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Rank Learning Based Full-Resolution Quality
Evaluation Method for Pansharpened Images
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Abstract—Full-resolution quality evaluation model for pan-
sharpened images is significant for remote sensing applications,
yet presents a challenge of the absence of reference compared
with the reduced-resolution approach. To predict the image quality
accurately, it is necessary to consider the distortion during the
pansharpening process. Based on an observation that the quality
of pairwise images can more easily be ranked, we propose a rank
learning based full-resolution quality evaluation method for pan-
sharpened images. Our approach begins with the synthesizing of
ranked distortion images in spatial and spectral domains. Then,
we develop a pansharpening distortion-perceiving model. This
model employs spatial and spectral Siamese networks to perceive
distortions and applies a pair-wise learning strategy for ranked im-
ages. Consequently, we establish a distortion-guided full-resolution
quality evaluation framework for pansharpening. This framework
integrates the spatial and spectral distortion-perceiving network
and is enhanced with a dimension alignment module and a dis-
crepancy Rrpresentation module, enabling effective distortion ex-
traction among high-resolution multispectral, panchromatic, and
low-resolution multispectral images. We conducted a series of
experiments on a large-scale public pansharpened database. The
experimental results demonstrate the effectiveness of our proposed
approach.

Index Terms—Full-resolution quality evaluation, pansharpened
image, pansharpening, rank learning.

I. INTRODUCTION

E FFICIENCY of the satellite systems is limited by the
inadequate performance of hardware, for example, the

constrained radiation energy, and the underdeveloped data trans-
mission capabilities. Acquiring remote sensing images neces-
sitates a strategic compromise between spatial and spectral
resolution [1], [2], [3]. The majority of satellites nowadays
provide low-resolution multispectral (LR-MS) imagery along
with high-resolution panchromatic imagery (HR-Pan), as an
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alternative to high-resolution multispectral images (HR-MS).
Panchromatic sharpening (pansharpening) emerges as a solution
to this challenge [4]. By integrating the finer spatial resolu-
tion provided by Pan with the spectral information from MS,
pansharpening methods combine the strengths of HR-Pan and
LR-MS imagery and generate super-resolved HR-MS images.

Quality evaluation has played a crucial role in pansharpening
research since its introduction. Developing a robust mathemat-
ical model can expedite the evaluation process of fused HR-
MS images, thus enhancing the management and refinement
of remote sensing systems. Primarily, pansharpening always
serves as an initial phase for the further various applications,
including change detection, segmentation, and scene classifi-
cation [5], [6], [7]. The study by Bovolo et al. [6] highlighted
that while pansharpened images lead to superior quality maps
for change detection, the related artifacts hamper detecting
accuracy. Second, from a system perspective, effective quality
evaluation can help pursue optimal performance within band-
width limitations. Therefore, selecting an effective pansharp-
ening technique becomes crucial for optimizing the overall
performance of remote sensing systems. To achieve this goal,
tailored quality assessment methodologies must be meticulously
designed.

Nevertheless, evaluating the quality of HR-MS imaging poses
challenges for the intricacies of cross-modal combination and
the lack of high-resolution references. To tackle the challenge,
Wald et al. introduced two essential criteria for evaluating pan-
sharpened images: Consistency and Synthesis [8], [9].

These criteria lead to two categories of quality evaluation ap-
proaches for pansharpening: Full-Resolution (FR) and Reduced-
Resolution (RR). RR involves spatially degrading the original
HR-Pan and LR-MS images using ideal filters, such as modula-
tion transfer function-matched filters (MTF). Subsequently, the
pansharpening is performed on the filtered MS and the filtered
Pan, while the pristine MS is used to evaluate pansharpening
quality as the reference imagery. Several RR approaches have
been proposed. The full-reference image quality evaluating met-
rics, like structural similarity (SSIM) [10] and peak signal-to-
noise ratio (PSNR) [11], are adopted as the RR for remote sens-
ing quality evaluation. Special-designed methods are developed,
such as SAM [12], ERGAS [13], CC [14], UIQI [15], Q4[16],
and Q2n[17], which represents an extended multiband version
of Q4.

While LR-MS serves as a reference in RR evaluation,
constraints arise due to degradation throughout the process.
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Selva et al. [18] highlighted the potential invalidity of the
scale-invariant hypothesis, rendering it challenging to ensure
that degraded pansharpened images maintain the quality of
pristine ones. The implications of these limitations pose chal-
lenges in implementing RR evaluation. To improve the accuracy
of quality assessment, numerous studies have redirected their
focus toward FR evaluation. This method assesses the quality of
pansharpened images at a high resolution, with no need for an
HR-MS as reference and degrading during fusion.

Currently, quality without reference (QNR) protocol is widely
recognized as the predominant FR evaluation protocol for pan-
sharpening. The QNR [19] index assesses spectral distortion
by comparing image quality index (QI) pre- and postfusion of
multispectral bands, as well as spatial distortion by comparing
QI values pre- and postfusion of each multispectral band with
Pan. Over the years, various modifications of the QNR protocol,
referred to as QNR-like protocols, have been introduced [20],
[21], [22], [23]. Furthermore, alternative methods have emerged.
Quality estimation by fitting [24] and its further version un-
der Kalman filtering [25] was proposed. In addition, the joint
quality measure and its variant version utilized SSIM and de-
signed a novel similarity measurement, instead of the traditional
QI [26], [27].

As machine learning and deep learning strategies advance,
researchers are increasingly concentrating on extracting deep-
level features based the AI methods for quality prediction [28],
[29], [30], [31] and other remote sensing tasks [32], [33], [34],
[35], [36], [37], [38], [39], [40], [41], [42]. Researchers often
regressively predict quality scores by analyzing and comparing
the features of Pan, LR-MS, and HR-MS imagery [29], [43],
[44], [45], [46], [47]. Such deep learning methods have been
proven effective. For general image quality assessment (IQA)
tasks, direct training through widespread deep learning frame-
works is no longer sufficient to meet quality assessment re-
quirements. Most general IQA methods involve targeted feature
mining and training strategies based on the characteristics of
distortion information [30], [48], [49], [50]. They mainly focus
on mimiking the human visual system (HVS) to achieve better
quality perception. However, due to the absence of reference
images, distortion information is difficult to filter out directly
through a simple comparison. Consequently, current FR quality
assessment methods based on deep learning lack targeted fea-
ture analyzing and utilization for distortion information in the
panchromatic sharpening process.

To overcome the challenge of developing distortion features,
we propose a full-resolution quality evaluation method for
pansharpened images learning from rankings. We first design
a generation strategy for multilevel panchromatic and multi-
spectral images to artificially simulate the distortion during the
pansharpening process. The various distorted ranks of images
are generated by the strategy. With the generated ranked images,
we then establish the spectral and spatial distortion-perceiving
Siamese networks to specifically extract distortion features.
Finally, based on the Siamese network branches, we construct
a full-resolution quality evaluation architecture to predict the
pansharpened image quality scores. A series of experiments
demonstrate the effectiveness of our proposed method.

The main contributions of this article are as follows:
1) A Ranked Distortion Synthesizing Strategy for Pansharp-

ening Has Been Designed: In the absence of reference images,
extracting distortion information from pansharpened images
poses a challenge. Through a detailed analysis of the pansharp-
ening process, a set of distortion-generation strategies has been
formulated. Artificial distortion synthesis not only facilitates the
targeted extraction and utilization of distortion features for sub-
sequent deep learning processes, but also expands the training
dataset, thereby enhancing the robustness of deep models.

2) A Pansharpening Distortion-Perceiving Model is Devel-
oped Based on Rank Learning: It has been observed that directly
assessing distortion is challenging, whereas comparing the qual-
ity of paired images is easier. Therefore, we have designed spatial
and spectral Siamese network structures, as well as developed
a pairwise learning method for ranked images to perceive the
distortion. The method significantly reduces the difficulty of
extracting pansharpening distortion features and improves the
accuracy of feature representation.

3) We Propose a Distortion-Guided Full-Resolution Quality
Evaluation Framework for Pansharpening: We construct the
distortion-guided quality predicting architecture, which inher-
ited the distortion-perceiving networks in the spatial and spectral
domains. We designed a dimension alignment module, which
enabled the distortion extraction between HR-MS and the origi-
nal Pan, LR-MS. Finally, through the integration of discrepancy
features, we achieved distortion-guided FR quality evaluation
for pansharpening.

This article is organized as follows: Section I serves as the
introduction to the entire work. Section II provides a summary
of the related works on pansharpening algorithms and FR quality
evaluation methods based on deep learning. Our proposed rank
learning based FR method is detailed in Section III. Section IV
presents the experimental results. Finally, Section V concludes
this article.

II. RELATED WORK

A. Pansharpening Algorithms

Over the years, a multitude of pansharpening algorithms have
been proposed. Two categories are summarized in [51]: multires-
olution analysis (MRA) and component substitution (CS). For
MRA-based techniques, they first separate images into low- and
high-frequency parts relying on wavelet transform [52], Lapla-
cian pyramid [53] and so on MRA tools [54], [55]. Subsequently,
reconstruct the HR-MS by combining the two parts. On the other
hand, CS-based algorithms substitute the component of MS, then
generate the HR-MS with inverse transformation process [56],
[57], [58], [59].

Furthermore, researchers have proposed variational optimiza-
tion (VO) approaches that leverage variational principles and
optimization of energy function [60], [61], [62], [63]. Deep
learning algorithms build intricate mappings between origi-
nal and pansharpened images through deep neural networks
(DNNs). With extensive image data training, these networks
are capable of producing HR-MS imagery [64], [65], [66], [67],
[68], [69], [70].
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B. Deep Learning-Based FR Assessment for Pansharpened
Images

Nowadays, FRQA approaches face two major challenges: 1)
evaluate quality when a reference image is absent; 2) measure
the effectiveness of the FR methods when ground truth is ab-
sent. For the deep learning-based FRQA approaches, the DNNs
extract the distortion-relevant features to overcome the absence
of reference. Existing methods adopt the dominant deep model,
such as multivariate Gaussian (MVG) fitting, Siamese VGGnet,
and ResNet architectures. These effective deep architectures also
perform well on the FRQA task.

Facing the challenge of lacking ground-truth, researchers
proposed two strategies. First, some researchers conducted sub-
jective experiments to collect amounts of opinion scores and
built the quality assessment database, similar to the common
practices in the field of general image/video quality assessment.
But the subjective data have not been public yet. Second, other
researchers adopted the RR metrics as the proxy ground truth.
The strategy can be regarded as the no-reference quality assess-
ment task, and is easy to conduct. Thus, we also choose the proxy
label strategy in our work.

Meng et al. [44] introduced a model that extracts features
sensitive to distortions in both spectral and spatial domains. They
utilized MVG for training on the extracted features. The model
incorporates spatial features of HR-Pan and spectral invariant
features of MS. Subsequently, the generated HR-MS is fed to
a testing model. The final quality prediction is obtained by the
discrepancy between the outputs of the two models.

In addition, researchers developed an opinion-aware method-
ology for evaluation in [43]. This approach extracts characteris-
tics in the spectral domain and several classical metrics for MS
data, which can comprehensively represent distortions. Then,
researchers trained an MVG model based on a raw MS database.
The method integrates both subjective and objective knowledge
in quality assessment, ensuring a comprehensive assessment.

As techniques evolve, DNNs have progressed in
autonomously extracting profound features pertinent to quality
perception, improving quality evaluation. Researchers con-
structed a Siamese network to collectively learn the representa-
tions of pansharpening-relevant knowledge in [29]. Researchers
utilized the Siamese architecture to directly extract the feature
from Pan/Fused/MS images. Pan and fused images are fed into
the spatial model. Then, the model extracted the feature of Pan
and fused images and supervised by the collected spatial DMOS.
For the spectral model, MS and fused images are fed into the
model. Because of the collected subjective DMOS, the model
can directly perceive the degradation caused by pansharpening.

Furthermore, Badal et al. [45] also developed a DNN-based
algorithm for evaluating the quality of pansharpened images.
This algorithm mimics the RR metrics like Q2n and SAM
under the FR circumstance. Researchers constructed a model
with a well-designed Pseudo HRMS and Pansharpenewd Image
Frature Extractor, to obtain the pansharpened features. With the
utilization of DNN, the algorithm autonomously learns distinc-
tive knowledge for quality perception, providing an accurate
quality evaluation of pansharpened images. It is observed that

current deep learning-based FR evaluation models lack targeted
extraction for distortion information, indicating the potential for
further improvement.

In comparison to existing works based on deep learning,
our research introduces rank generation and training strategies
that enable straightforward implementation of quality rank as-
sessment. These strategies can provide an intermediate stage,
namely the comparative assessment of quality levels, which is
easily implementable compared with complex quality evaluation
problems. Through the establishment of this intermediate stage,
achieving more precise quality score predictions becomes easier.

III. RANK LEARNING BASED FR QUALITY

EVALUATION METHOD

A. Overview

The insufficient analysis of distortion information motivates
us to propose a distortion-guided full-resolution quality evalua-
tion method. The flowchart is depicted in Fig. 1. Our approach is
based on an observation that we can artificially simulate different
distortion levels within the pansharpening process. For example,
in the spatial domain, we apply multiple levels of Gaussian
blur (GB) and Gaussian noise (GN) to the original Pan image.
These generated images can be easily ranked because we do
know that the added GB does deteriorate quality. Apart from
generating simulated distorted images, we designed a ranked
distortion-guided training strategy and model structure. Using
a Siamese network structure, paired rank learning is performed
on the original Pan and MS and generated information with rank
labels to enable the deep network to develop distortion percep-
tion capabilities. After rank learning, we conduct fine-tuning on
the network branch by feeding the pansharpened images with
quality scores to address the FR quality evaluation task. The
supervised strategy of our model is the same as that of [45],
adopting the supervised RR metric as the optimization objective
of the model. This approach can achieve similar performance
to the RR approach without a direct reference. The pipeline is
outlined as follows:

1) Ranked Distortion Synthesizing: We synthetically de-
grade spatial and spectral domain information. While we strug-
gle to obtain precise degraded quality scores, we know which of
a pair of information has better quality. The specific degradation
process is detailed in Section III-B.

2) Pansharpening Distortion-Perceiving Model Learning
From Ranks: We train Siamese networks in the spatial and
spectral domains by utilizing the generated ranked distortion
information. For specifics on network structure and training
strategies, refer to Section III-C, where the Siamese network
can ultimately rank the quality of spatial and spectral domain
information based on the degree of distortion.

3) Distortion-Guided Full-Resolution Pansharpening Qual-
ity Evaluation: We extract one branch each from the spatial and
spectral distortion-perceiving Siamese networks as the founda-
tion of the framework. We integrate spatial dimension reduc-
tion modules and spectral size reduction modules to meet the
feature comparison requirements of Pan versus HR-MS and
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Fig. 1. Flowchart of our proposed FRQA method. The method consists of three main modules: Ranked distortion synthesizing, Pansharpening distortion-perceiving
model learning from ranks and the distortion-guided full-resolution Pansharpening quality evaluation. Sample images are collected from IKONOS dataset.

MS versus HR-MS, as detailed in Section III-D. Finally, using
the distortion-perceiving features and discrepancies between the
Pan versus HR-MS and MS versus HR-MS as intermediate
knowledge, regression is conducted to obtain the quality scores
of pansharpened images.

B. Ranked Distortion Synthesizing

In previous studies, researchers have repeatedly emphasized
the importance of preserving spatial and spectral information
in the process of pansharpening [65]. It was pointed out that
inevitable spatial artifacts and spectral distortion occur dur-
ing the pansharpening process, which can impact subsequent
tasks [6]. Motivated by this, we consider artificially synthesizing
distortions directly on the original Pan and MS images to help the
black-box networks learn more distinct distortion information.

Specifically, in the spatial domain, we introduce two types
of distortions, GB and GN, to simulate the spatial artifacts
generated during pansharpening. GB distortion involves blurring
the image using a Gaussian function. Given a Pan image I(x, y)
and a Gaussian function G(x, y), the Gaussian blurred image
IGB(x, y) can be expressed as follows:

IGB(x, y) = I(x, y) ∗G(x, y) (1)

where ∗ denotes the convolution operation. The equation of the
Gaussian function G(x, y) is

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (2)

where σ represents the standard deviation of the Gaussian func-
tion, controlling the degree of blur. In this work, we utilized two
different sizes of Gaussian kernels (i.e., different σ values) to
achieve varying levels of distortion. GN simulates the distortion
caused by random factors in the pansharpening process. Given
a Pan image I(x, y), the image IGN(x, y) after adding GN can
be expressed as follows:

IGN(x, y) = I(x, y) +N(x, y) (3)

whereN(x, y) represents a random variable following the Gaus-
sian distribution, indicating GN. The mathematical expression
of N(x, y) is

N(x, y) = X × σ, X ∼ N (0, 1) (4)

where, X is a random value following the standard normal
distribution with mean 0 and variance 1, while σ is the parameter
controlling the noise intensity. In this work, two values ofσ were
set to generate two intensity levels of GN. We show two example
sets of distorted Pan images in Fig. 2(a), with two levels of spatial
distortion.

For the spectral domain, we introduce jitter and smoothing
effects to the MS to simulate the spectral distortion during
pansharpening. For jitter, we mimic the contrast and brightness
adjustment methods to randomly combine spectral information
distortion across the full bands. For a given MS M(x, y, z), the
MJitter(x, y, z) after adding spectral distortion can be expressed
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Fig. 2. Two sets of image examples from the IKONOS dataset, with syntheti-
cally spatial and spectral distortions. Spatial distortions consist of GN and GB,
while spectral distortions include jitter and information loss. Each image was
manually manipulated with four types of distortions at two levels each. After
the degradation, both spatial and spectral distortions are directly represented. (a)
Spatial distortion. (b) Spectral distortion.

as follows:

M Jitter (x, y, z) = M(x, y, z) + α · (M(x, y, z)− μ) + μ+ β
(5)

where μ is the mean value of the original pixel, and α and
β are parameters controlling the jittering intensity. To achieve
as random jitter distortion as possible, we set α and β as two
randomly generated numbers within certain ranges to produce
two levels of spectral distortion intensity.

Besides, we perform Savitzky–Golay (SG) smoothing on each
band of the spectral information at each position to simulate
information loss during the pansharpening process. For a given
MS M(x, y, z), the MLoss(x, y, z) after information loss can be
expressed as follows:

M̂ Loss (x, y, z) =

m∑
j=−m

cjM(x, y, z + j) (6)

where M̂Loss(x, y, z) is the smoothed value of position (x, y) in
band z,m is the half-length of the filter, and cj are the coefficients
of the SG filter. The coefficients cj of the SG smoothing are

obtained by least squares fitting. In our work, we set two pairs
of cj and m values to generate two levels of spectral information
loss distortion. In Fig. 2(b), two sets of MS images with their
two-level distorted variant are depicted.

From Fig. 2, it can be observed that our designed distortion
simulation strategy can generate spatial and spectral informa-
tion with distinct levels of distortion. This generated multilevel
distortion information contains distinct distortion features and
their inherent distortion level labels, aiding deep networks in
more targeted perception training of distortion characteristics.

C. Pansharpening Distortion-Perceiving Model Learning
From Ranks

We can utilize the ranked distortion information generated
in Section III-B to train distortion-perceiving networks for the
spatial and spectral domain, laying a foundational prior knowl-
edge base for full-resolution pansharpening quality predicting.
We introduce the Siamese network to learn from the informa-
tion rankings, which is a network with two identical network
branches and a special loss module. Pairwise images and labels
serve as inputs to the network, resulting in two outputs which
are passed to the loss module. The gradients of the loss function
to all model parameters are calculated through backpropagation
and updated using the stochastic gradient methods.

As depicted in Fig. 3, for a given image I(x, y) as the network
input, the output feature representation of I(x, y) denoted as
f(I(x, y); θ). f(I(x, y); θ) is obtained from the activation of
the last layer of the network, where θ represents the network
parameters. As our ultimate goal is to directly predict the quality
scores, in the Siamese network, the output of the last layer is
a single scalar. Since the purpose of this section is to predict
image quality rank, we adopt the pairwise hinge ranking loss to
optimize the learning process

L(I1, I2, θ) = max(0, f(I2, θ)− f(I1, θ) + ε) (7)

where ε is the margin. The loss function is to calculate the
discrepancy between f(I2, θ) and f(I1, θ), and compare it with
ε. The gradient calculation of the loss function is as follows:

∇θL =

{
0, if f(x2; θ)− f(x1; θ) + ε ≤ 0

∇θf(x2; θ)−∇θf(x1; θ) otherwise.
(8)

In our work, the quality level of input I1 is always higher
than I2, which allows this loss function to assess whether the
predicted quality level aligns with the ground truth. If the pre-
dicted quality level of I1 is higher than I2 (indicating that the
network prediction is correct), the loss function returns 0, and
the network does not update the gradient. Otherwise, it returns
the discrepancy value, decreases the gradient of the higher
scores, and increases the gradient for lower scores. This loss
module helps the network learn the differences in multilevel
distortions within the error margin.

Our network backbone adopts the popular ResNet50 and ad-
justs the number of channels in the first layer network, especially
for the input Pan/MS. Given the gradient of the loss function
to the model parameter θ, we utilize the adaptive moment
estimation (Adam) optimizer to train the Siamese network. The
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Fig. 3. Flowchart of distortion-perceiving model learning from ranks. After generating the ranked images, we pairwise feed them into the spatial and spectral
Siamese networks. With the hinge ranking loss backpropagation, the models can perceive the distortion and predict the quality rank.

Adam optimizer is with an initial learning rate of 1e-4. The
learning rate is scaled by 0.8 every 10 epochs and 100 epochs
are required for training.

Through the well-designed ranking learning strategy, our
trained spatial and spectral distortion-perceiving network learns
various distortion characteristics and their quantified representa-
tions. The trained networks can serve as a pretraining foundation
for FR quality evaluation networks, aiding targeted learning and
representation of the pansharpening distortion features.

D. Distortion-Guided Full-Resolution Pansharpening Quality
Evaluation

After the rank learning in Sections III-B and III-C, we de-
veloped two deep networks which capable of perceiving spatial
and spectral distortion levels, but this cannot directly predict
full-resolution pansharpening quality scores. There are three
obstacles: 1) Due to differences in information channels and
dimensional sizes, HRMS cannot be directly input into the
pre-trained distortion-aware network; 2) The network can only
perceive the distortion levels of HRMS and the original Pan/MS
without a specific discrepancy representation strategy; 3) Lack of
optimization goal with ground truth. To overcome the obstacles,
we design the dimension alignment and discrepancy representa-
tion modules and adopt a label-generating strategy in [45]. The
framework is depicted in Fig. 4.

1) Dimension Alignment: Since the depth of HRMS is dif-
ferent from Pan and the size is different from MS, it cannot
be directly input into the pre-trained network. Therefore, a
dimension alignment module was added, including a spatial

channel squeezing and a spectral size reduction. Traditional
averaging or downsampling was not used, instead convolutional
processing. Integrating the dimension alignment into the com-
plete optimization process of quality evaluation can establish a
nonlinear mapping between the downsizing and the final quality
prediction.

The spatial channel squeezing consists of three stacked
convolution layers, a convolution layer with a kernel size of
1× 1× C/2, a convolution layer with a size of 3 × 3 × 1, and a
convolution layer with a size of 1 × 1 × 1. Each layer is followed
by BatchNorm and Relu to enhance the network robustness.
The specific structure is as shown in Fig. 5(a). After spatial
channel squeezing, the input HRMS dimension of H ×W × C
is aligned with Pan as H ×W × 1, meeting the requirements of
the spatial distortion-perceiving network.

The spectral size reduction consists of two convolution layers
with a kernel size of 3× 3× C, a stride of 2, and padding of 1.
Similar to the spatial domain, each convolution layer is followed
by BatchNorm and Relu activation. The specific structure is as
shown in Fig. 5(b).

After spectral channel reduction, the input HRMS dimen-
sion of H ×W × C is aligned with MS as H/4×W/4× C,
meeting the requirements of the spectral distortion-perceiving
network.

2) Discrepancy Representation: We freeze the parameters
of the pretrained spatial and spectral distortion-perceiving net-
works, then feed the original Pan/MS and the dimension-aligned
HRMS to them. As a result, we obtain the spatial and spectral
distortion features of the same dimension from the last fully
connected layer of the backbone ResNet50 network.
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Fig. 4. Flowchart of distortion-guided full-resolution pansharpening quality evaluation. For the different dimension of Pan/MS and HRMS images, we first design
the dimension alignment module to reduce the spatial and spectral size of HRMS. With the alignment, the HRMS can be fed into the pre-trained distortion-perceiving
networks. The difference between the distortion-perceiving features is then used to represent the quality degradation. Finally, the regression group outputs the
predicted quality.

Fig. 5. Detailed structures of dimension alignment module. (a) Spatial channel
squeezing; (b) Spectral size reduction. The convolutional layers are defined
in terms of kernel size_stride_padding. BN denotes batch-normalization, and
ReLU denotes rectified linear activation function.

Specifically, we denote fP and fHP as the output features of
the spatial network with inputs of Pan and HR-MS, and fM and
fHM as the output features of the spectral network with inputs of
MS and HR-MS. To assess the quality score of HR-MS, we
take the difference between fP and fHP, fP − fHP, to char-
acterize the spatial distortion during pansharpening. Similarly,
we take the difference between fM and fHM, fM − fHM, to
characterize the spectral distortion between HR-MS and MS.
Ultimately, we concat the spatial and spectral features to repre-
sent the distortion of pansharpening, mapping them to the final
predicted score.

Specifically, we combine the features of (fP , fHP, fP − fHP)
and (fM , fHM, fM − fHM), and add a regression mapping group.
The regression mapping group consists of three sets of fully con-
nected layers and Relu activation layers, ultimately outputting
a single-dimensional scalar as the quality prediction result of
pansharpening. The specific implementation of the regression
group is as Fig. 4.

3) Optimization Strategy: Currently, there is no publicly
available database with quality-labeled ground truth for the
FR pansharpening task. Inspired by [45], we take the quality

evaluation results of the RR index as ground truth, enabling the
optimization goal of the FR pansharpening quality evaluation
network to achieve predictive performance as close as possible
to the reduced-resolution pansharpening quality evaluation. For
the quality evaluation task, we choose the mean squared error
(MSE) loss function to minimize the error between the predicted
quality and the ground truth quality. The loss function is defined
as follows:

Lq = ‖Q̂−Q‖2 (9)

where Q̂ denotes the predicted quality score, and Q refers to the
actual value.

Adam optimizer with an initial learning rate of 1e-5, is
adopted. The learning rate is scaled by 0.5 every 10 epochs and
100 epochs are required for training.

Eventually, a distortion-guided full-resolution pansharpening
quality evaluation framework is established, capable of perceiv-
ing and jointly processing spatial and spectral distortions based
on the rank learning network, and ultimately mapping them to
quality scores to achieve the goal of quality prediction.

IV. EXPERIMENTS

A. Experimental Setup

Datasets: We used a public benchmark database for pansharp-
ening for the evaluations [71]. 2270 sets of MS, Pan imagery are
collected in the database, where 200 sets are captured by the
IKONOS sensor, 500 by QuickBird, 410 by GaoFen-1, 500 by
WorldView-2, 160 by WorldView-3, and 500 by WorldView-4.
All the Pan images have a size of 1024 × 1024. MS imagery,
captured by IKONOS, QuickBird, GaoFen-1, and WorldView-4,
are in a size of 256× 256× 4, while the others in 256× 256× 8.

For efficient deep learning, we extract the image patches to
match the model training. We extract Pan patches in a size of
256 × 256, and MS in 64 × 64 × 4/8. Thus, the pansharpened
patches have a size of 256 × 256 × 4/8.

To evaluate the quality of pansharpened images, we ap-
ply different pansharpening algorithms to these patches. We
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Fig. 6. Two sets of image examples captured by IKONOS sensor, pansharpened with seven different methods. (a) Urban scene; (b) Green vegetation. Each image
is accompanied by the ground-truth Q2n values and their corresponding predicted quality scores with their respective quality rankings.

Fig. 7. Two sets of image examples captured by WorldView-3 sensor, pansharpened with seven different methods. (a) Green vegetation; (b) Water scenario. Each
image is accompanied by the ground-truth Q2n values and their corresponding predicted quality scores with their respective quality rankings.

adopted seven kinds of pansharpening algorithms to gener-
ate the pansharpened patches, including the CS-based Meth-
ods (C-BDSD [58] and PRACS [59]), MRA-based Methods
(AWLP [72] and MTF-GLP [54]), VO-based Methods(SR-
D [61] and PWMBF [62]) and DL-based Methods(A-PNN [70]).
Figs. 6 and 7 highlight image examples captured by IKONOS
and WorldView-3 sensors, with their ground truth Q2n scores
for the seven chosen pansharpening algorithms.

Implementation Details: The database is randomly partitioned
into 70% for training, 10% for validation, and 20% for testing.
The training, validation, and testing sets are nonoverlapping.
This process is repeated 10 times, and the final experimental
results are obtained by averaging the results from the 10 testing
sets.

Performance Criteria: In the absence of ground truth, we
adopted the RR protocol Q2n as the reference, the same as [45].
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TABLE I
PERFORMANCE COMPARISON OF OUR PROPOSED METHOD AND THE FOUR PUBLIC FR METRICS ON IKONOS, QUICKBIRD, GAOFEN-1 AND WORLDVIEW-4

TABLE II
PERFORMANCE COMPARISON OF OUR PROPOSED METHOD AND THE FOUR PUBLIC FR METRICS ON WORLDVIEW-2 AND WORLDVIEW-3

Model performance is assessed using four public metrics in the
quality evaluation tasks: Pearson linear correlation coefficient
(PLCC), Spearman rank-order correlation coefficient (SRCC),
Kendall rank-order correlation coefficient (KRCC), and root
mean squared error (RMSE). Higher SRCC, PLCC, and KRCC,
along with lower RMSE, indicate a better prediction.

B. Performance Comparisons

For performance evaluation on FR pansharpening, we com-
pare the proposed model with four public FR approaches:
QNR [19], FQNR [23], HQNR [22], and RQNR [20] for com-
parison.

In Table I, we summarize the experimental results on imagery
collected by IKONOS, QuickBird, GaoFen-1, and Worldview-4.
The four sensors capture MS imagery with 4 bands. Table II
presents results on the imagery collected by Worldview-2 and
Worldview-3, where MS is with 8 bands. We computed the
weighted average results in Table III, to represent the overall
performance of quality evaluation methods. The weight of each
sensor is proportional to the number of captured images.

As presented in Tables I and II, the proposed method achieves
the best performance in PLCC, SRCC, KRCC, and RMSE for
all the sensors. Also, it shows the best overall performance as
depicted in Table III.

TABLE III
COMPARISON OF THE WEIGHTED-AVERAGE EXPERIMENTAL RESULTS

Our method has made significant progress on 4-band data
compared to 8-band data. Compared with the 8-band MS, the raw
data of the 4-band is insufficient, resulting in the ineffectiveness
of the methods based on handcrafted features. However, through
our method of distortion synthesizing and rank learning, we
overcome the issue of data shortage.

Furthermore, driven by deep learning, the distorted features
are effectively perceived, forming a more accurate mapping with
quality scores.

In Table II, our method still achieved improvement on 8-
band data for the well-designed training strategy. It can also
be observed that HQNR performs very well. Compared with
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TABLE IV
ABLATION EXPERIMENTS FOR THE PROPOSED MODEL

the other three methods based on handcrafted features, HQNR
adopts indicators excelling in both spectral and spatial distortion
measuring.

In addition to excellent performance, our method also demon-
strates greater stability. QNR, FQNR, and RQNR perform excel-
lently in Table II but are extremely unstable in Table I. Through
rank learning and quality regression, we extract distortion-
perceiving features from various data, exhibiting stable percep-
tion capability across all sensors. However, manually crafted
features may fail to adequately grasp the complexity of the data,
leading to unstable results.

As results in Table III, our proposed model achieves the best
weighted-average performance, and HQNR and FQNR show
the similar performance, placing them in second and third
place. The overall performance comparison also demonstrates
the good generalization and robustness of our method. Besides,
the HQNR and FQNR share the same spectral distortion mea-
surement. The performance also validates the effectiveness of
their spectral feature extractor.

Figs. 6 and 7 illustrate a comparison of predicted Q2n scores
with their corresponding ground truth and quality ranks. Four
example patches from the IKONOS and WorldView-3 sensors
using various pansharpening techniques are shown, including
C-BDSD, PRACS, AWLP, MTF-GLP, SR-D, PWMBF, A-PNN,
and the plain LR-MS upsampling (EXP). These techniques
are evaluated at different quality levels of ground truth Q2n.
The observed performance rankings for sample image patches
captured by IKONOS and WordView-3 using the respective
pansharpening algorithms align with the predicted Q2n score

trends. These results collectively underscore the robustness of
our proposed method across data captured by diverse satellite
sensors.

C. Ablation Study

1) Rank Learning: We conducted ablation experiments to
determine the effect of the rank learning strategy on the FRQA
task. Experimental results are shown in Table IV.

Initially, we directly utilized the original backbone network
ResNet for feature extraction, only adding a dimension align-
ment module without conducting discrepancy representation.
The network’s training labels and loss function remained con-
sistent with the proposed model. While the features directly
output by ResNet can represent certain information, they are not
specifically designed for pansharpening distortion perception,
resulting in unsatisfactory test results, corresponding to the
model named Backbone in the Table.

Furthermore, we conducted separate experiments to deter-
mine the significance of spatial and spectral rank learning in
the final model. Specifically, the model termed Spectral RL
indicates that spatial features are directly extracted by ResNet,
while spectral features are derived from a spectral distortion
perception network trained with rank learning. Conversely, the
model named Spatial RL states that spectral features are directly
extracted by ResNet, with spatial features extracted by a spa-
tial distortion perception network trained with rank learning.
Performance improvements were observed in integrating rank
learning, as highlighted in Table IV, indicating that the rank
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TABLE V
PERFORMANCE COMPARISON BASED ON THE TWO KINDS OF TRAINING STRATEGY

learning strategy enhances the network’s capability to perceive
distortion features in both spatial and spectral domains.

The model designated as RL in the table utilizes the spectral
and spatial distortion-perceiving networks to extract separate
distortion features. Results demonstrate that the combination
of spatial and spectral distortion features significantly improves
performance. Also, the progress indicates that joint perception
and prediction of various types of distortions can establish
a more reasonable and comprehensive mapping relationship,
greatly benefiting the effectiveness of quality prediction.

2) Discrepancy Representation: We conducted an ablation
experiment on the discrepancy representation module to express
the necessity of the differential module. Experiment results
are shown in Table IV, and the differences between RL and
proposed demonstrate that, compared to direct regression of
features, adding a discrepancy representation module can more
directly express the differences between distorted and original
imagery. Such an operation aligns with quality assessment tasks,
aiding in the learning of deep networks. This also suggests that
designing more precise differential representation methods may
still improve network performance.

D. Discussion

1) Training Strategy: In the experiment, we employed two
training strategies to develop the quality evaluation model. The
Strategy I involved specific model training and testing for each
pansharpening method, and the final performance was averaged
over the seven models. The Strategy II unified the images gen-
erated by multiple pansharpening methods as inputs for training
and testing a general model, suggested as [45].

The comparative results of the two strategies and the improve-
ments are shown in Table V. The results indicate that the second
training strategy possesses superior and more stable predictive
performance.

We attribute this to two factors. First, imagery generated
by various pansharpening methods increases the training data,
enhancing the adequacy of network training, which is crucial
for deep learning. Particularly for IKONOS, compared to other
sensors, it collected a limited 200 sets of data. Its performance
under training with a single pansharpening method is relatively
unsatisfactory. After mixed large-scale training, its performance
significantly improved.

Second, the distortions generated by a single pansharpening
method may be limited, restricting the image quality within a
certain range and causing data limitations for network training.
In contrast, distortions from various pansharpening methods
are more diverse and random, covering a more comprehensive
range of image quality. In addition, the artificially simulated
pansharpening distortions generated by our method can better
match these comprehensive distortion characteristics.

Therefore, the general training strategy enhances the ratio-
nality of network training data, and the comprehensiveness
of network knowledge learning, and thus helps enhance the
predictive performance of the network. Therefore, we ultimately
adopted Strategy II for model training and testing.

2) Distortion Ranks: We synthesize the one-level and three-
level distortion to compare with the adopted two-level distortion
version. For one-level, the synthetic distortion is the Rank 2
distortion in adopted version. For three-level, we add more
severe distortion in spatial and spectral domain. Two sets of
image examples from the IKONOS dataset, with synthetically
spatial and spectral distortions, are shown in Fig. 8.

We conduct experiments to show the performance of different
distortion levels, with results shown in Table VI. As the results
show, the model trained with two-level distortion performs the
best. For the one-level version, the synthetic distortion is too
limited to represent the quality degradation that occurs during
the pansharpening process, resulting in poor performance. For
the three-level version, its performance is satisfactory, but worse
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Fig. 8. Two sets of image examples from the IKONOS dataset, with synthetically spatial and spectral distortions. Three ranks of distortion images are generated
to discuss the impact of the generation level on the final performance. (a) Spatial distortion. (b) Spectral distortion.

TABLE VI
PERFORMANCE COMPARISON OF THE DIFFERENT GENERATING DISTORTION RANKS

than the two-level ones. The generated Rank 3 images are
impaired severely with extremely low quality, which is rare in
the process of pansharpening. So, the additional three-level dis-
tortion generated cannot better represent the distortion charac-
teristics generated during the pansharpening process. Therefore,
we train our model with two-level synthetic distortion to achieve
the best predicting of pansharpening quality.

V. CONCLUSION

This article presents a novel approach to address the chal-
lenges in FR quality evaluation for pansharpening. First, we
introduce a ranked distortion synthesizing strategy to extract
distortion information from generated images without reference
images. Subsequently, a pansharpening distortion-perceiving
model is developed based on rank learning. We develop spatial

and spectral Siamese network structures to perceive the distor-
tion and utilize a pair-wise learning method for ranked images.
Finally, we construct a distortion-guided full-resolution qual-
ity evaluation framework for pansharpening. The framework
incorporates the rank-learning Siamese network and is comple-
mented with a dimension alignment module and discrepancy
representation module to facilitate distortion extraction among
HR-MS, Pan, and MS images. Furthermore, we conducted com-
prehensive experiments on a public remote sensing database.
The experimental results highlight the superior performance of
the proposed method. While the work has improved evaluation
accuracy through rank generation and training strategies, we
recognize the importance of incorporating specialized network
design to further enhance prediction accuracy. This modification
can potentially lead to more precise results and improved overall
performance of our model.
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