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Abstract—This article proposes a new method for estimating
target polarimetric entropy from dual-polarimetric (DP) synthetic
aperture radar (SAR) data based on the reciprocity assumption
commonly applied in the processing of full-polarimetric (FP) SAR
data. By applying matrix analysis theory, an explicit mathematical
relationship is established between the proposed DP entropy and
the widely used FP entropy, based on which relationships among
existing DP entropies and the FP entropy are also elucidated
theoretically. Comparative experiments using FP data from San
Francisco acquired by Gaofen-3 and Radarsat-2, along with DP
data from the same region acquired by Sentinel-1, validate the effi-
cacy of the theory and demonstrate the superiority of the proposed
entropy in characterizing the randomness of target polarimetric
scattering, which, compared to existing DP entropies, showcases
better consistency with the target FP scattering characteristics and
better performance for target classification in terms of both overall
accuracy and reliability. Highly consistent results are also observed
in the experiment based on AIRSAR data from Flevoland, which
primarily focuses on analyzing the performances of DP entropies
across various types of crops with low-to-medium FP entropy.
Besides, this better target discrimination property of the proposed
entropy also leads to its more accurate result in landslide detection,
improving the capability for target feature description and disaster
monitoring using DP data effectively. It is worth noting that while
we apply the proposed theory to the DP data of Sentinel-1, the
theoretical analysis approach is universally applicable to other DP
modes as long as reciprocity holds.

Index Terms—Dual-polarimetric (DP) synthetic aperture radar
(SAR), matrix analysis, polarimetric scattering entropy, reciprocity
theorem, Sentinel-1 data.
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I. INTRODUCTION

COMPARED to full-polarimetric (FP) synthetic aperture
radar (SAR) systems that can capture the complete polari-

metric scattering information of the remotely sensed target [1],
[2], dual-polarimetric (DP) SAR systems have gained a wider
range of Earth observation applications due to distinct advan-
tages in cost, system complexity, observation scale, etc. [3], [4],
[5]. However, with only partial polarimetric information, it is
challenging to extract polarimetric features with clear physical
significance from the DP data for target interpretation [6], [7].
Numerous studies have been dedicated to identifying polari-
metric features from DP information that are consistent with
their FP counterparts [8], [9], [10]. This is not only because
parameters extracted from FP data more realistically reflect the
target features and the related research is more comprehensive,
but also aims to deeply explore the potential of DP information,
thereby enabling more effective and diverse applications, e.g.,
biomass mapping, forest evolution monitoring, soil moisture
retrieval, and permanent water body identification [5]. Among
them, the most indispensable and frequently applied parameter
is the polarimetric entropy, initially proposed based on the FP
data [11] and later introduced into the DP case by Cloude [7].
Due to its capability to accurately reflect the depolarization
statistics of targets, the FP entropy has found extensive use in
applications such as terrain/land-use classification and target
recognition [12], [13], [14]. Besides, it has demonstrated a
significant advantage in change detection compared to other
polarimetric parameters [15], [16]. Since the target depolariza-
tion feature can also be reflected in its DP data [7], and given
the growing importance of environmental surveillance based
on DP SAR missions, such as Sentinel-1 [17], [18], [19], the
estimation of entropy from DP data holds great promise for
various applications [20], [21], [22], [23]. It is worth noting
that the other two regularly used DP features of the target [10],
[24], [25], anisotropy and degree of polarization, essentially
possess the same information as the DP entropy [10], further
corroborating the significant role the DP entropy plays in target
feature analysis.

However, there is a crucial debate on the definition of entropy
for DP data, i.e., there are two different estimation methods
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proposed by Cloude [7], and Ji and Wu [8], respectively. The
former has been mostly adopted, such as in maritime target
detection [20], vegetation classification [26], and agricultural
monitoring [22], while the latter has also been applied to soil
state identification [19], persistent scatterer analysis [27], and
so on [17]. Nevertheless, there is a lack of theoretical analysis
and comparison between these two methods. The characteristics
of each method in target recognition are not yet clear, making it
difficult to fully leverage their respective advantages. More im-
portantly, it is known that partial information in FP data is shared
with DP data, and FP and DP entropies share the same physical
significance, but the relationship between different entropies has
not been studied theoretically and quantitatively so far, even
though many studies have compared their performances experi-
mentally [15], [16]. These issues seriously affect our knowledge
of the DP entropy and impede its effective applications based on
theoretical guidance. In addition, the performances of existing
DP entropies in discerning targets and detecting changes are
also unsatisfactory, as indicated by related research [3], [15],
[20], even though they have been adopted by most DP data
applications. Therefore, both in terms of theoretical analysis and
practical applications, significant gaps and challenges still exist
in the research on DP entropy.

To address the aforementioned issues, this article conducts
research on the estimation method of target polarimetric entropy
based on DP data. We propose a new scattering vector model
for target DP information based on the reciprocity assumption
commonly applied in FP data processing, and then a new entropy
is derived according to its definition. According to the connec-
tion between the new DP and the FP scattering vectors, explicit
mathematical relationships can be established between the pro-
posed DP entropy and the widely used FP entropy by applying
matrix analysis theory, and based on which, relationships among
existing DP and FP entropies can also be clarified theoretically.
The theory efficacy is verified by comparative experiments using
San Francisco FP data acquired by Gaofen-3 and Radarsat-2 and
DP data acquired by Sentinel-1. The performances of different
entropies on various targets are analyzed both theoretically and
experimentally, demonstrating the superiority of the proposed
entropy in characterizing the randomness of target polarimetric
scattering compared to existing DP entropies. Meanwhile, fac-
tors contributing to the difference between the FP and the DP
entropies are discussed systematically to provide insight into
their divergence and offer guidance for DP entropy application
in future contexts. Similar results are observed in the experiment
based on Airborne SAR (AIRSAR) data from Flevoland, which
primarily focuses on analyzing the performances of DP entropies
across various crops with low-to-medium FP entropy. Besides,
the experiment using Sentinel-1 data acquired before and after
the 2022 Luding earthquake [28] further implies that a more
accurate result in landslide detection can be obtained with the
proposed DP entropy due to its better target discrimination
capability.

It needs to be clarified that since the proposed method is
based on the reciprocity assumption, its applicability is subject to
the validity conditions of the reciprocity theorem. Nonetheless,
considering that reciprocity is a basic assumption always made

in FP SAR data processing [29] as nonreciprocal backscatter
problems are not common in the remote sensing of natural land
and sea surfaces [2], and experiments in the article prove the
validity of the reciprocity theorem, the proposed method has
wide applicability.

The rest of this article is organized as follows. Section II
introduces the definition of the target FP entropy, along with
existing and proposed methods for target DP entropy estimation.
The theoretical analysis of their relationships is presented in
Section III and Section IV validates it by processing multiple sets
of FP and DP data and analyzes the performances of different
entropies on various targets. Section V further compares DP
entropies on various low-to-medium FP entropy crops using
AIRSAR data, and in Section VI, they are applied to landslide
detection. Some key points related to the work are discussed in
Section VII. Finally, Section VIII concludes this article.

II. POLARIMETRIC ENTROPY ESTIMATION

A. Entropy Estimation From FP Data

The fully polarimetric scattering of a pure/single target can
be modeled by the scattering matrix

[S] =

[
SHH SV H

SHV SV V

]
(1)

where the first and second letters of the matrix element subscript
represent the transmitted and received polarizations, respec-
tively. Under the reciprocity condition SHV = SV H [1], [2],
[30], the Lexicographic feature vector is obtained as

c =
[
SHH

√
2SX SV V

]T
(2)

where the superscript T denotes transposition operation. Al-
though SX shown in (2) is always written as SHV , in practical
FP SAR data processing it is obtained by

SX =
SHV + SV H

2
(3)

serving as the cross-polarization component of the target scatter-
ing [1], [2], [31]. The target covariance matrix is then expressed
as

[C] = 〈c · c∗T〉

=

〈⎡
⎢⎣ |SHH |2 √

2SHHS∗
X SHHS∗

V V√
2SXS∗

HH 2|SX |2 √
2SXS∗

V V

SV V S
∗
HH

√
2SV V S

∗
X |SV V |2

⎤
⎥⎦
〉

=

⎡
⎢⎣C11 C12 C13

C∗
12 C22 C23

C∗
13 C∗

23 C33

⎤
⎥⎦ (4)

where 〈·〉 denotes ensemble average.
The polarimetric entropyH is defined as the degree of statisti-

cal disorder of each distinct scatter type within the ensemble [1],
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[2], which is given by

H = −
3∑

i=1

pilog3pi (5)

where pi corresponds to the pseudoprobability obtained from
the eigenvalue λi of [C]

pi =
λi∑3
j=1 λj

=
λi

SPAN
(i = 1, 2, 3) (6)

and SPAN is the target total power. Since [C] is a Hermitian
positive semidefinite matrix, we adopt the convention that its
eigenvalues are arranged in algebraically nonincreasing order
that λ1 ≥ λ2 ≥ λ3 ≥ 0.

B. DP Scattering Vector Model and Entropy Estimation

Similarly, the entropy of the DP data is extracted from the
eigenvalues of the DP covariance matrix, which is constructed
by the target DP scattering vector [7], [8].

Let us take the second column of [S] as the data obtained
by the DP SAR system (it is the case for Sentinel-1). Cloude
constructs the scattering vector directly under Lexicographic
basis as cC = [SV V SV H ]T [7], and the covariance matrix is
[CC ] = 〈cC · c∗T

C 〉. On the other hand, Ji and Wu adopt cJ =
[SV V 2SV H ]T as the DP scattering vector [8] to construct the
covariance matrix [CJ ].

Different from the two, this article proposes a new scattering
vector model in order to represent the DP observation more
approximate to the target FP scattering characteristic, as

cL =
[
SV V

√
2SV H

]T
(7)

and the covariance matrix is

[CL] = 〈cL · c∗T
L 〉 =

〈[
|SV V |2

√
2SV V S

∗
V H√

2SV HS∗
V V 2|SV H |2

]〉
.

(8)
Note that the form of cL comes from the widely accepted

reciprocity assumption in FP information processing, which
is often used as SHV = SV H in the scattering matrix of a
monostatic radar in the HV polarization basis [30]. Nonrecipro-
cal backscatter problems, which may arise due to propagation
effects (such as Faraday rotation), interaction with special mate-
rials, or potentially measurement noise [32], are uncommon in
the remote sensing of natural land and sea surfaces [2]. Thus, the
reciprocity assumption, which holds true in the vast majority of
cases, is fundamental and crucial for the processing of FP SAR
data [1], [30]. It is important to recognize that Faraday rotation
represents an important exception that affects the validity of
the reciprocity theorem, yet this phenomenon primarily impacts
low-frequency (L- or P-band) spaceborne SAR systems to a cer-
tain extent [1], [2]. In summary, the applicability of cL is aligned
with the conditions under which the reciprocity assumption can
be made, and subsequent experiments will be conducted using
C-band spaceborne and L-band airborne SAR data, which are
less affected by Faraday rotation [1], [2], [29].

Accordingly, when the reciprocity theorem SHV = SV H

holds, it is reasonable to think the DP data contains the infor-
mation of SHV with a virtual total power of

SPANL = 〈|SV V |2〉+ 〈|SV H |2〉+ 〈|SHV |2〉
= 〈|SV V |2〉+ 2〈|SV H |2〉. (9)

The factor
√
2 in (7) ensures the power consistency of (8) and (9),

which has a clear physical significance and does not deviate from
the actual polarimetric scattering characteristics of the target.

Different DP entropies will be obtained based on different
scattering vectors [7], [8], and as for the proposed cL case, HL

can be expressed as (see Appendix A for the detailed derivation)

HL = −pLlog2pL − (1− pL)log2(1− pL) (10)

where pL is the maximum pseudoprobability obtained from λL,
the maximum eigenvalue of [CL], i.e.,

pL =
λL

SPANL

(
1

2
≤ pL ≤ 1

)
. (11)

According to (10), HL is uniquely determined by pL and is
monotonically decreasing over pL. The same can be derived for
the DP entropies proposed by Cloude (HC) and Ji and Wu (HJ ).
Therefore, the theoretical analysis of DP entropies hereinafter
will be replaced by that of their maximum pseudoprobabilities,
which have explicit analytical expressions.

III. THEORETICAL ANALYSIS OF FP AND DP ENTROPIES

In this section, relationships between the FP entropy H and
DP entropies HC , HJ , and HL are discussed and illustrated
by data simulation, and a detailed description of the simulation
steps is given in Appendix B. Note that the following theoretical
analysis is performed under the reciprocity assumption, which
represents the ideal observation of reciprocal targets by a mono-
static backscatter polarimetric SAR system.

A. Relationships Between DP Entropies HC , HJ , and HL

According to (7)–(11), the analytical expression of pL can be
derived, and those of pC and pJ can be obtained similarly, which
can be written as (see Appendix A for the detailed derivation)

pC =
1

2
+

√
(rC − 1

2 )
2 + 2rX

2(rC + 1
2 )

(12)

pJ =
1

2
+

√
(rC − 2)2 + 8rX
2(rC + 2)

(13)

pL =
1

2
+

√
(rC − 1)2 + 4rX
2(rC + 1)

(14)

where ⎧⎨
⎩
rC = 〈|SV V |2〉

2〈|SV H |2〉

rX =
|〈SV V S∗

V H 〉|2
2〈|SV H |2〉2

, rC ≥ rX ≥ 0 (15)

and in the case of reciprocity, we have rC = C33/C22 and
rX = |C23|2/C2

22, i.e., for any given FP covariance matrix of
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Fig. 1. Simulation results of the relationships between different entropies,
where the first row shows the relationships among DP entropies, i.e., (a) HC

and HL, (b) HJ and HL, and (c) HJ and HC , and the second row compares
DP entropies with FP entropy, respectively, i.e., (d) HL and H , (e) HC and H ,
and (f) HJ and H . The black dashed line of each figure is the angle bisector of
the two axes.

a target, pC , pJ , and pL can be directly calculated. On the
other hand, when pL is known, the ranges of pC and pJ can
be determined separately by considering possible values of rC
and rX . Accordingly, relationships between HC , HJ , and HL

can be established, as shown in Fig. 1(a), (b), and (c). In general,
they are highly linearly correlated. It can be observed that they
share the same definition for the single target, i.e., they all equal
0 when rC = rX . However, as the difference between rC and
rX emerges, variations also occur. For the random target, HC ,
HJ , and HL have different definitions due to differences in
their covariance matrix forms, i.e., HC = 1 when rC = 1/2 and
rX = 0, HJ = 1 when rC = 2 and rX = 0, and HL = 1 when
rC = 1 and rX = 0.

Besides, the following relationship can also be derived

HC ≤ HL, when rC ≥
√
2/2 (16)

HC ≤ HJ , when rC ≥ 1 (17)

HL ≤ HJ , when rC ≥
√
2 (18)

which will be further discussed in the experiments.

B. Relationship Between HL and H

Undoubtedly, it is impossible to find an exact expression
between DP entropy and FP entropy because of the missing
information of DP data compared with FP data. However, con-
sidering the common entries of DP and FP covariance matrices, it
is possible to predict the performance of DP entropy at a givenH
to some extent. The relationship betweenHL andH is discussed
first based on theorems of matrix analysis.

As shown in (4) and (8), under the reciprocity assumption
SHV = SV H , [CL] is a principal submatrix of [C]. Therefore,
their eigenvalues have the following inequality relationship ac-
cording to Cauchy’s interlacing theorem [33]

λ1 ≥ λL ≥ λ2 ≥ SPANL − λL ≥ λ3 (19)

which can be expressed in the form of pseudoprobability as

p1 ≥ pL · rS ≥ p2 ≥ (1− pL) · rS ≥ 1− p1 − p2 (20)

where

rS =
SPANL

SPAN
(0 ≤ rS ≤ 1) (21)

reflects the power relationship between the DP and the FP
data. The relationship between the main diagonal entries and
the eigenvalues of a Hermitian matrix given by Schur further
restricts the range of rS [33], as

1− p1 ≤ rS ≤ p1 + p2. (22)

With the above restrictions, the range of pL can be derived as
a function of p1, p2, and rS

max

{
p2
rS

, 1− p2
rS

}
≤ pL ≤ min

{
p1
rS

, 1− 1− p1 − p2
rS

}
.

(23)
Since H is determined by p1 and p2, (23) illustrates that the
only uncertain factor between H and HL is rS , which is also
influenced by p1 and p2.

Accordingly, the relationship between HL and H can be
deduced, as shown in Fig. 1(d). Overall, although there is
uncertainty in the values of HL for any given H , the correlation
betweenHL andH can be clearly identified, and the uncertainty
between them decreases as H increases. Specifically, when H
is less than 0.6309, HL can take any value within the [0, 1]
range. And their difference reduces to 0 when H = 1, which is
a sufficient condition for HL = 1. Note that the 0.6309 can be
derived from another perspective, i.e., the maximum value H
can achieve when HL = 0. Since HL = 0 means pL = 1, and
by substituting it into (20), the constraint p1 + p2 = 1 can be
obtained. Accordingly, the maximum value of H in this case
can be deduced to be 0.6309.

This phenomenon can also be explained in terms of physical
significance. On the one hand, a small H value implies low
polarimetric randomness in the target scattering, and maybe one
scattering mechanism dominates the FP covariance matrix. In
this case, the correlation between the corresponding scattering
vector and the lost information of the DP data determines HL,
which can be any value within [0, 1]. On the other hand, a
large H value indicates that the target with high scattering
randomness has three orthogonal scattering mechanisms with
approximate power. In such a situation, its DP covariance matrix
also preserves the feature as a principal submatrix of the FP
covariance matrix, and HL will also be large.

C. Relationships Between HC , HJ , and H

Although no eigenvalue inequality can be applied to establish
direct connections between pC and pJ with H , as demonstrated
in the preceding section, (12)–(14) can be employed to convey
the constraint (23) on pL to them. Fig. 1(e) and (f) illustrate
the relationships between HC and H and between HJ and
H , respectively, which exhibit similar characteristics to that of
HL in general. However, when H ≥ 0.6309, the ranges of the
two for a given H are larger than that of HL, showing greater
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uncertainty. Besides, different from HL, H = 1 is a sufficient
condition for HC �= 1 and HJ �= 1. In other words, both HC

and HJ are unable to attain their maximum values when H
reaches its maximum value. This makes their interpretation of
the completely random target inconsistent with that of H .

D. Discussions of Other DP Modes

While the above analysis takes the polarization mode of
Sentinel-1 (VV-VH) as an example, the methodology and find-
ings are equally applicable to other DP modes, namely, the
HH-VV and the HH-HV modes. For the HH-VV mode, as
there is no cross-polarization scattering information acquired,
the entropy estimation methods by Cloude, Ji and Wu, and this
article are the same. In this case, the relationship between the
DP and the FP entropy is the same as that shown in Fig. 1(d).
For the HH-HV mode, relationships of HL, HC , and HJ with
H shown in Fig. 1(d), (e), and (f) still hold. It should be noted
that definitions of rC , rX , and rS vary for different DP modes.

IV. EXPERIMENT WITH SPACEBORNE C-BAND FP AND DP
SAR DATA FROM SAN FRANCISCO

A. Theory Verification With Simulated DP Data

This part uses simulated DP data of VV and VH polarizations
from FP data to verify the theoretical analysis above, as is
commonly done in related research [21], [34], [35].

Two sets of FP SAR data of San Francisco obtained re-
spectively by C-band spaceborne radar systems Gaofen-3 and
Radarsat-2 are employed to demonstrate the universality of
the theory. Before data processing, we calculate the Pearson
product-moment correlation coefficient between SX and SV H ,
the cross-polarization components respectively employed by FP
and DP data analysis, which is 0.9937 of the Gaofen-3 data
and 0.9885 of the Radarsat-2 data, indicating the validity of
the reciprocity assumption. For both the two data, the original
single-look complex scattering matrix data is multilooked by 2
× 2 (in the range and azimuth) to generate the FP covariance
matrix, then a 3 × 3 boxcar filter is applied to reduce the speckle
noise. Same processing is done to obtain the DP covariance
matrices based on cC , cJ , and cL, respectively.

Scatterplots of the derived entropies are shown in Fig. 2, with
theoretical boundaries extracted from Fig. 1(d), (e), and (f) in
red dotted lines. It shows that with only several discrete points
beyond the range, the conclusion for the ideal reciprocal target
is effective for most of the simulated DP data due to the high
correlation between the target cross-polarization components.
Fig. 3 shows the optical image of the experimental area, which
includes various land cover types. Images of entropies are shown
in Fig. 4(a)–(h), where the first and second rows present the
results of the Gaofen-3 and Radarsat-2 data, respectively, and
from left to right are H , HC , HJ , and HL, respectively. Overall,
the results of the two data are highly consistent, and consider-
ing their different resolution, observation time, incidence, etc.,
subtle differences in the following quantitative analysis are also
reasonable. Since the FP and DP entropies have similar physical

Fig. 2. Scatter diagrams comparing FP entropy H with DP entropies (a) and
(d) HL, (b) and (e) HC , and (c) and (f) HJ , respectively. The first and second
rows are the results of the Gaofen-3 and Radarsat-2 dada, respectively. The red
dotted lines depict boundaries given by theoretical analysis, and the black dashed
line of each figure is the angle bisector of the two axes.

Fig. 3. Optical image of the experimental area in San Francisco, USA from
Google Earth, with white squares marking five typical targets: the ocean (area
A), the built-up areas with small, medium, and large polarization orientation
angles (areas B, C, and D), and the vegetated region (area E).

significance [7], it is reasonable to observe their similar perfor-
mances on specific targets, i.e., they are small for the ocean and
lakes with single scattering mechanism, while they are almost 1
for parks and mountainous areas with strong volume scattering,
and values of built-up areas are in between.

Fig. 4(a)–(h) show that HL is much more consistent with H
than HC and HJ , and HL appears larger than HC while smaller
than HJ . This can be further confirmed by Fig. 5, which shows
the statistical histograms of the differences between H and DP
entropies. Qualitatively, it can be explained from two aspects.
On the one hand, it is known that |SV H | is usually much smaller
than |SV V |, so [CC ] is closer to a rank-1 matrix than [CL] and
[CJ ], with a higher pC value and, therefore, a lower HC value.
On the other hand, the cross-polarization component SV H is
usually induced by complex building areas or natural targets
classified as distributed target [1], [36], which will be apparently
depolarized after the ensemble average. And [CJ ] constructed
by cJ with 2SV H enhances the depolarization effect compared
with [CL] and [CC ], so it leads to a larger entropy. Quantitatively,
since most of the pixels (about 96% of the Gaofen-3 data and
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Fig. 4. Entropies derived from the (a)–(d) Gaofen-3, (e)–(h) Radarsat-2, and
(i)–(k) Sentinel-1 data, respectively. From left to right, each column represents
H , HC , HJ , and HL, respectively. The white squares mark the sample areas
for the ocean region (A), the built-up areas with small, medium, and large POA
(B, C, and D), and the vegetated region (E). The pink dashed rectangles in (a)–(h)
indicate the classification zones of the Gaofen-3 and Radarsat-2 data.

Fig. 5. Histograms of the differences between FP entropyH and DP entropies
of the (a) Gaofen-3 and (b) Radarsat-2 data, respectively.

92% of the Radarsat-2 data statistically) satisfy the condition
that rC ≥ √

2, according to (16)–(18), the phenomenon HC ≤
HL ≤ HJ is obvious.

Furthermore, takingH as the reference, we compute the mean
absolute difference (MAD), root mean square of the difference
(RMSD), and the coefficient of determination R2 of HC , HJ ,
and HL, respectively. As listed in the third column of Table I,
compared with HC and HJ , HL holds the smallest MAD and
RMSD and the largest R2 on both the Gaofen-3 and Radarsat-2
data, and this conforms with the results shown in Fig. 5, showing
its best consistency with the FP entropy. Besides, statistical
analysis is also conducted on sample areas to quantitatively
evaluate their performances on various targets. Five kinds of
typical targets in the scene are marked as shown in Fig. 3, i.e.,
the ocean (area A), built-up areas with small, medium, and large
polarization orientation angle (POA) (areas B, C, and D) [37],

Fig. 6. Relationships between H and DP entropies on sample areas of the
(a) Gaofen-3, (b) Radarsat-2, and (c) Sentinel-1 data, respectively.

[38], and vegetated region (area E). Columns 4 to 8 of Table I
show the MAD and RMSD for sample areas A-E. R2 is not
used here because it provides more information when evaluating
regression analysis rather than analysis of sample data with the
same characteristics, and the nonlinear relationship between FP
and DP entropies could lead to the meaningless result R2 < 0
[39]. Nevertheless, using the MAD and RMSD is sufficient to
reflect the cognitive differences between FP and DP entropies
on different targets. Specifically, compared to HC and HJ , the
proposed DP entropy HL exhibits higher consistency with H in
sample areas C, D, and E for both datasets. For the ocean area A,
HJ andHL each perform optimally on Gaofen-3 and Radarsat-2
data, respectively. However, since the MAD and RMSD for all
three DP entropies are very small, their differences in ocean
areas are not significant. It is interesting to note that HJ shows
higher consistency with H only for the small POA built-up
area B. This is easy to explain by visualizing the relationships
between H and DP entropies on the sample areas, as shown in
Fig. 6(a) and (b), which respectively compare DP entropies with
H in the sample areas from Gaofen-3 and Radarsat-2 data with
error bars provided. It indicates that HC and HL in area B are
significantly lower than H , hence the higher entropy estimation
of HJ is closer to H . A detailed analysis of this phenomenon is
provided in Sections IV-C and IV-D. Considering that the R2 of
HL for the whole scene are larger than 0.8 of the two datasets,
it is reasonable to take HL as an effective descriptor of target
polarimetric scattering randomness.

B. Classification Experiment Based on Different Entropies

Furthermore, a classification experiment is conducted to
quantitatively compare the differentiation capability of different
entropies on various targets. Fig. 7(a) and (b) present part of
the ground truth maps of Gaofen-3 and Radarsat-2 data, respec-
tively, with five kinds of targets marked: water body, urban areas
with small, medium, and large POA, and vegetated regions [40].
However, as shown in Figs. 4 and 6, the four entropies, i.e., H ,
HC ,HJ , andHL, fail to significantly differentiate between large
POA urban area and vegetated region. Analysis of them using
the Calinski–Harabasz criterion [41] led to the same conclusion:
to avoid overfitting thus diminish target recognition capability
of polarimetric entropy, the ideal clustering number is four.
Accordingly, the classic k-means++ algorithm [42] is applied
to cluster targets according to their entropy values into four
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TABLE I
STATISTICAL DIFFERENCES BETWEEN FP ENTROPY AND DP ENTROPIES ON GAOFEN-3 AND RADARSAT-2 DATA

TABLE II
CLASSIFICATION RESULTS EVALUATION (%) WITH DIFFERENT ENTROPIES BASED ON GAOFEN-3 AND RADARSAT-2 DATA

Fig. 7. Ground truth maps of the classified areas of the (a) Gaofen-3 and
(b) Radarsat-2 data, respectively.

categories, respectively. And ordered by increasing centroid
values, these categories correspond to water body, urban areas
with small, medium, and large orientations/vegetated regions,
respectively. The classification results of the four entropies are
illustrated in Fig. 8 and detailed in Table II.

It can be observed that the proposed DP entropy HL achieves
the highest overall classification accuracy and kappa coefficient
in both datasets. Moreover, compared to the other two DP en-
tropies, HL exhibits optimal or suboptimal performance across
all four types of targets. In contrast, HC and HJ show absolute
advantages in identifying low entropy targets (water body) and

high entropy targets (large POA urban areas/vegetated regions),
respectively. This can be attributed to the general lower values
of the former and higher values of the latter, resulting in weaker
differentiation capabilities for various types of targets compared
toHL, as reflected by the kappa coefficients also. It is noteworthy
that the classification performance of the FP entropy H does not
always surpass that of DP entropies. This is primarily due to
its lower recognition accuracy in small POA urban areas, and
as aforementioned, this difference in performance between H
and DP entropies will be analyzed in detail based on scattering
mechanism in subsequent subsections. Nevertheless, the overall
classification accuracy and kappa coefficient of H fall between
those of HC and HJ , and its performance in other classes of
targets is at least superior to one DP entropy.

C. Experiment With Sentinel-1 DP Data

As aforementioned, the reciprocity assumption and the sim-
ulation of DP data using FP data represent an ideal situation
of the polarimetric data, which can hardly be true in practice.
Therefore, the data of the same area obtained by DP SAR
Sentinel-1 is utilized in this part to further compare different
DP entropies in real situations as well as examine the validity of
the simulated DP data in Sections IV-A and IV-B.

Fig. 4(i)–(k) display the estimated HC , HJ , and HL from
the Sentinel-1 data, respectively. Despite their high values of
the ocean, which will be discussed later, the entropies of the
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Fig. 8. Classification results of different entropies on Gaofen-3 (the first row) and Radarsat-2 (the second row) data, respectively. (a) and (f) Ground truth maps
of four classes. Classification results of (b) and (g) H , (c) and (h) HC , (d) and (i) HJ , and (e) and (j) HL, respectively.

TABLE III
STATISTICAL CHARACTERISTICS OF DIFFERENT ENTROPIES IN SAMPLE AREAS OF GAOFEN-3, RADARSAT-2, AND SENTINEL-1 DATA

Sentinel-1 data exhibit characteristics similar to those of the
Gaofen-3 and Radarsat-2 data. Performances of these real DP
entropies on sample areas A-E are shown in Fig. 6(c), where the
Hcomb for reference is obtained by combining theH of Gaofen-3
and Radarsat-2 data. As shown in Fig. 6, the specific values of
which are listed in Table III, the phenomenon that HC ≤ HL ≤
HJ can be observed for almost all the sample areas of the three
data, except for the Radarsat-2 data of area D, theHL of which is
slightly larger than HJ , and for the Sentinel-1 data of area A, all
the DP entropies deviate significantly from Hcomb. On areas C,
D, and E, results from the three data are highly consistent, with

HL performing better than HC and HJ , demonstrating good
agreement with the target FP entropy.

On areas A and B, results from the measured DP data not
only differ from the FP entropy H but also vary from those of
the simulated data. This discrepancy may be attributed to two
factors. First, the lack of information regarding SHH makes
the difference between the DP and FP entropies inevitable.
The impact of SHH on DP entropy estimation, as shown in
Fig. 1(d)–(f), is challenging to predict. For instance, the HL of
area B is underestimated due to the small SV H component of
the target, and the existence of SHH will increase the degree
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Fig. 9. Relationships between ΔH and its influencing parameters (a) and (e) H , (b) and (f) rS , (c) and (g) p3, and (d) and (h) rSS . Images of the first and second
rows are the results of the Gaofen-3 and Radarsat-2 data, respectively. The black dotted lines in (a)–(c) and (e)–(g) depict boundaries given by theoretical analysis.

of randomness. Conversely, the HL of area E is overestimated
because of the high SV H component, which can be moderated
to the level of H by including SHH . Second, it is known
that the DP SAR measurements are not equivalent to the FP
ones in several aspects, including calibration. Thus, the ideal
estimation provided by simulated data cannot be obtained in
practice, and the difference of DP entropies on area B between
Fig. 6(a)–(c) is reasonable. As for the ocean area A, due to the
large incident angle of Sentinel-1, which results in the small
radar cross-section, the measurement deviation may be more
pronounced than in other target areas.

The experiment demonstrates strong consistency between the
measured and the simulated DP data in estimating entropy for
medium and high randomness targets, and when compared to
HC and HJ , HL proves to be a more accurate substitute for H .
These findings are in line with the theoretical analysis presented
in Section III, which suggests that as the FP entropy of the
target increases, the gap between DP and FP entropies decreases.
In addition, experimental results based on Sentinel-1 data also
show the poor abilities ofHC andHJ for distinguishing different
targets, asHC is usually larger thanH andHJ is usually smaller
than H , which is in conformity with the classification results
in the proceeding subsection. Moreover, this will fundamentally
affect their change detection performances, which will be further
analyzed in Section VI.

D. Discussion on the Difference Between H and HL

While HL exhibits greater consistency with H and better
target classification performance in comparison to HC and HJ ,
we have stressed that the discrepancy between HL and H
(represented by ΔH = H −HL) is inevitable due to the lack of
information about SHH . Building upon the theory presented in
Section III-B, the following experiment delves into the factors
that significantly influence ΔH and discusses them on different
targets marked in Fig. 3.

According to (19)–(23), we identify three parameters that
are directly associated with ΔH , i.e., H , rS , and 1− p1 − p2
(hereinafter referred to as p3). Fig. 9(a)–(c) and (e)–(g) illustrate
their respective relationships with ΔH based on the Gaofen-3
and Radarsat-2 data, and the black dotted lines represent the-
oretically derived boundaries. The results for H align with the
theoretical analysis for Fig. 1(d). Specifically, when H is less
than 0.6309, HL can take any value between [0, 1], while when
H exceeds 0.6309, the range of ΔH decreases with the increase
of H . The effect of rS on ΔH is predictable at both ends of
its range. For very small rS values (rS ≤ 0.1), indicating that
target DP power is small compared to its FP power, most of the
polarimetric information is associated with SHH , so H is small
and HL can assume any value within the [0, 1] range. When
rS equals 1, denoting targets with no SHH -related information,
it can be deduced that p1 = pL and p3 = 0. Consequently, H
corresponds to HL one-to-one, and ΔH varies within the in-
terval [−0.3691, 0], decreasing as H increases. The relationship
between p3 and ΔH is evident; as p3 increases, the uncertainty
of ΔH gradually decreases until it converges to 0. This implies
that compared to H and rS , p3 is a clearer indicator of the
performance of HL.

In addition to the parameters directly associated with HL,
the relationship between target scattering mechanisms and ΔH
is also investigated. In Section III-B, we point out that when
H is relatively small, the significant difference between H and
HL may arise from the high correlation between the dominant
scattering mechanism of the target and the missing informa-
tion in DP data. The scattering vector of the target dominant
scattering mechanism is the eigenvector u1 corresponding to
the maximum eigenvalue λ1 obtained after the eigendecom-
position of [C]. While the scattering vector represented by
the missing information in the DP data can be approximately
constructed as

kmis−a =
[√

C11
C∗

12√
C11

C∗
13√
C11

]T
. (24)
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Note that we say approximately because the covariance matrix
constructed by kmis−a is

[Cmis−a] = 〈kmis−a · k∗T
mis−a〉

=

⎡
⎢⎣
C11 C12 C13

C∗
12

|C12|2
C11

C∗
12C13

C11

C∗
13

C12C
∗
13

C11

|C13|2
C11

⎤
⎥⎦ (25)

while the actual covariance matrix of the DP missing information
is

[Cmis] =

⎡
⎢⎣C11 C12 C13

C∗
12 0 0

C∗
13 0 0

⎤
⎥⎦ . (26)

Nonetheless, as [Cmis−a](2,2) and [Cmis−a](3,3) are relatively
small compared to [Cmis−a](1,1), the difference between them has
little impact on the analysis. More importantly, since [Cmis] can-
not be the covariance matrix of a real target unlessC12 = C13 =
0 [43], [44], the approximation is necessary. The correlation
between kmis−a and u1 can be evaluated using the polarimetric
scattering similarity [45], calculated as

rSS =
k∗T

mis−a · u1 · u∗T
1 · kmis−a

Tr
(
kmis−a · k∗T

mis−a

) · Tr
(
u1 · u∗T

1

) (27)

where Tr(·) is the trace operation of a matrix, and rSS ∈ [0, 1].
Fig. 9(d) and (h) respectively present the relationship between
rSS and ΔH based on the Gaofen-3 and Radarsat-2 data. It can
be observed that when there is no apparent correlation between
the two, the distribution of ΔH is relatively uniform, ranging
between −0.1 and 0.5. On the other hand, a strong correlation
between the two (rSS ≥ 0.8) corresponds to the situation where
H andHL exhibit the greatest differences in values. For instance,
for targets with ΔH ≤ −0.4, there always exists rSS = 1.

We also mark the targets of sample areas A-E in Fig. 9. It
can be observed that mountainous area E, characterized by high
H and high p3 values, rS between 0.4 and 0.8, and low rSS

value, exhibits a relatively small ΔH . Urban areas B, C, and D
display similarΔH characteristics, withΔH gradually decreas-
ing as H increases due to the orientation effect. Images of rSS

reveal a significant correlation between the primary scattering
mechanism of urban targets and the polarimetric information
missing in the simulated DP model, especially evident in the
low-entropy area B. This explains the substantial difference in
HL and H observed in region B of Fig. 6. For ocean area A,
ΔH is relatively small based on simulated data, yet its rSS is
close to 1, indicating a high correlation between its kmis−a and
u1. Consequently, although the simulated situation results in
nearly equal DP and FP entropies for the ocean, significant ΔH
values may occur in actual measured data, as demonstrated by
the Sentinel-1 data shown in Fig. 4.

The analysis of factors influencing ΔH leads to the conclu-
sion that HL serves as an excellent surrogate for H in targets
with medium to high entropy or large p3 values. However, for
targets with low entropy, the performance of HL is related to
rSS . Taking the polarimetric mode of Sentinel-1 as an example,

Fig. 10. Images of the experimental area in Flevoland, Netherlands, where
(a) is the Pauli vector color-coded image and (b) is the ground truth map with a
total of 15 types of targets identified.

Fig. 11. FP and DP entropies derived from the Flevoland data, i.e., (a) H ,
(b) HC , (c) HL, and (d) HJ .

urban areas and the ocean may exhibit significant inconsistencies
between HL and H due to their extremely high rSS values.

V. EXPERIMENT WITH AIRSAR L-BAND FP DATA

FROM FLEVOLAND

It is noted that although the preceding section conducted a
comprehensive study of different entropies, the San Francisco
data used only contain two types of low-to-medium entropy
(H < 0.6) targets, i.e., ocean and small POA urban area. Re-
search by Cloude and Pottier has indicated that the scattering
characteristics related to H < 0.6, in addition to the Bragg
surface and dihedral reflector, also include volume diffusion
(dipole or anisotropic particles), random surface, etc. [11], [12].
Therefore, this section supplements an analysis of the AIRSAR
L-Band FP data acquired in Flevoland, Netherlands, which pre-
dominantly includes agricultural crops with the above scattering
types.

The RGB image of the experimental area coded by Pauli vec-
tor [1] is shown in Fig. 10(a), and (b) is the corresponding ground
truth map with a total of 15 types of targets identified [46], i.e.,
water, three kinds of wheat, peas, barely, potatoes, bare soil,
beet, stem beans, forest, buildings, rapeseed, grass, and lucerne.
Fig. 11(a) shows the derived FP entropy H , from which it can be
seen that there are a large number of low and medium entropy
targets, and the calculated proportion of targets with H < 0.6 is
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TABLE IV
STATISTICAL DIFFERENCES BETWEEN FP ENTROPY AND DP ENTROPIES ON AIRSAR DATA FROM FLEVOLAND

Fig. 12. Relationships between H and DP entropies on different kinds of
targets, i.e., (a) water, wheat2, peas, barley, potatoes, (b) bare soil, wheat,
stembeans, beet, forest, (c) buildings, rapeseed, wheat3, grass, and lucerne, from
the Flevoland data, presented in three groups for clarity.

42.45%. DP entropies in this section are derived from the data
extracted with the same polarization mode of Sentinel-1 (i.e.,
VV-VH). As shown in Fig. 11(b)–(d), they exhibit characteristics
consistent with the preceding experiment, i.e., HL has better
consistency with H , and HC appears smaller while HJ appears
larger than H . This observation can be corroborated by the
MAD, RMSD, and R2 values of different DP entropies calcu-
lated with H as the reference value (Row 3 of Table IV). Since
the histogram of the difference between H and DP entropies of
this data is highly similar to the previous experimental results,
it is not shown again.

A comparative analysis of different DP entropies is conducted
based on the 15 types of targets marked in Fig. 10(b). Fig. 12
illustrates the relationships between FP and DP entropies across

different targets, presented in three groups for clarity, and the
corresponding summary statistics are displayed as box charts
in Fig. 13. The distinct feature of HC ≤ HL ≤ HJ indicates
the data characteristic of rC ≥ √

2, and the specific values can
be found in Table V. The statistical features of the difference
betweenH and DP entropies of the 15 types of targets are shown
in Table IV. It is evident that for most categories of targets, HL

has better consistency withH , which results in its significant ad-
vantage in MAD, RMSD, andR2 for the overall data. Exceptions
are noted in Buildings, the three wheat categories, and lucerne. In
addition, although the mean ofHJ (0.2962) for bare soil is closer
to the mean of H (0.2403) than that of HL (0.1812), Fig. 12(b)
indicates minimal performance difference between HJ and HL,
and Table IV reflects the superiority of HL in MAD and RMSD.
It has been discussed that the scattering mechanism of buildings
will cause a large difference between H and DP entropies, as
shown in Fig. 9(d) and (h). Moreover, due to the small sample
size [see Fig. 10(b)] and the dispersed distribution of H [see
Fig. 13(a)], it is reasonable to observe the inferior performance
of DP entropies. The means of HL and HC of the three types of
wheat and lucerne are all less than that of H . As can be known
from the previous analysis of the parameters affecting ΔH , this
is due to the high correlation between the target scattering mech-
anism and the missing information. The calculated proportions
of rSS > 0.8 in wheat, wheat2, wheat3, and lucerne are 83.11%,
97.80%, 61.51%, and 79.30%, respectively. On the other hand,
the better performance of HJ for lucerne may also attributed to
its advantage in estimating high entropy targets, since the mean
of H of the lucerne is as high as 0.7759.
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Fig. 13. Box charts of (a) FP entropy H and DP entropies (b) HC , (c) HL, and (d) HJ across different targets from the Flevoland data.

TABLE V
STATISTICAL CHARACTERISTICS OF DIFFERENT ENTROPIES IN DIFFERENT CLASSES OF AIRSAR FLEVOLAND DATA

It is important to note that while the aforementioned perfor-
mance of HL on low-to-medium entropy targets is intrinsically
related to the scattering characteristics of the targets, it can also
be predicted theoretically by the relationship betweenHL andH
derived in Section III. Specifically, when H is less than 0.6309,
the range of HL is [0, 1], making it more likely to exhibit a
greater deviation from H compared to medium-to-high entropy
targets. On the other hand, since the ranges of HC and HJ for
low-to-medium entropy targets are also [0, 1], there is also no

definitive conclusion that HC or HJ performs better than HL

on such targets, as demonstrated by the experimental results:
HL always maintains optimal or suboptimal results. Further-
more, as illustrated by the box charts, it distinguishes different
targets more effectively than HC and HJ , i.e., the values of
HC are usually smaller and generally distributed in the low-
and medium-entropy zone, while the values of HJ are usually
larger and generally distributed in the medium- and high-entropy
zone. In summary, the experimental results based on the crop
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Fig. 14. Optical images of the experimental area in Wandong Village of Luding
County obtained (a) before and (b) after the earthquake, respectively. Large
landslide areas A–F are marked with yellow ellipses.

data set further demonstrate the superior performance of HL in
both fitting the FP entropy and characterizing the randomness
of target scattering.

VI. LANDSLIDE DETECTION IN 2022 LUDING EARTHQUAKE

AREA BASED ON SENTINEL-1 DATA

As previously discussed, DP SAR data have consistently
served as a crucial resource in the domain of environmental
monitoring. In this section, an experiment for landslide detec-
tion based on DP entropies is conducted to study their change
detection performances.

On September 5, 2022, an earthquake with a magnitude of
6.7 struck Luding County in Sichuan Province, China. Since
the epicenter is located within the Hengduan Mountains, severe
landslides occurred and even dammed a tributary of the Dadu
River [28]. Therefore, obtaining environmental information and
monitoring its change in time is crucial for early warning of
other large-scale geological or secondary disasters that may be
further triggered. Considering the rainy and cloudy weather after
the earthquake, the DP SAR data of Luding County acquired
routinely by Sentinel-1 before (on August 26) and after (on
September 7) the disaster is of significant value. Therefore, these
two sets of DP data are used in this experiment.

Multiple landslides near the epicenter (29.49 ◦N, 102.22 ◦E)
were triggered by the earthquake, mainly on the west bank of the
Dadu River. Accordingly, the Wandong Village (located at 29.53
◦N and 102.15 ◦E) with dense landslides around is selected as
the experimental area, and its optical images before and after the
disaster are shown in Fig. 14, which were acquired by Landsat-8
on August 26 and by Gaofen-6 on September 10, respectively.
Several large landslides are marked with yellow ellipses, which
can be visually identified from the optical images and verified
by the postearthquake field photos [47], [48].

Fig. 15(a), (b), (e), (f), (i), and (j) display HC (the first row),
HJ (the second row), and HL (the third row) derived from the
Sentinel-1 DP data acquired before and after the earthquake
on August 26 (the first column) and September 7 (the second
column), respectively. Since most of the scene are mountains
covered by vegetation, entropies are high in all the subfigures,
while the phenomenon that generally HC ≤ HL ≤ HJ can still
be observed. Taking Fig. 14 as a reference, we can find that
entropies of landslide areas decrease sharply compared with the
nonlandslide areas, which can be explained by the change of
the scattering mechanisms. Specifically, landslides washed away

the vegetation and left only the bare surface of the mountain,
changing the scattering mechanism from high-entropy volume
scattering to low-entropy surface scattering. In order to show the
change explicitly, differences between the preearthquake and
the postearthquake HC , HJ , and HL, namely ΔHC , ΔHJ ,
and ΔHL, are calculated and shown in Fig. 15(c), (g), and
(k), respectively, from which some changes can be visually
identified despite the noisy points all over. Among the results,
ΔHC fluctuates the most, ΔHJ is the opposite, and ΔHL is in
between. Nevertheless, obvious changes displayed by ΔHJ are
much less than that by ΔHC and ΔHL, which may be due to its
high value thus low object discrimination capability, as analyzed
in the preceding section. Note that the entropy of Dadu River
also changes significantly, which will be discussed in detail later.

Furthermore, the expectation-maximization (EM) algorithm,
which is commonly used for unsupervised change detection [16],
[50], is applied to ΔHC , ΔHJ , and ΔHL to classify them into
increased, unchanged, and decreased categories, respectively.
Thus, the landslides can be automatically detected as the entropy
decreased category. Fig. 15(d), (h), and (l) show the classification
results imposed on the grayscale SPAN image, where yellow
and green colors represent classes of entropy decreased and
increased, respectively. It can be seen that ΔHC , ΔHJ , and
ΔHL can detect landslides in areas A, D, E, and F. However, the
detected area of ΔHJ is much less than that of ΔHC and ΔHL,
resulting in reduced detection capability, e.g., changes in areas B
and C are not detected (only a few discrete points). On the other
hand, the result of ΔHC seems heavily influenced by random
noisy points. Although it has similar detection results withΔHL

in areas A–F, these points severely confuse the determination of
landslides. By contrast, the result of ΔHL shows its superiority
in identifying the landslides A–F effectively and clearly.

To quantitatively compare the landslide detection perfor-
mance of different entropies, we manually select six landslide
areas (ls1-ls6) and three nonlandslide areas (nls1-nls3) based
on the true landslide map and correspondingly mark them on
the SPAN image, as shown in Fig. 16. It should be noted that
due to the large incident angles of Sentinel-1 (40.04◦–46.00◦ for
the employed data at Interferometric Wide swath mode beam 3)
and the steep terrain of the experimental area, the phenomena
of foreshortening and shadow in SAR images are significantly
severe. Consequently, the entropy estimation results from the
terrain-corrected data are markedly affected by interpolation,
making effective change detection unfeasible. Thus, the eval-
uation is conducted based on the slant range images, as done
by related research [15]. The landslide areas are marked on the
side of the mountain facing the radar line of sight, which due to
the foreshortening effect, appear as narrower strips, reducing the
uncertainty in marking landslide areas in the slant range image.
The detection results of the three DP entropies are shown in
Table VI. It is observed that for all landslide areas except area
ls4, the detection accuracy follows the order HL > HC > HJ ,
while in area ls4, the accuracy of HC is slightly higher than
HL. Conversely, for nonlandslide areas, the accuracy order is
reversed, i.e.,HJ > HL > HC . This result is consistent with the
experimental findings in Sections IV and V. Specifically, since
HC and HJ have lower capabilities in discriminating different
targets, indicated by lower kappa coefficients in Table II, their
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Fig. 15. Images of the experimental area in Wandong Village of Luding County. Results derived from (a)–(d) HC , (e)–(h) HJ , and (i)–(l) HL are shown in the
first, second, and third rows, respectively. Each column from left to right represents the DP entropy Ht (t = C, J,L) before and after the earthquake, the entropy
difference ΔHt (t = C, J,L), and the change detection result of the ΔHt (t = C, J,L), respectively.

TABLE VI
DETECTION ACCURACIES (%) OF DIFFERENT DP ENTROPIES IN LANDSLIDE AND NONLANDSLIDE SAMPLE AREAS OF LUDING COUNTY

Fig. 16. Images of the experimental area with manually determined regions
of interest, i.e., (a) optical landslide map [49] and (b) SPAN image with six
landslide areas (ls1-ls6) and three nonlandslide areas (nls1-nls3) marked.

abilities to distinguish between low-entropy surface scattering
and high-entropy volume scattering are weaker than HL, re-
sulting in lower landslide detection accuracy compared to HL.
On the other hand, since HC usually has a lower value and
HJ usually has a higher value, ΔHC fluctuates more and ΔHJ

has a smaller dynamic range. Accordingly, it is reasonable for
HC to achieve higher landslide detection accuracy than HJ , and
thus, instances where it exceedsHL can be considered plausible.
At the same time, the low accuracy of HC for nonlandslide
detection is inevitable. And HJ will have higher accuracy for
nonlandslide detection than HC and HL, although their differ-
ences are quite small. It is noted that apart from ls1, the detection
accuracies in other landslide areas are not high, which may be
attributed to the influence of the mountainous terrain fluctuations



LIANG et al.: NEW ENTROPY ESTIMATION METHOD FOR DUAL-POLARIMETRIC SAR DATA 861

and the low resolution of Sentinel-1 data, both affecting the
entropy estimation. However, for area ls1 with a small thus
relatively flat surface,where boundaries can be clearly discerned,
all three DP entropies perform well, and the results of HC are
close to the experimental results in [15] (0.85). In summary,
the experimental results demonstrate the superiority of HL in
landslide detection compared to existing DP entropies. This can
be ultimately attributed to its more accurate description of the
polarimetric randomness of target scattering, as illustrated by the
aforementioned theory analysis and comparative experiments.

The state of the Dadu River is also worth mentioning. As its
entropy [see Fig. 15(a), (b), (e), (f), (i), and (j)] shows a similar
characteristic to the water bodies shown in Fig. 4(i), (j), and (k),
it indicates that estimating entropy for water bodies based on
Sentinel-1 data is unreliable. However, it is shown in Fig. 15(c)
and (k) that entropies of areas G and H increase after the earth-
quake. This is reasonable given that they are both river bends and
close to areas of landslides and mudslides triggered by the earth-
quake and subsequent rainfall, i.e., rocks, sand, and other kinds
of sediments have entered the river, increasing the randomness
of the polarimetric scattering. The inference can be supported
by filed photos of other parts of Dadu River and the formation of
a dammed lake after the earthquake [47], [48], [51]. However,
the entropy change of the river cannot be detected by ΔHJ .

VII. DISCUSSION

Polarimetric entropy, as an indispensable parameter extracted
from FP SAR data, reflects the polarimetric randomness of
target scattering and has been widely used in applications such
as land cover classification, target recognition, and disaster
detection. Compared to existing DP entropies, the new DP
entropy proposed in this article not only improves the ability
to extract target features, providing better discrimination among
different targets, but also achieves highly consistent estimation
results with the target FP entropy under conditions of limited
polarization information. Several points regarding this work are
further discussed below.

Reciprocity is the theoretical basis of this work, and here
we delve into it from its influencing factors and correction
methods. It has been concluded by Cameron and Leung [32]
that if reciprocity is violated it is likely to be due to propaga-
tion effects, interaction with special materials (materials whose
interaction with the electromagnetic field is nonlinear or which
are described by dielectric, permeability or conductivity tensors
which are asymmetric) or, for low RCS returns, perhaps mea-
surement noise. It is known that the propagation effects, such as
Faraday rotation, need to be corrected through Faraday rotation
compensation, while nonreciprocal materials are not common
in natural surface observations, and research on them should be
carried out totally based on their asymmetric scattering matrices.
Accordingly, Cameron and Leung [32] propose a method for
extracting the reciprocity component of the target that primarily
aims at correcting measurement errors, the form of which is
essentially equivalent to (3). Similarly, it has also been discussed
in a document for calibrating the ALOS PALSAR products
that [52], symmetrization is an optional step that forces to be
equal the cross-polarized channels in presence of system noise.

And the provided correction method also has the same form of
(3) when there is no receive to transmit channel imbalance [52].
According to the above analysis, it can be seen that from
the perspective of theoretical analysis, (3) represents the ideal
cross-polarization component of a reciprocal target satisfying
SHV = SV H , and in the sense of practical application, (3) is
essentially a reciprocity correction method.

Section V complements Section IV by conducting experi-
ments based on AIRSAR crop data, aiming to enrich the analysis
of DP entropy performance for targets withH < 0.6. The exper-
imental results are highly consistent with those of Section IV,
i.e., although a few targets show large differences between HL

and H , overall, HL shows distinct advantages over existing DP
entropies. Moreover, since the targets with large differences
between HL and H primarily belong to the wheat category,
while we analyze the phenomenon based on rSS , future studies
could delve deeper into modeling their scattering mechanisms.
Furthermore, the ability of a single DP entropy parameter to
describe target characteristics is limited, which is also the reason
why there is no classification experiment for the Flevoland
data. It is believed that in the future, by combining more DP
parameters and using more advanced methods [46], [53], [54],
[55], the advantages of HL can be more fully utilized.

It is worth noting that although we apply the proposed theory
to the DP data of Sentinel-1, the theoretical analysis approach
is generally applicable to other DP modes. However, the perfor-
mance of the DP entropy on various targets needs further inves-
tigation, as the polarimetric information of the target contained
in DP data has changed at this time. Besides, for cases where
the reciprocity theorem does not hold, the rigorous entropy
estimation method proposed by Cloude may be a better choice,
and the FP entropy that represents the true target polarimetric
randomness in such situations should be derived from a 4×4
covariance matrix [1].

VIII. CONCLUSION

This article studies the method of polarimetric entropy estima-
tion from DP SAR data and proposes a new entropy estimation
method based on the reciprocity assumption, which improves the
performance of DP entropy in depicting target polarimetric char-
acteristics and fills the gaps in its theoretical research. Since the
reciprocity theorem holds in the vast majority of natural terrain
remote sensing using monostatic backscatter SAR, the proposed
method is generally applicable, as demonstrated by the compar-
ative experiment of the article. The proposed method is not only
physically meaningful but also establishes a mathematical con-
nection with the FP entropy H . Accordingly, it also completes
the theoretical research on existing DP entropies HC and HJ .
Theoretical analysis shows that compared to HC and HJ , the
newly estimated DP entropy HL has higher consistency with H
and can more accurately reflect the polarimetric characteristics
of the target. Experiments based on multisource San Francisco
polarimetric SAR data validate the theory and demonstrate the
superiority of HL in target classification, with higher overall
accuracy and kappa coefficient, while HC and HJ respectively
show advantages in low and high entropy targets. Nonetheless,
the experiment based on Flevoland data implies that on various
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crops, nearly half of which with low-to-medium entropy,HL still
maintains an absolute advantage in reflecting the target random-
ness. In addition, its temporal differenceΔHL has a higher land-
slide detection accuracy, with a lower noise level compared to
ΔHC and a higher change detection ability compared to ΔHJ .
Besides, factors affecting the difference between H and HL

are also theoretically analyzed and experimentally illustrated,
clarifying their similarity on medium- and high-entropy targets
and potential divergence on low-entropy targets and providing
guidance for applying HL as a substitute for H .

APPENDIX A

This appendix introduces the calculation methods of DP en-
tropies HC , HJ , and HL in detail as a supplement to (10)–(15)
in the article.

According to the definition [7], [8], [12], DP entropy is
calculated by

HD = −
2∑

k=1

pDk
log2(pDk

)

= −pD1
log2(pD1

)− pD2
log2(pD2

) (28)

where

pDk
=

λDk∑2
m=1 λDm

(k = 1, 2) (29)

and λDk
(k = 1, 2) are the eigenvalues of the DP covariance

matrix with λD1
≥ λD2

without loss of generality. Since pD1
+

pD2
= 1 [according to (29)], we can simplify the representation

in (28) using only pD1
, the maximum pseudoprobability, as

HD = −pD1
log2(pD1

)− (1− pD1
)log2(1− pD1

) (30)

which has the same form as (10).
According to (30), the maximum pseudoprobability pD1

uniquely determines the DP entropy HD, while itself is derived
from the DP covariance matrix. Cloude [7], Ji and Wu [8], and
this article construct the DP covariance matrices [CC ], [CJ ], and
[CL], respectively, as

[CC ] = 〈cC · c∗T
C 〉 =

〈[
|SV V |2 SV V S

∗
V H

SV HS∗
V V |SV H |2

]〉
(31)

[CJ ] = 〈cJ · c∗T
J 〉 =

〈[
|SV V |2 2SV V S

∗
V H

2SV HS∗
V V 4|SV H |2

]〉
(32)

[CL] = 〈cL · c∗T
L 〉 =

〈[
|SV V |2

√
2SV V S

∗
V H√

2SV HS∗
V V 2|SV H |2

]〉

(33)

and the maximum eigenvalue λt (t = C, J, L) of the 2 × 2
Hermitian covariance matrix [Ct] (t = C, J, L) can be solved
analytically, as

λC =
1

2

(
〈|SV V |2〉+ 〈|SV H |2〉

+
√
(〈|SV V |2〉 − 〈|SV H |2〉)2 + 4|〈SV V S∗

V H〉|2
)

(34)

λJ =
1

2

(
〈|SV V |2〉+ 〈4|SV H |2〉

+
√
(〈|SV V |2〉 − 〈4|SV H |2〉)2 + 4|〈2SV V S∗

V H〉|2
)
(35)

λL =
1

2

(
〈|SV V |2〉+ 〈2|SV H |2〉

+

√
(〈|SV V |2〉 − 〈2|SV H |2〉)2 + 4|〈

√
2SV V S∗

V H〉|2
)
.

(36)

Then, the corresponding maximum pseudoprobabilities pC , pJ ,
and pL can be derived according to (29), as

pC =
1

2
+

√
(〈|SV V |2〉 − 〈|SV H |2〉)2 + 4|〈SV V S∗

V H〉|2
2 (〈|SV V |2〉+ 〈|SV H |2〉)

(37)

pJ =
1

2
+

√
(〈|SV V |2〉 − 〈4|SV H |2〉)2 + 4|〈2SV V S∗

V H〉|2
2 (〈|SV V |2〉+ 〈4|SV H |2〉)

(38)

pL =
1

2
+

√
(〈|SV V |2〉 − 〈2|SV H |2〉)2 + 4|〈√2SV V S∗

V H〉|2
2 (〈|SV V |2〉+ 〈2|SV H |2〉) .

(39)

It can be seen that by substituting rC and rX of (15) into
(37)–(39), the expressions shown in (12)–(14) can be obtained.
Accordingly, DP entropies HC , HJ , and HL can be calculated
according to pC , pJ , and pL using (30), respectively.

APPENDIX B

This appendix introduces the simulation steps of the relation-
ships between different entropies shown in Fig. 1.

The simulation procedure for illustrating the relationship
between DP entropies is as follows:

1) Define values for pL (ranging from 1/2 to 1, uniformly
sampling 128 points) and rC (ranging from 0 to 60,
uniformly sampling 30 000 points), and determine the
corresponding rX values by

rX =

(
pL − 1

2

)2

(rC + 1)2 − 1

4
(rC − 1)2. (40)

Note that the value of rC can theoretically be infinite.
However, considering its distribution of actual data and
the reflection of the DP entropy relationship, taking the
maximum value to 60 is sufficient.

2) For each pair of (rC , rX), calculate pC and pJ using (12)
and (13).

3) Using (30), compute HL, HC , and HJ from pL, pC ,
and pJ , thereby obtaining the relationship graphs for HL

versus HC and HL versus HJ , respectively.
4) The relationship graph betweenHJ andHC can be derived

similarly, by replacingpL withpC in step 1) and modifying
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the formula for rX in step 2) to:

rX = 2

(
pC − 1

2

)2 (
rC +

1

2

)2

− 1

2

(
rC − 1

2

)2

(41)
and all other parameters remain the same.

It should be noted that although step 3) obtains the values of
HC and HJ , it does not establish a relationship between them.
This is because the HC and HJ obtained in step 3) are functions
of rC and rX , i.e.,HC = fC(rC , rX) andHJ = fJ(rC , rX). To
establish a relationship between them, we need to solve forHJ =
fJC(HC). In summary, steps 1)-3) derive HC = fCL(HL) and
HJ = fJL(HL), while step 4) derives HJ = fJC(HC).

The simulation procedure for illustrating the relationship
between FP entropy H and DP entropies is outlined as follows.

1) Define values forp1 (ranging from 1/3 to 1, uniformly sam-
pling 128 points) and p2 (ranging from 0 to 1/2, uniformly
sampling 128 points), and determine the corresponding
FP entropy H using (5).

2) For each pair of (p1, p2), calculate rS using (22).
3) For each set of (p1, p2, rS), determine the range of pL

using (23).
4) Calculate HL from pL, thereby obtaining the relationship

graph between HL and H .
5) Based on the relationship between HL and HC (or HJ ),

derive the relationship graph between HC (or HJ ) and H .
Note that to enhance the aesthetic appeal of the graphs, we

performed downsampling on the scatter plots of the relationships
obtained, which does not affect the overall shape. The theoretical
simulation results are perfectly validated on FP data obtained by
Gaofen-3 and Radarsat-2, as shown in Fig. 2, demonstrating the
effectiveness of the proposed theory.
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