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Monitoring Annual Forest Cover Fraction Change
During 2000-2020 in China’s Han River Basin
Using Time-Series MODIS NDVI, VCF and

Spatio-Temporal Regression
Xinyan Zhong, Yun Du, Xia Wang, Xiaodong Li , Wenqiong Zhao , Yihang Zhang , and Peter M. Atkinson

Abstract—While it is crucial to monitor the spatio-temporal
dynamics of forests at the subpixel scale, most available nonlinear
methods are used to predict forest cover fraction maps only at the
acquisition time of the training samples and are, thus, unable to
estimate time-series forest cover fraction beyond the acquisition
time. Based on MODIS NDVI, VCF and Landsat tree canopy height
data, we developed a spatio-temporal regression (STR) method
to estimate annual forest cover fraction maps during 2000–2020
on China’s Han River Basin. Results obtained by the proposed
STR method achieved significantly higher accuracy (R2 = 0.897,
RMSE= 0.1364, MAE= 0.077) than that obtained by a traditional
nonlinear regression method. Moreover, the STR exhibits increased
accuracy when using training samples from both 2000 and 2020
compared to those using training samples solely from either 2000
or 2020. We also introduced Landsat tree cover maps in 2005, 2010,
and 2015 as reference data to verify the effectiveness of the STR
method. The STR method was employed to produce annual forest
cover fraction maps from 2000 to 2020. The outcomes revealed
a distinct overall recovery trend of forest cover at both the pixel
and subpixel scales in China’s Han River Basin during 2000–2020,
notably around the vicinity of the Danjiangkou reservoir area. In
general, the STR method proposed in this research is superior
in accurately tracking time-series high-intensity and low-intensity
forest cover fraction changes in a complex forest ecosystem, which is
composed of various forest types in a subtropical monsoon climate.
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I. INTRODUCTION

A S ONE of the most important ecosystems on land, forests
have crucial ecological functions, such as regulating cli-

mate, conserving water sources, and protecting biodiversity,
while forests can also provide a series of forest by-products and
create huge economic benefits for society [1], [2], [3]. However,
forests constantly face the potential interference of natural and
human factors. Despite the natural factors of fire, drought, and
insect plague, the excessive deforestation caused by humans
is the dominant driver of global forest loss, especially for the
tropical forests [4], [5], [6], [7]. Therefore, effective monitoring
and analysis of forest cover change is essential for the protection
of Earth’s remaining forests.

Remote sensing technology has the advantages of wide de-
tection range, strong real-time performance, independence from
ground conditions, and rich information acquisition, and it has
been used widely for the monitoring of forest cover changes at
both global and local scales [8], [9], [10]. Various remote sensing
satellite sensor images have been applied to monitor forests, and
these images have spatial resolutions ranging from the kilometer
scale to meter scale.

Satellite sensor images with a spatial resolution of kilome-
ters, such as NOAA-advanced very high-resolution radiometer
(AVHRR) can capture phenological information about vegeta-
tion due to its fine temporal resolution, and it has been used
widely for monitoring forests at a large scale. Jaramillo et al.
[11] used NOAA-AVHRR images to evaluate the deforestation
rate of El Guabo from 1986 to 2008. Lucas et al. [12] monitored
the different stages of tropical forest regeneration in the Brazil-
ian Amazon based on NOAA-AVHRR imagery. However, the
coarse spatial resolution of NOAA-AVHRR makes it impossible
to observe details of local forest cover with complex spatial pat-
terns. In contrast, finer spatial resolution satellite sensor images
such as Landsat, Sentinel-2, and Sentinel-1 can observe much
more spatial details about the forest cover than kilometer-scale
NOAA-AVHRR images. For example, Masek et al. [13] studied
the trends of forest disturbances in the United States from 1985
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to 2005 based on Landsat images. Frazier et al. [14] detected and
quantified forest restoration in the Northern Shield ecoregion of
Canada using time-series Landsat images. Reiche et al. [15] used
Sentinel-1 SAR images to develop a tropical forest disturbance
alert for the entire Congo Basin. Ganz et al. [16] mapped
high-quality forest cover for the Baden-Württemberg area with
Sentinel-2.

Satellite sensor images with very fine spatial resolutions,
such as IKONOS, QuickBird, and WorldView-2, can also be
used for the monitoring and analysis of forest cover changes.
Zhu et al. [17] estimated the restored forest in semiarid mine
dumps with WorldView-2 imagery. Wang et al. [18] compared
the performance of QuickBird and IKONOS in mangrove clas-
sification. Although satellite sensor images with finer spatial
resolutions have the ability to monitor more spatial details,
their coarse temporal resolutions and narrow scanning width
make it insufficient to meet the needs of monitoring com-
plex forest landscapes in large areas. In addition, the relative
long revisit periods of these fine spatial resolution satellite
sensors also make the images more susceptible to cloud and
fog.

Locating in the North–South climate transition zone of China,
the Han River Basin is not only a key forest ecological area in
China, but also the middle water supply route of the South-
to-North water diversion project [19]. Long-term and effective
spatio-temporal monitoring of forest cover changes in the Han
River Basin is, therefore, desirable for better development and
utilization of its ecological and economic resources. The Han
River Basin holds extensive forest coverage and diverse for-
est types, such as evergreen forests coexisting with deciduous
forests, coniferous forests, and broad-leaved forests [20]. There-
fore, it would be more advantageous to monitor forest cover
changes with complex landscapes and phenology in this region
by using satellite sensor images with fine temporal resolution
and large scanning width.

The moderate resolution imaging spectroradiometer
(MODIS) images have a daily temporal resolution and long-
term global data record since 2000, and it is able to capture
seasonal vegetation phenology of complex forest landscapes
in local and global scales. Moreover, compared to the
kilometer-scale NOAA-AVHRR images, the hundred-meter
MODIS images provide more detail on forest covers, which
may be more suitable for monitoring and analyzing the complex
forest landscapes in the Han River Basin. A series of product
datasets has been developed for vegetation and forest changes
monitoring by daily MODIS images, such as the widely used
16-days MODIS normalized difference vegetation index (NDVI
) product. Based on MODIS NDVI, Singh et al. [21] used the
breaks for additive seasonal and trend (BFAST) model to
monitor forest disturbance frequency and disturbance scales
in the Himalayas. Gao et al. [22] monitored subannual forest
disturbance in the Mexican state of Michoacan with MODIS
NDVI during 2000–2016. Yao et al. [23] applied MODIS NDVI
data to study the response of forest cover dynamics to climate
change from 2000 to 2009 in the Hun River Basin, Liaoning
province of China. Through the integration of PALSAR and
time series MODIS NDVI images during 2007–2010, Qin et al.

[24] produced annual forest cover maps to monitor forest cover
changes in South America.

Although the MODIS NDVI product has a finer spatial reso-
lution than NOAA-AVHRR, it is still affected by mixed pixels
when characterizing fragmented forest landscapes at the scale
of hundreds of meters [25], [26]. To reduce the mixed pixels
issues of MODIS NDVI, an alternative solution is to estimate
MODIS forest cover fraction, which displays the surface forest
cover at the subpixel scale [27], [28], [29], [30]. Traditional
methods for estimating forest cover fractions include linear
and nonlinear methods. Generally, linear decomposition cannot
use the phenological information in time-series MODIS NDVI
images [31], [32]. By contrast, nonlinear methods can estimate
subpixel MODIS forest cover fraction from time-series MODIS
NDVI. For example, Lu et al. [33] proposed a new approach
to map fractional forest cover based on the combined use of
MODIS data and Landsat images with linear spectral mixture
analysis and regression model. Tottrup et al. [34] applied a super-
vised regression tree model to obtain fraction maps of mature
forest, secondary forest, and nonforest from MODIS images.
However, the nonlinear methods based on machine learning can
process only single-phase forest cover fraction estimation at the
acquisition time of the training samples [35]. Therefore, both the
current linear and nonlinear methods cannot take full advantage
of the long term-series MODIS NDVI and are inadequate for
spatio-temporal estimation of forest cover fraction.

In addition to the MODIS NDVI, the MODIS vegetation
continuous fields (VCF) provides the percentage of tree cover
on the Earth’s surface and can also be applied to monitor forest
cover changes. Sarif et al. [36] used MODIS VCF data to monitor
forest cover dynamics in Jharkhand from 2000 to 2014. Gao
et al. [37] detected forest cover change in Mexico from 2000 to
2010 based on MODIS VCF. Hansen et al. [38] trained Landsat
images with MODIS VCF to evaluate and analyze forest cover
changes in the Congo during 1990–2000. Using Landsat images
and MODIS VCF, Liu et al. [39] assessed three factors affecting
Myanmar’s forest cover change. However, the MODIS VCF
product is based on the interannual periods, and then it is hard
to consider the typical phenological changes of various complex
forest landscapes in China’s Han River Basin.

In this research, we proposed a spatio-temporal regression
(STR) method to obtain annual forest cover fraction maps from
2000 to 2020 by integrating MODIS NDVI and VCF data and
validated its performance through an application to China’s Han
River Basin. In the proposed STR method, time-series training
samples can be predicted for each year from 2000 to 2020 by
using a local change detection based on time-series MODIS
VCF. The proposed method can not only make full use of the
phenological information carried by MODIS NDVI data, but
also be applied to the estimation of long time-series forest cover
fraction. Based on the obtained time-series forest cover fraction
maps, forest cover changes at the pixel and subpixel scales were
monitored and analyzed.

The objectives of this article were as follows.
1) To develop a method and framework to estimate long-term

annual forest cover fraction maps from MODIS NDVI and
VCF with training samples at the start and end points;
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Fig. 1. Illustration of the study area and data sources. (a) Geolocation of China’s Han River Basin. (b) Mean MODIS NDVI image in 2020. (c) Dynamic of
time-series 16-day MODIS NDVI of four typical forest cover points in (b); (d) Percentage of tree cover layer of MODIS VCF image in 2020.

2) to improve the application of time-series MODIS NDVI
and VCF data in mapping forest cover change across large
regions;

3) to validate the performance of the proposed method in
monitoring both high-intensity and low-intensity forest
cover change in a complex forest ecosystem, such as the
forests in China’s Han River Basin within a subtropical
monsoon climate.

The rest of this article is organized as follows. Section II
describes the study area, data, and the preprocessing required.
The principle and method of STR are introduced in Section III.
Section IV presents and analyzes the prediction results obtained
by the STR method, and provides a discussion of the perfor-
mance of STR. Further discussion of the results as well as
limitations and future research are summarized in Section V.
Finally, Section VI concludes this article.

II. STUDY AREA AND MATERIALS

A. Study Area

As one of the largest tributaries of the Yangtze River, China’s
Han River Basin has an area of 159 000 km2 [20]. The Han River
Basin is located in central China [see Fig. 1(a)], and covers five
provinces of Henan, Hubei, Chongqing, Sichuan, Shaanxi, and
Gansu in China. It has a mountain topography in the northwest
(i.e., part of the Qinba Mountains) and plain hills (i.e., part of
Jianghan Plain) in the southeast. The regional climate is mild and
humid, belonging to the subtropical monsoon region. As shown
in Fig. 1(b) and (c), most of the northwest mountains are covered
by vegetation, and it is noted that the main land cover type in
the area is forest, especially in the western mountains, where

evergreen broadleaved forests, evergreen coniferous forests, de-
ciduous broadleaved forests, deciduous coniferous forests, and
mixed forests are distributed widely [19]. As the middle water
source of the South-to-North Water Diversion Project, the Han
River Basin has a high quality of ecological environment, and its
rich forest resources and forest ecosystem can provide a strong
guarantee for the water security of northern China.

B. Dataset and Preprocessing

As listed in Table I, in this study, three datasets (MODIS
NDVI, MODIS VCF, and Landsat tree height) were used to
estimate the annual 250 m fractional forest cover maps from
2000 to 2020 in China’s Han River Basin. The collection and
preprocessing (i.e., mosaic, clip, and projective transformation)
of these three were completed on the platform Google Earth
Engine.

The MODIS NDVI data used in this research come from the
250 m 16-day MODIS NDVI product of MOD13Q1, which
has 23 corresponding NDVI time-series images each year, in
which the NDVI value of each pixel is the optimal value of
the corresponding 16 days. The time-series 16-day MODIS
NDVI has a fine temporal resolution and holds the advantage
of preserving well the phenological information of vegetation
[40], [41]. However, due to the influence of inevitable cloud
cover, there will be many outliers in the final MODIS NDVI
product, which will introduce noise into the normal NDVI trend
of vegetation. NDVI reconstruction (spatio-temporal filtering)
methods can be used to reduce or eliminate the effects of MODIS
NDVI outliers [42], [43]. In this study, the Savitzky–Golay filter
[44], [45] was used to reconstruct spatio-temporal smoothed
NDVI for annual 250 m 16-day MODIS NDVI images. The
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TABLE I
SUMMARY OF DATASETS USED IN THIS STUDY

Savitzky–Golay filter was applied to the annual 16-day MODIS
NDVI images using a plug-in in ENVI. To ensure that the
initial and final 16-day MODIS NDVI images of each year were
smoothed successfully by the Savitzky–Golay filter with a width
of 5 pixels, another four images were added at the beginning and
end of each year. The first four images are from the end of the
previous year, and the last four images are from the beginning
of the following year.

The MODIS VCF data were derived from the annual 250
m MODIS VCF product of MOD44B, which provides the per-
centage of tree cover layer at the global scale since 2000. In the
MOD44B product, the layer, percent tree cover, indicates the
area covered by trees with a canopy height greater than 5 m in
the corresponding year [46]. Based on a supervised regression
tree model, the product is generated from a yearly composite
of MODIS 16-day surface reflectance including bands 1–7 and
brightness temperature bands, in which the reference samples
were collected from a number of downsampled Landsat-based
land cover maps [47]. Given the superiority of presenting yearly
forest canopy dynamics, MODIS VCF data have been used
widely to monitor forest cover change at both local and global
scales [48], [49], and they were also considered as the input data
for this research.

Based on a bagged regression trees ensemble method, the
2019 forest height map was derived from the integration of
GEDI-derived canopy height indicators with Landsat multitem-
poral surface reflectance data.1 Vegetation structure data col-
lected using airborne lidar instruments has been used for model
calibration and validation of the generated forest height [50]. The
2000 and 2020 tree canopy height maps used in this research
were extracted from the GLAD Global Land Cover and Land
Use Change dataset.2 This dataset was compiled from a survey
of Global Ecosystem Dynamics Investigation (GEDI),3 with
Landsat multitemporal surface reflectance data [51]. Although

1Data is available online at: https://glad.umd.edu/dataset/gedi/
2Data is available online at: https://glad.geog.umd.edu/dataset/

GLCLUC2020
3
Data is available online at: https://gedi.umd.edu/

tree canopy height in 2019 was produced first, 2000 and 2020
tree canopy height maps were produced in the same way for
2019, making these data consistent across the three periods. The
three Landsat tree canopy height maps will be used to generate
binary forest cover maps and the corresponding MODIS-like
forest cover fraction maps in 2000, 2019, and 2020.

As shown in Table Ⅰ, the GFCC product was estimated from
the global land survey data, which provides the global composite
30 m Landsat images at years of 2000, 2005, 2010, and 2015.
For each pixel in GFCC, it provides the percentage of tree cover
at 5-year epochs [52], [53]. In this study, this data will be used to
generate MODIS-like forest cover fraction maps in 2005, 2010,
and 2015. The forest cover fraction maps obtained in these three
years will serve as another set of reference data for accuracy
assessment and comparison.

III. METHODS

Based on the time-series MODIS NDVI and VCF input data,
and time-series training samples extracted from the Landsat tree
canopy height maps in 2000 and 2020, the aim was to predict
annual 250 m annual fractional forest cover maps during 2000–
2020 using the proposed STR model. As illustrated in Fig. 2,
the methods of this research can be divided generally into three
steps as follows:

1) Processing input data;
2) modeling STR;
3) estimating and validating annual fractional forest cover

maps from 2000 to 2020.
The input data processing was completed in the above

Section II-B. More details about the last two steps can be found
in the following sections.

A. Spatio-Temporal Regression

As the key part of the proposed method, STR aims to estimate
forest fractional forest cover from the MODIS NDVI sequence
and VCF images at the predicting year from 2000 to 2020. The
STR model includes the following three steps:

https://glad.umd.edu/dataset/gedi/
https://glad.geog.umd.edu/dataset/GLCLUC2020
https://glad.geog.umd.edu/dataset/GLCLUC2020
https://gedi.umd.edu/
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Fig. 2. Proposed methodology.

1) Generate reference MODIS-like forest cover fraction
maps;

2) unchanged training samples selection in each predicted
year;

3) estimate forest cover fraction maps with random forest
(RF) regression and time-series samples.

B. Reference MODIS-Like Forest Cover Fraction Maps

By processing the Landsat tree canopy height data in 2000,
2019, and 2020, the forest cover fraction maps of the corre-
sponding years can be obtained. This process includes the two
steps:

1) Generation of Landsat binary forest cover maps. Accord-
ing to Potapov et al. (2022) [51], land cover featuring
a canopy height exceeding 5 m is commonly classified
as forested area. Consequently, pixels displaying a value
greater than or equal to 5 m in the tree height dataset
are designated as forest pixels and coded as “1.” Con-
versely, nonforest pixels are attributed a value of “0.”
Subsequently, this process yields a binary forest cover map
for the specific year, possessing a spatial resolution of 30
m. To further validate the accuracies of the generated 30 m
binary forest cover maps in 2000 and 2020, we collected
200 sample points for each of the forest cover and the
nonforest cover in the two years, respectively. Based on
the yearly composite Landsat images in 2000 and 2020,
visual interpretation method was used to determine the
reference classes of each sample points. Finally, the con-
fusion matrixes were calculated and the overall accuracy
of the binary forest cover map for 2000 is 0.9625, and
the kappa coefficient is 0.925. For the binary forest cover
map in 2020, the overall accuracy and kappa coefficient
are 0.9575 and 0.915, respectively.

2) Prediction of MODIS-like forest cover fraction maps. The
obtained Landsat forest cover maps were first downsam-
pled to 240 m with a spatial averaging filter of 8 × 8
pixels, and then the forest cover fraction maps with a

spatial resolution of 250 m in the corresponding years of
2000, 2019, and 2020 were derived by downsampling the
240 m forest cover fraction maps using a nearest neighbor
interpolation. The resulting 250 m forest cover fraction
maps for 2000 and 2020 were used to build the training
dataset needed for subsequent estimations, and the forest
cover fraction map for 2019 served as validation data.

C. Unchanged Time-Series Training Samples Selection

In Section III-B, we obtained the forest cover fraction for 2000
and 2020, which can be used to construct a training dataset in
these two years with the corresponding MODIS NDVI sequence
and VCF images. Given the missing forest cover fraction of
2001–2019, it is easy to estimate the time-series annual forest
cover fraction maps during 2001–2019 using the training sam-
ples in 2000 and 2020. However, due to varying external envi-
ronmental conditions (such as temperature and precipitation) in
each year during 2000–2020, the trained models in 2000 and
2020 can estimate only the forest cover fraction of the current
year well, and it is inevitable that there will be large errors in
estimation for the other years during 2001–2019.

Considering that MODIS VCF data contain spatial and tem-
poral information on forest cover change [48], [53], [54], the
change detection method based on MODIS VCF is used here
to obtain annual training samples during 2001–2019 from the
original training samples in 2000 and 2020. MODIS VCF pro-
vides the percentage of tree cover: When the difference between
the percentage tree cover values in a target pixel for a certain
two years is less than a given threshold, we can assume that the
forest cover in this pixel is similar between these two years, and
this target pixel can be considered a constant pixel. However,
MODIS VCF data may have abnormal pixel values due to the
influence of inevitable cloud cover. In this case, if only the
difference between the percentage tree cover of the target pixel
for two years is used to determine whether it is a constant pixel,
the judgment may be affected seriously by outliers. Therefore,
instead of using the single target pixel, its neighboring pixels
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Fig. 3. Illustration of change detection for time-series training samples with a 3 × 3 neighborhood window system.

can be introduced to build a neighborhood window system, to
indicate the change in percentage tree cover between two years.

As shown in Fig. 3, S2000, S2020, and St are samples from
year 2000, 2020, and t, respectively. When selecting training
samples, threshold a should be set first. The target pixel can then
be considered as a constant pixel when its difference between the
corresponding pixels in 2000 and 2020 are less than the given
threshold a. Based on the constant pixel, the training sample
St
x,y can be selected from S2000

x,y and S2020
x,y with the following:

St
x,y =

{
S2000
x,y if

∣∣p̄tx,y − p̄2000x,y

∣∣ < a

S2020
x,y if

∣∣p̄tx,y − p̄2020x,y

∣∣ < a

t ∈ [2000, 2001, · · · , 2020] (1)

p̄tx,y =
1

w × w

w×w∑
n=1

P t
x,y (n) (2)

where P t
x,y is the target pixel value in MODIS VCF image

in year t (red tone pixel in Fig. 3), and P 2000
x,y and P 2020

x,y

are the corresponding pixels in MODIS VCF images in 2000
and 2020. p̄tx,y , and p̄2020x,y are mean pixel values of the neigh-
borhood windows for each of the target pixels, and they can
be calculated with (2). The neighborhood window system is
composed of w×w pixels centered at target pixels ofP t

x,y ,P 2000
x,y ,

and P 2020
x,y (w is 3 in this study). A training sample dataset

of {St
x,y, t ∈ [2000, . . . , 2020]} at each of the predicting years

during 2000–2020 can be obtained based on the above change
detection shown in (1) and (2). Ideally, the closer the value of a
is to 0, the higher the quality of the obtained samples, but this
will result in a smaller number of samples in the training dataset.
Therefore, a value of a = 0.1 was chosen to provide sufficient
high-quality training samples.

D. RF Regression With Time-Series Samples

With the above training samples{St
x,y, t ∈ [2000, . . . , 2020]}

for each year from 2000 to 2020, the forest cover fraction map for
each year during 2000–2020 can be estimated using RF regres-
sion. The RF regression model takes the 16-day MODIS NDVI

sequence and annual MODIS VCF value for each year as input,
and the corresponding MODIS-like forest cover fraction value
in the selected training samples as the output. RF is an ensemble
and learning algorithm based on decision trees, classification
and regression tree (CART), which selects randomly n samples
from n training samples to obtain m subsets (Di) by bootstrap
sampling method, and trains a decision tree (Ti) for each subset
separately, and takes the average of the prediction results (Ci)
of m decision trees as the output of the RF regression [55], [56].
The RF simplified formula is as follows:

C =
1

m

m∑
i = 1

Ci (3)

The RF algorithm is relatively stable and reduces the risk of
overfitting by averaging the decision tree [57], [58]. Therefore,
it is suitable for the estimation of forest cover fraction in this
research. Estimation using RFs often involves the selection of
model parameters (number of decision trees, etc.). The decision
tree number was set to 100, and other parameters were set by
default. After fitting the training samples with RF regression, the
MODIS NDVI sequence, and annual MODIS VCF images for
each year during 2001–2020 can be used finally for the model
to predict the annual forest fraction maps.

E. Accuracy Assessment and Comparison

In the above Section III-B, a forest cover fraction map with a
spatial resolution of 250 m in 2019 was obtained, which can be
used as a reference map to evaluate the accuracy of the results
estimated by different methods. Specially, for the proposed STR
method, unchanged training samples for 2019 can be detected
first from the reference forest fraction maps of 2000, 2020, or
both 2000 and 2020 with (1), and the 250 m forest cover fraction
maps in 2019 can be estimated with these unchanged samples.
For traditional nonlinear regression method, the forest cover
fraction map with a spatial resolution of 250 m in 2019 can also
be estimated using a with training samples in the forest fraction
maps of 2000 and 2020. When conducting accuracy assessment
and comparison, we adopted two strategies: the first is based on
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TABLE II
ACCURACY ASSESSMENT AND COMPARISON OF THE TENFOLD CROSS VALIDATION FOR THE RESULTS IN 2019 GENERATED BY THE PROPOSED STR METHOD AND

TRADITIONAL RF METHOD

the tenfold cross validation, in which it aims to randomly select
90% of the samples as training data and 10% as validation data;
the second is to use all samples for training and, then, evaluate
and compare the results with reference data in the other years of
2019 (i.e., extracted from Landsat tree height map), 2005, 2010,
and 2015 (i.e., extracted from GFCC tree canopy cover).

The accuracy of results was evaluated using the following
metrics:

RMSE

=

√∑n
i=1 (r1 − p1)

2 + · · ·+ (ri − pi)
2 + · · ·+ (rn − pn)

2

n
(4)

MAE

=
1

n

n∑
i=1

|(r1 − p1)|+ · · ·+ |(ri − pi)|+ · · ·+ |(rn − pn)|

(5)

R2 =

∑n
i=1 (ri − r̄)2 −∑n

i=1 (ri − pi)
2∑n

i=1 (ri − r̄)2
(6)

where n is the number of validation samples, ri is the reference
forest cover fraction of the ith sample, pi is the predicted forest
cover fraction for the ith sample, r̄ is the average of the reference
forest cover fraction of then validation samples. Specially, 5000
samples were used for accuracy assessment and validation, and
they were extracted randomly from the reference forest cover
fraction map in 2019.

In addition to using the forest cover fraction map obtained
from the Landsat tree canopy height data in 2019 as reference
data, we also introduced GFCC data to more rigorously verify
the effectiveness of the proposed method. The tree canopy cover
of GFCC was segmented with 30% as the threshold to obtain the
binary forest cover maps, and then the 250 m forest cover fraction
maps corresponding to 2005, 2010, and 2015 were obtained by
spatially average filtering of the 30 m binary forest cover maps.
Similarly, 5000 points were randomly selected from each year
for accuracy assessment and compare.

IV. EXPERIMENTAL RESULTS

A. Forest Cover Fraction Map Estimation in 2019

In this section, the fraction cover map in 2019 was selected
as the reference for comparing results estimated by the STR
method and the traditional nonlinear RF regression method. For
the STR method and the traditional nonlinear RF regression

method, training samples from 2000, 2020, and both 2000 and
2020 were used to predict cover fraction maps from the 16-day
MODIS NDVI sequence and annual MODIS VCF images in
2019, respectively. The tenfold cross validation for the results in
2019 are shown in Table II. Moreover, the accuracy assessment
and comparison using all training samples are shown in Table III
and the corresponding accuracy assessment based on the scat-
terplots is depicted in Fig. 4. By using the forest cover fraction
maps generated from GFCC as reference data, Table IV shows
the accuracy assessment and comparison in the validation years
of 2005, 2010, and 2015 for results generated by the proposed
STR method with the combined samples of 2000 and 2020. By
observing Tables II–IV, it can be found that the proposed STR
method can obtain more accurate fraction cover maps than the
traditional RF method with different reference validation data.

Forest cover fraction maps generated from STR by using
all training samples and the corresponding difference maps
between the predicted and reference forest cover fraction maps
are illustrated in Fig. 5, in which the area of Hanzhong city
is selected as the zoomed area. Looking at Fig. 5, when the
traditional RF method was used, the forest cover fraction values
in the result obtained from the samples in 2000 are generally
higher than those in the reference map [see Fig. 5(a)], and the
regions with large negative difference (i.e., error) values are
distributed in the western, central, and southeastern parts of the
study area, especially in the southeastern part [see Fig. 5(d)].
This means that the overestimation is serious. The prediction
result obtained from the samples in 2020 is generally lower
than the reference result [see Fig. 5(b)], in which the regions
with large positive difference are distributed in the western,
central, and northern parts of the study area [see Fig. 5(e)]. This
means that the underestimation is serious. After combining the
samples in 2000 and 2020, as shown in Fig. 5(c), the predicted
result visually improved greatly, in which the numbers of large
positive and negative values in the difference map [see Fig. 5(f)]
are much smaller than those based on samples in 2000 and
2020. However, there are still significant differences between
the estimated values and the reference values in the western and
southeastern regions of the Han River Basin. The reason behind
this is that the external environmental conditions are different in
each year, and the same pixel with similar NDVI sequences in
different years may correspond to different forest cover fraction
values, so that the samples obtained by the traditional RF method
can predict only the forest cover fraction of the current year. For
example, if the forest cover fraction values for samples in 2000
all stay at a low level, the results obtained by the traditional RF
method and the samples of 2000 will also stay at a lower level
than the reference value.
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TABLE III
ACCURACY ASSESSMENT AND COMPARISON OF THE RESULTS IN 2019 GENERATED BY THE PROPOSED STR METHOD AND TRADITIONAL RF METHOD (USING

ALL SAMPLES)

Fig. 4. Scatter plots between the estimated forest cover fraction values for the year of 2019 and reference values based on the validation samples in 2019.
(a), (b), (c) Scatter plots for the forest cover fraction values in 2019 estimated by the traditional RF method with samples in 2000, 2020, and a combination of 2000
and 2020, respectively. (d), (e), (f) Scatter plots for the forest cover fraction values in 2019 estimated by the proposed STR with unchanged samples selected from
2000, 2020, and a combination of 2000 and 2020, respectively.

TABLE IV
ACCURACY ASSESSMENT AND COMPARISON IN THE VALIDATION YEARS OF 2005, 2010, AND 2015 FOR RESULTS GENERATED BY THE PROPOSED STR METHOD

WITH THE COMBINED SAMPLES OF 2000 AND 2020 (FOREST COVER FRACTION MAPS GENERATED FROM GFCC WERE USED AS REFERENCE DATA)

As shown in Fig. 5(g)–(i), after using the proposed STR
method, the above problems are well solved. Comparing the
Fig. 5(g)–(i) and (m), it is found that the three results are
more similar to the reference forest cover fraction map in
the whole study area than the results obtained by the tradi-
tional RF method. Through the difference maps of the three

results [see Fig. 5(j)–(l)], it can also be found that the over-
estimation and underestimation against the reference values
in the results of the traditional RF method have also been
significantly reduced in the results of the proposed STR
method, especially in the northern region and the southeast
region.
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Fig. 5. Forest cover fraction maps and corresponding error maps with a spatial resolution of 250 m obtained by different methods. (a)–(c) Forest cover fraction
maps in 2019 estimated by the traditional RF method with samples in 2000, 2020, and a combination of 2000 and 2020, respectively. (d)–(f) Difference (error)
maps between the prediction results of (a)–(c) and the reference map in (m). (g)–(i) Forest cover fraction values in 2019 estimated by the proposed STR with
unchanged samples selected from 2000, 2020, and a combination of 2000 and 2020, respectively. (j)–(l) Difference (error) maps between the results of (g)–(i) and
the reference map in (m). (m) Reference forest cover fraction map in 2019. (n) Zoomed area of (m). (o)–(q) Zoomed areas of (a)–(c). (r)–(t) Zoomed areas of
(g)–(i). (u)–(w) Zoomed areas of (d)–(f). (x)–(z) Zoomed areas of (j)–(l).

The area near Hanzhong city is taken as an example for the
zoomed area analysis and comparison [see Fig. 5(n)-(t)]. When
using the traditional RF method, the result [see Fig. 5(o)] ob-
tained from the sample from 2000 presents significantly higher
forest cover fraction values than the reference [see Fig. 5(n)]
throughout the region, and the boundaries between many forest
and nonforest areas are not clear. The fraction values in the
result based on the samples in 2020 are more accurate than for
2000, but the forest texture is still blurred [see Fig. 5(p)]. The
result obtained by combining the samples of 2000 and 2020
also produces many overestimated or underestimated prediction
values in the whole region [see Fig. 5(w)]. After using the STR
method, it can be found that the results depict more texture
details [see Fig. 5(r)–(t)] of forests, and the deviation of the
prediction values is also significantly reduced [see Fig. 5(x)–(z)],

leading to more accurate reflection of the real spatial distribution
of forest cover in the region. In addition, when taking samples
from 2000 as an example, the accuracy obtained by the STR
method is significantly increased compared to the traditional
RF method (see Table III), and only slightly inferior to that
of the year of 2020, which demonstrates that the STR method
can provide more accurate and stable estimation of forest cover
fraction when making long-time series predictions.

B. Annual Forest Cover Fraction Map Estimation From 2000
to 2020

This section obtains the annual forest cover fraction maps
for each year from 2000 to 2020 in the Han River Basin,
and the results are depicted in Fig. 6. Using STR method,
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Fig. 6. Annual 250 m forest cover fraction maps in China’s Han River Basin during the period from 2000 to 2020 estimated by the proposed STR method. The
areas in the red box are further discussed and analyzed in 4.2.1 and 4.2.2 as typical areas of forest increase and decrease.

the corresponding time-series samples for each year during
2000–2020 were obtained based on the reference forest cover
fraction maps of 2000 and 2020, and the model for each year was
constructed and trained with the selected unchanged samples at
the predicting year. The 16-day MODIS NDVI sequence and
annual MODIS VCF images in the predicting year were used
as the input of the predicting model to obtain the forest cover
fraction map.

As shown in Fig. 6, it is clear that significant forest recov-
ery occurred from 2000 to 2020 in China’s Han River Basin,
especially in the central region, such as Ankang City, Shaanxi
Province (see Ankang in Fig. 6). Moreover, obvious forest re-
covery also occurred around Hanzhong City, Shaanxi Province,
as well as the forests in Shangluo City, Shaanxi Province and
the Danjiangkou Reservoir area in eastern Hubei Province (see
green boxes in Fig. 6). The remarkable restoration of forests in
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Fig. 7. Estimated annual forest cover fraction maps for the typical area of forest growth in Ankang City, Shaanxi Province.

these regions is a testament to the effectiveness of the Chinese
government’s forest conservation policies. However, there were
also some areas that experienced forest fraction decline during
the study period (see Shiyan in Fig. 6), which may be related
to the development and construction of rapid urban expansion
during the past two decades.

C. Illustration of Forest Cover Fraction Increases During
2000–2020

Ankang City, located in the southeast of Shaanxi Province,
was selected as a typical area of forest restoration in the study
area for further analysis (see Fig. 7). From the results, the forest
cover fraction in Ankang City showed a year-by-year increasing
trend from 2000 to 2020, and the forest cover fraction with high
values expanded significantly. In particular, the restoration of
the forest in the northern part of Ankang City is more obvi-
ous than other places, and the northern forest fractions were
expanding to the city year by year. The forests in the southern
part of Ankang City also showed an obvious recovery process,
and the forest cover fraction of many sparse forests increased
significantly, indicating an increasing densityof forests. For
example, the forest cover fraction values of the three indicator
points selected around Ankang City changed from low values
at the beginning to high values after a series of fluctuations,
indicating that forests in these areas were well restored under
the forest protection policies, such as returning farmland and
grassland to forest as promoted by the Chinese government.
Furthermore, by comparing with the impervious surface area
(see 2020 in Fig. 7), it can be found that the increase in forest
occurred mainly around the urban area, which indicates that

Ankang City attached great importance to the protection of
the ecological environment around the city in the process of
development.

D. Illustration of Forest Cover Fraction Decreases During
2000–2020

Shiyan City was selected as a typical area of forest decrease
for further analysis. As shown in Fig. 8, the forest cover fraction
in Shiyan urban area exhibited a year-by-year downward trend
from 2000 to 2020. For example, the forest cover fraction
values of the three indicator points located around Shiyan City
experienced a series of fluctuations from the high value at the
beginning to a low value at the end year of 2020 (see Fig. 8).
Compared to the impervious surface area shown in Fig. 8, it
can be found that the forest decreases in the city of Shiyan, and
even the forest in the northwest and northeast around Shiyan
city, experienced an obvious increase. As a representative large
city in the northwest of Hubei Province, Shiyan City is also an
important transportation hub in Hubei Province, with a relatively
complete industrial system. In the process of city development
during the past two decades, due to the adjustment of industrial
structure and the influx of a large number of migrant populations,
Shiyan City has developed and utilized a large number of urban
internal spaces during the study period, which has led to a
decrease in forested area in the city. On the other hand, as in the
vicinity of Ankang City, forest cover fraction in many parts of
Shiyan also shows an increasing trend, such as in the northern,
northwestern, and eastern parts. It shows that in the past 20
years, although Shiyan city has experienced a decline in forests
in the city due to rapid urban development, the forest cover
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Fig. 8. Estimated annual forest cover fraction maps for the typical area of forest decrease in Shiyan City, Hubei Province.

fraction within the city increased, with an improved ecological
environment around the city.

E. Annual Forest Cover Change During 2000–2020 at the
Pixel Scale

In the above Section IV-B, the annual forest cover fraction
maps for each year of the study area were obtained from 2000
to 2020, and this section analyzes the forest disturbances based
on the results. Taking 0.5 as the segmentation threshold, pixels
with forest cover fraction values greater than 0.5 are considered
as forest cover pixels and assigned a value of 1, to obtain binary
maps of forest cover in each year. The forest distribution maps
were stacked based on the generated annual binary forest cover
maps from 2000 to 2020. For a forest cover pixel in 2000, a
forest cover decrease map was recorded for the year when the
pixel first became a nonforest pixel. This operation was applied
to all pixels to obtain a forest decrease change map in the study
area. By contrast, a forest cover increase map was recorded for
the year when the nonforest pixel at the beginning year of 2000
first became a forest pixel. The spatio-temporal information on
forest cover change at the pixel scale in the study area can
be understood through the obtained forest cover increase and
decrease maps.

For the forest cover increase map [see Fig. 9(a)], it can be
found that forest expansion in the study area is concentrated
mainly in the vicinity of western Hanzhong city, central Ankang
city, eastern Danjiangkou area, and southeastern Nanzhang
and Baokang cities. Among them, the forest cover near the
Danjiangkou Reservoir experienced a significant increase. This
may be because the Danjiangkou Reservoir area belongs to

the water source of the middle route of the South-to-North
Water Diversion Project, which is a national first-class wa-
ter source protection area, and the government has issued a
strict forest protection policy for this region, such that rela-
tively significant forest restoration was observed. Ankang city,
as a representative area of forest restoration in Section IV-B,
also showed a typical trend of forest restoration. A zoom of
Ankang city area (see Ankang in Fig. 9) shows that the trans-
formation of nonforest pixels to forest pixels occurred from
the city boundaries to city center year-by-year. This indicates
that more attention is paid to the development and protection
of forest green space around the city in the process of urban
construction.

From the forest cover decrease map [see Fig. 9(b)] it can be
seen that a wide range of forest covers in 2000 became nonforests
in the first years of the study period, which may be related to
weak awareness of forest ecological protection in the early years.
For example, the areas of continuous forest reduction in the study
area are concentrated in the city center and some rural areas in
the southeastern part. Taking Shiyan city as a zoomed area (see
Shiyan in Fig. 9), it can be found that transformation of forest
pixels to nonforest pixels occurs from city center to the city
boundaries.

F. Effect of MODIS VCF Difference Threshold on Forest
Cover Fraction Estimation

In Section III-C, the time-series MODIS VCF difference
threshold a was used to determine whether a pixel is an un-
changed sample in the predicting year [see (1) and (2)]. Based
on this judgment, all constant, unchanged samples were selected
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Fig. 9. Annual forest cover change during the period from 2001 to 2020 based on the baseline of the forest cover map for the year 2000 in China’s Han River
Basin. (a) Illustration of annual forest cover increase during 2001–2020, in which Ankang City, Shaanxi Province is used as a typical zoomed area of forest growth.
(b) Illustration of annual forest cover decrease during 2001–2020, in which Shiyan City, Hubei Province is used as a typical zoomed area of forest decrease.

TABLE V
ACCURACY ASSESSMENT OF VARIOUS FOREST COVER FRACTION MAPS ESTIMATED BY STR WITH DIFFERENT MODIS VCF DIFFERENCE THRESHOLD

VALUES IN (1)

from 2000 and 2020 for each predicting year and the MODIS
NDVI sequence and annual MODIS VCF images of the predict-
ing year were used together to estimate the forest cover fraction
maps. As listed in Table V, this section analyzes the effect of
the change in the MODIS VCF difference threshold a on forest
cover fraction estimation, in which the combined samples of
2000 and 2020 were used in the proposed STR method.

When the threshold a is small (such as 0.01), although the
screening requirement for unchanged samples is strict, the result
of STR still presents an obvious improvement compared to the
traditional RF method, in which the RMSE decreased from
0.1657 to 0.1478, MAE decreased from 0.1079 to 0.086, and
R2 increased from 0.851 to 0.882 (see Tables III and V). With
a gradual increase in the threshold a, the number of selected
unchanged training samples increases, which further increases
the accuracy of the results. When a is increased to 0.18, relatively

optimal results are obtained, with RMSE of 0.1347, MAE of
0.076, and R2 of 0.9, as shown in Table V. However, with a
continuous increase in the threshold a, the screening requirement
for unchanged sample pixels becomes too lax, some low-quality
samples will be included, and the accuracy of the result declines
slightly, albeit still significantly better than the results obtained
by the traditional RF method (see TableⅤ). However, observing
the change of sample size, it can be found that when a takes a
relatively optimal value of 0.18, the sample size is nearly seven
times than that of the sample size when a is 0.0. At the same
time, when the value of a increases from 0.1 to 0.3, the sample
size increases significantly, which increases the computational
workload, but the accuracy of the obtained results does not in-
crease significantly. Considering the tradeoff between accuracy
and computational efficiency, we recommend a setting between
0.1–0.15 for a.
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TABLE VI
EFFECT OF DIFFERENT W VALUES ON THE ACCURACY OF THE PREDICTED FOREST COVER FRACTION MAP IN 2019

G. Effect of Neighborhood Window System W on Forest Cover
Fraction Estimation

In Section III-C, we believe that when the difference in
MODIS VCF between two years is less than a given threshold,
the pixel can be considered as an unchanged pixel. However,
considering that MODIS VCF will inevitably have outliers
caused by clouds and environmental condition changes, this
will interfere with the operation of screening unchanged training
samples. Therefore, we choose to build a neighborhood window
system W instead of using a single pixel to indicate the change
in percentage tree cover between two years. In this process, the
different sizes of the neighborhood window system W will also
have a certain impact on the prediction results. Therefore, we
take 2019 as the predicted year and use different W values to
quantify this impact.

By observing Table VI, it can be found that when W = 1 (i.e.,
only a single pixel is used for MODIS VCF change detection),
the accuracy of the results obtained using the STR method is
still significantly higher than that obtained by the traditional RF
method, which once again demonstrates the effectiveness of the
proposed STR method and the necessity of using MODIS VCF
to select unchanged training samples. With the increasing of W, it
can be found that the RMSE and MAE are reduced, and R2 is also
improved, which shows that the results can be further improved
by constructing a neighborhood window system with larger W.
However, considering that the increase in W value will also lead
to a decrease in computational efficiency, W is, therefore, taken
as 3 in this study.

H. Annual Forest Cover Fraction Change Trend During
2000–2020 Based on Mann–Kendall Trend Analysis

In this part, based on the annual forest cover fraction maps
from 2000 to 2020 obtained in Section IV-B, the Mann–Kendall
(M-K) trend analysis method was used here to analyze the forest
cover fraction change trend in the study area, and the result is
shown in Fig. 10. Since we are only interested the forest cover

fraction change trends of forest areas, a nonforest mask was
made to remove nonforest pixels in the trend map. In particular,
the overlapped annual nonforest cover during 2000–2020 could
be used as the nonforest mask required for this section, and we
used 0.1 as the segmentation threshold when making a nonforest
mask for each forest cover fraction map.

For the initial forest cover fraction change trend map shown
in Fig. 10(a), the test statistic Z value obtained by M-K trend
analysis was used to classify it as follows: 1) when |Z| > 2.58
(confidence level 99%), the change trend is extremely signif-
icant. 2) when 1.96<|Z| < 2.58 (confidence level 95%), the
change trend is significant, otherwise the trend is insignificant.
When Z value is positive, the change trend is increasing, and
vice versa. The pie chart in Fig. 10(b) counts the percentage of
pixels within different changing trends. Observing the statistical
results of the pie chart in Fig. 10(b), there are 38% of the total
pixels that have undergone significant changes, of which 27%
have increased (of these, 18% of the pixels showed extreme
increase, and 9% showed significant increase), accounting for
71% of the significantly changed pixels. However, only 11% of
the pixels in the study area had a decrease trend (of these, 5%
showed extreme decrease, and 6% showed significant decrease),
which indicates that the overall trend of forest cover fraction in
the study area is increasing. This conclusion is consistent with
the change trend of the annual forest cover fraction maps (see
Fig. 6) in Section IV-B.

From the spatial distribution of forest cover fraction trend in
Fig. 10(a) and (b), it can be found that the forest cover fraction
in many places have increased significantly from 2000 to 2020,
such as the Hanzhong City in Shaanxi Province, Ankang City,
and Danjiangkou area in Hubei Province, and Shangluo City
in Shaanxi Province. By contrast, some areas experienced a
forest fraction decrease trend during this period, such as Shiyan
City and Yicheng City in Hubei Province in the southeast of
the study area, which may be linked to the urban expansion
during the past two decades. In the above annual forest cover
increase and decrease maps obtained in Section IV-E, these areas
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Fig. 10. Annual forest cover fraction change trend during the period from 2000 to 2020. (a) Forest cover fraction change trend map generated by Mann–Kendall
trend analysis. (b) Classification of forest cover fraction change trend map according to different confidence levels, and the percentage of the number of pixels in
different categories, in which Shiyan City, Hubei Province is used as a typical zoomed area.

also show similar typical forest cover changes. In addition, it
is notable that the range of forest cover increase and decrease
areas (see Fig. 10) obtained by M-K trend analysis is larger than
that of the previous forest cover increase and decrease maps
(see Fig. 9), this is because more subtle forest cover fraction
changes can be observed in the trend map provided by M-K trend
analysis. This also demonstrates the advantage of the annual
forest cover fraction maps obtained by the proposed method in
simultaneously tracking both high-intensity and low-intensity
forest cover changes.

V. DISCUSSION

A. Forest Cover Fraction Estimation With Reference Samples
Extracted With Different Tree Height Thresholds

In Section III-B, the tree height threshold was used to convert
the Landsat tree height images of 2000, 2019, and 2020 to
Landsat binary forest cover maps, which were used to gener-
ate the reference 250 m forest cover fraction maps for these
three years with a spatial averaging filter. It is noteworthy that
different reference forest cover fraction maps generated from
different tree height thresholds will lead to different results for
the proposed STR method. The threshold of 5 m has been used
widely to define a forest cover pixel [51], [59]. However, when
land cover with a crown height greater than 10 m is regarded

as forest, a new set of forest cover fraction maps from 2000 to
2020 will be obtained by STR. The forest cover fraction maps
in 2000, 2010, and 2020 with tree height thresholds of 5 m and
10 m are shown in Fig. 11, where the Danjiangkou area is used
as the zoomed area [see Fig. 10(g)–(l)].

From the results, it can be found that when the threshold
is 10 m, the corresponding forest cover fraction values are
significantly smaller than those with a threshold of 5 m. This
is because the 10 m definition of forest is stricter than 5 m, and
many young and low-quality forests in the study area will not be
regarded as forest cover, and forest height is a good indicator for
forest definition [60], [61]. In line with the trend of forest cover
fraction maps obtained by the 5 m threshold, the forest composed
of dominant tree species higher than 10 m were also recovered
well by the proposed STR method during the study period,
especially in the central region [see Fig. 11(d)–(f)]. This also
shows that the STR method proposed can accurately reflect the
temporal and spatial variation of the complex forest landscape in
the Hanjiang River Basin according to the different definitions
of forest height in the samples.

B. Forest Cover Fraction Change At Subpixel Scale

In Section IV-E, we made two annual forest cover change
maps from the obtained forest cover fraction maps from 2000
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Fig. 11. Forest cover fraction maps estimated by STR with reference samples extracted with tree height thresholds of 5 m and 10 m. (a)–(c) Forest cover fraction
maps in 2000, 2010, and 2020 after segmenting tree heights using a threshold of 5 m. (d)–(f) Forest cover fraction maps in 2000, 2010, and 2020 after segmenting
tree heights using a threshold of 10 m. (g)–(i) Zoomed areas of (a)–(c); (j)–(l) Zoomed areas of (d)–(f).

to 2020 and analyzed the forest disturbances in the study area
during the study period, but this is an analysis of forest cover
change at the pixel scale. However, the forest cover fraction
maps can also be used to analyze the changes to forests at the
subpixel scale in any two time periods during the study period
[28], [62]. In this part, the estimated forest cover fraction maps
of the corresponding year were subtracted at 5-year intervals to
obtain the forest cover fraction change for every five years of
the study area, and the forest cover fraction of the start and end
years was subtracted to obtain the forest cover fraction change
for the entire study area over the past 21 years (see Fig. 12).

As shown in Fig. 12, from 2000 to 2005, the forest cover
fraction in the western and eastern margins of the study area
increased, and the southern and northern forests decreased to a
certain extent [see Fig. 12(a)]. Between 2005 and 2010, there
was obvious large area of forest recovery in the middle of the
study area, and forest decline in the western and southeastern
regions [see Fig. 12(b)]. From 2010 to 2015, forest recovery was
more significant across the study area, and forest cover fraction
increased in the western and central regions, especially around
Hanzhong and Ankang cities, whereas forest decline continued
in the east [see Fig. 12(c)]. Between 2015 and 2020, forests
experienced an obvious decline in the south-central part and
increased in the east and southeast [see Fig. 12(d)].

Examining the changes of forest cover fraction from 2000
to 2020 [see Fig. 12(e)], it can be seen that the increase in
forest cover occurred mainly in the central, southeast central,

and western edges of the study area. Although forest changes
in the study area are also reflected in Section IV-E, Fig. 12(e)
shows more low-intensity forest changes than the high-intensity
changes that occurred at the pixel level in Fig. 9. Forest increases
with low intensity were observed in the central and northern
parts of the study area, with an increase of around 0.2 in the
forest cover fraction, as well as the northwestern, southern, and
southwestern parts of the study area. For the zoomed areas shown
in Fig. 12(a1)–(e1) and (a2)–(e2), a significant decrease was
observed in the central forests of the zoomed areas (a2)–(e2),
and a decrease of low-intensity fraction cover can be found in
the south, whereas a more significant increase occurred in the
north.

C. Limitations and Future Research

The RF model was used as the nonlinear regression method
in this study. In subsequent research, we will consider using
many other machine learning methods, such as decision tree
[63], naive Bayes [64], kernel logistic regression [65], support
vector regression [66] for nonlinear regression, compare the
performance of the different models, and then select the optimal
model for the proposed STR method. At the same time, with
an increase in the number of collected training samples, deep
learning algorithms can automatically extract more useful fea-
tures than machine learning algorithms [67], [68] and, thereby,
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Fig. 12. Forest cover fraction change maps from 2000 to 2020 with an interval of five years. (a) Forest cover fraction change map between 2000 and 2005.
(b) Forest cover fraction change map between 2005 and 2010. (c) Forest cover fraction change map between 2010 and 2015. (d) Forest cover fraction change map
between 2015 and 2020. (e) Forest cover fraction change map between 2000 and 2020. (a1)–(e1) Zoomed areas of forest cover fraction change maps in (a)–(e)
with a geolocation indicator of “1” in (e); (a2)–(e2) zoomed areas of forest cover fraction change maps in (a)–(e) with a geolocation indicator of “2” in (e).

increase the accuracy of forest cover fraction estimation. Al-
though dynamics in MODIS VCF values can reflect changes
in forest cover fraction to some extent, in practice, they cannot
be completely positively correlated. In addition, MODIS VCF
product itself has problems, such as misdetection of dense
farmland areas, underestimation of sparse forests, and saturation
of tree cover at around 80%. Therefore, uncertainty exists in
the process of screening unchanged training samples in the
proposed STR method by using the difference of time-series
MODIS VCF images. In this research, to reduce the impact of
uncertainty of MODIS VCF, we built a neighborhood window
system W in Section III-C to select stable unchanged training
samples. From the validation, we found generally that when the
change of MODIS VCF values for a pixel between two years
centered at a neighborhood window system W is less than a
given threshold, the pixel has the same forest cover fraction
value within two years, and the effectiveness of this principle
has been demonstrated.

VI. CONCLUSION

The traditional nonlinear regression method is used to predict
the forest cover fraction only at the acquisition time of training
samples and is insufficient to estimate long time-series forest
cover fraction. However, in practice, time-series forest cover
fraction maps are crucial for the monitoring of spatio-temporal
dynamics of forests, especially complex forest landscapes with
varying environmental and climate conditions, such as in the
Han River Basin, China. In this article, we proposed a new STR
method that involves sample selection from a restricted span of
two years to generate the necessary training data for each year
between 2000 and 2020. Subsequently, the RF was employed
to estimate time-serious forest cover fraction maps using the
selected time-series training samples.

For the experiment based on the reference data in 2019 and
tenfold cross validation, it showed that the proposed method
can provide more accurate forest cover fraction maps than
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traditional nonlinear regression. Taking the results obtained
from the combined training samples in 2000 and 2020 as an
example, after using the STR method, the RMSE changed from
0.1657 to 0.1364, which was 17.7% lower than before; MAE
changed from 0.1079 to 0.077, with a decrease of 28.6% over
the previous period; R2 changed from 0.851 to 0.897, with an
increase of 5%. The problems of overestimation and underesti-
mation were also alleviated by STR. Moreover, this method can
also reliably obtain high-quality results when predicting forest
cover fraction maps far from the acquisition time of the training
samples. Moreover, the forest cover fraction maps generated
from GFCC in 2005, 2010, and 2015 were also used as reference
data to further verify the effectiveness of the STR method. It
is found that the proposed STR method can still obtain more
accurate fraction cover maps than the traditional RF method by
using this validation dataset. In addition, the impact of different
neighborhood window system sizes on the prediction results
of STR was also validated, and it can be found that better
quality prediction results can be obtained after constructing a
neighborhood window system.

By analyzing the generated annual forest cover fraction maps
from 2000 to 2020, we concluded that the forests in the Han
River Basin showed an overall recovery trend during the study
period, in which Ankang City in Shaanxi Province presented
a typical area of forest restoration, whereas the Shiyan City in
Hubei Province depicted a typical forest decline due to urban
expansion. At the same time, we analyzed the forest cover frac-
tion changes at the subpixel scale, and many low-intensity forest
cover fraction changes were found. With different threshold
values of 5 m and 10 m in training sample generation, it was
found that the proposed STR method can accurately reflect the
spatiotemporal changes of complex forest landscapes. In future
research, alternative machine learning models will be compared
to select the model with the best performance.
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