954 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fast InSAR Phase Unwrapping Method for Complex
Mountainous Areas With High Noise and Large
Gradient Changes

Dingyi Zhou

Abstract—Interferometry synthetic aperture radar (InSAR) is
essential for monitoring surface deformation and geological haz-
ards. InSAR applications in complex mountainous regions are
challenging due to high noise levels and large phase gradient
variations, which make it difficult to obtain accurate and efficient
phase unwrapping results. As a result, the development of fast
and high-precision phase unwrapping methods in these areas has
become an urgent research topic in the current InSAR field. In
response to this challenge, this study proposes a fast and high-
precision phase unwrapping method specifically designed for com-
plex mountainous regions. The method includes a sliding window
singular value denoising phase gradient correction unwrapping
algorithm (SDPC) for obtaining precise phase unwrapping results.
A fast-phase unwrapping algorithm based on FPUNet networks is
proposed by integrating deep learning techniques with the SDPC
results. By integrating these two methods, the phase unwrap-
ping speed can be accelerated while maintaining the unwrap-
ping accuracy. The Dongchuan District of Kunming City, Yunnan
Province, is used as the subject of this article. Because the true
phase cannot be known using the measured interferometric phase
data, simulated data are introduced to verify and demonstrate
the validity and accuracy of the method presented in this article.
Experimental results demonstrate the effectiveness of the proposed
method for phase unwrapping, even in complex mountainous re-
gions characterized by high noise and large gradient variations.
Moreover, this approach significantly enhances the phase unwrap-
ping speed. The presented method addresses the inefficiency and in-
accuracy of InSAR in phase unwrapping in complex mountainous
regions.

Manuscript received 7 March 2024; revised 6 May 2024 and 12 June 2024;
accepted 18 June 2024. Date of publication 24 June 2024; date of current version
8 July 2024. This work was supported in part by the National Natural Science
Foundation of Chinaunder Grant42161067, in part by the Postgraduate Research
and Innovation Foundation of Yunnan University under Grant KC-23236484,
and in part by Yunnan Provincial Department of Education Science Research
Fund Project under Grant 2023Y0196. (Corresponding author: Zhifang Zhao.)

Dingyi Zhou is with the Institute of International Rivers and Eco-Security,
Yunnan University, Kunming 650500, China (e-mail: zhoudingyi @mail.ynu.
edu.cn).

Zhifang Zhao is with the Institute of International Rivers and Eco-Security,
Yunnan University, Kunming 650500, China, also with the School of Earth
Sciences, Yunnan University, Kunming 650500, China, also with the Research
Center of Domestic High-resolution Satellite Remote Sensing Geological Engi-
neering, Kunming 650500, China, also with the Yunnan Key Laboratory of
Sanjiang Metallogeny and Resources Exploration and Utilization, Kunming
650051, China, also with the Key Laboratory of Sanjiang Metallogeny and
Resources Exploration and Utilization, MNR, Kunming 650051, China, and
also with the Yunnan International Joint Laboratory of China-Laos-Bangladesh-
Myanmar Natural Resources Remote Sensing Monitoring, Kunming 650051,
China (e-mail: zhaozhifang@ynu.edu.cn).

Digital Object Identifier 10.1109/JSTARS.2024.3417417

and Zhifang Zhao

Index Terms—Complex mountainous area, deep learning, high
noise, interferometry synthetic aperture radar (InSAR) phase
unwrapping, large gradient changes.

I. INTRODUCTION

IVEN the rising count of SAR satellites, the widespread

G adoption of interferometric synthetic aperture radar (In-
SAR) technology has become significant. It serves a vital pur-
pose in monitoring surface deformation, identifying geological
disasters, and tracking glacier movements [1], [2], [3]. Un-
wrapping the phase is an essential step in processing InSAR
interferometric data. It effectively reconstructs the authentic
phase from the wrapped phase within the range of (—, 7]. This
step is crucial for extracting elevation parameters or deformation
information [4], [5]. Obtaining accurate and efficient unwrapped
phase results in complex mountainous regions is challenging due
to high noise and large gradient variations. Therefore, quickly
obtaining high-precision phase unwrapping results in these re-
gions has become an urgent challenge in the InSAR field [6], [7].
Numerous phase unwrapping algorithms have emerged and
found applications in InSAR data processing. These algorithms
can broadly be categorized into three groups. One category
includes classical path tracing algorithms, such as the branch-cut
(BC) method [8] and the quality-guided method [9]. These
algorithms use prior information from the interferogram to select
the integration path and then integrate the estimated phase
gradient to obtain the unwrapped phase. This approach can
effectively prevent local errors from propagating globally and
achieve high computational efficiency and accuracy. Another
type is represented by global optimality algorithms, such as
the minimum norm classes [10], [11] and network flows [4].
The least-squares method is an exemplary algorithm belong-
ing to the minimum-norm class of algorithms. However, the
least-squares method often produces excessively curved surfaces
when dealing with interferograms with a low signal-to-noise
(S/N) ratio. Minimum cost flow (MCF) is currently the most
common algorithm used in engineering applications for phase
unwrapping. This algorithm achieves the unwrapped phase by
obtaining the optimal estimate of the phase gradient, thereby
enhancing the precision and efficiency of InSAR phase unwrap-
ping. However, the algorithm’s accuracy is difficult to guarantee
due to the difficulty in determining the unbiased coherence factor
and other weighting factors [12], [13]. The above two kinds of
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algorithms can get good results when dealing with high S/N ratio
interferograms, but the phase unwrapping results are poor for
low S/N interferograms. At the same time, estimating the phase
gradient is an essential factor in both algorithms’ accuracy of
the unwrapping results. Standard gradient estimation methods
rely on the assumption of phase continuity, which posits that
the wrapped phase gradient can yield the true phase gradient
in a noise-free scenario. In addition, the continuity assumption
limits the phase gradients between (—, 7], making it challeng-
ing to obtain ideal phase unwrapping results in regions with
large gradient variations. The last type is the nonlinear filter-
ing phase unwrapping algorithm represented by the extended
Kalman filtering [14]. This algorithm converts the problem
of phase unwrapping into an estimation task. The advantage
lies in the fact that it enables phase unwrapping and performs
noise filtering. However, this requires a longer processing time,
making it difficult for this method to obtain phase unwrapping
information quickly. In summary, these algorithms still have
some limitations in solving the phase unwrapping problem
in regions with high noise and large gradient variation, such
as vulnerability to noise interference and the requirement of
large computational resources. Therefore, further research and
development of phase unwrapping algorithms are still necessary.
Some scholars use maximum likelihood estimation to accu-
rately estimate phase gradients in noisy interferograms [15].
However, the phase gradient estimation results could be more
reliable when the noise is large. At the same time, using the
Chinese remainder theorem solves the problem of large gradient
variations in multibaseline interferograms. Still, this method
cannot be used for single-scene images; thus, its application
is limited [16]. Due to its high efficiency in phase unwrapping,
the minimum norm algorithm has been the subject of intense
research. It is simple in principle, converges fast, and has many
applications [17], [18]. Among them, the iterative least-squares
method is an effective method to solve the problem of overfitting
in low-SNR interferograms. With the gradual integration of deep
learning into interferogram-based phase unwrapping [19], [20],
[21], [22], it effectively avoids the need for traditional phase
unwrapping methods that consume a large number of computing
resources and time. Moreover, deep learning can adaptively learn
features and hence adapt to different interferogram data and
phase unwrapping problems, making it more widely applicable.
However, existing deep learning phase unwrapping methods
have the following issues. 1) Interferometric phase samples
are obtained based on existing phase unwrapping methods.
It inevitably makes it unsuitable for regions with high noise
and large gradient variations. Therefore, there is a need for a
phase unwrapping method suitable for complex mountainous
environments as a training set for deep learning. 2) Most exper-
iments were carried out on simulated data and only considered
phase unwrapping results in small regions, using 256 x 256
pixel interferometric simulated phases for the experiments. Less
research has been done on the practical applications of deep
learning for phase unwrapping using large-scale interferometric
phase data in complex mountainous environments.

This article addresses the challenge of obtaining fast InNSAR
phase unwrapping results in complex mountainous regions with

24°00"N 27°00"N

21°00"N

[ Boundary of Yunnan Province
[ Yunnan Province state (city) boundary —— k)
by
100°0'0"E 105°0'0"E 102°400" 103°0'0"E 103°200"E
Fig. 1. Overview of the study area. We are featuring the location of the study

area in Yunnan Province, China (marked with a red star) on the left side. The
right panel displays the geographic location and topography of the study area,
overlaid with the 30 m resolution DEM data. The red polygon outlines the study
area, with zone A as a validation area for the SDPC unwrapping algorithm.
Zones B, C, and D serve as training and validation sets for subsequent FPUNet
networks.

high noise and large gradient variation. First, a phase gradient
corrected phase unwrapping algorithm based on iterative least
squares (ILSs) with sliding window singular value decompo-
sition is proposed to obtain accurate phase gradient results in
these regions. Second, using this phase unwrapping algorithm,
we present a rapid phase unwrapping algorithm utilizing the
FPUNet network, which integrates a fast converged iterative
least-squares phase gradient correction algorithm with a deep
learning algorithm, resulting in fast and high-precision InNSAR
phase unwrapping results in complex mountainous regions.
The Dongchuan district of Kunming, Yunnan province, was
chosen as the study area. The study area exhibits diverse land
cover, including rocks, grasslands, and forests. The complex
and mountainous terrain and the large gradient variation pose
significant challenges to the InNSAR phase unwrapping process.
This problem is particularly evident in the studied regions,
where the complex topography and diverse types of land cover
make it challenging to resolve scattered objects, resulting in
high noise levels in the InSAR phase. Large gradient variation
also increases the likelihood of phase unwrapping, leading to
incorrect results. Accurate phase unwrapping is thus particularly
challenging in this regime, ultimately providing a demonstration
application to regions of high noise and large gradient variation
in complex mountainous areas.

II. STUDY AREA AND DATASETS
A. Overview of Study Areas

Dongchuan is situated in the northernmost part of Kunming
City in Yunnan Province, Southwest China. It is characterized
by a longitude range of 102°47’-103°18'E and a latitude range
of 25°46/-26°32'N. The region covers 1858.79 km?, as Fig. 1
depicts. The average annual temperature is 14.9 °C, and the
annual rainfall is around 1000 mm, primarily concentrated from
May to October. Dongchuan stretches 84.6 km vertically from
north to south and 51.2 km horizontally from east to west. The
area is predominantly mountainous, constituting 97.3% of the
total land, where the Jinsha and Xiaojiang rivers converge. The
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Fig. 2. Technical roadmap of the FPUNet phase unwrapping algorithm.

Xiaojiang River flows northwards, creating a “V”” shape division.
The highest peak reaches an elevation of 4344.1 m, and the
terrain exhibits remarkable variations due to unique geological
formations. Some regions encounter frequent heavy rainfall,
leading to loose soil and significant erosion. Dongchuan is a
globally important site for studying debris flows, often called
the natural museum of debris flows.

B. Data

For this study, we acquired two sets of descending single look
complex (SLC) images from the C-band Sentinel-1 Synthetic
Aperture Radar (SAR) launched by the European Space Agency
(ESA) in 2014. The first period spans from February 12 to
February 24, 2023, while the second covers May 7 to May 19,
2023. The images were acquired in IW mode, C-band, and VV
polarization, with a revisit period of 12 days. Preprocessing of
the data included geocoding, registration, interferometry, and
Goldstein filter using the GAMMA software, resulting in the
corresponding interferometric phase data.

III. METHOD

This article introduces the FPUNet phase unwrapping algo-
rithm, offering a solution for swift phase unwrapping in areas
with elevated noise levels and significant gradient variations.
Fig. 2 illustrates the technical roadmap of the FPUNet phase
unwrapping algorithm. It consists mainly of two parts. The first
step is a sliding window singular value denoising phase gradient
correction unwrapping algorithm (SDPC). A sliding window (7
x 7)1is applied for complex interferograms to obtain the singular

value decomposition and the denoised complex interferogram.
Then, a reference unwrapping point is selected, and a sliding
window (15 x 15) is used to correct the phase gradient, avoiding
the propagation of global errors. Finally, the number of iterations
and the error are set, and the phase unwrapping is performed
using ILS, followed by an accuracy evaluation comparing it
with existing traditional phase unwrapping algorithms. Hence,
the efficacy of the SDPC algorithm has been confirmed. The
second step proposes a fast-phase unwrapping algorithm using
the FPUNet network. The raw interferometric phase maps and
the phase unwrapping results obtained using the SDPC algo-
rithm are used to construct the dataset by computing the number
of phases unwraps obtained as output data. Subsequently, the
dataset is utilized to train the FPUNet network, leading to the
acquisition of an FPUNet network model. Fast and efficient
InSAR phase unwrapping can be achieved in large and complex
mountainous regions with high noise and large gradient varia-
tions by inputting interferometric data and applying an FPUNet
network model with specific postprocessing. The detailed steps
of the algorithm are given below:

A. Sliding Window Singular Value Denoising Phase Gradient
Correction Unwrapping Algorithm

The complex interference pattern can be represented as
s(r) = u(r) exp(j¢), with u representing s’s amplitude and ¢
representing s’s phase.

Suppose the size of the complex interference diagram is M x
N, and the boundary is symmetrically extended by m pixels to
avoid incomplete operation at the border. A local sliding window
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with size m x m and the center (ml, m1) pixel is used to treat
all the complex interference diagram pixels inside the window
as a complex matrix S, 1 m1)

Sik Si k41 Si.m
Sitik Sitik+1 0 Sitim
S(ml,nl) = : : : : . (1)
Sk Smk+1 Sim,m

The matrix singular value decomposition of S(,;,1 ;1) is de-
noted by

S(min1) = UsQsV§ ()
o1 0 - 0
0 oy -~ 0

s=1. . . : 3)
0 O Om

where the Qg in matrix o, = (2 = 1,2,...,m) represents the
computed singular values. U'g and V g represent the left singular
and proper singular matrix of S ;1 1)

After performing matrix singular value decomposition, the
smaller distinct values are discarded to achieve the denoising
effect, and the resulting denoised complex interference phase
matrix S’Eml’nl)is constructed as follows:

_ xy/T
S* =UsQ Vg

(m1,n1)

o 0 - 0
Q= “)
[0 -5y (m—5)
of =0y — - m

m—>5 2=m-302

where[0],,, ). (,_5) is the zero matrix, and o is the principal
component of the singular value.

According to the above method, the denoised complex in-
terference diagram S?M N is obtained using the sliding win-
dow to traverse the M x N complex interference diagram.
¢ = angle(S* ) can extract the interference phase from the

., (MN) .
complex interference pattern. A reference phase unwrapping
point is chosen at the interference phase. The threshold for
computing the wrapped phase gradient is calculated for each

sliding window in O x P [23], [24]

7, = fove [(81)7] - (e 7))

@)
7, =\ fave [(01)7] - (v a)°
{Gx = o5 Thoo iz AR ©
Gy=as S0 Tz LAY

whereA},/A}, represents the estimated phase gradient in the
horizontal/vertical direction within the local sliding window, avg
represents the mean calculation, T7,/T;, is the standard deviation
of the phase gradient A¥,/A}, in the horizontal/vertical direction
within the local sliding window, G./G, is the average value of

the phase gradient A¥,/Aj, in the horizontal/vertical direction
within the local sliding window.

It replaces the phase gradient value larger than the standard
deviation 7T’,/T}, within a local window with the mean value of
the phase gradient G,/G,. Use a sliding window to traverse
the entire M x N interferogram in pixel size according to the
above method, completing the correction of the wrapped phase
gradient.

The fundamental concept behind the ILS method involves
utilizing phase quality information as a weight to minimize
the discrepancy between the true and wrapped phase gradients.
Considering a wrapped phase map of size M x N, where ¢; ;
represents the wrapped phase, and ¢; ; denotes the unwrapped
phase obtained through phase unwrapping, the cost function C
can be expressed as follows [18], [25]:

X-2Y-1 ?
J=Y " Rijleitr;—pij— AL
i=0 j=0

2

X-1Y

—1Y-2
+ 3> Cijleijn — iy — A 0
i—=0 j—=0

{Af,j =w{dit1,; — i}
AY ;= w{dijr1 — bij}

whereA? ; and Azy, ; denote the interferometric phase differences
in the horizontal and vertical directions x and y, respectively,
where i ranges from 0 to M-I; j ranges from O to N-I;w{.}
denotes the phase wrapping operator; R; ; and C; ; correspond
to the weight parameters, which can be derived from the quality
information of the interferogram Z; ;

Rij =min [Z7, ;, Z7,]
Cyy=min [Z7;,,, 2]

®)

0<27Z7; <1 ©)

When the cost function J is minimized, the wrapped phase
gradient is introduced, and then it satisfies the following:

fiﬁj = Ri,j . A;E,J — Ri—l,j AN

i—1,7
O AY .. CAY
+Cij- A, —Cij1- A

J—1

(10)

where /; ; is the Laplacian function used to represent the phase-
weighted value.

The unwrapped phase ¢; ; can been obtained through multiple
iterations of the Gauss—Seidel relaxation method

Pij =

Rijpit1,j + Ric1jpi-1,j + Cijpigt1 + Cij1i-1 — bij
Rij+Ri1;+Cij+Cia

(1)

According to equation (11) iterates continuously to compute
the discrepancy between the current and previous unwrapped
phases. The phase unwrapping process concludes when the dis-
crepancy falls below a specific threshold. By incorporating the
corrected wrapped phase gradient into the ILS algorithm defined
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Optical images and field survey photographs of region A, together with simulated interferometric data. (a) Google optical image of area A. (b) Field

survey photo of area A. (c) Interferometric phase of area A. (d) High noise interferometric phase of area A. (e) Simulated interferometric phase without noise.
(f) Simulated interferometric phase with high Gaussian noise. (a) Optical image. (b) Field survey photo. (c) Original noise phase. (d) High noise phase. (e) Phase

without noise. (f) Phase with high Gaussian noise.

in (11), the SDPC algorithm accomplishes phase unwrapping
and yields the final unwrapped phase outcome.

Area A, consisting of a pixel size of 642 x 730, was chosen
to validate the proposed SDPC phase unwrapping algorithm.
Fig. 3(a) and (b) display an optical image and a field photograph
of area A, respectively, featuring two distinctive debris flow
channels characterized by rugged terrain and significant un-
dulations. During the phase unwrapping process, features such
as large changes in the phase gradient exist. The SDPC phase
unwrapping algorithm was applied to acquire the phase unwrap-
ping outcomes for the region under consideration. Additionally,
SDPC was employed to unwrap the interferometric phase prior
to filtering, thereby evaluating the feasibility and effectiveness
of utilizing Singular Value Decomposition for denoising within
the SDPC phase unwrapping algorithm. Fig. 3(c) illustrates the
interferometric phase of area A, while Fig. 3(d) displays the
interferometric phase with added high Gaussian noise, having a
standard deviation of 0.06, to the original interferometric phase
for the same area. Considering thatreal measured data cannot ob-
tain the true results of phase unwrapping, for this reason, through
simulation and simulated data, the mean absolute error was used
to verify the phase unwrapping accuracy of different unwrapping
algorithms (BC; ILS MCF; the proposed SDPC method). The
noise was added to ensure fairness and was Gaussian with a
standard deviation 0.8. In order to validate the effectiveness
of various phase unwrapping algorithms in high-noise areas,
simulation data was generated using the Peaks function. Fig. 3(e)
and (f) depicts the simulated interferometric phase without noise
and the simulated interferometric phase with added Gaussian
noise, having a standard deviation of 0.8, respectively.

B. FPUNet: Fast Phase Unwrapping Method Based on SDPC

The fast-phase unwrapping method, which relies on SDPC,
is derived from the phase unwrapping outcomes obtained by
employing the sliding window singular value corrected model
for phase gradient correction and unwrapping, known as SDPC.
Equation (12) demonstrates the connection between the un-
wrapped and wrapped phases. Utilizing the measured interfer-
ometric phase and the number of phase wraps, we propose a
rapid InSAR phase unwrapping approach based on the FPUNet
network model

©=0¢+ 2k (x) (12)

where @ represents the unwrapped phase, ¢ signifies the wrapped
phase, and k(z) is an integer that denotes the number of wrapped
phases.

C. Network Structure

U-Net is a widely utilized deep learning network architecture
in image semantic segmentation tasks [26], [27] and is consid-
ered a mainstream technology for image semantic segmentation
[28], [29]. The proposed FPUNet network in this article incorpo-
rates a residual network [30] and a convolution block attention
module (CBAM) [31] into the U-Net [32]. Fig. 4 illustrates its
network structure, including encoding, decoding, and bridging
paths. The encoding path consists of five modules that progres-
sively extract semantic features from the interferogram. Each
submodule includes 3 x 3 convolution operations (followed by
BN [33] and ReL.U [34], as well as a 2 x 2 max pooling op-
eration. The initial convolution operation enhances the number
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of feature channels in each submodule, using eight convolution
kernels to increase the channels from one to eight. Subsequently,
the number of channels in each submodule is doubled.

The bridging path excludes the max pooling operation from
the encoded path. Each step of the decoding path includes a
deconvolution, a skip connection, 3 X 3 convolution operations
(followed by BN and ReLU), and a residual block positioned
between these convolutions. During each iteration of the decod-
ing path, the two convolution operations decrease the number of
feature channels (except for the last iteration, which reduces the
channels from 8 to 1). The residual block and skip connection
can accelerate the convergence of the network, extract richer
interferometric phase features, and prevent gradient diffusion
and gradient explosion. Convolutional block attention modules,
consisting of channel and spatial attention modules, are incor-
porated during the upsampling process in the encoding path and
the downsampling process in the decoding path. The channel at-
tention module enables selective enhancement or suppression of
individual channels by learning channel-specific weights. Dur-
ing downsampling, the channel attention module helps the CNN
model choose the most relevant channels to reduce redundant
information and computational complexity. During upsampling,
it can help the model capture more details and textures. The
spatial attention module selectively emphasizes or suppresses
different locations by learning the weights of each pixel. During
downsampling, the spatial attention module can help the model
capture a wider range of contextual information to improve its
perception and understanding capabilities. During upsampling,
it can help the model reconstruct details and textures more
effectively. The FPUNet network consists of 49 convolutional
and deconvolutional layers. The encoding path converts input
information into a higher level and more abstract feature space.

In contrast, the decoding path converts the abstract and high-
level information into a representation in the output space, estab-
lishing a mapping between the interferometric phase (wrapped
phase) and the phase-wrapped number format. During network
training, the average cross-entropy loss function is employed as
the loss function, and the Adam optimizer is utilized to optimize
the network parameters [35]. The FPUNet network takes raw
complex interferograms with varying noise levels as inputs and
generates phase-wrapped number results corresponding to the
complex interferograms. The training parameters of the FPUNet
network are updated by minimizing the loss function.

D. Data Generation

For the training set (Region B) and validation sets (Regions
C and D) in the network model of FPUNet, the interferometric
phase is extracted from the obtained actual complex interfer-
ograms, Gaussian noise with different standard deviations is
added, and the corresponding phase unwrapping results are
obtained using the SDPC algorithm. According to (12), the
corresponding phase-wrapped number is obtained. The inter-
ferometric phase and the corresponding phase-wrapped number
are segmented into 256 x 256 pixel sizes, with the size of each
pixel in the training set (Region B) being 3119 x 3959. They
are divided into 3,808 groups with a 50% overlap. The pixel
size of the validation set (Region C) is 840 x 1454, divided into
24 groups in order. The pixel size of the validation set (Region
D) is 1304 x 1273, divided into 30 groups in order. Fig. 5(a)
and (c) display the interferometric phase of the measured data in
Region C. In contrast, Fig. 5(b) and (d) exhibits the correspond-
ing unwrapped phase achieved through the SDPC unwrapping
algorithm. Additionally, Fig. 5(e) and (f) presents the seg-
mented interferometric and unwrapped phases with pixel sizes
of 256 x 256.

In practical applications, obtaining the ideal unwrapped phase
corresponding to the measured noisy interferometric phase is
difficult. Therefore, it is necessary to introduce simulated data
to generate many noisy interferometric phases and related un-
wrapped phases to meet the sample requirements for network
training. The steps for generating simulated data are: first,
random matrices of different sizes, such as 2 x 2 and 8 x 8§,
are recommended for resolution. Next, the bilinear interpolation
method is used to expand the above random matrices to a 256
x 256 pixel matrix, and their values are amplified to obtain
a real phase without wrapping. Finally, noisy interferometric
phase maps with different S/N ratios are obtained by adding
other noises, and their corresponding phase-wrapped numbers
are obtained through (12). Three thousand datasets are generated
as the training set [34], [36]. Fig. 5(g) and (h) shows the simu-
lated 256 x 256 pixel interferometric phase and phase-wrapped
number.

Using the constructed FPUNet network, the above 6808
training datasets are learned and trained. The learning process
consists of 250 epochs with a batch size of 32 and a learning
rate of 0.01. The weight values are obtained by learning and
training and saved. The trained FPUNet network obtains the
phase-wrapped number of the measured Regions C and D with
apixel size of 256 x 256 under different noises. The unwrapped
phase is calculated based on (12), and by merging the segmented
256 x 256 unwrapped phases, the final complete unwrapped
phase is obtained after combining Regions C and D.

E. Postprocessing, Accuracy, and Efficiency Evaluation of the
Unwrapping Results

Promising preliminary results can be obtained using deep
learning for phase estimation in phase unwrapping. However,
postprocessing techniques are often necessary to enhance the
quality of the results, addressing challenges such as noise,
artifacts, discontinuities, incompleteness, global consistency,
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and edge and detail preservation. Postprocessing methods can
repair and improve the phase image, making it more consistent
with the true phase and improving the accuracy and stability of
unwrapping. This article’s phase value error obtained by deep
learning based on the original 256 x 256 pixel interferometric
phase is correct using the phase unwrapping result obtained
from the SDPC unwrapping algorithm. Iterative least-squares
correction is used to gradually reduce the part of the phase that
cannot be accurately predicted by the deep learning model, thus
enhancing the quality of the phase unwrapping outcomes.

As the true phase information of the actual measured data is
unavailable, we utilize the simulated data, which contains both
the interferometric phase and the true unwrapped phase, to assess
the accuracy of the FPUNet unwrapping outcomes. The evalu-
ation compares the mean absolute and root-mean-square errors
with the SDPC unwrapping results using the noisy simulated
data.

To evaluate the efficiency of FPUNetin phase unwrapping, we
chose Region D of the validation set as the experimental object.
The efficiency of different unwrapping algorithms, such as BC,
ILS, MCF, SDPC, and FPUNet, was assessed by analyzing the
execution time on a computer device equipped with an Intel(R)
Xeon(R) Silver 4210R CPU @2.40 GHZ, 128 GB of memory,
and an NVIDIA GeForce RTX 3090 graphics card.

IV. RESULTS AND ANALYSIS

A. SDPC Phase Unwrapping Results and Verification Results
of Different Unwrapping Algorithms

Fig. 6 shows the validation results of different phase unwrap-
ping algorithms under simulated data. Fig. 6(d) reflects some
extent, the character of large gradient change in analog simula-
tion data, with the highest phase value of 40 rad. Fig. 6(e) shows
that different phase unwrapping algorithms can successfully
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Fig. 6. Verification results of different phase unwrapping algorithms under
simulated data. (a) and (b) True and interferometric phases under noiseless
conditions. (c) High noise interferometric phase generated using the Peaks
function. (d) Three-dimensional phase unwrapping result. (a) True phase. (b)
Noiseless interference phase. (c) High noise interference phase. (d) 3D phase. (e)
Results of different unwrapping algorithms without noise conditions. (f) Results
of different unwrapping algorithms for high noise conditions. (g) Absolute error
of different unwrapping algorithms under high noise conditions. (h) Residuals
of different unwrapping algorithms under high noise conditions.
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TABLE I
MEAN ABSOLUTE ERROR AND ROOT-MEAN-SQUARE ERROR OF DIFFERENT
PHASE-UNROLLING ALGORITHMS UNDER SIMULATED DATA

Noise Evaluation Phase unwrapping algorithm
condition index BC ILS MCF SDPC
Noiseless MAE 6.411 6.283  0.001  0.002

RMSE 6.729  6.283  0.020 0.043

High MAE 12.259  7.230 4.543 1417

noise RMSE 14.572 10.412 5.576  1.782

unwrap the interference phase under the noise-free condition.
The corresponding evaluation indicators for phase unwrapping
errors are presented in Table I. The BC method exhibits the
largest average absolute and mean square errors measuring 6.411
and 6.729 rad, respectively. The MCF method demonstrates
relatively lower average absolute error and mean square error,
with values of 0.001 and 0.020 rad, respectively. The proposed
SDPC phase unwrapping algorithm in this study achieves sig-
nificantly higher precision in terms of average absolute error
and mean square error compared to the BC method and the ILS
method but slightly lower precision than the MCF method. It
is due to the introduction of the singular value decomposition
for noise reduction in the SDPC phase unwrapping algorithm,
which to some extent, removes the low interference phase feature
for the noiseless interference phase, resulting in this situation.
However, in practical applications, the interferometric phase
obtained by InSAR processing cannot be noise-free. Hence,
analyzing and discussing the accuracy of phase unwrapping in
scenarios with high noise and large gradients is more realistic
and meaningful. From Fig. 6(f), it can be seen that under high
noise conditions, for regions with large gradient changes, the
phase unwrapping result obtained by the SDPC method is closer
to the true phase. The MCF method performs well in flat areas
but is less effective in high-relief or low-lying areas. Although
the ILS method can perform phase unwrapping, its result cannot
reflect the true phase. The BC method is powerless in high-noise
and large-gradient regions and cannot obtain the final phase
unwrapping result. The reason is that in the high noise region,
the branch-and-cut method is prone to spurious gradients, that
is, incorrect gradient directions. At the same time, when the
phase changes dramatically, there can be discontinuities in the
gradient direction, leading to inaccurate phase unwrapping at
the gradient change. Fig. 6(g) shows different phase algorithms’
corresponding absolute error distribution maps.

The SDPC method outperforms the other three-phase un-
wrapping methods (BC, ILS, and MCF) with a significantly
lower average absolute error of 1.417 rad and root-mean-square
error of 1.782 rad. Fig. 6(h) shows the residual distribution
statistics of different phase unwrapping algorithms under high-
noise conditions. The residual of the BC method mainly ranges
from 5 to 13 rad, the residual of the ILS method mainly ranges
from —1 to 7 rad, the residual of the MCF method mainly
ranges from —6 to 4 rad, and the residual of the SDPC method
mainly ranges from — 2.81 to 3.04 rad. The SDPC method has a
smaller main residual range and higher precision. In summary,
the simulation data confirms that the SDPC method surpasses
other phase unwrapping methods in terms of efficiency and
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Fig. 7. Results and similarity curves for different phase unwrapping algo-
rithms in region A. (a) Results of different unwrapping algorithms original noise
conditions. (b) Results of different unwrapping algorithms for high noise con-
ditions. (c) Similarity curves of different unwinding algorithms and truth values
in column directions. (d) Similarity curves of different unwinding algorithms
and truth values in row directions.

accuracy when dealing with regions characterized by high noise
and large gradient variations.

The simulated data above confirms the superior efficiency and
accuracy of the SDPC method compared to other methods in
regions with high noise and large gradient variations. Using the
SDPC algorithm, the phase unwrapping result of the original
interferometric phase in area A with noise is considered the
ground truth for evaluating the performance in high-noise and
large-gradient regions of area A. Fig. 7 shows the results and
similarity curves of different phase unwrapping algorithms in
study area A. Fig. 3(c) displays the interferometric phase in
area A, while Fig. 3(d) shows the high-noise interferometric
phase resulting from adding noise to the original interferogram.
In Fig. 7(a), the phase unwrapping results of the BC method
under the original noise condition appear unsatisfactory, while
the other phase unwrapping results exhibit relatively consistent
performance. Table II presents the mean absolute and root-
mean-square errors of the three phase unwrapping algorithms
compared to the SDPC algorithm. Among them, the MCF algo-
rithm outperforms the ILS and BC algorithms in the presence
of raw noise. Fig. 8(b) showcases the results of different phase
unwrapping algorithms in area A under high noise conditions.
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TABLE II
MEAN ABSOLUTE ERROR AND ROOT-MEAN-SQUARE ERROR FOR DIFFERENT
PHASE-FREE ROLLING ALGORITHMS IN REGION A

Noise Evaluation Phase unwrapping algorithm
condition index BC LS MCF SDPC
Original MAE 0.224 0.014 0.013 0.000

noise RMSE 1.425 0.158 0.152 0.000

High MAE 1.491 1.153 12.581 1.417

noise RMSE 3221 1921 12.663 1.782
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Fig.8. FPUNet phase unwrapped results and similarity curve chart for regions
C and D. (In the legend, “CSDPC ” represents the curve obtained by the SDPC
unwrapping algorithm in region C, “CFPUNet” represents the curve obtained
by FPUNet unwrapping algorithm in region C, “DSDPC ” and “DFPUNet”
represent the curves obtained by SDPC and FPUNet unwrapping algorithms in
region D, respectively). (a) C interference phase. (b) C phase-wrapped numbers.
(c) C wrapped phase. (d) C phase corrections. (¢) C unwrapping correction.
(f) D interference phase. (g) D phase-wrapped numbers. (h) D wrapped phase.
(1) D phase corrections. (j) D unwrapping correction. (k) SWES and FPUNet
unwrapping algorithms for regions C and D show the similarity curves in column
direction. (I) SWES and FPUNet unwrapping algorithms for regions C and D
show the similarity curves in row direction.

Notably, the SDPC method demonstrates low mean absolute
and root-mean-square errors compared to the other three phase
unwrapping algorithms. Fig. 7(c) and (d) depicts the similarity
curves of different phase unwrapping algorithms in the row and
column directions. It is apparent that, under high noise condi-
tions, the BC and ILS methods exhibit some rough consistency
with the true curve but with numerous significant deviations. The
similarity curve of the SDPC method is the closest to the true
curve without large jump bias, while the similarity curve of the
MCF method is far from the true curve. It is because all weights
are set to the default value of 0.5, which partly reflects the fact
that the accuracy of the MCF method is hardly guaranteed in
regions of high noise and large gradient variations due to the
difficulty in determining unbiased coherence and other weight
factors. In summary, this study has confirmed that the SDPC
phase unwrapping algorithm is effective in regions of high noise
and large gradient variations in region A, providing a dataset
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Fig. 9. FPUNet phase unwrapping results and residual maps for simulated
data with noise. (a) Phase with noise. (b) True phase. (¢) FPUNet unwrapping
phase. (d) SDPC unwrapping phase. (e) FPUnet residual error. (f) SDPC residual
error.

to support the subsequent implementation of fast and accurate
InSAR phase unwrapping using the FPUNet network.

B. FPUNet Phase Unwrapping Results and Accuracy
Evaluation

Fig. 8 shows the results of FPUNet phase unwrapping on
validation sets C and D. Fig. 8(b) and (g) shows the wrapped
phase obtained by FPUNet in C and D regions. Fig. 8(e) and
(h) displays the phase unwrapping results obtained by FPUNet
using (12). The unwrapped outcomes generated by FPUNet ex-
hibit several discontinuous areas that necessitate postprocessing.
Fig. 8(d) and (i) shows the corrected phase values obtained using
SDPC unwrapping algorithm based on the original 256 x 256
pixel interferometric phase in C and D regions to correct the
phase errors obtained by FPUNet. Fig. 8(e) and (j) depicts the
postprocessed results achieved by applying the ILS method to
the unwrapped phase obtained from FPUNet in regions C and
D. From a visual perspective, the results of Fig. 8(e) and (j)
are consistent with those obtained by SDPC. Combining the
similarity curve charts of SDPC and FPUNet in column and row
directions of Fig. 8(k) and (1), it can be seen that for region C, the
similarity curves obtained by SDPC and FPUNet are consistent,
and the similarity curve generated by FPUNet has no major
mutations. For region D, the sequences of similarity curves
obtained by SDPC and FPUNet are roughly consistent but not
identical. The similarity curve obtained by SDPC has substantial
variations, while the similarity curve obtained by FPUNet is
smoother. Incorporating a substantial volume of simulated data
into the training sample set makes the outcome more inclined
toward the true unwrapped phase result.

The above section discussed that SDPC has the best unwrap-
ping results for noisy simulated data. Therefore, this section
compares the phase unwrapping results and residual maps ob-
tained by FPUNet and SDPC for noisy simulated data with
noise. Fig. 9(a) displays the interferometric phase with noise,
while Fig. 9(b) presents the true unwrapped phase. Fig. 9(c)
and (d) shows the unwrapped phase results of FPUNet and
SDPC, respectively. Visually, the results obtained by the two
unwrapping algorithms are consistent with the true unwrapped
phase. By comparing the residual maps in Fig. 9(e) and (f), it can



ZHOU AND ZHAO: FAST InSAR PHASE UNWRAPPING METHOD FOR COMPLEX MOUNTAINOUS AREAS 963

TABLE III
MEAN ABSOLUTE ERROR AND ROOT-MEAN-SQUARE ERROR FOR DIFFERENT
UNWRAPPING ALGORITHMS FOR SIMULATED DATA WITH NOISE

Evaluation Phase unwrapping algorithm
index FPUNet SDPC
MAE 0.137 0.139
RMSE 0.172 0.178
TABLE IV

TIME REQUIRED BY DIFFERENT UNWRAPPING ALGORITHMS

Phase unwrapping algorithm

Evaluation
index BC ILS MCF SDPC  FPUNet
Time/s 42670 25 26200 60.000 8975

be seen that the residual map generated by FPUNet is distributed
roughly between —0.5 and 0.5.

In contrast, the residual map generated by SDPC is distributed
between —1 and 1. To quantitatively describe the mean absolute
error and the root-mean-square error of the two unwrapping
algorithms, the results are shown in Table III. It can be seen
that the results obtained by the FPUNet unwrapping algorithm
are slightly better than those obtained by the SDPC unwrapping
algorithm. It also demonstrates that using the FPUNet network
to unwrap real measured data can generate smoother similarity
curves without significant mutation.

Table IV shows the unwrapping time required by the different
unwrapping algorithms for region D. Among them, the ILS
algorithm takes the least time, which is 2.5 s, but it does not
effectively guarantee the unwrapping accuracy. In contrast, the
SDPC algorithm takes the longest time, up to 60 s. The BC al-
gorithm requires 42.670 s unwrapping time, the MCF algorithm
needs 26.200 s, and the FPUNet unwrapping algorithm requires
only 8.975 s. Although it is not the fastest compared to ILS,
its robust performance in high noise and large gradient regions
demonstrates its ability to ensure both unwrapping accuracy and
processing efficiency.

V. DISCUSSION

A. Advantages of Our Proposed Method Over Existing
Methods in This Article

This article proposes the SDPC algorithm, a sliding window
singular value correction model phase gradient correction un-
wrapping algorithm. It addresses the issue of inaccurate phase
unwrapping in complex mountainous areas with high noise and
large gradient changes. By utilizing a sliding window singular
value decomposition, this algorithm effectively mitigates the
impact of noise on the unwrapping results. In addition, it corrects
the phase gradients in large gradient regions with a sliding
window and finally obtains the phase unwrapping results using
an ILS method. Building upon the SDPC unwrapping algorithm,
we incorporate deep learning techniques and present the FPUNet
network, a rapid InSAR phase unwrapping algorithm. This
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Fig. 10.  Unwrapped results of unfiltered interferometric phase under different
phase unwrapping algorithms.

network falls into the category of two-step unwrapping, which
has higher unwrapping accuracy and better processing capability
for complex scenes and large gradient regions than one-step
unwrapping. The unwrapping speed can be further accelerated
by harnessing the advantages of deep learning while maintaining
unwrapping accuracy. According to the experimental results
presented in this article, our proposed unwrapping algorithm can
perform phase unwrapping accurately and efficiently in regions
of high noise and large gradient variations compared to existing
unwrapping methods for phase.

Moreover, based on deep learning, it can quickly and ef-
ficiently unwrap the interferometric phase over a large area.
Unlike previous phase unwrapping algorithms based on deep
learning frameworks, which only demonstrate their effective-
ness on simulated data and small regions of size 256 x 256
pixels, our proposed method can handle real measured data over
a large area. In addition, we summarize a set of postprocessing
methods for deep learning-based phase unwrapping suitable
for high noise and large gradient changing regions, including
phase value correction and discontinuous phase correction using
ILS methods. In summary, the proposed method effectively
solves the problem of fast InNSAR phase unwrapping for complex
mountainous regions with high noise and large gradient varia-
tions. These advantages enable our proposed method to achieve
higher unwrapping accuracy and faster processing in complex
mountainous areas, providing significant value and potential for
practical applications.

B. Evaluation of the Unwrapping Performance of the SDPC
Algorithm Compared to Unwrapping of Unfiltered
Interferometric Phase

The SDPC unwrapping algorithm applies to phase unwrap-
ping in regions with high noise and significant gradient varia-
tions. However, all interferometric phase data used in this study
were denoised using the Goldstein filter. It is still being deter-
mined whether our SDPC unwrapping algorithm performs better
for unwrapped unfiltered interferometric phase data. To this
end, the unfiltered interferometric phase of Zone A is obtained
and unwrapped using different phase unwrapping algorithms.
The results are shown in Fig. 10. The unfiltered phase is more
noisy compared to the filtered interferometric phase. From the
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TABLE V
MEAN ABSOLUTE ERROR AND ROOT-MEAN-SQUARE ERROR OF UNFILTERED
INTERFEROMETRIC PHASE UNDER DIFFERENT PHASE UNWRAPPING
ALGORITHMS

Phase unwrapping algorithm

Evaluation
index BC ILS MCF  SDPC
MAE 17989 1423 1438 0873
RMSE 18907 2356 2439 1327

perspective of the unwrapped images obtained, the BC algorithm
cannot perform phase unwrapping efficiently. Although the ILS
algorithm can achieve phase unwrapping overall, numerous
inaccuracies and conflicted regions exist, as shown by the high-
lighted sections in red circles in Fig. 10.

Similarly, the MCF algorithm has inaccurate regions. The
SDPC algorithm demonstrates superior efficiency in unwrap-
ping the unfiltered interferometric phase, yielding results that
closely resemble the SDPC unwrapped phase results shown in
Fig. 7. The quantitative evaluation of the different phase unwrap-
ping algorithms uses the mean absolute and root-mean-square
errors, as shown in Table V. SDPC achieves the lowest mean ab-
solute error of 0.873 rad and root-mean-square error of 1.327 rad.
The mean absolute and root-mean-square errors obtained by ILS
and MCF are comparable, while the BC algorithm exhibits the
poorest performance. The quantitatively evaluated results are
consistent with the qualitative analysis in Fig. 10, which further
proves that the proposed SDPC algorithm can effectively unwrap
unfiltered interferometric phase in areas with high levels of noise
and large gradient changes and also demonstrates that the sliding
window singular value decomposition proposed in the SDPC
algorithm can effectively filter out the noise in interferometric
phase.

C. Evaluation of the Phase Unwrapping Performance of
FPUNet Compared to the Traditional ResUNet

Compared to the widely used ResUNet network model for
phase unwrapping [37], this article’s proposed FPUNet network
model adds a convolutional block attention module to the Re-
sUNet model. To explore whether FPUNet with the added convo-
lutional attention module has certain advantages over ResUNet
in the field of phase unwrapping, with the training set, learning
parameters epochs, batch size, learning rate, and other param-
eters being consistent, phase wrapping numbers were obtained
for validation set Zone D, and postprocessing was performed to
evaluate the phase unwrapping accuracy of the two networks.
The results show that the FPUNet phase unwrapping has a mean
absolute error of 0.329 rad, which is 0.005 rad better than the
ResUNet results, as shown in Table VI. The FPUNet phase
unwrapping has a root-mean-square error of 0.558 rad, which is
0.028 rad better than the ResUNet phase unwrapping result. The
above quantitative statistics show that the proposed FPUNet net-
work with added convolutional block attention module achieves
better phase unwrapping results than the existing conventional
ResUNet network. The above ResUNet networks all utilize the

TABLE VI
COMPARISON OF MEAN ABSOLUTE ERROR AND ROOT-MEAN-SQUARE ERROR
OF PHASE UNWRAPPING BETWEEN FPUNET AND TRADITIONAL RESUNET

Phase unwrapping algorithm

Evaluation
index FPUNet ResUNet ResUNet (NO
postprocessing)
MAE 0.329 0.334 2.309
RMSE 0.558 0.586 3.381
TABLE VII

COMPARISON OF MEAN ABSOLUTE ERROR AND ROOT-MEAN-SQUARE ERROR
OF PHASE UNWRAPPING BETWEEN FPUNET AND TRADITIONAL SIMULATION

DATA RESUNET
Evaluation Phase unwrapping algorithm
index FPUNet ResUNet
MAE 0.329 10.279
RMSE 0.558 10.806

postprocessing method in this article. We calculate the average
absolute and root-mean-square errors of the phase unwrapping
obtained by the ResUNet network without postprocessing. We
can see from Table VI that the average absolute error and the
root-mean-square error of the postprocessed ResUNet network
have been reduced by 1.975 and 2.795 rad, which, to some extent,
proves the effectiveness and advantage of the postprocessing
method proposed in this article.

Since the training set used in the above ResUNet network
is obtained from the SDPG algorithm in FPUNet network and
also utilises the postprocessing method proposed by the FPUNet
network, the average absolute error and root-mean-square error
of phase unwrapping obtained using the ResUNet network are
not much different from FPUNet network, however, for ResUNet
network, many current deep learning phase unwrapping net-
works are using simulation data as a training set, for this reason,
we use the simulation data will have been trained ResUNet
network model, to phase unwrapping of the validation set D
area, assessment to ensure that the phase unwrapping accuracy
obtained by the two types of networks, and the results are
shown in Table VII, the FPUNet phase unwrapping average
absolute error is 0.329 rad, which is better than the ResUNet
unwrapping result of 9.95 rad. The FPUNet phase unwrapping
root-mean-square error is 0.558 rad, better than the ResUNet
unwrapping result of 10.248 rad. It can be seen from the above
quantitative statistics that our proposed FPUNet network is far
better than the ResUNe network using simulation data.

D. Evaluation of Transferability and Generalizability of
FPUNet Phase Unwrapping Algorithm

The mentioned studies utilized measured interferometric data
acquired from processed C-band Sentinel-1 SAR radar SLC
images, which the ESA captured between February 12 and
February 24, 2023. However, in the realm of InSAR deformation
monitoring, there is often a need to obtain long-term InSAR
deformation results, as exemplified by existing techniques like
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Fig. 11. Other time intervals of interferometric phase and FPUNet phase
unwrapping results. (a) Interferometric phase. (b) Phase unwrapping results.

persistent scatterer-interferometric synthetic aperture radar (PS-
InSAR) and small baselines subset-interferometric synthetic
aperture radar (SBAS-InSAR). It means that the unwrapped
phase information corresponding to different periods of the in-
terferometric phase needs to be obtained. However, the training
sample set of the FPUNet network needs to be constructed
for each period of the interferometric phase. In that case, the
efficiency of this approach in practical applications will be
significantly reduced. Therefore, exploring the transferability
and generalizability of the proposed FPUNet phase unwrapping
algorithm is particularly important. To effectively evaluate the
transferability and generalizability of the FPUNet phase un-
wrapping algorithm, we obtained individual complex images
from May 7 to May 19, 2023. We used the GAMMA software
to perform geocoding, registration, and interferometric prepro-
cessing to obtain the corresponding interferometric phase data.
Based on the FPUNet network model constructed in this article,
we have received the corresponding unwrapped interferometric
phase diagram for Zone A from May 7 to May 19, 2023, as
shown in Fig. 11. Fig. 11(a) shows the measured interferometric
phase obtained from May 7 to May 19, 2023, which differs from
the estimated interferometric phase obtained from February 12
to February 24, 2023, shown in Fig. 5(¢). The FPUNet phase
unwrapping method also demonstrates rapid acquisition of the
corresponding phase unwrapping result, as Fig. 11(b) depicts.
This experiment indicates that the proposed method in this
article eliminates the need for constructing a separate sample
set specifically for time-series interferometric data, facilitat-
ing time-series interferometric phase unwrapping, effectively
demonstrating that the FPUNet phase unwrapping algorithm
has strong transferability and generalizability, which provides
theoretical and technical support for the practical application of
the proposed method.

E. Evaluation of One-Step Unwrapping Algorithm Effect of
FPUNet Network

The one-step unwrapping approach has a significant advan-
tage over the end-to-end approach, i.e., it learns all the steps
between the input wrapping phase and the output unwrapping
phase without any postprocessing procedure. In order to ex-
plore how effective the FPUNet network is using one-step un-
wrapping, keeping the training set, learning parameters epochs,
batch size, learning rate and other parameters consistent with
the method of this article, the number of phase wrapping is
obtained for the validation set D area to evaluate the accuracy

TABLE VIII
COMPARISON OF MEAN ABSOLUTE ERROR AND ROOT-MEAN-SQUARE ERROR
OF ONE-STEP AND TWO-STEP PHASE UNWRAPPING

Evaluation Phase unwrapping algorithm
index FPUNet (two-step)  FPUNet (one-step)
MAE 0.329 10.279
RMSE 0.558 10.806
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Fig. 12.  FPUNet one-step and two-step phase unwrapping results. (a) One-
step. (b) Two-step.

of phase unwrapping obtained by the two networks. The results
are shown in Table VIII, and it is evident from the data in the
table that the average absolute error and root-mean-square error
of one-step phase unwrapping of FPUNet are more significant
than the error values of two-step phase unwrapping, which
are 4.048 and 4.852 rad, respectively. This finding emphasizes
that the two-step unwrapping approach may be more effective
for a given task. In addition, looking further at Fig. 12, we
find that one-step phase deconvolution has many discontinuous
regions after deconvolution splicing in the actual data region.
Such discontinuities may lead to instability in the unwrapping
results, especially in complex scenarios. Two-step unwrapping
can adjust the phase more carefully, which can better handle
these discontinuities and produce more continuous and accurate
unwrapping results. Therefore, although one-step unwrapping
has theoretical end-to-end advantages, the selective use of un-
wrapping methods for specific scenarios is crucial in practical
applications.

F. Uniqueness of the FPUNet Phase Unwrapping Algorithm

In the field of InSAR, the accuracy of phase unwrapping
is crucial for the accuracy of elevation or deformation rate,
especially in complex mountainous areas and high-noise regions
with large gradient changes. In the past, most phase unwrapping
algorithms based on deep learning have been experimented with
using simulation data. At the same time, the research in this
article focuses more on verifying the reliability of the algorithms
using actual data. In this study, the FPUNet phase unwrapping
algorithm is proposed, and its core idea is to use deep learning
networks to solve the phase unwrapping problem quickly. It is
worth noting that we have not neglected the importance of the
SDPC algorithm when parsing the FPUNet phase unwrapping
algorithm. The SDPC algorithm provides a critical preprocess-
ing step for FPUNet. In the region of high noise and large
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gradient variations, the SDPC algorithm can robustly provide
accurate phase unwrapping results, which provides a reliable
basis for the input data of FPUNet. Therefore, in this article,
the SDPC algorithm is regarded as an essential part of the
FPUNet phase unwrapping algorithm, and the two complement
each other to improve the accuracy and efficiency of phase
unwrapping. By combining FPUNet with the SDPC algorithm,
this study aims to provide a novel approach to solving the
phase unwrapping problem in InSAR, demonstrating excellent
robustness and accuracy in practical applications.

Currently, some phase unwrapping algorithms based on deep
learning utilize existing digital elevation models (DEMs), such
as SRTM DEM, as references for phase unwrapping. However,
this approach differs from the method described in this article.
InSAR technology aims to unwrap interferometric phases to
obtain phase information of target objects and elevation infor-
mation is then derived through a series of inversion methods. We
recognize that DEMs are not equivalent to phase unwrapping,
and DEMs such as SRTM DEM are not updated in real time.
Consequently, changes in terrain may occur in some areas due to
factors such as natural disasters or human activities, meaning that
SRTM DEM may not capture these changes. In deep learning,
using DEMs as references for phase unwrapping may be an
approximate approach. In contrast, our method, utilizing phase
unwrapping results obtained from the SDPC algorithm based
on real-time interferometric phases as the output layer of deep
learning, can achieve results closer to actual phase unwrapping
results with higher accuracy.

G. Comparative Analysis of Existing Deep Learning Phase
Unwrapping Models: A Necessity?

In this article, we introduce a method called the sliding win-
dow singular value correction model phase gradient corrected
unwrapping (SDPC) algorithm, aimed at addressing the chal-
lenge of practical phase unwrapping in complex mountainous
areas with high noise and large gradient regions. Unlike previous
literature, our focus is not on comparing the performance of deep
learning phase unwrapping models but on highlighting the ad-
vantages of the SDPC method in addressing phase unwrapping in
high noise and large gradient regions. The SDPC algorithm, by
introducing a sliding window singular value corrected model,
can effectively perform phase unwrapping in areas with high
noise and large gradient changes. We conducted a series of
experiments to validate the superiority and accuracy of SDPC
over traditional InSAR phase unwrapping methods (such as the
branch cutting method, the ILS method, and the MCF method).
The results demonstrate that SDPC performs remarkably well
in these challenging scenarios.

However, the SDPC method faces challenges in terms of
processing efficiency because it requires iterative computations.
To address this challenge, we have introduced deep learning
technology. Integrating deep learning techniques can accelerate
the unwrapping process and achieve rapid InSAR phase unwrap-
ping. Unlike research papers solely relying on deep learning for
phase unwrapping, the field of deep learning phase unwrapping
has witnessed the emergence of numerous new models, such

as PGNet, BCNet, and PUGAN [37], [38], [39]. Depending on
the learning objectives, deep learning-based phase unwrapping
methods include one-step phase unwrapping, two-step phase
unwrapping, phase gradient estimation methods, and BC de-
ployment methods. PGNet, BCNet, and PUGAN belong to
phase gradient estimation, BC deployment, and one-step phase
unwrapping methods, respectively. In contrast, the FPUNet used
in this article belongs to the two-step phase unwrapping method.
Each of these methods has its advantages. Of course, for both
phase unwrapping and two-step phase unwrapping methods, if
the performance of the deep learning network model itself is
good, then using the same dataset will undoubtedly yield better
results. Therefore, we did not compare it with other deep learning
models for the reasons above.

H. Shortcomings of the Proposed Method in This Article

Through a series of experiments and comparisons, the pro-
posed method in this article has been effectively demonstrated
to quickly and efficiently obtain InSAR phase unwrapping re-
sults in regions of high noise and large gradient variations.
However, the proposed method still needs some improvement.
1) When using the SDPC algorithm for phase unwrapping, a
single interferometric phase point needs to be selected, and phase
unwrapping is performed using the ILS method. Experimentally,
however, it has been found that different choices of the interfero-
metric phase points can lead to different degrees of discrepancy
in the results. Therefore, efficiently and accurately selecting
an interferometric phase point has become an essential tech-
nical difficulty in investigating and addressing in future studies.
2) When building the FPUNet network sample set, the empirical
sample set selected A region as the sample set for learning and
training. However, this choice may lead to sample features that
do not generalize well. In the future, we will focus on exploring
whether randomly selecting data of size 256 x 256 pixels from
the entire region as the sample set can effectively improve
the phase unwrapping accuracy of FPUNet. 3) The FPUNet
network proposed in this article is an enhanced network model
derived from ResUNet by incorporating a convolutional block
attention module. This module aims to enhance the accuracy of
different network models, given the remarkable advancements
of the Transformer model in natural language processing, com-
puter vision, and other domains, including the transformative
ChatGPT technology. It is worth exploring whether introducing
Transformer into the network model of this article can further
accelerate processing efficiency and accuracy.

VII. CONCLUSION

In complex mountainous regions, achieving precise and effi-
cient phase unwrapping results is challenging due to high noise
and regions with significant gradient variations. This article in-
troduces a rapid InSAR phase unwrapping approach for regions
characterized by high noise and large gradient variations in com-
plex mountainous areas. The study focuses on the Dongchuan
District of Kunming City in Yunnan Province, China. Simulated
data were introduced since the measured interferometric phase
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data could not determine the true phase. Through a series of
experimental results, the following conclusions were reached.

1) In the simulation experiments with high noise level data,
the SDPC phase unwrapping algorithm demonstrated su-
perior performance in unwrapping the phase in areas with
significant gradient changes, yielding results that closely
align with the true phase. Consequently, it exhibits en-
hanced accuracy and overall performance compared to
other phase unwrapping algorithms.

2) Inthe validation experiments with measured interferomet-
ric phase data, the SDPC algorithm performed excellently
under natural noise conditions, surpassing the other three
phase unwrapping algorithms regarding mean absolute
and root-mean-square errors. Moreover, the phase
unwrapping results obtained by the SDPC algorithm
exhibited consistency with the true curve and displayed
minimal jump bias compared to the other algorithms.

3) The postprocessing method proposed in this study effec-
tively reduces the portion of the phase that cannot be
accurately predicted by the deep learning model, thereby
enhancing the quality of the phase unwrapping results.
In validation sets C and D, the phase unwrapping results
achieved by FPUNet align well with those obtained by
the SDPC algorithm. Notably, in region D, the similarity
curve generated by the FPUNet unwrapping algorithm
exhibits smoother characteristics compared to the SDPC
algorithm.

4) For region D, the fastest time for ILS is 2.5 s, but ILS does
not effectively guarantee the quality of the unwrapping,
while the time required for unwrapping with FPUNet is
8.975 s. Although its time is not the fastest compared
to ILS, it demonstrates powerful performance, can guar-
antee unwrapping accuracy, and takes into account the
processing efficiency in regions with high noise and larger
gradient variations.

5) The FPUNet phase unwrapping algorithm has a substantial
transfer and generalization capability. That is, it does not
require the acquisition of unwrapped phase information
corresponding to different interference phases at different
periods to construct the training sample set of the FPUNet
network, which effectively improves its efficiency and
adaptability in practical applications.

In summary, the proposed SDPC algorithm demonstrates ex-
cellent performance in the face of complex mountainous regions
with high noise and large gradient variations and can obtain ac-
curate unwrapping results. Meanwhile, combining the FPUNet
algorithm can further improve the unwrapping efficiency and
processing speed. These results provide valuable references and
demonstrate applications to the phase unwrapping problem in
complex mountainous regions.
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