R has
also made significant progress in wind direction retrieval. Park
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TABLE II
COMPARISON OF SPACEBORNE GNSS-R SEA SURFACE WIND SPEED RETRIEVAL METHODS

and Johnson [59], [60] found that wind direction has higher
sensitivity in nonspecular geometry compared to specular ge-
ometry, and the accuracy of wind speed retrieval plays an
important role in the performance of wind direction retrieval.
The retrieval can be carried out using DDM away from the
specular part, and the outlook of wind retrieval using space-
borne GNSS-R is also proposed. Zhang et al. [61] realized
the exploration of wind direction in nonspecular geometry by
spaceborne GNSS-R on this basis, and provided the wind di-
rection retrieval algorithm based on the delay-Doppler map
average (DDMA) in nonspecular geometry. Simulation results
show that spaceborne GNSS-R DDMA in nonspecular geometry
can be used to retrieve the wind direction. Guan et al. [62]
investigated the effect of different wind features in GNSS-R
observables on the wind direction retrieval, and the results show
that the wind direction retrieval performs better when the SNR
and the metric angle are higher. Wang et al. [63] investigated
the feasibility of retrieval of wind direction using low-level
backward geometry of GNSS-R and focused on analyzing the
effects of wind direction on sea surface roughness and scattering
intensity.

In addressing the problem of spatial footprint blurring caused
by Spaceborne GNSS-R receivers operating at high speeds
in low orbits, Southwell and Inst [64] found that Spaceborne
GNSS-R receivers operating at high speeds in low orbits lead
to spatial footprint blurring. To address this problem, Gao et al.
[65] introduced the concept of blurred gaze processing, which
involves tracking multiple fixes simultaneously, to investigate
the sensitivity of DDM to wind direction. They analyzed the
relationship between multiple observations and wind direction
and used a deep learning model for wind direction retrieval.
Pascual et al. [66] investigated the effect of kurtosis of DDM
samples in CYGNSS data on wind direction sensitivity and
proved that CYGNSS data are sensitive to wind direction

κ̂ = A0 +A1 cos (WD) +A2 cos (2WD) (1)

where A0 is the offset, A1 is the upwind/downwind modulation
factor,A2 is the upwind/sidewind factor, and WD is the relative
wind direction.

Zhang et al. [67] developed a support vector machine (SVM)
model for sea surface wind direction retrieval using CYGNSS
satellite data to address the difficulty of wind direction retrieval
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in large space and large time span at the global sea surface,
and the results show that the retrieval has a high classification
accuracy in the dataset with wind speeds greater than 10 m/s,
and the RMSE of the retrieval results is 26.70°. Zhang et al. [68]
developed a sea surface wind direction retrieval model based
on three machine learning algorithms (SVM, BP, and CNN)
using CYGNSS L1 data. The results show that the CNN model
outperforms the SVM model and BP model in retrieval of wind
direction.

Future studies could improve the results of sea surface wind
studies by using more high-quality data to provide more com-
prehensive and detailed information.

C. Applications: Hurricanes, Typhoons, and Tropical
Cyclones Monitoring

Typhoon is a tropical cyclone, also known as hurricane, which
is the result of the interaction between the atmosphere and
the ocean. Typhoons are formed in tropical oceans and are
characterized by strong winds and heavy rain. Monitoring a
typhoon is of crucial importance for weather disaster prediction
and warning, helping reduce the losses caused by typhoons.

GNSS-R has become one effective technique for typhoon
monitoring [34]. It has the advantage of monitoring large-scale
typhoon activities in real time and remotely without relying on
traditional ocean buoys and aircraft detection. Martín et al. [69]
and others used interferometric GNSS-R for typhoon monitor-
ing. Li et al. [70] used the ocean reflection signals from the
BeiDou geostationary orbit (GEO) satellites to conduct coastal
typhoon observations. Through preliminary analysis of the Bei-
Dou reflection signals collected in the experiment, the GNSS-R
measured wind speeds match well with in situ data, and the
average deviation was 1.6 m/s and an RMSE of 2.4 m/s. This pro-
motes the application of the Beidou GEO satellites in typhoon
monitoring. Ruf et al. [13] proposed to utilize the CYGNSS
data to perform high temporal and spatial resolution wind speed
observation to help predict the paths and intensities of typhoons.
In addition, spaceborne data from the U.K. TDS-1 mission were
successfully applied to typhoon monitoring, representing the
first success of monitoring typhoons using spaceborne GNSS-R
technique [71], [72]. Balasubramaniam and Ruf [73] constructed
an empirical model considering azimuthal dependence by using
the CYGNSS observation data and the wind speed data from
the hurricane weather research and forecasting (HWRF) model
for describing the variation of GNSS-R scattering cross sections
in typhoons. It is found that the azimuthal dependence of the
scattering cross section increases with wind speed, and changes
in azimuthal direction can lead to a 2%–8% variation in the
scattering cross section.

Understanding and predicting hurricanes is an important part
of weather forecasting and climate research. Hurricanes and
associated flooding and coastal inundation are among the most
dangerous and expensive natural hazards for coastal communi-
ties. In addition, remote sensing of ocean surface winds usually
lacks accuracy for very intense hurricanes. Shen et al. [74] used
the ability of cross-polarized synthetic aperture radar (SAR)
to detect wind speeds from hurricanes and found that wind

speed estimation with cross-polarized SAR has better accuracy
compared to copolarized SAR. It provides valuable insights
for numerical modeling of hurricanes, air–sea interaction, and
climate change. Said et al. [75] employed simulated CYGNSS
data to develop an algorithm for retrieving the maximum wind
speed of a hurricane and compared the retrieved results with
hurricane research reanalysis data (the best path) and the HWRF
model data, with overall deviations relative to the optimal track
of 11.3 and 2.1 m/s for optimal track maximum wind speeds less
than 40 m/s and greater than 40 m/s, respectively.

Kim and Park [76] successfully monitored changes in water
levels caused by hurricane-induced storm surges through the
analysis of multifrequency and multisystem GNSS. By using
spectral analysis and statistical data processing of multifre-
quency GNSS signals, their method was able to detect the
effects of storm surges on water levels, improving the accuracy
and temporal resolution of GNSS-R water level measurements.
The proposed algorithm was validated through a case study
of the storm surge during Hurricane Harvey in 2017, with
results showing that the correlation coefficient between GNSS-R
measurements and tide gauge readings at the same location
was 0.97.

Wang et al. [77] proposed a joint use of spaceborne microwave
sensors and the CYGNSS constellation to observe tropical cy-
clones. The TC tracks obtained by this method were compared
with the best tracks provided by the National Hurricane Center,
with mean absolute error values ranging from 18.4 to 46 km
and standard deviation varying between 15.1 and 28.2 km.
Morris and Ruf [78] developed a method for estimating the
integrated kinetic energy of tropical cyclones using CYGNSS
observations, demonstrating the validity and feasibility of the
method through testing and evaluating performance with simu-
lated data. Morris and Ruf [72] also utilized CYGNSS satellite
observations to estimate the surface wind speed structure and
intensity of tropical cyclones. Mayers and Ruf [79] proposed
a new method to determine the TC center location using wind
speed measurements from CYGNSS. The storm center location
is estimated by fitting a parametric wind model to the CYGNSS
surface wind speed data, where the wind speed as a function of
radius is described as

V (r) =
2r(RmVm + 0.5fR2

m)

R2
m + arb

− fr

2
(2)

where r is the distance from the storm center, f is the Coriolis
factor, Rm is the radius of maximum winds, and Vm is the
maximum wind speed. The factor a can be solved from the other
factors by requiring that the maximum value of V (r) equal Vm.
The exponent b controls the rate at which the winds radially
decay away from the inner core.

On this basis, Ruf et al. [80] evaluated the CYGNSS ocean sur-
face wind speed measurements in terms of uncertainty, dynamic
range, sensitivity to precipitation, spatial resolution, spatial and
temporal sampling, and data latency. They found that the average
revisit time of CYGNSS satellites was 9.1 h, and the spatial
coverage reached 50%, which satisfied the mission’s threshold
requirements.
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Fig. 1. Geometric principles of spaceborne GNSS-R altimetry [82].

However, it is worth noting that the current spatial resolution
of Spaceborne GNSS-R data may not be sufficient for moni-
toring small-scale weather phenomena such as hurricanes. The
development and progression of hurricanes often happen on a
smaller spatial scale. Therefore, it is recommended to consider
generating higher resolution data in the future to accurately
monitor the location, intensity, and trajectory of hurricanes.

IV. SEA SURFACE ALTIMETRY AND WAVE HEIGHT RETRIEVAL

USING SPACEBORNE GNSS-R

A. Sea Surface Altimetry

The measurement of SSH holds great importance in fields
such as ocean meteorology, ocean engineering, and marine
scientific research. The traditional approach involves using tidal
gauges, which require the consideration of altimeter deviations
and drift to calculate the variation in sea level over time [81].
However, altimeters are expensive and susceptible to environ-
mental influences. Alternatively, GNSS-R-based retrieval has
become a commonly used method due to its advantages of low
power consumption, cost-effectiveness, and high spatial resolu-
tion. Martin-Neira [6] pioneered the use of GNSS-R for SSH
measurement in 1993. The geometric principle of spaceborne
GNSS-R altimetry is depicted in Fig. 1.

There are two commonly used methods for measuring SSH
using ground-based GNSS-R techniques. The first method is
the GNSS interferometric/multipath method, which involves
analyzing the interference or multipath effect of GNSS signals.
This method utilizes the SNR obtained by the receiver to measure
SSH [83]. Purnell et al. [84] proposed a modeling technique
based on SNR data to estimate the accuracy of GNSS-R sea
level measurements and analyze measurement uncertainty.

The second method is the conventional GNSS-R (cGNSS-
R) method, which retrieves SSH by observing the time delay
between reflected and direct GNSS signals. There are two
approaches for measuring the time delay: code-based methods
and carrier-based methods. Code-based methods track the code
phase of the reflected and direct signals to determine the time
delay [85], [86], while carrier-based methods track the carrier
phase to achieve the same objective [87]. Cardellach et al.
[39] introduced the first grazing angle (GA) carrier phase-delay

method for SSH retrieval. However, the carrier-based method re-
quires continuous carrier phase and strong coherent components
in the reflected signal, imposing smoothness requirements on the
reflecting surface. This limits its application in ocean surveying.
In contrast, code-based methods have lower requirements for
signal coherence, making them more widely applicable.

Ground and airborne GNSS-R technologies have provided
the basis for the development of spaceborne GNSS-R systems
[88], [89]. The U.K.-DMC satellite constellation launched in
July 2014 was the first to carry a GNSS-R receiver capable
of generating a differential DDM containing information about
delay and Doppler around the SP.

Subsequently, some researchers conducted sea surface al-
timetry studies using TDS-1 data. Song et al. [90] conducted
high-resolution processing of Doppler and code delay based
on raw data from the TDS-1 satellite and explored the poten-
tial of using higher time sampling rates to improve accuracy
using two different height measurement methods. Mashburn
et al. [91] used GNSS-R data from the TDS-1 satellite for sea
surface altimetry and developed an error budget by analyzing
the sources of error. The SSH residual was found to be 6.4 m
with a 1σ integration time of 1 s compared to the mean sea
surface topography. For accurate delay retracking, correction
for ionospheric effects, and spacecraft receiver positioning in
GNSS-R altimetry studies, Mashburn et al. [92] also utilized
a simulated DDM to match with the measured data in order
to obtain accurate specular reflection delays through correcting
the path delay effects in conjunction with a global ionospheric
map (GIM). This method, which is based on reflection modeling
and ionospheric correction, is able to extract more accurate
sea surface altimetry information from GNSS-R measurements,
providing new possibilities for related applications.

Li et al. [93] utilized raw IF data collected by CYGNSS
satellites to comprehensively analyze the high performance
of oceanographic measurements with spaceborne GNSS-R
technology. They calculated the ellipsoidal height of the sea
surface above the WGS84 ellipsoid using the double-base
geometry [6]

Hobs
e = −cτ

obs
rtrk − (δρiono + δρtropo + δρbl)

2 cos i
(3)

where i is the angle of incidence, τ obs
rtrk is the residual two-base

delay derived from different retrackers, δρiono is the ionospheric
delay correction term, δρtropo is the tropospheric two-way tilt
delay, and δρbl is the antenna baseline correction.

Due to the limited capabilities of some satellite missions,
Nguyen et al. [94] used the dual-frequency GPS reflection signal
data collected by the Spire satellite constellation for the first time
to construct a phase height retrieval model, as shown in formula
(4), achieving centimeter-level high-precision height estimation
in sea ice covered areas and open sea areas

δh =
ρ̂− ρ

2 sinα
(4)

where δh represents the surface height deviation from a refer-
ence surface, ρ represents the observed geometric distance of
the reflected signal path, ρ̂ represents the prior distance of the
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signal path based on the reference surface, and α is the angle
between the local tangent plane of the SP and the line-of-sight
to the transmitter.

The launch of China’s BF-1 satellite and FY-3 satellite has
significantly enhanced spaceborne GNSS-R observations. The
utilization of multiple constellations of GNSS signals, which
exhibit differences in signal performance based on frequency
bands and modulations, can improve the accuracy of height
measurements [95]. Due to the highly nonlinear complexity
of the sea surface, traditional empirical models often fail to
fully consider the effects of various factors. In contrast, machine
learning and deep learning techniques have proven to be effective
in data processing. However, compared to applications such as
sea surface wind speed retrieval and soil moisture detection,
machine learning and deep learning for spaceborne GNSS-R sea
surface altimetry are still in their early stages with limited studies
conducted thus far. Zhang et al. [82] proposed the use of machine
learning methods, such as principal component analysis com-
bined with support vector regression (PCA-SVR) and CNN, for
obtaining SSH based on TDS-1 data. They further validated and
compared the performance of these methods. In addition, Zhang
et al. [96] developed two different CYGNSS SSH retrieval mod-
els based on widely used machine learning techniques, including
backpropagation neural network (BPNN) and CNN.

To improve the accuracy of sea surface height retrieval,
Wang et al. [97] proposed a novel weighted average fusion
feature extraction method. Built on this research, an end-to-end
modified residual multimodal deep learning method was
introduced, which leverages complete DDM information to
further enhance the retrieval accuracy of SSH [98]. However,
most studies have mainly focused on postprocessing strategies
to improve performance without considering practical (near)
real-time applications. To address this challenge, Liu et al. [99]
proposed a cloud service-based approach for near real-time
sea level measurements using a robust Kalman filter to achieve
high accuracy and temporal resolution. The results show
negligible bias compared to retrieval in postprocessing mode,
confirming the practical significance of the proposed method
for real sea level monitoring applications. Table III summarizes
and compares methods for spaceborne altimetry of the sea
surface, mainly focusing on retrieval methods, observational
data, retrieval models, observed values, retrieval accuracy, and
validation models. The table lists only representative references,
with “-” indicating aspects not covered.

The marine environment is a complex and dynamic system
that is influenced by various factors. The complexity and uncer-
tainty involved make it challenging to accurately predict future
SSH. In practical applications, it is necessary to synthesize,
validate, and evaluate multiple methods and data sources to
enhance the accuracy and reliability of prediction results. Further
research and technological advancements are needed to over-
come this challenge.

B. Sea Surface Significant Wave Height Retrieval

The SWH of ocean waves is an important parameter that
describes wave energy and has a significant impact on the marine

environment and maritime activities. Sea surface roughness
and scattering coefficient are important factors that affect the
reflection signal of spaceborne GNSS-R [102]. The dual-scale
model (TSM) is a reliable method for analyzing electromag-
netic scattering from the sea surface. TSM divides the sea
surface into two parts: large-scale roughness and small-scale
roughness. It uses the following formula to define the scattering
coefficient [103]:

σTSM = σKA−GO + σSPM (5)

where σKA−GO represents the large-scale surface rough-
ness scattering coefficient calculated based on the Kirchhoff
approximation-geometric optics (KA-GO), primarily related to
swell.σSPM represents the small-scale surface roughness scatter-
ing coefficient calculated using the small perturbation method
(SPM), mainly associated with wind waves. SWH represents
the average height of the highest third of ocean surface waves
generated by wind and swell. When sea surface wind speed is
low, swell contributes predominantly to SWH [104]. Conversely,
in high wind speed conditions, wind waves are the primary
components of SWH.

To accurately measure SWH, researchers have explored var-
ious retrieval methods. This section provides a brief overview
of some common methods for SWH retrieval, discussing their
characteristics and limitations.

Buoy observation is a widely used SWH retrieval method
with high accuracies. However, its application is limited due
to the high cost and restricted coverage of buoy equipment,
which makes it challenging to implement in large-scale sea areas
[105]. Satellite altimetry is another commonly used method for
measuring ocean wave parameters. However, due to the limited
resolution of satellite observations, it can be difficult to obtain
detailed results [106]. Interference complex field (ICF) is a
method that calculates SWH by utilizing the effective correlation
time function of coastal GNSS reflected signals and direct sig-
nals [107]. Alonso-Arroyo et al. [108] conducted an analysis of
oscillation frequency and coherence loss using the interference
pattern technique (IPT) and retrieved SWH and mean sea surface
level with ground experiment data. IPT is not applicable to
spaceborne GNSS-R scenarios [109], although there are special
cases where this pattern occurs. When the relative delay between
the direct GNSS signal and the reflected signal is less than
the code-slice length (e.g., about 300 m for C/A codes), both
signals contribute to the correlation sum amplitude computed
by the receiver, and an IPT-like signaling pattern occurs. This
situation has been found in GNSS-RO measurements where
the receiver is not stationary [100]. However, in spaceborne
GNSS-R applications, the IPT method is not applicable due
to the large satellite-terrestrial path variations [109], where the
relative delays of the direct and reflected signals usually exceed
the code-slice length.

Qin and Li [110] proposed a multisatellite observation SWH
retrieval method based on GNSS-R. This algorithm employs
DDM to extract SNR and introduces offset correction for el-
evation differences to retrieve SWH. However, this method is
only applicable when SWH is below 2.5 m. Clarizia et al. [11]
proposed using the LES of the IDW to retrieve SWH, but further
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TABLE III
COMPARISON OF SPACEBORNE SEA SURFACE ALTIMETRY METHODS

research on SWH retrieval has not been conducted. Peng and
Jin [109] estimated the global ocean SWH using spaceborne
CYGNSS GNSS-R data and the relationship between the square
root of CYGNSS DDM SNR data and SWH. Yang et al. [111]
estimated SWH using a polynomial function relationship be-
tween SWH and the DDMA as well as the LES of CYGNSS
data developed based on the ERA5 data. Bu and Yu [112]

achieved relatively good results by retrieving SWH using the
GMF with CYGNSS data, which confirms the feasibility of
estimating SWH using spaceborne GNSS-R. To improve the
accuracy of SWH retrieval, Wang et al. [113] adopted a mul-
tivariate regression machine learning model, which introduced
additional input variables in an attempt to capture more factors
that affect SWH to improve the accuracy and reliability of the
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model. Multiple models were compared and evaluated to select
the best model and further improve the SWH retrieval method.
Wang et al. [114] compared the effectiveness of the GMF and
NN model in retrieving SWH. The results demonstrated that the
NN model outperformed traditional GMFs. NN models possess
greater flexibility and nonlinear modeling capabilities, allowing
them to accurately capture the complex relationship between
SWH and input variables. Bu et al. [115] proposed for the first
time a joint retrieval method suitable for spaceborne GNSS-R
sea surface rainfall and wind waves, establishing a deep convolu-
tional neural network (DCNN) model to estimate SWH of rain
and wind-driven sea conditions. The research results indicate
that deep learning methods have great potential in SWH retrieval.
However, wind speed and swell are the main interfering factors
affecting precipitation retrieval, and eliminating or mitigating
the impact of wind speed and swell on precipitation intensity
retrieval is a key challenge that needs to be addressed in the next
step.

Table IV summarizes and compares different sea surface
SWH retrieval methods for GNSS-R. We mainly compare the
methods used, GNSS-R data, GNSS-R observations, retrieval
models, and retrieval accuracy. “-” indicates not involved. From
the table, it can be seen that the research on GNSS-R wave SWH
retrieval mainly focuses on shore-based, ship-based, and space-
borne experiments. For spaceborne GNSS-R SWH retrieval, the
main focus is on building empirical models for SWH retrieval
based on GNSS-R observation values. Although some promising
results have been achieved, due to the fact that empirical models
only consider a limited number of variable parameters, there
are significant challenges in constructing multivariate regression
models considering multiple factors, resulting in low robustness
and retrieval accuracy of the model, making it difficult to apply
in practice. Although machine learning algorithms, such as step-
wise linear regression, SVM, ANN, sparrow search algorithm
extreme learning machine, and bagged tree (BT) have proven to
have advantages in constructing multivariate regression SWH
retrieval models and have higher retrieval accuracy than empiri-
cal models, the input data of the model often ignore key feature
information in DDMs. This limits the accuracy of SWH retrieval.
Deep learning methods, such as DCNNs, have been proven to
be effective for retrieving SWH from spaceborne GNSS-R data.
DCNNs can automatically extract feature information related to
sea surface SWH from BRCS DDM and effective scattering area,
and excel in automatically extracting complex spatial features
from multiple input images. However, this method ignores the
characteristics of time series.

Therefore, future research should focus on developing hybrid
models that take into account both spatial and temporal correla-
tion feature information. One possible solution is to construct a
hybrid model that integrates DCNN and bidirectional LSTM to
improve the performance of global SWH retrieval for spaceborne
GNSS-R.

C. Sea Surface Swell Height Retrieval

Sea swell is an important type of marine meteorology and its
formation process is influenced by various factors such as wind,

seawater density, temperature, rainfall, and bed characteristics.
Swells have a wide range of impacts on the ocean and coastal
areas, directly threatening the safety of ships at sea and the
stability of offshore structures.

Unlike wind waves, swells are typically waves that propagate
from distant wind fields and continue to move without being
influenced by local winds. Swells can be modeled as narrowband
Gaussian processes, and the swell spectrum model is as follows
[121]:

ψswell (kx, ky) =

〈
h2
〉

2πσkxσky
exp

{
−1

2

[(
kx − kxm
σkx

)2

+

(
ky − kym
σky

)2
]}

(6)

where 〈h2〉 represents the variance of wave height, σkx and σky
represent the standard deviation of wave spectrum, kx and ky ,
respectively, represent the components of wave number k in
the x andy directions, kxm and kym, respectively, represent the
peak wave numbers of swell waves in the x and y directions.

km =
√
k2xm + k2ym = 2π

Λm
, Λm is 400 m, and σkx = σky =

0.0025 m-1 [122].
Swells are usually associated with large-scale rough sea sur-

faces that have a significant impact on GNSS sea surface reflec-
tion signals, and the impact of swells is more significant at low
wind speeds. When retrieving wind speed under such conditions,
the presence of swells can introduce substantial retrieval errors,
thus reducing the accuracy of wind speed retrieval.

Traditional swell measurement is accomplished via collecting
sea surface information by placing buoys on the sea surface,
which has some limitations, including limited coverage, high
cost, and susceptibility to environmental factors. In contrast,
using satellite altimeters for observation has the advantage of
covering a global range. Albuquerque et al. [123] used satellite
altimeter data to correct sea breeze and swell data, but the
accuracy may be limited due to the limited spatial resolution
of satellite altimeters. Li [124] utilized spaceborne SAR images
to monitor the height of the swell. Altiparmaki et al. [125]
proposed using SAR altimetry data to detect swells by studying
the spectrum of fully focused SAR altimetry data. However, due
to the sparse data obtained in both time and space, constructing
an accurate model can be challenging. Several studies have
focused on the use of high-frequency radar (HFR) for swell
measurements [126]. HFR is usually a land-based radar that
monitors sea surface conditions up to 300 km from the coast.
With a spatial resolution of 0.5–5 km and a temporal resolution
of about half an hour, it is capable of continuously acquiring
real-time sea information [127], [128].

In addition, with the development of GNSS technology,
GNSS-R as a new remote sensing technology has the advan-
tages of a short revisit period, low observation cost, and high
spatial and temporal resolution. Bu et al. [129] used spaceborne
GNSS-R data from eight CYGNSS satellites to retrieve swell
height. In order to improve the accuracy of its retrieval, an
improved hybrid optimization algorithm was proposed based on
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TABLE IV
COMPARISON OF GNSS-R SEA SURFACE SIGNIFICANT WAVE HEIGHT RETRIEVAL METHODS
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TABLE V
COMPARISON OF SEA SURFACE SWELL HEIGHT RETRIEVAL METHODS

the PSO algorithm [47] (i.e., a combination algorithm combining
simulated annealing (SA) and PSO, SA-PSO). The experimental
results showed that the estimated swell height of the proposed
method was consistent with reference data (i.e., ERA5 swell
height). However, the empirical model constructed in this study
only considers a limited number of input variable parameters,
thereby limiting the retrieval accuracy of swell height. Swell
changes are complex and cannot be adequately characterized
by simple models. Therefore, the development of more ad-
vanced models becomes necessary. Machine learning or deep
learning techniques offer significant advantages in modeling
complex variable relationships. Consequently, Bu et al. [130]
became the first to apply deep learning methods to estimate
swell height using spaceborne GNSS-R data. The study also
discussed the performance of machine learning models in swell
height retrieval. Experimental results indicate that the proposed
DCNN model outperforms other models when ERA5 serves
as the reference data. However, as the swell height increases,
the retrieval performance of the model gradually decreases,
especially when the swell height is greater than 3 m. At this
point, there is an underestimation of the swell heights retrieved
by all eight models. The underestimation may be due to two key
factors: 1) the sensitivity of DDM observables reaches saturation
during high swell; 2) the distribution of swell height data is
extremely uneven. Throughout the entire training process, due
to the presence of a large amount of data distribution related to
medium swell heights, all eight models tend to conservatively
predict within the range of high swell heights. Therefore, the
retrieval performance in the high swell range needs to be further
improved in the future. In addition to the content introduced
here, Bu et al. [130] also reported more detailed information on
the impact of rainfall on swell height, model retrieval perfor-
mance under different sea state conditions, and other aspects.

Table V summarizes and compares different methods for sea
surface swell height retrieval. A comparison is made mainly
in terms of the methods used, data, reference data, retrieval
model, and retrieval accuracy. “-” indicates not applicable. Only
representative literature is listed in the table.

Meanwhile, in future research on swell height, deep learning
is still in the development stage in the GNSS-R field but they
have great potential for development in the research of swell
retrieval.

D. Applications: Tsunamis and Storm Surge Detection

Sea surface wind mapping, wave height measurement, and
altimetry have been demonstrated applications; the use of space-
borne GNSS-R for tsunami detection is a potential application
but has not been confirmed with field data yet.

A tsunami is a natural disaster characterized by large ocean
waves triggered by underwater geological activities, such as
earthquakes, volcanic eruptions, landslides, or other similar
events. To mitigate the impacts of tsunamis, it is crucial to
monitor them in real-time and provide timely and accurate
information for emergency response and protective measures
to minimize human and coastal damage.

Tsunami monitoring requires continuous surveillance of po-
tential tsunami activities in the ocean using certain technical
methods. Existing methods include underwater seismic monitor-
ing [133], seawater level monitoring [134], and marine meteoro-
logical monitoring [135]. Through these monitoring approaches,
essential data and information such as earthquake parameters,
sea level changes, meteorological conditions, acoustic signals,
and sea surface conditions can be obtained for timely detection
and warning of tsunamis.
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Initially, early tsunami monitoring relied on water level mea-
surement instruments placed in coastal areas, such as buoys.
However, this approach is expensive and covers only limited
areas. Satellite altimeters offer accurate tsunami monitoring
capabilities, but their longer revisit cycles introduce poten-
tial delays in warning. With the continuous advancement of
technology, modern tsunami monitoring systems have become
more sophisticated and comprehensive. Spaceborne GNSS-R
technology offers a promising alternative for detecting tsunamis
and estimating tsunami parameters.

Stosius et al. [136] conducted a comparison between the
meshed comb constellation and the Walker constellation layout
and found that the Walker constellation provides a much more
evenly distributed reflection point coverage compared to the
meshed comb constellation. If Spaceborne GNSS-R is capable
of detecting tsunami waves 20 cm or higher, the 48/8 or 81/9
Walker constellations can accurately detect strong tsunamis with
a magnitude (M) of ≥ 8.5 from any orbital altitude within
15–25 min.

Furthermore, Stosius et al. [137] analyzed the detection per-
formance of a GNSS-R constellation using signals from GPS,
GLONASS, and Galileo at an altitude of 900 km and an incli-
nation of 60°. They utilized the TUNAMI-N2 wave propagation
model to determine the probability of tsunami detection by
calculating the number of simulation runs in which a tsunami
was detected within a specific time period. The results indicated
that the best detection performance was achieved when all three
signals from GPS, Galileo, and GLONASS were combined.

DDM data reflect changes in the surface scattering scenario,
which include ocean surface waves and surface disturbances
caused by tsunamis. Yan and Huang [138] proposed a simulation
method for tsunami detection and parameter estimation based on
GNSS-R DDM. This method utilized the double static scattering
Z–V model, Cox and Munk sea surface mean square slope
model, and wind disturbance model caused by tsunamis. To
validate the applicability of the Cox and Munk models in tsunami
scenarios, the consistency between the Cox and Munk models
based on the scattering coefficient and Jason-1 measurement
results was compared. The correlation coefficient was found to
be 0.93, confirming the suitability of the Cox and Munk models
in tsunami scenarios.

In 2016, Yan and Huang [139] employed the two-antenna scat-
tering interferometry method to extract the sea surface scattering
coefficient from DDM data. They also retrieved the distribution
of sea surface wind velocity based on the scattering coefficient.
In addition, they proposed a method to determine sea surface
height anomaly (SSHA) results and detect tsunamis in order to
reduce the false alarm rate. Through comprehensive simulation
tests, the accuracy and feasibility of the scheme were verified.
The processes of SSHA measurement and tsunami detection
caused by tsunamis are illustrated in Fig. 2. In Fig. 2, σ0is the
scattering coefficient,A is the tsunami SSHA amplitude, k is the
tsunami SSHA undirected wave number, and ϕ

0
is the tsunami

SSHA phase shift.
In the same year, Yu [140] proposed a method to detect weak

tsunamis using noise SSH measurement data. The method in-
volves comparing simulated data with actual data and utilizing a

Fig. 2. Flowchart of SSHA measurement and tsunami detection caused by
tsunami [139].

trigonometric function model to describe the shape of the leading
wave of a tsunami. In addition, a detection method based on
bin averaging (BA) technology is proposed for determining the
presence of a tsunami through hypothesis testing. The formulas
for the probability of detection (PD) and the probability of false
alarm (PFA) are derived as
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where s(i)tw is the tsunami component (stw) of the ith BA output,
PFA is the probability that the hypothesis of presence of a
tsunami is accepted, the threshold γ can be determined by giving
the PFA denoted by α, β(γ, stw) is the probability that the
hypothesis of presence of wave is accepted when the wave is
present, and m(γ, stw) is the probability that the hypothesis of
absence of a wave is accepted but a wave is present.

On this basis, Yu [141] estimated the wave height and wave-
length of a tsunami based on GNSS-R SSH measurements.
By processing and analyzing GNSS-R observation data, the
waveform and parameter estimation of the tsunami can be
obtained. In addition, a simplified parameter estimation method
was proposed to evaluate the estimation performance of tsunami
wave height and wavelength using the Cramer–Rao lower bound,
and the wave height and wavelength can be clearly defined. In
another study, Kim et al. [142] analyzed event-driven water level
changes and used GNSS reflection measurement technology
to monitor tsunamis and storm surges. Through an improved
GNSS-R data processing method that included using multiband
GNSS signals, determining the optimal processing window, and
employing Kalman filtering to determine altitude, they success-
fully detected two tsunami events and two storm surge events.
The correlation coefficients with nearby tide meters were high,
with values of 0.944, 0.933, 0.987, and 0.957, respectively.
These results highlight the significant potential of monitoring
tsunamis and storm surges using GNSS-R technology.
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Storm surge refers to an abnormal rise in water level in the
ocean caused by storms or climate systems. It is primarily a
result of strong winds and low-pressure systems, combined with
tidal effects, leading to a significant increase in sea level. Storm
surges can have a devastating impact on coastal communities,
ports, shipping, fisheries, and coastal ecosystems, resulting in
extensive damage.

Detecting storm surges requires real-time attention to changes
in water level and sea surface wind speed. Ocean observation
stations established in coastal areas are usually equipped with
water level measurement equipment, meteorological stations,
buoys, and other sensors, which can record data such as wind
speed, direction, pressure changes, and SSH.

As storm surge leads to an abnormal increase in water level,
analyzing the reflected signal characteristics of GNSS signals
can provide information about the abnormal increase in seawater
level caused by storm surge. Two commonly used analytical
methods for GNSS water level analysis are the phase-delay
analysis method and the SNR analysis method [143]. In the
SNR analysis method, before a reflected signal is received, it
undergoes multiple paths. These multiple paths result in delay
differences between the reflected signals and the direct signal,
introducing interference patterns. The SNR analysis method
can be applied to the detection of storm surges using space-
borne GNSS-R, and the SNR is represented by the following
equation [142]:

SNR2 = A2
d +A2

m + 2AdAm cos (ψ) (9)

whereAd andAm are the amplitudes of the direct and multipath
signals, respectively, and ψ is the phase difference between the
two signals.

Vu et al. [144] utilized blind signal decomposition techniques
such as singular spectrum analysis and continuous wavelet trans-
form to extract storm features of SSH from GNSS-R tidal data.
This approach offers a new perspective and tool for studying
storm surges, enabling a deeper understanding and prediction
of their behavior and impact. Peng et al. [145] were pioneers
in applying GNSS interferometric reflection measurements to
detect storm surges. By analyzing the SNR data of GNSS sig-
nals, they obtained sea level measurements that were validated
against traditional tidal meter data (with an RMS difference
of approximately 12.6 cm between the GNSS-based sea level
measurements and tidal meter records). Li et al. [146] employed
a combination of GNSS-R coastal wind data and ECMWF
reanalysis products to enhance storm surge simulation. The
results demonstrated improved accuracy, with a reduction in
RMSE from 24.3 to 16.9 cm. This method represents a great
progress in storm surge monitoring.

Future research can further explore and optimize the methods
for detecting storm surges. When storm surge occurs, environ-
mental factors such as waves, wind speed, and wave height on the
ocean surface will have an impact on the reflected signals, and
the data can be better understood and calibrated by modeling the
relationship between the reflected signals and the environmental
factors (e.g., waves, wind speed, etc.).

V. SEA ICE DETECTION, SEA ICE CONCENTRATION (SIC)
RETRIEVAL, AND SEA ICE THICKNESS (SIT) RETRIEVAL USING

SPACEBORNE GNSS-R

A. Sea Ice Detection

Sea ice is formed when seawater freezes in the ocean. It
has a significant impact on the distribution of temperature
and salinity on the ocean surface, as well as the density and
circulation patterns of seawater. Sea ice also plays a role in
regulating climate by reflecting solar radiation. Therefore, the
detection and study of sea ice are crucial for understanding
climate change, predicting changes in the marine environment,
and protecting marine ecosystems. GNSS-R technology offers
several advantages for sea ice detection and research. It allows
for wide-ranging observations without the need for additional
equipment, relying solely on existing navigation satellite sys-
tems and thus reducing costs. Furthermore, GNSS-R provides
real-time monitoring data with high spatiotemporal resolution,
making it one of the commonly used methods for detecting sea
ice.

Komjathy et al. [147] were the first to propose the use of
GNSS-R technology for sea ice detection with airborne instru-
ments to receive GPS reflection signals. Wiehl et al. [148] sim-
ulated GPS ice sheet reflection and demonstrated the potential
of GNSS reflection signals for ice sheet remote sensing. Rivas
et al. [149] extracted dielectric constant and roughness data of
ground scattering targets from reflected L-band GPS waveforms
and used this information to infer the type of sea ice.

DDM is a crucial dataset for sea ice detection using GNSS-R
as it contains rich information about sea ice conditions within
sea areas. The primary difference between DDM of sea ice and
seawater lies in diffusivity, allowing for classification of sea ice
or seawater areas by evaluating DDM observables during sea ice
detection.

Currently, sea ice detection methods are mainly divided into
three categories: threshold-based methods, machine learning-
based methods, and deep learning-based methods. Many re-
searchers have extracted multiple observables from DDM (such
as the DDW TES observable and DDW trailing edge waveform
summation observable) and set optimal thresholds to distinguish
between sea ice and seawater [150], [151], [152], [153], [154],
[155]. However, relying solely on individual observables results
in less than optimal accuracy in sea ice detection. In order to
improve the accuracy of sea ice detection, machine learning
methods (such as neural network (NN), decision tree (DT),
random forest (RF), SVM, etc.) have been introduced for sea
ice detection in [156], with the detection performance reaching
over 95% in polar regions. Building upon this, in order to fur-
ther improve detection performance by considering key feature
information in DDM images, Yan and Huang [157] proposed
a sea ice detection deep learning method based on CNN. The
results show that the CNN-based method outperforms machine
learning methods (such as NN), with a standard deviation error
(Estd) ranging from 0.0016 to 0.0022.

Table VI summarizes and compares the methods of space-
borne GNSS-R sea ice detection mainly from the aspects of
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TABLE VI
COMPARISON OF SPACEBORNE GNSS-R SEA ICE DETECTION METHODS

retrieval methods, GNSS-R data, reference data, GNSS-R ob-
servations, and retrieval accuracy. It should be noted that only
representative literature is listed in the table.

In GNSS-R-based sea ice detection, the accuracy is influenced
by factors such as temperature and the mixture of sea ice and
water. In the mixture of sea ice and water, due to the different
physical properties of sea ice and water, the surface reflectiv-
ity and dielectric constant will change, which will affect the
reflection of the GNSS-R signal. In the future, we should
pay attention to these factors, and study relevant models and
algorithms to improve the accuracy and reliability of sea ice
detection.

B. Sea Ice Concentration and Sea Ice Thickness Retrieval

SIC and thickness are two crucial indicators for sea ice de-
tection in the ocean. SIC refers to the extent of sea ice cover in
a specific area of ocean surface, with 0% and 100% indicating
open water and solid ice areas, respectively. Gleason [163] used
spatial GPS detection signals reflected by sea ice to retrieve SIC
and compared the results with those from advanced microwave
scanners and sea ice maps. Semmling et al. [164], [165] studied
the reflection power of GNSS observations and its sensitivity

to SIC based on ship-borne GNSS. Munoz-Martin et al. [166]
presented some initial results of the PYCARO-2 instrument
designed for the multidisciplinary drifting observatory MOSAiC
for Arctic Climate Research, with a focus on the method of
measuring ice and snow thickness using GNSS-R technology.
Yan et al. [158] retrieved SIC and sea ice extent using NN and
achieved high precision in detecting sea ice and estimating SIC,
with an average accuracy of 98.4%. The method was validated
with Nimbus-7 SMMR and DMSP SSM/I-SSMIS data, with
an average absolute error of less than 9% and a correlation
coefficient as high as 0.93. However, issues may arise with DDM
collected near the ice edge of calm seas and low wind speeds that
can lead to overestimated SIC and false positives. To evaluate the
SIC estimate, the mean error Eav, the mean absolute error Eabs,
the standard deviation errorEstd, and the correlation coefficientR
between SICnn and SICref are employed for evaluation purposes
and they are given by⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Eav = mean (SICnn − SICref)

Eabs = mean (|SICnn − SICref|)
Estd = std (SICnn − SICref)

R = cov(SICnn,SICref)
std(SICnn)std(SICref)

(10)
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where Eabs is the mean absolute error, Estd is the standard
deviation error, R is the correlation coefficient, SICnn is the
NN-based SIC result, and SICref is the reference SIC data of the
day.

In recent years, researchers have made further progress in
quantifying and analyzing the impact of low sea state on SIC
estimation by utilizing more in situ sea state data and DDM
data. Zhu et al. [167] utilized GNSS-R data from the TDS-1
satellite and analyzed the DDM to extract SIC information. They
proposed a DDM-based observable called DDW and used the
right edge waveform summation (REWS) of DDW to develop a
retrieval model for SIC. Through validation with AMSR2 data,
the RMSE of the retrieval SIC for the northern hemisphere and
southern hemisphere is 11.78% and 12.10%, respectively.

Yang et al. [157], [168] developed an SIC retrieval method
based on deep learning using GNSS-R DDM data. The RMSEs
of the retrieval results in March and June 2016 were 0.0284
and 0.0415, respectively, which were compared with the SIC
products of Hamburg University. The resulting SIC exhibited
little deviation from the actual results, and the performance of
the deep learning and NN-based methods was evaluated, proving
that the deep learning-based GNSS-R retrieval SIC method has
unique advantages over traditional methods.

SIT is also an important parameter to describe the state of sea
ice and the state changes of sea ice (such as melting, deformation,
and freezing) [3]. Because the sea ice state is greatly affected
by environmental factors, the change process and existence
state are complicated, so SIT retrieval is difficult. A traditional
method commonly used is satellite altimeter measurements.
Laxon et al. [169] collected satellite altimeter measurements
of ice freeboard for eight years to retrieve and observe the
SIT in the Arctic region. The thinning of Arctic sea ice is
concluded. Giles et al. [170] used ENVISAT altimeter data to
measure SIT in the Arctic region and found that the average
SIT is decreased by 0.26 m. Microwave radiation measurement
is another approach. Tian-Kunze et al. [171] proposed an SIT
dataset based on soil moisture and ocean salinity (SMOS) to
measure SIT. Huntemann et al. [172] developed a method to
determine SIT by analyzing the high incidence angle of the
SMOS satellite. By comparing thermodynamic ice growth data
with SMOS brightness temperatures at incidence angles between
40° and 50°, they observed a high correlation with intensity and
an inverse correlation with the difference between vertical and
horizontal polarization brightness temperatures.

Spaceborne GNSS-R technology can provide detailed and
accurate sea ice characteristics for monitoring SIT across the
entire ocean area. With the advancement of machine learning,
it has been applied to GNSS-R signal retrieval of SIT. Machine
learning’s powerful nonlinear fitting ability helps address the
problem of multiple influencing factors caused by the complex
environmental impact on sea ice conditions. Yan and Huang
[173] compared the two machine learning-based SIT retrieval
methods: CNN and support vector regression (SVR), the cor-
relation coefficients were 0.95 and 0.90, respectively, and the
root-mean-square (RMS) differences were 5.49 cm and 7.97
cm, respectively. This proves the capability of machine learning
methods in retrieving SIT from GNSS-R data. Yan and Huang
[174] analyzed the reflectance data of the TDS-1 satellite and

Fig. 3. Schematic diagram of GNSS-R signal reflecting from a three-layer
model of air, sea ice, and seawater [174].

proposed a reflectance-based SIT estimation model [see (11)],
which can be used to accurately estimate SIT). Fig. 3 shows the
corresponding schematic diagram of GNSS-R signals reflected
from the three-layer model of air, sea ice, and seawater. The
model was validated using combined measurement results from
SMOS and SMOS/SMAP as reference data. The derived TDS-1
SIT showed good agreement with the reference SIT, with a
correlation coefficient (r) of 0.84 and an RMS difference of 9.39
cm when compared to SMOS, and a correlation coefficient of
0.67 and an RMSE of 9.49 cm when compared to SMOS/SMAP.
This demonstrates the applicability of the developed model and
the value of TDS-1 data in SIT estimation

d =
−1

4α
ln

Γ

|R2|2
(11)

where α is the attenuation coefficient, Γ is the reflectivity, and
R is the Fresnel reflection coefficient (the detailed derivation
process of R is shown in [174]).

Munoz-Martin et al. [166] modeled the interference patterns
generated by combining GNSS direct and reflected signals on the
surface of sea ice and used a four-layer model to link the different
thicknesses of the bottom layer (such as snow and ice) with the
stripe positions of the interference patterns. Herbert et al. [175]
inferred SIT from the FSSCat mission data using a predictive
regression NN approach and illustrated preliminary results of
the FSSCat mission in polar regions. Xie and Yan [176] utilized
FY-3E data to conduct SIT retrieval employing a two-layer (sea
ice-sea water) SIT retrieval model. The FY-3E dataset includes
both GPS and BDS reflection signals. In comparison with the
reference SIT, for the training set, the RMSE and correlation
coefficient between GPS-R SIT and the reference were 0.1347
m and 0.8087, respectively, while for the test set, they were
0.1442 m and 0.7821, respectively. The results suggest that the
BDS-based results exhibit a slight superiority over those ob-
tained using GPS. Subsequently, Li et al. [177] employed an RF
method to estimate SIT using FY-3E and SMOS data. Evaluation
in the Arctic region demonstrated that the model trained on GPS
and BDS signals from FY-3E achieved high consistency and low
error. For GPS signals, coefficients of determination are 0.97 and
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0.91, and mean absolute errors are 0.019 m and 0.032 m for the
training and test sets, respectively.

Further investigations on thicker sea ice could be conducted
in the future.

VI. RAINFALL DETECTION AND RAINFALL INTENSITY

RETRIEVAL USING SPACEBORNE GNSSS-R

Rainfall is a critical factor in marine GNSS-R as it affects
wind speed, SSH, and the retrieval of significant wave height.
Therefore, detecting rainfall (RD) and measuring RI are essential
aspects of marine remote sensing. To model the impact of
raindrops on the water surface, researchers have used the first-
order superposition concept, which incorporates the widely used
rain-generated ring spectrum and the wind-induced Elfouhaily
elevation spectrum. The ring spectrum is a logarithmic Gaussian
model, which can be described as

SK (K) =
1

2π
VGr (K)SPeak exp

⎧⎪⎨⎪⎩−π
⎡⎣ ln

(
f(K)
fP

)
Δf
fP

⎤⎦2
⎫⎪⎬⎪⎭ (12)

where f(K) is given by the dispersion relationship σ2 =
(2πf )2 = gK + τ

ρK
3; σ, g,K, ρ, and τ are radian frequency,

gravitational acceleration (∼980 cm·s-2), wave number, water
density, and water surface tension (∼74 cm3·s-2), respectively;
VGr is the group velocity at wavenumber K, and SPeak is the
power-law spectral model given by 6× 10−4R0.53 cm2·Hz-1;
fP = 5.772− 0.0018R Hz. Bliven et al. [178] estimated the
model coefficients to represent circular waves in the frequency
range of 2.75–12 Hz (wavelengths 1.94–20.8 cm).

Various RD methods based on X-band radar have been pro-
posed by researchers [179], [180], [181]. Lund et al. [179] uti-
lized the zero-pixel percentage (ZPP) method, which considers
the impact of rainwater on the intensity of zero pixels as a quality
control factor for rainfall presence, thus improving the accuracy
of wind speed retrieval. To further enhance the accuracy of
RD, Lu et al. [182] introduced the ratio of zero-intensity to
echo method based on the ZPP method. Experimental results
indicated an 11.4% improvement in accuracy compared to ZPP.
Chen et al. [180] proposed an RD method based on SVM
and compared it with the ZPP method, demonstrating higher
accuracy with the SVM-based approach. Zheng et al. [181]
discovered a certain correlation between the spatiotemporal
characteristics of sea clutter and the correlation coefficient of
rainy versus nonrainy wave images, and based on this, they
proposed a new RD method.

RI reflects the magnitude of rainfall, which has significant
implications for the marine environment and navigational safety.
In addition, in the context of wind-wave information retrieval, RI
also indicates its impact on the accuracy of wind-wave retrieval
results [181], [182]. To improve the reliability of wind-wave
retrieval results, it is advisable to discard data with relatively
high RI values.

Traditional methods for RI estimation involve using rain
gauges, which provide accurate results due to direct measure-
ment of RI. However, they have limitations in terms of measur-
ing RI within a small range and having poor spatial-temporal

distribution characteristics [183], [184]. Ground-based radar
measurements are also commonly used for RI retrieval but
they are often affected by issues such as signal attenuation
and reflectivity problems [185]. Remote sensing methods have
made significant progress in large-scale RI retrieval [186], [187],
[188]. Tian et al. [189] proposed two models based on BPNN
and CNN and compared them with traditional meteorological
service system methods. Results from all three methods showed
that deep learning algorithms outperformed traditional methods,
with a reduction in mean square error by 75.84% and 82.30%,
respectively.

In addition to traditional methods, the development of me-
teorological satellites has led to the availability of various
open-source rainfall products that are widely used in hydrology,
meteorology, environmental science, and other fields. Some of
these products include Climate Prediction Center MORPHing
(CMORPH), Tropical Rainfall Measurement Mission (TRMM)
Multi-satellite Precipitation Analysis (TMPA), Precipitation
Estimation from Remotely Sensed Information using ANNs
(PERSIANN), Integrated Multi-satellite Retrievals for GPM
(IMERG), TRMM3B42v7, Global Satellite Mapping of Precipi-
tation (GSMAP), Climate Hazards Group Infrared Precipitation
with Stations (CHIRPS), ERA5, ECMWF Reanalysis Interim
(ERA Interim), and SM2Rain-ASCAT (Advanced Scatterome-
ter) rainfall products. Among these, IMERG has been found to
exhibit the best performance in rainfall estimation [190], [191],
[192].

GNSS-R, as a new remote sensing method, has achieved cer-
tain accomplishments in the field of oceanography, as mentioned
earlier. However, research on RD using GNSS-R is limited.
Asgarimehr et al. [193] were the first to extract rainfall char-
acteristics from GNSS-R data collected by TDS-1. Balasub-
ramaniam and Ruf [194] also analyzed the impact of rainfall
on GNSS-R ocean measurements, noting that GNSS-R in the
L-band is more capable of penetrating rain and cloud layers
compared to scatterometers. However, intense rainfall can cause
changes in sea surface roughness that affect the measurements
[178]. Bu and Yu [195] conducted preliminary research on RD
and RI retrieval using spaceborne GNSS-R technology. They
proposed a GNSS-R observable threshold RD method based on
probability density functions (PDFs). Unfortunately, the PDF
method did not consider several important parameters, which
limited the accuracy of RD. Subsequently, Bu and Yu [120]
used CYGNSS DDM data to study RD over the ocean and
proposed three new methods for spaceborne GNSS-R RD: SVM,
RF, and CNN. The research results indicated that the SVM and
RF methods have similar RD accuracy, while the CNN method
outperformed the other two methods, achieving an improvement
of over 10% compared to the PDF method.

Previous studies have confirmed the ability of GNSS-R tech-
nology to detect rainfall over the ocean. However, there is a need
for further research on RI retrieval. Bu et al. [196] developed
three models for spaceborne GNSS-R retrieval of RI over the
ocean: DDMA, LES-NIDW, LEWS-NIDW, and REWS-NIDW.
They extensively evaluated the RI retrieval results obtained
from the three models against reference data (IMERG-F). This
research demonstrated the significant potential of spaceborne
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Fig. 4. Method and process of RD and RI retrieval for spaceborne GNSS-R [115], [195], [196], [197].

GNSS-R for RI retrieval over the ocean. Fig. 4 summarizes the
general methods and technical processes for RD and RI retrieval
using spaceborne GNSS-R up to the present time. In 2023, Bu
et al. [115] conducted a study on joint retrieval of sea surface
wind speed, RI, and wave height using spaceborne GNSS-R data.
The research emphasized the necessity of estimating and correct-
ing rainfall interference in wind and wave height measurements
and highlighted the importance of using spaceborne GNSS-R
technology for RD and RI estimation to improve the accuracy
of wind and wave retrieval. In addition, sea surface wind and
waves significantly influence rainfall over the ocean and serve as
major interfering factors in rainfall monitoring. Therefore, future
research should focus on investigating the impact of sea surface
wind and waves, especially under complex sea conditions, on
rainfall monitoring using spaceborne GNSS-R.

VII. OTHER NEW APPLICATIONS

A. Ionospheric Monitoring Using Spaceborne GNSS-R

The ionosphere is a region of the upper atmosphere consist-
ing of free electrons and ions resulting from the ionization of
molecules and atoms by solar radiation. It plays a critical role in
space weather studies, satellite operations, and remote sensing
observations [198]. Ionospheric monitoring primarily involves
measuring electron density (ED), total electron content (TEC),
and ionospheric weather. ED and TEC are the main measurement
tasks.

Voxel tomography is a traditional method for ionospheric
monitoring, but it involves a large number of unknowns. There-
fore, some researchers, such as Pallares et al. [199] have used
hydrogen atomic imaging to derive ED from ionospheric TEC.

In recent years, significant progress has been made in TEC
monitoring using GNSS. However, due to the relatively sparse
distribution of receivers in marine and remote areas, measure-
ment errors may occur [200], [201], [202].

To solve this problem, some researchers have studied the
use of GNSS reflected signals from the ocean to measure
ionosphere-related parameters. Zhang et al. [198] studied the
effect of ionospheric delay on SSH measurement, eliminated

this effect through spatial filtering, and determined the optimal
filtering parameter values. Molina and Camps [203] used GNSS-
R data from the CYGNSS mission to explore new sources of
data on plasma loss (EPBs). Evidence for the first detection of
ionospheric bubbles in ocean areas using GNSS-R data, and
their size, duration, and increased intensity of flickers can be
measured (S4). The study found that the detected bubbles had
an S4 value of about 0.3–0.4 and lasted from a few seconds
to a few minutes. Liu et al. [204] proposed a new algorithm
that integrated slant TEC (sTEC) measurements from GNSS-R
CubeSats and ground GNSS receivers to generate a map of
vertical TEC in the Arctic. The results demonstrated that this
method captured high spatial and temporal resolution, as well as
high-precision features of the ionospheric structure in high lati-
tudes. Ren et al. [202] used CYGNSS to monitor the ionosphere,
improving the detection of ionospheric irregularity. The iono-
spheric regularity index S4R was derived and verified using the
SNR measurement data from GNSS-R [SNR measurement was
used to estimate the equivalent S4R value, as shown in formula
(13)]. The CYGNSS-derived S4R was evaluated and analyzed
along with the ionospheric irregularity data from ground-based
(GNSS and Ionospheric Sounder) and spaceborne (Swarm and
FORMOSAT-3/COSMIC) instruments⎧⎪⎨⎪⎩

ISNR = 10
SNR

DDM/10

S4R =

√
〈ISNR

2〉−〈ISNR〉2
〈ISNR〉2

(13)

where 〈ISNR〉 denotes the average value. The value of the SNR
is given in decibels (dB).

In addition, they proposed an improved method that takes into
account the influence of ionospheric and tropospheric delays
above the GNSS-R receiver, and uses the LS fitting method
to achieve the best match between measured and simulated
DDM. The LS fitting process for measuring and simulating
DDM is shown in [201]. To assess the performance of their
method, they compared it with two ionospheric empirical mod-
els (NeQuick2 and IRI-2016), the GIM final product, and the
measured GNSS TEC. The assessments were conducted for
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Fig. 5. Diagram of sTEC along the direct line of sight and reflected GNSS
signal received at LEOs [205].

two periods, May 2015 and May 2017, under different solar
activity conditions. The results show that the proposed method
improves the RMS during high and low solar activity by 5.3%
and 23.5%, respectively. This improvement is significant for
modeling the ionosphere over ocean areas [201]. Wang and
Morton [200] used coherent GNSS-R measurements from LEO
CubeSats to observe ionospheric TEC and plasma structure, and
the results showed that GNSS-R has the potential to fill the gap
in ionospheric observation data in polar regions and improve
global ionospheric TEC observations over oceans and inland
waters. Fig. 5 shows the schematic diagram of the sTEC and LEO
receiving reflected GNSS signals. In the figure, γ represents the
elevation angle of the incident ray at the ionospheric pierce point,
sTEC represents the slant total electron content, subscripts 1, 2,
and D represent the incident ray, reflected ray, and direct path
of the ionosphere, respectively, and θ represents the elevation
angle at the SP. Tin and Tre correspond to the ionospheric errors
in incident ray and reflected ray.

Currently, GNSS-R measurements using LEO CubeSats to
observe the ionospheric TEC and plasma structure present some
challenges (e.g., differential code bias (DCB) estimation errors
in receivers and carrier phase skip correction in coherent GNSS-
R signal processing). Therefore, future research should focus on
characterizing the relationship between DCB and elevation and
azimuth and designing internal DCB calibration systems.

B. Sea Surface Salinity (SSS) Measurement Using Spaceborne
GNSS-R

SSS refers to the concentration of salt in the surface waters of
the ocean, and it is a vital parameter for studying seawater’s
salt content. Collecting data on ocean salinity is crucial for
understanding global ocean circulation and climate change. In
this regard, satellite sensors play a key role as they can mon-
itor SSS in real time and provide accurate data for scientific
research. Through observations from satellite sensors, we can
gain a comprehensive understanding of the spatial distribution
and temporal variations of ocean salinity, which are essential
for marine environmental protection, resource management, and
climate forecasting.

Satellites used for monitoring SSS include the ESA’s SMOS
mission. Launched in 2009, the SMOS satellite detects SSS
using L-band brightness temperature (TB) measurements [206].

Prior to its launch, researchers extensively discussed the plan-
ning [207], development [208], and error estimation [209], [210]
of the SMOS salinity retrieval mission. They also studied the
feasibility and accuracy requirements for SSS retrieval [211].
The launch of the SMOS satellite significantly contributed to
the research on SSS retrieval. However, the lack of reliable and
colocated auxiliary fields in SMOS retrieval has limited its sci-
entific application. Encouragingly, some researchers conducted
preliminary studies on the potential application of GNSS-R
signals for ocean salinity retrieval [212], [213]. Subsequently,
other researchers improved the feasibility of SSS retrieval by
combining measurements from L-band radiometers and GNSS-
R [214]. While L-band radiometry is a commonly used technique
for measuring SSS from spaceborne observations, Kainulainen
et al. [215] observed a new correlation between sea surface
roughness information collected by GNSS-R and radiometric
measurements from L-band radiometer systems. They validated
the capability of the HUT-2-D aperture synthesis radiometer to
detect variations in ocean salinity.

The Aquarius/SAC-D mission, launched in 2011, is a col-
laboration between NASA and the Argentine Space Agency
(CONAE). Its main instrument, the Aquarius Salinity Scanning
Radiometer, is used to measure the salinity of oceans. Le Vine
et al. [216] explained how Aquarius, along with remote sensing
techniques, can monitor seasonal and interannual variations in
SSS. This helps improve our understanding of ocean circulation,
global water cycling, and climate. Valencia et al. [217] demon-
strated the potential of using L-band microwave radiometers
for calibration in future salinity missions through ALBATROSS
field experiments.

In 2015, NASA launched the SMAP mission, which was
primarily designed to measure soil moisture and landscape
freeze-thaw, but also utilized L-band radiometry to measure SSS
[218]. Fore et al. [219] developed and validated measurement
algorithms for ocean vector winds and SSS estimation using
SMAP’s combined active/passive measurements. However, ob-
taining SSS from spaceborne L-band radiometers has always
been a challenging task.

In 2019, Sharma [220] proposed a new method for deter-
mining SSS from SMAP and verified the potential capability
of this retrieval technique in capturing SSS changes on a daily
and monthly basis. Dinnat et al. [218] compared the differences
between the ocean surface salinity results obtained by three
satellite remote sensing sensors (SMOS, Aquarius, and SMAP)
and the in-situ observation data. They also analyzed the influence
of retrieval parameters on these differences.

SMOS, Aquarius, and SMAP all retrieve SSS using iterative
algorithms, which are usually based on the statistical relation-
ship between observed data and the model parameters, using
multiple observational features such as TB and polarizability,
to estimate SSS. The iterative algorithm that minimizes an
estimator, or cost function, has the following general expression
[218]:

�2 =
∑
θ,pol

(TBobs − TBmod)
2

σ2
T

+
∑ (Mrtr −Manc)

2

σ2
pol

(14)
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where θ is the sum of squared differences in TB combines multi-
incidence angles, pol represents multiple polarizations, TBobs is
the observed TB, TBmod is the TB calculated using the radiative
transfer model, σ2

T is the estimated variance of TB, Mrtr is the
retrieved auxiliary parameter, and Manc is the auxiliary data.

In 2021, the ESA launched the Federated Satellite System
(FSSCat) mission, which utilized data from the Flexible Mi-
crowave Payload-2 (FMPL-2) to estimate soil moisture and SIC
at a coarse resolution. In addition, FMPL-2 data were used to
estimate SSS [221]. Liu et al. [222], [223] integrated CYGNSS
data into the SSS retrieval algorithm of the SMAP mission
to enhance salinity detection accuracy, particularly under low
wind speed conditions. They also examined the sensitivity of
SMOS and SMAP brightness temperatures to CYGNSS data
for investigating the potential of using spaceborne GNSS-R to
improve the precision of SSS measurements.

In recent years, research efforts have been directed toward
enhancing the accuracy of SSS retrieval. These studies have
primarily focused on improving remote sensing techniques [220]
and optimizing algorithm models [224], aimed at providing a
more solid data foundation for climate research and marine
science. Many researchers have utilized machine learning meth-
ods to improve spaceborne SSS retrieval. Rajabi-Kiasari and
Hasanlou [225] deployed machine learning-based methods to
correct SSS products retrieved by L-band microwave sensors.
Four machine learning methods, namely SVR, ANN, RF, and
gradient boosting machine (GBM), were employed to model
SSS, among which GBM produced slightly better results (with
an RMSE of 0.906). Jang et al. [226] used three machine learning
methods (i.e., RF, ANN, and SVR) to improve SMAP SSS re-
trieval. All three machine learning models outperformed SMAP
SSS, with RF exhibiting the best performance and generating
the lowest RMSE (0.203 and 0.556 psu). In another study, Jang
et al. [227] proposed a new global SSS model based on seven
machine learning methods, including K-nearest neighbor, SVR,
ANN, RF, extreme gradient boosting, light gradient boosting
models, and gradient boosted regression trees (GBRT). The
global SSS model based on GBRT yielded the best results with
a coefficient of determination (R2) of 0.99 and a root mean
square deviation (RMSD) of 0.259 psu. The retrieval of SSS
is highly dependent on correcting sea surface TB. Li et al.
[228] preliminarily verified the correlation between CYGNSS
observables and TB variations. They discovered that incidence
angles need to be considered when acquiring SSS with SMAP
and CYGNSS. To evaluate the detection performance of SMAP
and SSS with different parameter combinations, a multilayer
perceptron (MLP) model is developed. The results show that
the retrieval performance based on the MLP model is superior
to that based on the GMF model.

In the future, deep learning methods hold great potential for
improving the accuracy of sea salinity retrieval. With their pow-
erful pattern recognition and feature extraction capabilities, deep
learning algorithms can learn complex nonlinear relationships
from ocean observation data. This enables them to provide more
accurate predictions and simulations of SSS. Leveraging deep
learning, large-scale observational and simulation datasets can
be useful for training to further optimize the performance of SSS

models. Overall, the application of deep learning in SSS retrieval
has significant potential for advancing the field and improving
our understanding of the ocean environment.

C. Monitoring Phytoplankton Using Spaceborne GNSS-R

Phytoplankton refers to a category of small plants found in
the ocean, including various types of microalgae and bacteria.
They are diverse in species and widely distributed. The abundant
proliferation of phytoplankton is often triggered by an excess of
nutrients in the ocean. These nutrients, combined with sunlight,
promote the growth and reproduction of phytoplankton, result-
ing in a thin layer on the ocean surface and reducing surface
roughness. Human activities in the ocean exacerbate the harm
to marine environments and ecosystems in some sense. Eutroph-
ication of seawater can lead to phenomena such as algal blooms
and red tides, which are marine ecological events characterized
by rapid phytoplankton proliferation in highly eutrophic areas.

In the past, remote sensing techniques such as optical remote
sensing, thermal infrared remote sensing [229], [230], and mi-
crowave remote sensing [231] were commonly used to monitor
harmful algal blooms.

In recent years, the development of GNSS-R has rapidly
advanced, providing a new observational method for monitoring
phytoplankton. Rodriguez-Alvarez and Oudrhiri [232] were the
first to use the dust deposition of the 2020 Sahara sandstorm
as a background to verify that GNSS-R is an effective tool for
mapping the phytoplankton coverage. They also demonstrated
the ability of CYGNSS data to detect and monitor phytoplankton
proliferation.

The frequent outbreaks of red tide have had significant neg-
ative impacts on the marine environment and ecosystem. The
occurrence and development of red tide can cause fluctuations
in sea surface temperature (SST). When monitoring red tide,
it is often challenging to obtain SST directly through remote
sensing technology. Therefore, a commonly used method is to
select brightness temperature as a proxy for SST and monitor the
physical characteristics of the sea surface [217]. The expression
for TB is as follows [209]:

TB (θ) = TB,flat (θ, f,SSS,SST) + ΔTB(θ, p) (15)

where θ is the signal incidence angle, f is the carrier frequency
of GNSS signal, p is the surface roughness, SSS is the salinity
of the sea surface, TB,flat is the brightness temperature of the
flat sea surface, and ΔTB is the brightness temperature change
caused by the fluctuation of the sea surface state.

Ban et al. [233] combined GNSS-R technology with the
changes in the sea surface caused by red tide growth and estab-
lished the relationship between GNSS-R observations and envi-
ronmental factors influencing red tide, enabling the monitoring
and early warning of red tides. However, unlike red tides, green
tide algae tend to aggregate and have low satellite resolution,
which may not be the optimal method for monitoring green
algae. Ban et al. [234] proposed a novel method to retrieve green
algae density from GEO satellite reflection signals collected by
a shipborne receiver. This method validated that GEO-R signals
can achieve continuous monitoring of green algae in the same
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Fig. 6. Technological process of Spaceborne GNSS-R phytoplankton moni-
toring [232], [233], [236].

area, better adapting to the floating and moving characteristics
of green algae.

Furthermore, Ban et al. [235] proposed a new method to
monitor green algae density using ground-based GNSS-R obser-
vations. Their method utilizes the relationship between seawater
dielectric constant and changes in sea surface conditions caused
by green algae to detect green algae density through variations
in sea surface TB. Both of these methods address the issues of
existing green algae remote sensing via optical sensors, which
are heavily influenced by weather conditions and have long
revisit times.

Recently, Zhen and Yan [236] developed a method based on
machine learning and auxiliary meteorological data to improve
Spaceborne GNSS-R monitoring of algal blooms. Their results
showed significant improvements in detection accuracy with
the inclusion of meteorological data. The true positive rate was
81.9%, the true negative rate was 82.9%, and the overall accuracy
(OA) was 82.9%. The area under the curve was found to be
0.88. The technical route of spaceborne GNSS-R phytoplankton
monitoring is depicted in Fig. 6.

In the future, more improvements need to be made in the
monitoring accuracy of phytoplankton, which can further be
improved by applying other ML methods.

D. Sea Surface Target Detection Using Spaceborne GNSS-R

Sea surface target detection is an important research direction
in the field of remote sensing, with significant implications
for maritime traffic monitoring, vessel search and rescue, and
environmental monitoring. In recent years, GNSS-R has shown
great potential as an emerging remote sensing method in the
field of sea surface target detection. Compared to traditional
active radar or optical remote sensing techniques, GNSS-R
offers unique advantages such as weather independence, low
power consumption, all-weather availability, and low cost. These
characteristics have made GNSS-R one of the highly regarded
research directions in sea surface target detection.

Significant progress has been made in the research on sea
surface target detection using GNSS-R. Valencia et al. [237],
[238] proposed a GNSS-R-based method for retrieving sea
surface scattering coefficients, which can effectively detect oil
slicks on the ocean surface. Valencia et al. [239] further ex-
plored the method for detecting oil films on the ocean surface
using GNSS-R data. Ji et al. [240] discussed a method for
detecting and locating marine targets based on spatial GNSS-R
DDM. Similarly, Simone et al. [241] conducted a similar study

successfully distinguishing the reflection characteristics of tar-
get objects from background clutter.

In the process of distinguishing between sea clutter and sea
surface targets, estimation of sea clutter is carried out, and it
is subtracted from the DDM to highlight the characteristics of
sea targets. However, in spaceborne GNSS-R measurements,
Doppler tracking errors may occur due to factors such as signal
propagation delay, motion of the reflecting surface, and dy-
namics of the receiving platform, making target detection not
always reliable. To address these challenges, Cheong et al. [242]
proposed two blind methods for suppressing sea clutter: adaptive
filters and infinite pulse response low-pass filters. Experimental
results show that both proposed methods can significantly detect
potential maritime targets. Furthermore, the adaptive filters have
qualitative features that make the DDM features of maritime
targets more prominent than other maritime suppression meth-
ods. Southwell et al. [243] proposed a spatial GNSS-R ocean
target detection method based on matched filters and compared
it with other methods, demonstrating its effectiveness and su-
periority in detecting sea targets. Liu et al. [244] introduced a
GNSS-R multiobject detection and localization method based
on consistency check. Their method combines time-domain
and frequency-domain information to improve detection perfor-
mance. Li et al. [245] estimated offshore clutter and eliminated
positional ambiguity by fusing data from multiple GNSS-R
satellites, thereby achieving the detection and positioning of
offshore oil wells.

Currently, there are numerous studies on the use of GNSS-R
for sea surface target detection, particularly for ship detection.
Simone et al. [246] proposed a novel method for detecting ships
by analyzing the characteristics of reflected signals. The method
utilizes specific signal features formed by echo scattering and
utilizes adaptive filtering and correlation analysis to improve
detection performance. In addition, Simone et al. [247] eval-
uated the feasibility of ship detection in spaceborne GNSS-R
data through comparative analysis and analyzed the traditional
GNSS-R technology from two aspects: acquisition geometry
and receiving polarization channel. Subsequently, Simone et al.
[248] verified the feasibility and effectiveness of using GNSS-R
DDM in ship detection through simulation experiments and
discussed the influence of acquisition geometry conditions and
polarization modes on ship detection performance. The study
provides a feasible scheme for the application of GNSS-R in the
field of sea target detection. Beltramonte et al. [249] also verified
the feasibility of using GNSS-R DDM for ship detection through
simulation experiments, discussed the influence of parameters
on detection performance, and proposed some improvement
methods. Furthermore, Zhao et al. [250] proposed a new method
that combines aerospace SAR and GNSS-R technology for ship
detection. By analyzing the characteristic information of SAR
images and GNSS-R DDM and combining them, the accuracy
and robustness of target detection can be improved.

GNSS-R is a promising tool for sea surface target detection
and monitoring, and future research should focus on improving
the accuracy and reliability of GNSS-R data, optimizing the
acquisition geometry and polarization settings, and developing
new sea surface target detection and monitoring algorithms.
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E. Sea Surface Microplastics Detection Using Spaceborne
GNSS-R

Sea surface microplastics refer to small particles or fibrous
plastic particles distributed on the ocean surface. The size of
sea surface microplastics is generally below 5 mm and can
even reach the nanometer level. Addressing the issue of sea
surface microplastics requires global action. Therefore, con-
ducting global-scale detection of sea surface microplastics is
highly necessary. It can help us understand the temporal and
spatial distribution of sea surface microplastics, enabling better
responses to the issue and safeguarding the health and sustain-
able development of marine ecosystems.

Radar measurements are employed to estimate the concen-
tration of microplastics in the ocean. Such a method entails
examining the deviation between the measured ocean rough-
ness and that predicted by a model based on surface wind
speed. According to the research conducted by Evans and Ruf
[251], roughness can be characterized by the mean square slope
(MSS) of surface height, and there exists a robust correlation
between MSS anomalies and simulated microplastic concentra-
tions. Standardized MSS exception is defined as

MSSanom =
MSSobs − MSSmod

MSSmod
(16)

where MSSobs is the MSS measured by CYGNSS, and MSSmod

is the model predicted MSS

MSSmod =

{
0.0035 (U + 0.62) , if U ≤ 3.49m/s

0.0035 (6 ln (U)− 3.39) , if U > 3.49m/s

(17)
where U is the ocean surface wind speed.

In recent years, GNSS-R has gained significant attention in
the field of ocean remote sensing. The pollution caused by
marine microplastics has emerged as a crucial environmental
issue worldwide. To tackle this problem, researchers have started
exploring the potential of GNSS-R technology for detecting and
imaging microplastics in the ocean.

Gonga et al. [252] conducted an experimental study focus-
ing on the detection of marine microplastics. They created a
simulated ocean environment in a tank and performed experi-
ments using the reflection signals observed through GNSS-R.
By analyzing the characteristics of the reflected signals, they
successfully detected microplastics in simulated seawater and
conducted quantitative analysis. The research findings suggest
that GNSS-R technology holds promise for monitoring marine
microplastics. However, it is important to note that the research
on using GNSS-R technology for microplastic detection is still
in its early stages, requiring further experimental verification
and algorithm refinement.

Future research endeavors can focus on developing more
accurate and efficient GNSS-R data processing algorithms. In
addition, designing advanced instruments and equipment and
integrating other remote sensing technologies for multisource
data fusion can enhance the accuracy and feasibility of marine
microplastic detection.

VIII. SUMMARY AND FUTURE PROSPECTS

The article provides a comprehensive overview of recent ad-
vancements in the application of GNSS-R technology in marine
remote sensing. It covers various innovative applications such
as sea surface wind speed and direction; hurricanes, typhoons,
and tropical cyclones; tsunamis and storm surges; SSH and
wave height (e.g., SWH, Swell height), sea ice; rainfall, and
ionosphere and SSS.

In addition to the aforementioned hot research topics on
spaceborne GNSS-R, there are several other valuable scientific
research areas that have gained widespread attention. For in-
stance, Hoseini et al. [253] pioneered the use of spaceborne
GNSS-R technology to detect mesoscale ocean eddies. They
demonstrated the feasibility of using NBRCS to identify the
center or edge of these eddies. This study holds great signif-
icance in advancing the detection of mesoscale ocean eddies
through spaceborne GNSS-R. Hoseini and Nahavandchi [254]
analyzed the detectability of sea surface currents using space-
borne GNSS-R data and compared it with wind and near-surface
ocean current measurements. They confirmed the impact of sea
surface currents on spaceborne GNSS-R NBRCS observations.
While their study primarily focused on the combined effect of
wind and ocean currents on GNSS-R, it is important to consider
other factors such as swell, surfactants, and precipitation that
may influence GNSS-R observations in future research. The
spaceborne GNSS-R carrier phase measurement method was
proposed in [255] and [256] to estimate sea ice height. The
measurement values of ICESat-2 (or mean sea surface model)
were compared with GNSS-R retrieval results showing good
consistency. Although the main source of error in sea ice height
retrieval is caused by the delay in the troposphere, these studies
demonstrate the potential of using coherent carrier phase ob-
servations to achieve centimeter-level ice height measurement
accuracy. However, future research in spaceborne GNSS-R sea
ice height should prioritize tropospheric delay correction to
enhance retrieval accuracy.

Recently, Buendía et al. [257] utilized GA GNSS-R to retrieve
sea ice height and validated the results using digital elevation
models. Their findings confirmed the feasibility of using GA
GNSS-R for measuring sea ice height. Notably, in 2023, Wang
[258], [259] was the first to use GA GNSS-R to measure tro-
pospheric delay and water vapor content. He estimated tropo-
spheric delay using dual-frequency GPS signals collected by
GA from sea ice reflection, and compared them with ERA5
products. The results showed that the GNSS-R method had good
consistency with ERA5. The study broadens the application
scope of GNSS-R in the field of ocean remote sensing.

Although spaceborne GNSS-R has made significant progress
in marine remote sensing in recent years and introduced many
new concepts and methods, the technology is not yet mature. One
challenge lies in the limited generality of the developed empiri-
cal and semiempirical models, which restrict their applicability
to specific scenarios. In addition, machine learning and deep
learning models often lack strong generalization capabilities
and can be prone to underestimation or overestimation due
to imbalanced training data distribution. Therefore, there is a
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pressing need to enhance the robustness and generality of these
models to facilitate their widespread application.

As an emerging remote sensing technology, it is necessary
to develop advanced spaceborne GNSS-R modeling algorithms
suitable for different applications, producing new products with
performance comparable to traditional remote sensing tech-
niques or combining with other technologies to achieve im-
proved products. In addition, conducting ground-based and air-
borne experiments for new GNSS-R applications is crucial to
refine the fundamental theories/models (electromagnetic scatter-
ing models for L-band signals) and further develop spaceborne
GNSS-R. To further enhance the capabilities of spaceborne
GNSS-R, it is essential to optimize the design of next-generation
instruments and perform in-orbit experiments to enable multi-
frequency/multisystem, multipolarization, and multiobservation
mode capabilities. Expanding the application fields and scenar-
ios of spaceborne GNSS-R to retrieve additional geophysical
parameters and detect other natural events or phenomena is also a
pressing goal for the future. This will contribute to the continued
growth and utilization of spaceborne GNSS-R in a wide range
of remote sensing applications.
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