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Correlated Mapping Attention Cooperative Network
for Urban Remote Sensing Image Segmentation

Yunsong Yang , Genji Yuan , and Jinjiang Li

Abstract—In current remote sensing segmentation tasks, the
difficulty of segmenting spectrally similar objects is a significant
issue. Solving this problem is crucial for improving segmentation
accuracy. Traditional image-domain segmentation methods rely
on color and texture features, but spectrally similar objects have
negligible color differences, leading to suboptimal segmentation
results. To address this, we propose a network framework called
Correlated Mapping Attention Cooperative Network (CMACNet)
by extending the problem from the image domain to the feature
domain. Image-domain methods depend on color and texture
features, whereas feature-domain methods process higher-level
abstract features, avoiding issues caused by color similarity. Specif-
ically, CMACNet first employs an autoencoder structure. The au-
toencoder compresses the input data and attempts to reconstruct
the original data, ensuring that the latent space representations
capture essential and representative features of the input data,
thereby extracting highly generalized and versatile features. Next,
we introduce the correlated mapping attention mechanism, which
adaptively adjusts the attention to different features based on their
correlations, effectively addressing the challenge of segmenting
spectrally similar objects. Furthermore, to efficiently establish
global relationships among features, we design a cross global inter-
action layer for global feature remapping. Comprehensive exper-
iments on the Vaihingen and Potsdam datasets demonstrate that
CMACNet outperforms existing state-of-the-art methods, achiev-
ing mean intersection over union scores of 84.77% and 87.69%,
respectively.

Index Terms—Attention mechanism, global modeling, remote
sensing (RS), semantic segmentation, transformer.

I. INTRODUCTION

W ITH the continuous development of sensors and
aerospace technology, people can easily access high-

resolution satellite and aerospace remote sensing (RS) images.
These images provide high-resolution observations of diverse
landscapes on the Earth’s surface, covering various scenes from
cities to farmlands, and from forests to lakes. RS image segmen-
tation is a crucial technique aimed at partitioning RS images on
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Fig. 1. Issue of segmenting land cover with similar spectral characteristics in
synthetic images due to color similarity. (a) shows the average pixel values
in the red, green, blue, and near-infrared channels for all synthetic images
in the Potsdam dataset. It can be seen that the curves for tree and lowveg
are very close, indicating strong color similarity. (b) shows examples where
categories with similar colors are difficult to distinguish while those with
different colors are easy to distinguish. The first column is the original image,
the second column is the GT, and the third column is the segmentation result by
MPCNet (2023). MPCNet incorrectly segments categories with similar colors
but correctly classifies categories such as car, which have significantly different
colors.

Earth into different landforms or landform categories. This is
essential for geographical information systems (GIS), resource
management, environmental monitoring, and crisis manage-
ment. Here are some key applications of RS image segmentation,
such as land cover mapping [1], [2], [3], change detection [4],
[5], environmental protection [6], [7], road and building extrac-
tion [8], [9], and many other practical applications [10], [11].

In recent years, significant progress has been made in the
field of RS image processing with deep learning. Compared to
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traditional machine learning algorithms, such as in [12], [13],
and [14], deep learning automatically extracts useful features
from raw data, reducing the burden of feature engineering and
aiding in understanding the complex structure and semantics of
the data. Various deep-learning-based methods have been pro-
posed in the RS domain [15], covering multiple data types [16],
[17]. These methods primarily rely on convolutional neural
networks (CNNs) and are capable of effectively classifying and
semantically segmenting images [18].

In the field of semantic segmentation, fully convolutional net-
works (FCNs) [19] were initially proposed, but their design was
relatively crude. Subsequently, more refined encoder–decoder
structures [20] were introduced, such as U-Net [21], which
combines the encoder and decoder through skip connections,
thereby improving segmentation accuracy. In the domain of
remote sensing images, models such as U-Net has performed
exceptionally well, prompting researchers to continually re-
fine them to adapt to different segmentation tasks, such as
Unet++[22] and AFF-UNet [23].

Although CNN networks are encouraging in overall segmen-
tation accuracy, they have certain limitations in the field of
RS segmentation due to the characteristics of landforms (large
scale, high similarity, and mutual occlusion) caused by the local
patterns designed by convolution [24]. Some scholars hope to
continue using convolutional attention mechanisms for global
modeling. For example, MSCSA-Net [25] designs local channel
spatial attention and multiscale attention to effectively conduct
global context modeling. These methods are still designed to ag-
gregate global information from locally obtained CNN features
rather than directly encoding a global context. To address this
issue, researchers have proposed Transformer-based networks
such as Vit [26] and Swin transformer [27] for global modeling.
Currently, mainstream networks tend to directly incorporate
Swin-transformer networks into CNN for global modeling, such
as ST-Unet [28] and CSTUnet [29]. Although these methods
effectively enable global modeling of features within CNN
networks, directly introducing Swin-transformer networks into
RS segmentation would significantly increase the number of
parameters and computational complexity. This would severely
impact the practical application of the network in RS segmenta-
tion. Therefore, to achieve more efficient global modeling in the
field of RS segmentation, we propose a simple cross-pooling
method to replace the complex shift-window operation in the
Swin transformer. This approach allows for simple and effective
global context modeling of features in the RS segmentation
domain.

The aforementioned networks are effective to a certain extent
in image segmentation. However, in RS image segmentation,
there still exists a prominent issue caused by the color sim-
ilarity of two types of spectrally similar land cover classes
in the synthetic images, making them difficult to distinguish
(see Fig. 1). These factors also affect the final segmentation ac-
curacy. In the segmentation network, different feature mappings
focus on different landforms. Therefore, combining channels
according to their importance can determine different landforms.
Channels contain texture, edges, and other information, making
similar landforms (such as low vegetation and trees, both defined

as vegetation in spectroscopy but belonging to different semantic
categories in segmentation tasks) show high color similarity
in the image [30], which leads to higher channel correlation
between the same channel combinations and blurs the differ-
ence between different landforms. Although SE-Net [31] and
ECA-Net [32] can effectively assign weights to various feature
channels, they cannot effectively combine correlation informa-
tion between channels due to their design constraints.

Therefore, to address the challenge of spectral similarity caus-
ing difficulties in segmenting similar land features in RS images,
we propose a novel method called the Correlated Mapping
Attention Cooperative Network (CMACNet). The key compo-
nent, correlated mapping attention (CMA), extends the problem
from the image domain to the feature domain. It measures the
correlation between feature mappings by generating a feature
mapping correlation matrix and utilizes this correlation to weight
the feature mappings, enhancing the independence of unrelated
feature mappings. We conducted experiments to validate the
feasibility and effectiveness of this method, and the results
demonstrate its effectiveness in addressing the segmentation
difficulties caused by spectral similarity among similar land
features. In addition, considering the dependence of segmen-
tation networks on downsampled features, we adopt a novel
autoencoder approach to enhance the sampling of original fea-
tures, thereby improving feature generalization. Compared to
mainstream RS segmentation methods, we enhance the feature
generalization capability of the network using the autoencoder
structure and design CMA to address the prominent issue of
spectral similarity among similar land features. Furthermore, we
introduce a cross global interaction layer (CGIL), which utilizes
simple cross-pooling operations to achieve simple and efficient
global modeling in RS segmentation, replacing the complex
shift-window operations in traditional Swin transformer models.

In summary, the contributions of this article are as follows.
1) Proposed Correlated Mapping Attention (CMA): We inte-

grate the correlation information between feature channels
by generating a matrix of interchannel correlations, thus
embedding the interchannel relationships into the features.
This enables the network to better understand the relation-
ships between different feature mappings. Through itera-
tive learning, we gradually reduce the correlation between
unrelated channels, thereby enhancing the independence
of each channel. This process effectively improves the
discriminability of various land cover types, particularly
for objects with similar spectral characteristics.

2) Proposed CGIL: To integrate the correlated information
from feature mappings and incorporate other essential
details, we propose a global feature remapping module
called CGIL. CGIL employs cross-pooling to interact
information across different windows, facilitating efficient
global context modeling in RS segmentation. Experimen-
tal results demonstrate the effectiveness of this method for
global context modeling.

3) Proposed CMACNet: Based on CMA and CGIL, we pro-
pose CMACNet. In addition, we innovatively introduce an
autoencoder structure into the segmentation network. The
autoencoder structure emphasizes preserving details and
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structure of the original data, offering more possibilities
for model generalization and universal feature learning.
This enables our network to perform exceptionally well
across multiple tasks and datasets.

II. RELATED WORK

RS segmentation is a crucial issue in the field of RS image
processing, aiming to divide RS images into different regions
with similar objects or object categories. Over the past few
decades, with the continuous development of RS technology
and the large-scale acquisition of RS data, RS segmentation has
attracted widespread attention as an important research task.
Related work covers various methods and technologies aimed
at improving the accuracy and efficiency of RS image segmen-
tation. When addressing the challenges in this field, researchers
need to fully consider the characteristics of the data to ensure the
accuracy and robustness of the segmentation results. The success
of RS semantic segmentation is of great significance for urban
planning, agricultural monitoring, natural disaster management,
and other fields. This section will introduce some important
works related to RS segmentation and their contributions to this
field.

A. CNN-Based RS Image Semantic Segmentation

In RS image semantic segmentation, traditional methods
focus on designing robust features compatible with spectral
information and local image textures [33], [34], such as the
method proposed by Huang et al. [35], which considers envi-
ronmental and spectral information. With the advancement of
RS technology, current research tends to use high-resolution
datasets, which, although providing clear geometric information
and fine textures [36], also introduce more noise, increasing the
difficulty of segmentation.

In recent years, deep learning has been widely applied in
the field of RS segmentation. FCN [19] was the first CNN
to successfully address the semantic segmentation problem,
and since 2015, methods based on CNNs have been dominant
in RS semantic segmentation research [37], [38]. To improve
segmentation accuracy, researchers introduced UNet [21], an
encoder–decoder network focusing on finer semantic segmen-
tation tasks. UNet extracts features through an encoder and
gradually restores resolution through a decoder, and the two
are interrelated through skip connections, strengthening the net-
work’s performance. This encoder–decoder network structure
has become the standard model for RS image segmentation,
laying the foundation for subsequent research [39]. Subsequent
research based on this structure has been conducted extensively,
for example, ResUnet [40] improves segmentation accuracy by
designing more refined encoder–decoder networks, combining
residual stitching, subattribute convolution, pyramid-style scene
understanding, and multitask inference to establish conditional
relationships between tasks. Wang et al. [41] followed the idea
of designing deeper networks and developed a multitask de-
formable MDE-UNet based on a variable UNet as the basic
network. Qiu et al. [42] focused on UNet skip connections and
designed a Refine-UNet with a refined skip connection scheme.

CNN segmentation networks guided by object boundary
prediction are also an important aspect not to be overlooked.
For example, Jung et al. [43] proposed a method combining a
holistic nested edge detector and boundary enhancement mod-
ule. Zheng et al. [44] proposed a Markov-random-field-based
multigranularity edge-preserving optimization algorithm for RS
segmentation. Sui et al. [45] proposed a segmentation network
structure with blockwise edge detection. These novel networks
have been carefully designed for RS segmentation tasks, fully
exploiting the important role of boundaries in RS segmentation
networks.

The previous CNN-based methods have brought impetus to
the progress of RS image segmentation. In this article, based on
the CNN network, through targeted analysis and design of RS
image similarity objects, we propose a CMACNet with a local
multiscale enhanced autoencoder, enhancing the generality of
features to improve the accuracy of segmentation networks.

B. Global Context Modeling and Attention Mechanism

To overcome the limitations of local patterns in CNNs, re-
searchers have made various attempts, among which one of the
most popular methods is to introduce attention mechanisms.
This mechanism enables the network to focus on specific re-
gions of the image, thus capturing global context information
more effectively. For example, DANet utilizes a dual attention
mechanism [46] for global context modeling. Chen et al. [47] in-
troduced local aggregation with graph convolution and attention
blocks to more comprehensively capture context information.

Attention mechanisms allow models to focus on specific
aspects. For instance, channel attention [31] allows the model to
pay more attention to channels with higher weights while spatial
attention [48] mechanisms enable models to concentrate on spe-
cific spatial locations when processing images or sequence data.
This mechanism helps the model capture local features and key
information, thereby enhancing the model’s perception of local
details. These attention mechanisms also play a significant role
in RS image segmentation. In addition, some attention mecha-
nisms are used for capturing a global context. For example, Li
et al. [40] proposed a linear attention mechanism that reduces
computational complexity while maintaining performance for
global modeling. Ding et al. [49] introduced local attention
blocks to capture richer context information. MSCSA-Net [25]
designed local channel spatial attention and multiscale attention
to effectively perform global context modeling. These attention
mechanisms contribute to performance improvements in seg-
mentation networks, but due to their reliance on convolutional
operations, these methods still focus on aggregating global
information from locally extracted features by CNNs rather than
directly encoding a global context.

Different from CNNs, Transformers transform the task of 2-D
image processing into a 1-D sequence task, leveraging power-
ful sequence-to-sequence modeling capabilities to effectively
perform global modeling. Researchers have made significant
progress in applying transformers for global context modeling
in RS segmentation. The Swin transformer, as an innovative
architecture, provides new ideas and paradigms for RS image



12594 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 2. CMACNet structure diagram. It can be generally divided into two parts. The autoencoder at the top serves as one part, mainly aimed at enhancing the
generality of features while the bottom consists of the CMA and global decoder, which form the segmentation part.

segmentation. The application of the Swin transformer in remote
sensing image segmentation typically involves two approaches:
1) using models based on a pure transformer structure, such as
Segmenter [50] and SwinUNet [51], and 2) integrating trans-
former and CNN models, such as GLOTS [52] and EMRT [53],
which have achieved significant success in this field. This ar-
ticle adopts a method that combines transformerlike and CNN
structures. However, due to the computational complexity of the
SW-MSA operation in the Swin transformer, networks based
on the Swin transformer pose a certain challenge in terms of
computation. Therefore, exploring a simpler and more effective
global interaction method is crucial.

In this article, inspired by self-attention, we design a modal
attention mechanis mechanism capable of perceiving the inter-
relationship between feature maps to effectively address the
difficulty in segmenting spectrally similar land covers. We
also propose a novel global transformer block that replaces
the complex SW-MSA operation with cross-pooling, which,
combined with multihead self-attention, achieves efficient
global context modeling and ultimately improves segmentation
accuracy.

III. METHOD

In this section, we will first introduce the overall structure
of CMACNet. Following that, we will discuss two important
components of CMACNet, namely CMA and CGIL. Finally,
we will present the loss function we utilized.

A. CMACNet Structure

The structure of CMACNet is illustrated in Fig. 2. The net-
work can be divided into two main parts: 1) the autoencoder
part and 2) the segmentation network part. For the autoencoder
part, we adopt an encoder–decoder structure, where the encoder
serves as the backbone for feature extraction. In this article, we
use a CNN-based downsampling method, with Convnext [54]
serving as the backbone due to its proven effectiveness in
feature extraction. The decoder part reconstructs the features
obtained from the encoder through four upsampling stages to
generate the autoencoder’s output image. During this process,
each downsampled feature is combined with the corresponding
downsampled feature size through skip connections while each
upsampling stage is followed by a multiscale local enhancement
to map local features to multiscale local features. The structure
of the multiscale local enhancement decoder is shown in Fig. 3.
We extract multiscale information using pooling pyramids of dif-
ferent sizes (5× 5, 9× 9, 13× 13) and integrate them with the
original features through residual connections, followed by fully
connected layers to help the model learn richer and more abstract
feature representations. The initial purpose of the autoencoder
structure is to learn compact and characteristic representations
of the input data and then reconstruct these representations into
the original input through the decoder. Since the autoencoder
learns effective feature representations by minimizing the error
between the input and reconstructed output, it enables the model
to capture key information from the input data, enhancing its
ability to accurately reconstruct the input data beyond feature
extraction and reconstruction solely for segmentation purposes.
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Fig. 3. Structural diagram of the multiscale local enhancer. Obtaining multi-
scale features through pyramid pooling.

Thus, autoencoders effectively improve feature generalization
and model generalization.

For the segmentation network part, the four features from
the backbone undergo feature mapping correlation weighting
using the CMA mechanism, which dynamically adjusts the
relevance between feature mappings. The output features of
this process enhance the model’s attention to the correlations
between different feature mappings, enhancing its perceptual
and discriminative abilities. The subsequent operation is global
decoding, where the small-scale features are first upsampled,
then fused with features from multiscale local enhancement and
passed through the CGIL layer for global feature mapping. This
process ensures that the model can perceive global features while
preserving local multiscale information. Finally, the segmenta-
tion head produces the final segmentation image.

Specifically, for an input image x ∈ R3×H×W , after initial
convolutional operations, it becomes x′ ∈ RC×H×W , where C
represents the number of output channels after convolution, and
in this case, C = 96. Subsequently, through the four stages of

the backbone, feature maps Xi ∈ R2iC×( H

2i
)×(W

2i
) are obtained,

where i ∈ {1, 2, 3, 4}.
For the autoencoder part, starting from X4, the input feature

map X4 is first mapped to XM
4 through a multiscale local

enhancer. Then, XM
4 undergoes convolution and interpolation

to adjust its size to match the output X3 of the backbone’s third
stage. After being added to X3 and enhanced by a multiscale
local enhancer, XM

3 is obtained, followed by similar operations
to obtain XM

2 and XM
1 .

Prior to describing the entire process, some necessary defini-
tions are provided

FSpp(x) = Cat(MP5×5(x),MP9×9(x),MP13×13(x), x) (1)

FConv1(x) = Conv1×1(Conv3×3(Conv1×1(x))) (2)

FConv2(x) = Conv1×1(Conv3×3(x)) (3)

where FSpp(·) represents spatial pyramid pooling, FConv1(·)
and FConv2(·) represent two consecutive convolution operations,
MPx×x(·) denotes max-pooling of size x× x, Cat(·) denotes
concatenation, Convx×x(·) represents 2-D convolution with a
kernel size of x× x.

Based on the previous formulas, FMSLE(·)) is defined as
follows:

Fm(x) = Cat(FConv2(FSpp(FConv1(BN(x)))),

Conv1×1(BN(x)) + x) (4)

FMSLE(x) = MLP(BN(Fm(x))) + Fm(x) (5)

where BN(·) denotes BatchNorm operation, Fm(·) is an inter-
mediate function,FMSLE(·) represents multiscale local enhance-
ment operation, and MLP(·) denotes fully connected layers.
Then, the recursive relationship of XM

i can be described as
follows:

XM
4 = FMSLE(x4) (6)

XM
i = FMSLE(In(Conv1×1(X

M
i+1)) +Xi), i ∈ {1, 2, 3} (7)

whereFMSLE(·) represents multiscale local enhancement opera-
tion, In(·) denotes interpolation.Xi represents the output feature
map from the ith stage of the backbone, i ∈ {1, 2, 3, 4},XM

i rep-
resents the multiscale locally enhanced features of the ith stage,

and the size of XM
i is represented as XM

i ∈ R2iC×( H

2i
)×(W

2i
),

i ∈ {1, 2, 3, 4}. XM
4 , XM

3 , XM
2 , and XM

1 are derived using
(6) and (7). During model training, XM

1 undergoes simple
processing as the output image of the autoencoder used for auto
loss with the original image X .

For the segmentation network, the features Xi downsampled
by the backbone are first weighted by feature mapping correla-
tion, described as

XA
i = FCMA(Xi), i ∈ {1, 2, 3, 4} (8)

where FCMA(·) represents the features after undergoing the
CMA operation, and XA

i represents the features after CMA
operation for the ith original feature, with the size XA

i ∈
R2iC×( H

2i
)×(W

2i
), i ∈ {1, 2, 3, 4}.

In the global decoder part of the segmentation network,
a weighted sum operation is performed on a set of features
obtained through multiscale weighting and a set of features
weighted by feature mapping correlation. Subsequently, several
stages of global feature remapping are conducted. Specifically,
in the initial stage, XA

4 and XM
4 are weighted and summed to

obtainXC
4 through CGIL. Then,XC

4 is interpolated to match the
size ofXA

3 , and then weighted and summed withXA
3 andXM

3 to
obtainXC

3 through CGIL. Similar operations are then performed
to obtainXC

2 andXC
1 . For computational convenience, the entire

process of global decoding maintains the channel number as
C1 = 96 through 1×1 convolutions. This recursive process can
be formally described as follows:

XC
4 =FCGIL(a× Conv1×1(X

A
4 )+(1− a)× Conv1×1(X

M
4 ))

(9)

XC
i =FCGIL(b×ln(Conv1×1(X

C
i+1))+c×Conv1×1(X

A
i )

+(1−b−c)× Conv1×1(X
M
i )), i ∈ {1, 2, 3} (10)

where a, b, and c represent the weight coefficients, a, b, c > 0,
a ≤ 1, b+ c ≤ 1,FCGIL(·) represents global feature remapping,
and XC

i represents the features after CGIL operation for the
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Fig. 4. Structure diagram of CMA.The workflow of CMA involves generating a feature mapping correlation matrix through the QK matrix, then combining it
with the V matrix to generate features with feature mapping correlation information. Subsequently, these features are dimensionally increased to match the size of
the original features. Finally, they are combined with the original features through residual connections to obtain the output.

ith stage, with the size XC
i ∈ RC×( H

2i
)×(W

2i
), i ∈ {1, 2, 3, 4}.

XC
4 , XC

3 , XC
2 , and XC

1 are derived using (9) and (10). Finally,
the segmentation result is obtained from XC

1 through the final
segmentation head.

In summary, CMACNet achieves higher performance levels
in both feature learning and segmentation task execution by
combining the advantages of feature generalization enhance-
ment and model generalization through the autoencoder, as well
as the advantages of dynamically adjusting feature mapping
correlation and efficiently utilizing global information through
the segmentation network. The structural design of CMACNet
enables the model to effectively utilize information from input
data, achieving superior performance in RS image segmentation
tasks. In the next section, we will introduce the details of
two important components in CMACNet, namely 1) CMA and
2) CGIL.

B. Correlated Mapping Attention

In RS images, objects with highly similar spectral character-
istics typically exhibit similar colors or brightness levels. This
means that their color intensity and brightness in composite
images are very close, making them difficult to distinguish
through conventional visual analysis. This is one of the main
reasons why image-domain segmentation methods struggle to
segment spectrally similar objects in RS images.

Self-attention mechanisms address this by computing atten-
tion values between pairs of pixels to form a self-attention
matrix, enabling the model to focus on different parts of the
spatial domain. This allows the model to automatically learn
and determine which areas are important for specific tasks based
on the content of the input image. Inspired by this concept,
we designed the CMA mechanism. Unlike self-attention, CMA
calculates correlation values between pairs of feature maps in
the channel direction and uses these values to construct a feature
map correlation weight matrix. In addition, we apply nonlinear
mapping to project the feature space into a higher-dimensional
space, making the differences between objects more pronounced
and easier to distinguish. CMA dynamically adjusts the feature
map correlation weight matrix, increasing the independence

of unrelated channels and decreasing the correlation of re-
lated channels to address the aforementioned problem. CMA
demonstrates significant advantages in segmenting objects with
high spectral similarity and similar color characteristics. The
computational process is illustrated in Fig. 4.

Specifically, for an initial input Fin ∈ RC×H×W , we first
perform nonlinear weighted operations using three 1×1 con-
volutions to obtain three matrices, described as follows:⎧⎨

⎩
Q = Conv1×1(Fin)
K = Conv1×1(Fin)
V = Conv1×1(Fin)

. (11)

Here, Q ∈ R(C/2)×H×W , K ∈ R(C/2)×H×W , and V ∈
R(C/2)×H×W represent the three matrices obtained after
convolution, used for subsequent attention calculation. In this
step, by reducing the number of channels by half, we decrease
the dimensionality of the features, filtering out minor noise
and redundancy while retaining essential information. This
aids in enhancing the model’s abstraction capability to better
capture key features in the data. We then reshape Q, K, and
V matrices into Qre ∈ R(C/2)×(HW ), Kre ∈ R(C/2)×(HW ),
and Vre ∈ R(HW )×(C/2), respectively. Next, by multiplying
Qre and KT

re, we obtain a feature map association matrix
with channel-to-channel correlation scores of size (C/2, C/2),
where an increase in matrix values signifies a higher correlation
between feature maps, and a decrease indicates a lower
correlation. Subsequently, by applying Softmax to the product
of Qre and KT

re, we normalize the result to obtain the feature
map association weight matrix. This weight matrix is then
used to weight Vre, yielding attention values, expressed by the
following equations:⎧⎨

⎩
Qre = re(Q)
Kre = re(K)
Vre = re(V )

(12)

Fw = Softmax(Qre ·KT
re) (13)

FAV = Vre · Fw. (14)

Here, re(·) denotes the reshape operation, Fw represents
the association weight matrix with dimensions (C/2, C/2),
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and FAV denotes the attention values matrix with dimensions
(H ×W,C/2). To ensure consistency in subsequent operations
and introduce more nonlinear features to enhance the model’s
expressive power, we perform nonlinear mapping of features
using a combination of 1-D and 2-D convolution kernels. Finally,
we perform a residual connection by combining the expanded
attention values with the original input. By applying nonlinear
mapping, we elevate the feature space to a higher dimension,
making the differences between objects more pronounced and
distinguishable. In RS images, objects with similar color or
brightness might be difficult to differentiate in the original
feature space. However, through nonlinear mapping, we can
generate more complex feature representations, thereby better
capturing the subtle differences between objects.The operation
of nonlinear mapping is defined as follows, for input features
x ∈ R(C/2)×(HW ):

NM(x) = re(Conv1×1(BN(Conv1D1×1(x)))). (15)

Here, NM(·) represents the operation of nonlinear mapping on
x, and Conv1D1×1(·) denotes a 1×1 convolution, which outputs
features of size RC×H×W . Combining the earlier equations, the
CMA operation can be expressed as

Fout = FCMA(Fin) = re(NM(FAV)) + Fin. (16)

Here, Fout ∈ RC×H×W represents the output features.
Throughout the entire process, the model progressively learns
to adaptively increase the correlation of channels with high
similarity while reducing the correlation of channels with low
similarity by dynamically adjusting the feature map association
matrix. This adjustment aims to enhance the independence of
noncorrelated channels while reducing the independence of
correlated channels

Objects with high spectral similarity typically exhibit similar
band combinations, which manifest as similar RGB values in
the image domain of RS imagery. In the feature domain of deep
learning, objects with high spectral similarity usually show high
similarity in the importance of corresponding channels in feature
maps. Therefore, to effectively differentiate between different
objects, it is necessary to consider the contribution of each
channel in differentiating objects by assessing the correlation
between channels. This means that when processing features of
similar objects in segmentation networks, the network is more
likely to use combinations of highly similar channels, where the
correlation between these channel contribution combinations is
high. Conversely, for distinguishing between different objects,
the network may prefer to avoid strong channel correlations.
This is because different object categories usually have dif-
ferent channel contribution combinations, and using combi-
nations with lower correlations enables the network to better
differentiate between objects. Therefore, when facing similar
objects with similar spectral characteristics or texture and color
information, accurate segmentation becomes challenging due to
the similarity in their channel contribution combinations. CMA
utilizes the association weight matrix to enhance the indepen-
dence of noncorrelated channels and reduce the independence
of correlated channels to address this issue. This operation helps

the network to handle similar objects more flexibly and im-
proves the performance of segmentation networks in scenarios
with high spectral similarity. Using the correlation of feature
maps as a way to allocate channel contributions is necessary
for distinguishing between similar objects with similar spectral
characteristics.

C. Cross Global Interaction Layer

Existing effective strategies for global feature reconstruction
mainly rely on the Swin transformer. However, through an
in-depth analysis of existing methods, we found that the complex
window shift mechanism may lead to inefficiency issues. In
practical applications, this mechanism may introduce a large
number of parameters and computational costs, limiting the
practical availability of the model in resource-limited environ-
ments. Through our research, we have proposed a more efficient
method for global feature mapping, called CGIL. The structure
of CGIL is illustrated in Fig. 5. Its overall design is inspired by
the Swin transformer, the structure of which can be found in
[27]. The Swin transformer comprises two sequential standard
modules in its base layer. The W-transformer block ensures
global information interaction within the window while the
SW-transformer block, with a window shift mechanism, is used
to achieve interwindow information interaction. Our proposed
CGIL still utilizes the W-transformer for intrawindow global
information interaction. However, unlike the Swin transformer,
we directly employ a cross-pooling method after the multi-
head self-attention mechanism in the W-transformer to achieve
efficient interwindow information interaction. This enables a
single CGIL to perform both intrawindow and interwindow
information interaction simultaneously.

Specifically, in the global context interaction module, we first
divide the input features into multiple windows and then embed
relative position encodings for each relative position, similar
to the Swin transformer. Next, we establish global context rela-
tionships within each window using the multihead self-attention
mechanism of the W-transformer block. For features that have
already established intrawindow global context relationships,
we employ an efficient cross-pooling method to iteratively build
information exchanges between the current window and its adja-
cent windows to the right and below, thus achieving interwindow
information interaction.

In detail, for a single pixel P (x, y), we define ws as the
window size and use a horizontal average pooling kernel of
size 1× (ws) and a vertical average pooling kernel of size
(ws)× 1 to establish relationships between P (x, y) and pix-
els P (x+ ws, y) and P (x, y + ws), respectively. These pixels
belong to different windows. Finally, the features obtained after
two cross-pooling operations are added together. Through this
interaction mechanism, we successfully establish correlations
between different windows. The mathematical expressions are
as follows:

Chorizontal(x, y) =
1

ws

ws∑
i=1

P (x+ i, y) (17)
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Fig. 5. Structure diagram of CGIL. Replacing SW-MSA with cross-pooling.

Cvertical(x, y) =
1

ws

ws∑
j=1

P (x, y + j) (18)

where Chorizontal(x, y) represents the contextual information of
P (x, y) in the horizontal direction, and C vertical(x, y) represents
the contextual information of P (x, y) in the vertical direction.
The contextual information in both directions is then fused,
defined as

Cglobal(x, y) = Chorizontal(x, y) + Cvertical(x, y). (19)

Here,Cglobal(x, y) represents establishing global context for a
single feature pixel P (x, y) through simple horizontal and verti-
cal pooling operations, successfully establishing global context
relationships between windows.

To establish the global context for each pixel of the entire fea-
ture map, we first concatenate the previously divided windows
into the input size, reshape it to match the original image size,
and then establish global context for each feature pixel using a
single-pixel global context approach. Specifically, for a feature
map x concatenated according to windows, x ∈ RC×H×W , we
have

FGC = Cglobal(x) (20)

where FGC represents the features with established global con-
text between windows, with size FGC ∈ RC×H×W . Cglobal(·)
denotes the operation of establishing global context for the entire
feature. Then, the CGIB process can be defined as follows: for
input features x ∈ RC×H×W :

FCGIB(x) = Fwt(FGC) (21)

where Fwt(.) represents the operation of the W-transformer
block in the Swin transformer, the derivation of which can be
referred to in [27]. FCGIB(x) represents the operation through
CGIB. Finally, for input features Fin ∈ RC×H×W , the features
through CGIL can be defined as

Fout = FCGIL(Fin)

= MLP(BN(FCGIB(BN(Fin))) + Fin)

+ (FCGIB(BN(Fin)) + Fin). (22)

Here, Fout ∈ RC×H×W represents the output features after
the CGIL operation.

This kind of global feature integration provided by CGIL
helps to improve the discrimination of complex objects and
enables the model to better adapt to different regions and scenes,
thereby enhancing the performance of the model on new data.
Meanwhile, CGIL significantly reduces computational costs
through cross-pooling operations. In summary, the global feature
reconstruction strategy not only enhances the adaptability and
generalization capabilities of the model but also effectively
balances the attention to local and global information, improving
the accuracy and robustness of RS image segmentation models.

D. Loss Function

In this section, we will introduce the loss function used in our
proposed method in this article.

For the two parts of the entire network, we adopt a joint
loss Ljoint for both parts as our overall loss function. For the
autoencoder part, since the task of the autoencoder is to learn
a compact representation of the input data and minimize the
error between the input data and its reconstruction, we use
mean-squared error (MSE) loss as the standard to measure the
difference between input and reconstruction. The formula for
MSE loss is as follows:

LMSE =
1

N

N∑
i=1

(yi − ŷi)
2 (23)

where N represents all samples, (yi − ŷi)
2 represents the

squared error for each sample, LMSE represents the MSE loss
used by the autoencoder. This loss function measures the differ-
ence between the predicted values and the true values, and by
optimizing the MSE loss, the model aims to make the predicted
values as close to the true values as possible.
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Fig. 6. This figure illustrates the proportion of each semantic label in the two
datasets.

For the segmentation loss, the loss Ls used in this article is a
combination of Dice loss Ldice and cross-entropy loss Lce. This
combined loss considers two different contributions in the image
segmentation task. The dice loss mainly focuses on matching
object boundaries and is suitable for accurate segmentation
of similar objects of the same class. It evaluates the model
performance by measuring the overlap between the predicted
results and the ground truth (GT) labels. Cross-entropy loss is
commonly used in image segmentation tasks to encourage the
model to produce segmentation results closer to the GT labels.
However, in cases of similar objects, Cross-entropy loss may
cause the model to struggle in distinguishing object boundaries,
affecting the segmentation results. The expressions for Lce and
Ldice are as follows:

Lce = − 1

N

N∑
n=1

K∑
k=1

y
(n)
k log ŷ

(n)
k (24)

Ldice = 1− 2

N

N∑
n=1

K∑
k=1

ŷ
(n)
k y

(n)
k

ŷ
(n)
k + y

(n)
k

(25)

Ls = Lce + Ldice. (26)

In which N is the number of samples, and K is the number
of categories. y(n) and ŷ(n) represent the one-hot encoding
of the true semantic labels and their corresponding Softmax
outputs from the network, where n ∈ [1, . . . , N ]). ŷ(n)k denotes
the confidence score of class k for sample n.The final joint loss
Ljoint is given by

Ljoint = k1LMSE + k2Ls (27)

where k1 and k2 represent the weighting parameters for the
autoencoder loss and segmentation loss, respectively. We set
them to 0.3 and 0.7, respectively.

IV. EXPERIMENT

In this section, we will first introduce the dataset, experi-
mental setup, and relevant metrics. Then, we will present our
ablation experiments, and finally, we will discuss comparative
experiments with other methods.

A. Experimental Settings

1) Datasets: In the experimental data support section of this
study, we adopted the Vaihingen and Potsdam datasets as eval-
uation standards (see Fig. 6). These datasets are recognized as
benchmark data in the field of semantic segmentation of RS
images and are widely used to assess the performance of RS al-
gorithms. This ensures that our research conclusions have broad
applicability and comparability. These datasets are characterized
by their diversity of land cover classes and complex environmen-
tal modalities, ranging from buildings and road systems to forest
cover. They also incorporate scenes with seasonal changes,
varying weather conditions, and different lighting conditions,
providing a highly realistic testbed for examining the robustness
and generalization capabilities of our model. Importantly, since
these datasets have been extensively studied and widely adopted
by the academic community, we can easily compare our work
with previous research. In the following, we will provide a
detailed introduction to these two datasets.

ISPRS Vaihingen: The dataset originates from the RS images
of the Vaihingen area in Germany, comprising 33 high spatial
resolution true orthophoto (TOP) image blocks. Each image
block has an average size of 2494×2064 pixels. Each block con-
sists of TOP, digital surface model (DSM), and normalized DSM
(NDSM), using only three multispectral bands (near-infrared,
red, and green). The dataset includes five foreground land cover
classes (impervious surfaces, buildings, low vegetation, trees,
and cars) and one background land cover class (clutter). In
our experiments, we strictly followed the specific training IDs
provided by the ISPRS benchmark (IDs 1, 3, 5, 7, 11, 13, 15,
17, 21, 23, 26, 28, 30, 32, 34, 37) to select training data. The
remaining 17 images were reserved for testing. This selection
ensures consistency with other researchers’ data, facilitating
better comparative analysis. Image blocks were cropped into
1024×1024 pixel patches for processing.

ISPRS Potsdam: The dataset utilizes the aerial images of
Potsdam, Germany, consisting of 38 high spatial resolution
TOP image blocks. Each image block has a ground sampling
distance of 5 cm and a size of 6000×6000 pixels. Similar to
Vaihingen, each block comprises TOP and DSM, providing
four multispectral bands (red, green, blue, and near-infrared).
During the training process, we also utilized specific training
IDs provided by the ISPRS benchmark for model training. These
training IDs include images labeled as 2_10, 2_11, 2_12, 3_10,
3_11, 3_12, 4_10, 4_11, 4_12, 5_10, 5_11, 5_12, 6_7, 6_8, 6_9,
6_10, 6_11, 6_12, 7_7, 7_8, 7_9, 7_11, and 7_12. The remaining
15 images were kept as the test set. Similarly, they were cropped
into 1024×1024 pixel patches for analysis.

In quantitative evaluation, the “clutter/background” category
was disregarded.

2) Implementation Details: In this study, we selected the
Ubuntu 18.04 operating system and deployed all models on a
single NVIDIA GeForce RTX 2080 Ti 11 GB GPU, imple-
mented using the PyTorch 1.11 framework. To achieve faster
model convergence, we employed the AdamW optimizer with
a base learning rate set to 6e-4 and utilized a cosine learning
rate schedule for adjusting the learning rate. For the Vaihingen
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and Potsdam datasets, we conducted the following data prepro-
cessing steps. First, we randomly cropped images into patches
of size 512×512. During the training phase, we introduced mul-
tiple data augmentation techniques, including random scaling
([0.5, 0.75, 1.0, 1.25, 1.5]), random vertical flipping, random
horizontal flipping, and random rotation. The training process
consisted of 105 epochs. During the testing phase, we employed
multiscale evaluation and random flipping augmentation tech-
niques to ensure the robustness and performance of the models.

3) Evaluation Metrics: In this experiment, commonly used
evaluation metrics in RS segmentation, including overall accu-
racy (OA), F1 Score, and mean Intersection over Union (mIoU),
are employed as evaluation metrics. In addition, the number
of parameters is utilized as a metric for assessing the model’s
complexity. Before delving into these metrics, it is essential
to introduce some related terms, such as precision and recall.
Moreover, an understanding of certain symbols is required: tp
(true positive), fp (false positive), fn (false negative), and tn (true
negative).

Precision: Precision measures the proportion of true positive
samples among all samples predicted as positive by the model.
In other words, precision indicates the likelihood of a sample
being genuinely positive when the model predicts it as positive

Precision =
tp

tp + fp
. (28)

Recall: Recall refers to the proportion of true positive samples
correctly predicted as positive among all true positive samples.
Recall evaluates the model’s ability to identify all positives

Recall =
tp

tp + fn
. (29)

Overall Accuracy (OA): OA is a commonly used performance
evaluation metric in image classification tasks. It represents the
proportion of correctly classified samples to the total number of
samples. However, OA may not handle class imbalances well,
as the model might lean toward predicting classes with more
samples when some classes have significantly more samples
than others

OA =
tp + tn

tp + fp + fn + tn
. (30)

F1 Score: The F1 score is the harmonic mean of precision
and recall. It synthesizes the model’s accuracy and ability to
capture positives. For multiclass problems, F1 score is typically
calculated for each class and then averaged

F1 =
2× (Precision × Recall)

Precision + Recall
. (31)

Overall F1 score = Average of F1 scores for all classes.
Mean Intersection over Union (mIoU): mIoU is a commonly

used evaluation metric in semantic segmentation tasks, mea-
suring the model’s accuracy in pixel-level segmentation. Inter-
section over Union (IoU) evaluates the model’s segmentation
results for each class while mIoU computes the average IoU for
all classes. For each class

IoU =
tp

tp + fp + fn
(32)

TABLE I
RESULTS OF REMOVING INDIVIDUAL COMPONENTS FROM CMACNET

Fig. 7. Comparison of experimental results between CMACNet and structures
removal. From the figure, it can be observed that removing any structure from
CMACNet leads to deteriorated segmentation results.

mIoU is the sum of IoU values for all categories divided by the
number of categories.

B. Ablation Experiment

1) Components of CMACNet: To evaluate the performance
of various components of CMACNet, a series of ablation exper-
iments were conducted, and validation was carried out using the
Vaihingen and Potsdam datasets. In the discussion, our focus pri-
marily lies on two performance metrics: 1) mIoU and 2) meanF1.
All experimental results presented are averages obtained from
multiple trials.

Table I presents the results of CMACNet with individual mod-
ules removed. Here, “Autoencoder” represents the autoencoder,
“CMA” denotes correlated mapping attention, and “CGIL”
stands for cross global interaction layer. For CMACNet, when
removing the autoencoder operation, since the multiscale local
enhancer is part of the autoencoder, we set the removal of
autoencoder in the experiment to be the removal of multiscale
local enhancer simultaneously, without generating the original
image at the end or computing loss with the original image.
The components removed in the following ablation experiments
are marked with (w/o), and the added components are marked
with (+).

Fig. 7 presents the segmentation results after removing in-
dividual modules from CMACNet. It can be observed that the
segmentation performance of CMACNet decreases when any
module is removed. To further validate the effectiveness of
each component, experiments were conducted by incrementally
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TABLE II
RESULTS OF ADDING INDIVIDUAL MODULES ON BASELINE MODEL ON THE

VAIHINGEN DATASET

Fig. 8. Experimental results of adding autoencoder on top of the baseline.
From the figure, it can be observed that the segmentation results with autoencoder
are more complete, demonstrating the benefit of improved feature generalization.

adding individual modules to the baseline model on the Vai-
hingen dataset. The baseline model was set to use Unet as the
main framework and ConvNext as the encoder. Table II shows
the experimental results of adding individual modules to the
baseline model.

For experiments adding the autoencoder to the baseline
model, we incorporated multiscale local enhancement into the
baseline and generated original images and segmentation maps
after the baseline model. The combined loss of both was used as
the final loss. Figs. 8, 10, and 11 illustrate the effects of adding
any single component to the baseline model. The comprehensive
results indicate that each component proposed in our model has
a positive impact on model performance.

2) Effect of Autoencoder: From Table I, it can be observed
that removing the autoencoder from CMACNet results in a de-
crease of mIoU and F1 scores by 1.01% and 0.59%, respectively,
on the Vaihingen dataset, and by 0.99% and 0.56%, respectively,
on the Potsdam dataset. From Table II, a more intuitive view
reveals that using autoencoder on the baseline model brings
about improvements of 0.77% and 0.51% in mIoU and F1
scores, respectively, on the Vaihingen dataset. It can be said that
employing autoencoder can lead to at least a 0.77% increase in
mIoU and a 0.51% increase in F1 for segmentation tasks.

Fig. 9. Attention maps before and after using CMA. The first column repre-
sents the original image, the second column represents the features before using
CMA, and the third column represents the features after using CMA. The colors
indicate the weights, with red indicating higher weights and blue indicating
lower weights. It can be observed that the attention is dispersed before using
CMA, while after using CMA, the weights are concentrated on objects with
similar spectral characteristics such as trees and low vegetation.

Fig. 10. Segmentation results with the addition of CMA on top of the baseline.
It can be observed that the model achieves more accurate segmentation of tree
and low vegetation classes after incorporating CMA.

From the visualized results in the fourth column of Fig. 7, it
is evident that removing the autoencoder results in model errors
due to the lack of multiscale and local characteristics, leading
to inaccuracies in identifying objects with subtle features. Fig. 8
confirms this observation as well, showing that due to the ab-
sence of multiscale characteristics, the model fails to accurately
capture features of objects at different scales, resulting in incom-
plete or inaccurate segmentation results. The first row in Fig. 8
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Fig. 11. Segmentation results with CGIL added on top of the baseline. The
segmentation accuracy for large buildings is improved by the CGIL model,
highlighting the advantage of global features.

demonstrates that the baseline model has some perception of the
impervious surface class but it is incomplete while the second
row shows that the baseline model perceives buildings but, due
to factors such as lighting, misclassifies buildings as impervious
surfaces. In contrast, features enhanced by the autoencoder
generalize better to multiscale local characteristics, resulting
in more complete and accurate segmentation results while also
preserving detailed features.

3) Effect of CMA: Table I shows that for CMACNet, remov-
ing CMA results in a decrease of 1.28% and 0.78% in mIoU
and F1 scores, respectively, on the Vaihingen dataset, and a
decrease of 1.31% and 0.73%, respectively, on the Potsdam
dataset. Table II indicates that adding CMA to the baseline model
increases mIoU and F1 scores by 1.1% and 0.7%, respectively.
From the data, it is evident that using CMA in the model can lead
to at least a 1.1% increase in mIoU and at least a 0.7% increase
in F1.

For the lowveg and tree classes in Vaihingen and Potsdam,
their spectral similarities often lead to misclassifications in
the segmentation network. The segmentation results of these
two classes represent the segmentation effects of the model on
classes with similar spectral characteristics. To further demon-
strate the classification advantages of CMA for classes with bet-
ter spectral similarity, additional experiments were conducted.
Segmentation performance experiments were performed on the
lowveg and tree classes in the baseline model with the addition
of CMA on the Vaihingen dataset. The experimental results
in Table III show that after applying the CMA method, the
IoU and F1 of the lowveg class are improved by 3.24% and
2.16%, respectively, while the IoU and F1 of the tree class are
improved by 2.37% and 1.42%, respectively. The table clearly
demonstrates the superiority of the CMA method in achieving
higher classification accuracy for classes with similar spectral
characteristics.

Fig. 9 presents the visualized attention maps of features before
and after CMA. It can be seen that the features before CMA do

TABLE III
SEGMENTATION RESULTS OF LOW VEGETATION AND TREES ON THE VAIHINGEN

DATASET AFTER ADDING CMA TO THE BASELINE

not exhibit obvious focus points, while after CMA, the features
tend to focus on objects with similar spectral characteristics.
Fig. 10 illustrates the segmentation results after adding the CMA
method to the baseline model, showing noticeable improvements
in segmentation accuracy for the tree and lowveg classes. This
demonstrates the effective improvement of segmentation accu-
racy for objects with similar spectral characteristics by the CMA
method.

4) Effect of CGIL: From Table I, it can be observed that
when CGIL is removed, CMACNet experiences a decrease
of 1.25% and 0.76% in mIoU and F1 scores, respectively, on
the Vaihingen dataset. Similarly, on the Potsdam dataset, there
is a reduction of 1.23% and 0.72% in mIoU and F1 scores,
respectively. Furthermore, Table II demonstrates that after the
addition of CGIL, the mIoU improves by 1% in the baseline
model.

To demonstrate the efficiency and effectiveness of CGIL
in global modeling, experiments were conducted by replacing
CGIL with other global information mapping modules in the
global decoding stage across four stages. The modules compared
are derived from commonly used global information mapping
models, including Vit [26], Swin-T [27], Mobile-Vit [55], and
Fast-Vit [56]. Experimental results are detailed in Table IV.
Since the channel number remains constant throughout all stages
of the feature reconstruction phase in our designed model,
the parameter count remains unchanged. Therefore, only one
instance of parameter count is recorded in the table. It can be seen
from Table IV that CGIL outperforms other networks in terms of
both parameter count and FLOPs. The only model comparable
to CGIL in terms of metrics is a Swin transformer block, but
the parameter count and FLOPs of the Swin transformer block
are much higher than those of CGIL. While Fast-Vit-block has
parameter count and FLOPs closest to CGIL, its accuracy is
inferior to that of using CGIL.

Fig. 11 illustrates the comparison of segmentation results
before and after using CGIL in the baseline model. It is evi-
dent that with the incorporation of CGIL, the baseline exhibits
improved segmentation performance for large-scale objects,
panoramic scenes, and large buildings. These experiments ef-
fectively demonstrate the efficiency and effectiveness of CGIL
in the global decoding stage.

5) Effect of Backbone: In order to eliminate the influence
of the backbone on the results, we conducted a series of re-
placement experiments on the Vaihingen dataset, using several
common and widely used backbone models, including
ConvNext-Tiny, ResNet50, ResNext50, and ResNest50. The
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TABLE IV
PARAMETERS AND FLOPS OF DIFFERENT GLOBAL FEATURE EXTRACTION MODULES AT DIFFERENT STAGES, ALONG WITH MIOU, AND F1 SCORES ON THE

VAIHINGEN DATASET

Fig. 12. Curve graph of mIoU variation with 44 epochs on the Vaihingen
dataset for CMACNet and four other mainstream networks. Compared to the
other networks, CMACNet reaches stability faster. The curve of CMACNet
fluctuates less, indicating that the model can learn the features of the task and
dataset more stably. The 15th epoch in the graph marks the beginning of the
second cycle of the cosine annealing learning strategy, during which the model
exhibits significant fluctuations but quickly returns to stability thereafter.

TABLE V
NUMBER OF PARAMETERS FOR DIFFERENT BACKBONES ON THE VAIHINGEN

DATASET’S MIOU

experimental results are shown in Table V. Observing the data in
the table, it can be seen that although the ConvNext-Tiny model
has a larger number of parameters, the CMACNet model per-
forms best when using ConvNext-Tiny as the backbone. There-
fore, we recommend ConvNext-Tiny as the preferred backbone
model.

C. Comparative Experiments

In the experimental section of the article, the selected mod-
els for comparison are as follows: the “Bilateral Network”

Fig. 13. Segmentation results of high-resolution images with IDs 2 and 10 on
the Vaihingen dataset. The first column displays the original images, the second
column displays the GT, and the third column displays the segmentation results
of CMACNet.

ABCNet [57] with spatial and contextual pathways, MACU-
Net [58] based on multiscale skip connections and asymmetric
convolutions, multistage attention residual UNet (MAResU-
Net) [40] with linear attention mechanism, attention-aggregated
feature pyramid network A2-FPN [59], DC-Swin [60] Swin-
transformer network with dense connection feature aggregation
module, segmentation network ST-UNet [28] with global-local
feature fusion scheme, and MPCNet [61], a network with mul-
tiscale prototype transformer decoder. Our model ultimately
achieves higher accuracy on the ISPRS Vaihingen and ISPRS
Potsdam datasets widely used for RS segmentation tasks com-
pared to the aforementioned models.

Results on the Vaihingen Dataset: Table VI presents a numer-
ical comparison of various semantic segmentation methods on
the Vaihingen dataset. The research findings demonstrate that
our proposed CMACNet achieved performance of 91.66% in
average F1, 84.77% in mIoU, and 91.83% in OA. CMACNet
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TABLE VI
COMPARISON OF SEGMENTATION RESULTS ON THE VAIHINGEN DATASET

TABLE VII
COMPARISON OF SEGMENTATION RESULTS ON THE POTSDAM DATASET

exhibited significantly superior performance in F1, OA, and
mIoU compared to other networks. CMACNet not only outper-
formed the excellent convolutional lightweight network ABC-
Net but also surpassed the network DC-Swin based on the Swin
transformer, which has strong global information representation
capabilities. In addition, CMACNet also outperformed ST-Unet,
which combines global and local features.

In addition to comparing the accuracy of various models,
we also compared the convergence speed of mainstream mod-
els with our proposed CMACNet. The results are shown in
Fig. 12, illustrating the trend of mIoU changes with Epoch
during training on the Vaihingen dataset. We selected the results
of the first 44 rounds of training as a reference because the
learning rate adopted a cosine annealing strategy, leading to a
significant drop in the metric at the 15th epoch in Fig. 12. From
Fig. 12, it can be observed that the peak value of our network
surpasses all other mainstream networks and stabilizes around
the 10th epoch, indicating a faster convergence speed compared
to other networks. This suggests that CMACNet has better fitting

capability compared to other networks, indirectly indicating that
our model is more capable of learning the key features of the
task. In addition, compared to other models, our model exhibits
smaller fluctuations, indicating that our model can more stably
learn the features of the task and dataset during training.

Fig. 13 shows the segmentation results of CMACNet on
images with IDs 2 and 10 from the Vaihingen dataset. Fig. 14
presents the segmentation results of CMACNet and other state-
of-the-art networks on the Vaihingen dataset. From the second
and fourth rows of Fig. 14, it can be seen that models with global
modeling, such as ST-UNet and CMACNet, are more inclined
to segment spatially correlated objects over large contiguous
areas (e.g., buildings) compared to CNN-based networks such
as ABCNet and MACU-Net and achieve better results. Although
newer networks such as DC-Swin and MPCNet surpass previ-
ous networks in OA, they still do not perform satisfactorily in
segmenting tree and low vegetation classes. Almost all network
models can segment the car class, which we attribute to the
distinct texture and spectral characteristics of cars in RS images
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Fig. 14. Examples of segmentation results for different models on the Vaihingen dataset. (a) ABCNet. (b) MACU-Net. (c) MAResU-net. (d) A2-FPN. (e) ST-Unet.
(f) DC-Swin. (g) MPCNet. (h) CMACNet. In areas with significant differences, regions are outlined with yellow boxes in the original image, and with black boxes
in the GT and segmentation network’s prediction results.

compared to other classes. In contrast, our network performs
exceptionally well in distinguishing classes with high color
similarity, such as trees and low vegetation, as highlighted in
the second and third rows of Fig. 14. This further validates
the effectiveness of our network in segmenting spectral-similar
classes.

Results on the Potsdam Dataset: To comprehensively evaluate
the network performance, we conducted further experiments on
the Potsdam dataset. The experimental results are presented in
Table VII, where CMACNet achieved significantly outstanding
performance on the Potsdam test set: The average F1 score
reached 93.33%, mIoU reached 87.69%, and OA index reached
92.00%, all surpassing other methods. Due to differences in
dataset size and type, the segmentation accuracy on the Potsdam
dataset is generally higher than that on the Vaihingen dataset. It
is worth noting that on the Potsdam dataset, CMACNet achieved
F1 scores for the lowvegetation and tree classes that were, re-
spectively, 1.06% and 1.3% higher than the next best performing
networks. This once again validates the superiority of our MCA
in distinguishing categories with similar spectral characteristics.

As shown in Fig. 15, we also provide the overall segmentation
images for IDs 3_13 and 4_15. Fig. 16 presents the segmentation
results of the network models described in Table VII on the
Potsdam dataset. From the second and fourth rows of Fig. 16, it
can be observed that networks with global modeling capabilities,
such as CMACNet, DC-Swin, and ST-UNet, outperform previ-
ous networks such as ABCNet and MACU-Net when handling
contiguous area segmentation, such as building segmentation.
From the second and third rows of Fig. 16, it can be seen that
except for MPCNet and CMACNet, all other networks exhibit

Fig. 15. Segmentation results of high-resolution images with IDs 3_13 and
4_15 on the Potsdam dataset. The first column displays the original images, the
second column displays the GT, and the third column displays the segmentation
results of CMACNet.

poor segmentation performance in environments with artificial
influences, such as vegetation possibly present on buildings in
Image 2 or farmland in Image 3. This also indicates that these
networks lack strong interference resistance. Moreover, similar
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Fig. 16. Examples of segmentation results for different models on the Potsdam dataset. (a) ABCNet. (b) MACU-Net. (c) MAResU-Net. (d) A2-FPN. (e) ST-Unet.
(f) DC-Swin. (g) MPCNet. (h) CMACNet. In areas with significant differences, regions are outlined with yellow boxes in the original image, and with black boxes
in the GT and segmentation network’s prediction results.

to their performance on the Vaihingen dataset, DC-Swin and
MPCNet show good performance but still lack sensitivity to
classes with similar spectral characteristics. The third row of
Fig. 16 demonstrates that CMACNet has a significant advantage
in distinguishing classes with similar spectral characteristics,
such as trees and low vegetation. In addition, the fourth row of
Fig. 16 shows that CMACNet outperforms other networks when
dealing with nonhomogeneous color-similar objects.

By conducting experiments on the Vaihingen and Potsdam
datasets, we have demonstrated that CMACNet performs ex-
cellently on both datasets, showing significant segmentation
performance. CMACNet outperforms other methods in terms
of average F1 score, mIoU, and OA index, as well as model
generalization capability, particularly excelling in distinguish-
ing classes with similar spectral characteristics. Furthermore, the
experimental results indicate that CMACNet also performs ex-
cellently in segmenting both small and large objects. Therefore,
we strongly recommend CMACNet as an effective segmentation
model, especially suitable for handling categories with similar
spectral characteristics.

V. LIMITATIONS AND FUTURE PROSPECTS

Despite the advantages demonstrated by our CMACNet on
experimental data, and its partial resolution of the challenging
segmentation of spectrally similar classes, it still exhibits certain
limitations. For instance, our model currently applies only to
semantic segmentation of urban RS images, without extending
to other RS visual tasks such as road segmentation, parcel
segmentation, or agricultural and forestry segmentation. Perhaps

our network would perform better in scenarios with more spec-
trally similar classes, such as agricultural and forestry scenes.
However, due to space constraints, we did not further explore
the model’s performance in segmenting agricultural and forestry
scene images. In future work, we plan to investigate superior
segmentation methods by combining RS image characteristics
and deep learning theories to optimize our network for a broader
range of RS visual tasks. In addition, we will focus on model
compression to design lighter and more efficient models.

VI. CONCLUSION

This article aims to address the challenge of segmenting
land cover with similar spectral characteristics by designing a
feature mapping correlation attention mechanism. We propose
CMACNet, which enhances the versatility of local multiscale
information through autoencoding and integrates it with fea-
ture mapping correlation attention before combining it with
global information. Specifically, we first employ an autoen-
coder to enhance feature generalization by reconstructing the
original image and introduce multiscale information to obtain
a more comprehensive feature representation. Then, to tackle
the challenge of segmenting land cover with similar spectral
characteristics, we extend this problem to the feature domain
and design a correlated mapping attention mechanism. This
mechanism not only dynamically adjusts the correlations be-
tween feature mappings but also assigns weights to features
based on their correlations, enabling the model to focus more on
regions with similar spectral characteristics during this stage.
Finally, for efficient global decoding, we design an efficient
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CGIL that remaps comprehensive features from earlier stages
globally to establish long-range dependencies. Experimental
results demonstrate the superiority of our network architecture
and the effectiveness of each component. We hope to inspire
more researchers to propose practical and effective solutions
to address the segmentation challenge of spectrally similar
land cover and encourage further exploration of the potential
and applications of feature mapping correlation in the field
of RS.
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