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Abstract—Change detection is an essential fundamental task in
remote sensing image analysis. Owing to powerful deep abstract
feature extraction ability, many deep learning-based change detec-
tion methods have emerged recently. Although previous works have
recognized the characteristics and advantages of multilevel deep
features and attempted to integrate them, the utilization process
lacks a clear emphasis on the advantages aspect of different-level
features. One-size-fits-all fusion treats all levels equally, neglecting
the spatial advantage and semantic advantage of low and high-level
features, respectively. This leads to deficiencies in the integrity and
edge accuracy of the final change predictions. To address these
issues, we propose a multitask level-specific constraint network,
named MLCNet, which addresses the issues by optimizing the
advantages of features at different levels. MLCNet comprises a
Siamese encoder, fusion modules tailored for features at different
levels, and a decoding mechanism that effectively combines se-
mantic and spatial information of features at adjacent levels. In
addition, by reconstructing the original ground truths (GTs) into
the semantic, binary, and edge GTs, multitask learning constraints
are established during network training, compelling the network
to enhance targeted emphasis on the characteristics of features at
different levels. Experimental results on the three building change
detection datasets validate the practicality of MLCNet.

Index Terms—Change detection (CD), deep supervision, level-
specific constraint, multilevel features, multitask learning.

I. INTRODUCTION

CHANGE detection in remote sensing is defined as identi-
fying alterations in land cover types across distinct time

intervals by analyzing two or more remote sensing images
captured over the same geographical area at different times [1],
[2], [3]. Very-high-resolution (VHR) image change detection is
a fundamental and critically important remote sensing interpre-
tation technique that plays a pivotal role in the remote sensing
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community. Its applications span across various domains includ-
ing land cover analysis [4], [5], urban expansion analysis [6],
[7], environmental change detection [8], [9], natural disaster
monitoring [10], and more.

Over the past few decades, numerous methods have been
developed for remote sensing image change detection [11],
[12]. Traditional methods can be classified into two categories:
algebraic methods, such as change vector analysis [13], identify
changed pixels by performing pixelwise algebraic calculations
in the original image space, and transformation-based meth-
ods, such as principal component analysis [14], [15], trans-
form original images into appropriate feature spaces and then
determine changed pixels through algebraic calculations. Al-
though these early approaches met specific application needs
in low-resolution images, they did not perform well on VHR
images. As the resolution increases, the variations of illumi-
nation, contrast, and noise in bitemporal images also increase.
These variations can impact the feature similarity of bitemporal
remote sensing images, making change detection in VHR remote
sensing images a challenging research area. Traditional change
detection methods that rely on manually designed features are
becoming less effective in meeting accuracy requirements [16].
In recent years, deep learning technology has gained attention
for its powerful ability to extract representative abstract deep
features, leading many researchers to utilize this technology
in VHR image change detection. To fully leverage different
level deep features’ information, inspired by UNet [17] and its
consequence works, some researchers use skip-connections to
complement less localized information with spatial details, such
as three architectures (FC-EF, FC-Siam-conc, FC-Siam-diff)
proposed in [18], or dense connection, such as SNUNet [19].
With the rise of attention mechanisms in recent years, many
scholars have applied these mechanisms to integrate multilevel
feature information, allowing the network to selectively focus
on regions relevant to changes, with notable examples including
MSPSNet [20], STANet [21], and A2Net [22]. Later, the intro-
duction of transformers in the visual domain [23] also led to their
extensive use in VHR image change detection. Several recent
works, such as BIT [24], ChangeFormer [25], EATDer [26], and
MDAFormer [27], demonstrate the unique advantage of trans-
former in long-range information extraction and preservation by
applying it to the interaction of same-level bitemporal features
or hierarchical feature extraction and decoding.

Compared to traditional methods, change detection methods
based on deep learning have made significant progress. However,
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Fig. 1. Shortcomings of CNN and tansformer methods. (a) T1 images. (b)
T2 images. (c) Ground truth (GT). (d) Prediction result of the FC-EF model.
(e) Prediction result of the ChangeFormer model. (f) Prediction result of our
MLCNet model. The red boxes indicate the main error regions of each network.

CNN methods can be limited when recognizing long-range
dependencies [28]. When two change regions in an image are far
apart, it becomes difficult for CNNs to establish a relationship
between them through long-range feature interaction. Conse-
quently, the features extracted from these two change clusters
may differ significantly. This often results in a lack of intraclass
consistency and gaps in the detected change clusters, even if
each cluster belongs to the same category, as shown in Fig. 1(d).
Although transformer-based methods are skilled at capturing
global dependencies, they may sometimes overlook local details
critical for precise change detection. This oversight can lead to
blurry misalignment along the edges of detected changes, as
shown in Fig. 1(e). Despite attempts in previous studies to inte-
grate these two approaches, such as [29], [30], [31], these meth-
ods also failed to address the abovementioned issue. Insufficient
purposeful learning of the distinct characteristics of different
level features is likely the cause. Treating all levels of features
uniformly within a single architecture, be it CNNs, transformers,
or a hybrid thereof, overlooks the nuanced emphasis required to
leverage the distinct advantages offered by features at different
levels. Studies by [32], [33], [34] have highlighted the impor-
tance of simultaneously leveraging the advantages of features at
different levels. However, they still employ the same operation to
cluster features at different levels, resulting in an even utilization
of spatial details and semantic information for each level feature,
lacking focus on their distinct advantages. Consequently, these
operations are hard to address the issues we mentioned above.
Some works attempt to enhance the accuracy of change edges
and intraclass consistency by adding extra edge change labels
or utilizing deep supervision. However, they do not take the
correlation between these constraints and the characteristics of
different level features into account. Adding supervision with
the extra edge change labels to the final output [35], [36] or
higher level features [37] may come too late in the training
process, as the spatial information in higher level features is
already blurred. Therefore, adding these additional constraints
requires considering the advantages of different-level features
and implementing them purposefully. Consequently, the current
change detection networks face the following challenges:

1) As network features transition from shallow to deep layers,
the feature representation gradually shifts from spatial
details to semantics [38], [39]. Low-level features easily
suffer from imaging differences, leading to unclear se-
mantic information representation about changes, while
high-level features tend to represent low-resolution spa-
tial detail information. However, current networks often
employ the same structure when utilizing features at dif-
ferent levels, lacking targeted emphasis on the advantages

of each level feature. Thus, low-resolution information
of high-level features may be incorrectly emphasized to
distinguish the edge of landcover, and ambiguous seman-
tic information of low-level features may be wrongly used
to classify the pixels’ category.

2) Most current methods lack specific constraint measures
tailored to the advantages of different-level features, re-
sulting in a lack of emphasis when utilizing the advantages
aspect of different-level features in the network.

To address the issues mentioned above, we propose a multi-
task level-specific constraint network, named MLCNet. The pro-
posed MLCNet can apply tailored constraints and optimizations
to features at different levels, allowing the network to leverage
each level’s strengths without being disrupted by weaknesses,
ensuring accurate and robust change detection results. In detail,
the MLCNet adopts a Siamese encoder to extract the bitemporal
multilevel features. To leverage spatial contextual details of
low-level features and achieve clear change edges, we introduce
an edge detail preservation module (EDPM) to fuse low-level
features. Regarding the fusion of high-level features, we intro-
duce a cross-temporal semantic attention module (CSAM) with
a novel cross-attention mechanism to enhance the change in the
semantic representation aspect. During the decoding stage, the
goal is to comprehensively integrate both lower and higher level
features while performing upsampling decoding. The semantic
information from higher layers is utilized for accurate classi-
fication, while the precise spatial information from low-level
layers is leveraged for accurate edge delineation. A specialized
multilevel interactive fusion decoder (MLIFD) has been devised
to achieve this goal. The main contributions of our proposed
method are presented as the following:

1) We classify the hierarchical features generated by the
Siamese backbone into two categories: low-level features
that contain rich spatial information to represent land cover
edge, and high-level features that contain rich semantic
information to represent land cover categories. In addition,
we assign unique tasks to features at different levels to
enable multitask learning.

2) We develop two separate fusion modules tailored to dis-
tinct level features according to their unique representa-
tions: the EDPM for low-level features and the CSAM for
high-level features.

3) We deconstruct the initial GTs into “Semantic,” “Binary,”
and “Edge” GTs, with corresponding losses computed
during network training. Our method demonstrates su-
perior performance compared to current state-of-the-art
(SOTA) methods across diverse change detection datasets.

We organize the remaining part of this article as follows. In
this article, we present an overview of the relevant literature
in Section II. Section III elaborates on the proposed MLCNet
architecture and its modules. The experimental results will be
discussed in Section IV. Finally, Section V concludes the article.

II. RELATED WORK

A. CNN-Based CD Models

Lately, convolutional neural networks (CNNs) have gained
widespread adoption owing to their adeptness in extracting
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features efficiently for understanding intricate imaging scenar-
ios. Change detection tasks demand pixel-level prediction results
that align well with the characteristics of CNN. Therefore, early
deep learning change detection networks mostly used CNN
models. These CNN-based models can be categorized as either
metric based or classification based.

Metric-based models transform original pixel values from
bitemporal images into a high-dimensional embedding distance
space to measure change probability for each pixel. In this
space, distances between unchanged pixel pairs decrease, while
distances between changed pixel pairs increase. Han et al. [40]
proposed a method that combines a Siamese convolutional net-
work with threshold segmentation for change detection, using
contrastive loss for model training. Chen et al. [21] introduced
STANet, employing self-attention modules to establish spa-
tiotemporal dependencies between same-level bitemporal fea-
tures, outputting feature maps for computing pixel pair distance.
Liu et al. [41] proposed a deep convolutional coupling network
that uses coupling algorithms to transform bitemporal features,
resulting in a more consistent feature space and reducing the
differences in unchanged land features while highlighting dif-
ferences in changed land features.

Classification-based deep learning models extract change
features from bitemporal images and classify each pixel as
change or not to obtain the predicted change map. Typically,
classification-based deep learning algorithms use functions like
softmax or sigmoid to transform the final output of the model
into change probabilities. Daudt et al. [18] innovatively applied
the UNet architecture [17] to change detection tasks. They con-
structed three types of UNet networks with different skip con-
nection configurations, effectively utilizing multilevel features.
Fang et al. [19] proposed SNUNet-CD, which employs a densely
connected Siamese UNet++ architecture [42], effectively pre-
serving multilevel feature information. Through subsequent at-
tention mechanism fusion operations, it reallocates weights to
the multilevel information for comprehensive utilization. Lei
et al. [43] proposed an innovative approach that enhances change
detection results by adding boundary constraints. Their method
extracted predicted change boundaries from the network outputs
and compared them with edge change GT to calculate the loss
for network training.

Despite the significant advancements enabled by CNN-based
change detection methods, they still exhibit limitations in rec-
ognizing long-range dependencies, resulting in significant dif-
ferences in extracted features and a lack of intraclass consis-
tency [44]. Some works try to solve this problem by adding deep
supervision to guide the feature learning, such as IFNet [45],
which applies binary change labels to multilevel features in
the decoder stage for deep supervision. However, as previously
analyzed, constraints like deep supervision of multilevel fea-
tures may necessitate more targeted measures to emphasize
their distinct advantages, applying the same labels across all
levels potentially suboptimal. Some other research enhances
the internal consistency of change categories with superpixel
algorithms or graph-CNN, such as ESCNet [46], WNet [36],
and PGCFNet [47]. These methods’ accuracy may be influenced
by the results of superpixel or graph clustering, leading to the
generation of smooth and blurred edges. Some other works

utilized specific attention mechanisms to enhance features in
specific directions. For example, HFA-Net [48] employs spatial
and high-frequency attention to highlight targeted landcover’s
features, while HDANet [49] uses differential attention to
optimize detection results. The uniform treatment of multilevel
features indeed enhances the feature representation in the aspects
they designed but fails to differentiate attention directions for
different levels of features, thus being unable to address the
aforementioned issue.

B. Transformer-Based CD Models

The remarkable ability of transformers to model long-range
dependencies led to their predominant use in natural language
processing tasks and computer vision domains. Recently, trans-
formers have also been increasingly utilized for model devel-
opment in remote sensing change detection. These approaches
can be broadly categorized into two sets: exclusively employ the
transformer architecture or integrate transformers with CNNs.
For the first class, Bandara et al. [25] proposed ChangeFormer,
which introduced a hierarchical encoder based on the trans-
former architecture. This network employed differential mod-
ules to obtain change maps at each scale. Subsequently, it
utilized multilayer perceptrons (MLPs) to decode these change
maps, effectively leveraging multilevel information of global
features for change map prediction. Zhang et al. [50] proposed
SwinSUNet, a transformer-based U-shape structure model. This
network utilizes the Swin Transformer (SwinT) module in-
stead of the traditional transformer module. The traditional
transformer module conducts multihead self-attention directly
on input features. In contrast, the SwinT module uses shifted
windows to divide features into different regions and perform
multihead self-attention on each region. This reduces the com-
putational burden and enhances the local attention capability of
the transformer module.

About the second class, Chen et al. [24] introduced a model
called bitemporal image transformer (BIT) for change detection
tasks. The model used two weight-shared CNNs to transform
the images into feature maps at a high level, which were then
refined with two transformer encoders. This helped capture con-
textual relations across spatial and temporal domains, enhancing
understanding of global context. Li et al. [31] proposed Tran-
sUNet, which combined the strengths of UNet and transform-
ers to construct an encoder–decoder model for remote sensing
change detection (RSCD). UNet effectively captured intricate
local details, while the transformer modeled global contextual
relations [51]. The model predicted positive change maps with
enhanced performance by integrating these components.

However, transformer-based methods are also susceptible to
the issue of insufficient spatial details, which may constrain the
model’s capacity to detect subtle changes and accurate edges.
The works integrating transformers with CNNs have partly ad-
dressed this issue by leveraging CNNs’ strong capability to cap-
ture local spatial details. However, methods utilize both trans-
formers and CNNs for all level features, like SUT [52], which
perform a parallel encoder separately consisting of transformers
and CNNs, simultaneously enhancing the feature representa-
tion of spatial details and semantics but lacking emphasis. The



11826 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 2. Overall architecture of MLCNet.

blurred semantic information of low-level features and the lower
spatial resolution of high-level features may negatively affect the
final detection results. Conversely, methods like AMTNet [53]
apply CNNs and transformers for feature extraction and feature
refinement, respectively. This approach simultaneously utilizes
three different level features to output three change detection
prediction maps, these maps are then used for supervision to
achieve multilevel feature utilization. However, this approach
can still be somewhat simplistic and blunt for multilevel feature
utilization, lacking emphasis on the advantages aspect of dif-
ferent level features. Besides, in the fusion of the same level or
multilevel features, many existing methods still rely on simple
channel concatenation [53] or direct fusion with MLPs [25],
[54], these may still be insufficient in fully capitalizing on the
advantages of different-level features.

III. METHODS

The definitions of the formulas, operators, and symbols used
in this article are presented in Table I.

A. Overall Architecture

Fig. 2 illustrates the overall architecture of our proposed ML-
CNet, which comprises a Siamese encoder to extract the features
of bitemporal images, two different fusion modules specifically
designed for feature fusion at specific levels, and three MLIFD.
We choose a Siamese network architecture with ResNet as the
backbone of our encoder. To preserve high-precision spatial

TABLE I
DEFINITIONS OF FORMULAS, OPERATORS, AND SYMBOLS

information and detailed features, we modified ResNet [55]
by removing its average grouping and dense layers for feature
extraction.

The last two layers involve more downsampling and channel
increment operations than the first two layers in ResNet and
effectively enhance the representation of semantic features.
Hence, we utilize the EDPM and the CSAM to fuse bitemporal
features from the first two and last two layers, separately. These
fused features are progressively decoded through three MLIFD,
generating the final feature map representing semantic changes.
The final feature map is used to calculate the loss with semantic
change GTs for network training. In addition, features fused via
EDPM and CSAM are upsampled to the original image size and
fed into their respective classifiers for deep supervision. The
features of EDPM are used to calculate loss with edge-change
GT, while those of CSAM are used to calculate loss with binary-
change GT. This design enables selective learning of distinct
characteristics among different feature levels, leveraging rich
spatial detail information of low-level features and rich semantic
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Fig. 3. Edge detail preservation module.

categories information of high-level features to their full extent.
It prevents inaccurate prediction of change categories caused
by ambiguous semantic information of low-level features and
imprecise prediction of change edges caused by low-resolution
spatial information of high-level features.

B. Edge Detail Preservation Module

In the change detection tasks, variations in lighting conditions,
capture angles, cloud and fog occlusion, and seasonal changes
may lead to significant spectral differences within the same land
cover type between bitemporal images or even within different
regions of the same image. Such differences can introduce mis-
leading and incomplete information in change detection tasks,
particularly for low-level features. Therefore, while the spatial
information from low-level features can accurately indicate the
edge of landcovers, the semantic information they provide of-
ten lacks precision in identifying the category of landcovers.
Given this, prioritizing and effectively leveraging the precise
and detailed spatial context information is more crucial during
low-level feature fusion than focusing on semantic information.
By moderately extracting comprehensive land cover semantic
information while strengthening the utilization of spatial infor-
mation in low-level features, the model improves its effective-
ness and robustness. This tradeoff between the usage of spatial
and semantic in low-level features contributes to overcoming the
spectral differences in the unchanged regions and enhancing the
model’s accuracy in change detection.

Considering the problems mentioned above, we propose
the EDPM, depicted in Fig. 3. The EDPM takes channel-
concatenated bitemporal features as input. Subsequently, four
parallel 3× 3 convolution operations are adopted to simulta-
neously convolve the concatenated features. These convolved
features are then concatenated with the original bitemporal fea-
tures along the channel dimension, enriching them with spatial
contextual information. Subsequent dimensionality reduction is
performed through a convolutional operation. The four parallel
convolutional layers use dilation rates ranging from 1 to 4, en-
suring ample receptive fields and producing a structured sparse
representation in the spatial dimension without significantly
increasing computational cost or parameters. This operation

resembles the regularization concept used in traditional methods
for extracting normalized feature representations [20], [56].
The group convolution operation effectively exploits the local
connectivity property of convolutions, constructing a feature
representation paradigm similar to a feature pyramid, which
excellently integrates low-level features with a focus on their
spatial detail information. The formulations of the above oper-
ations are as follows:

F 1
cat = FT1 ⊕ FT2 (1)

F i
c1 = Conv1d=i(F 1

cat), i = 1, 2, 3, 4 (2)

FFuse = Fuse(F 1
cat, F

1
c1 ⊕ F 2

c1 ⊕ F 3
c1 ⊕ F 4

c1) (3)

here ⊕ denotes the concatenation of features along the channel
dimension.

The fused feature is then refined and purified through the
attention mechanism to enhance the network’s focus on key
regions. A channel attention module (CAM) is first adopted to
enhance the feature. CAM aggregates spatial information from
features using average pooling (F c

avg) and max-pooling (F c
max)

layers. After pooling the features, a weight-shared MLP with
a hidden layer receiving them to produce the channel attention
maps Mapc ∈ RC×1×1. Besides, the size of the hidden activa-
tions in the weight-shared MLP is C

r × 1× 1, with r represent-
ing the reduction ratio aims at minimizing parameter overhead.
Finally, the resulting feature can be obtained by performing an
elementwise addition on the output from each pooled feature of
the shared MLP. The CAM can be expressed as follows:

Mc(F ) = σ(W1(W0(F
c
avg)) +W1(W0(F

c
max))) (4)

here,σ is the sigmoid function,W0 ∈ R
C
r ×C ,W1 ∈ RC×C

r . The
MLP weights W0 and W1 are shared for both inputs, followed
by ReLU activation after W0.

After producing the CAM output, it is refined in spatial aspects
by passing it through a spatial attention module (SAM). The
SAM applies two channel dimension pooling layers to integrate
the channel information, producing average pooling (F s

avg) and
max pooling (F s

max) features. A 7×7 convolutional layer then
receives the channel-concatenated feature produced by them
to generate the final output. The computation of SAM can be
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Fig. 4. Cross-temporal semantic attention module.

expressed as follows:

Ms(F ) = σ(Conv2(F s
avg ⊕ F s

max)) (5)

here, σ denotes the sigmoid function. Therefore, the EDPM
module’s output can be given by

FEDPM = Ms(FCAM) ∗ FCAM (6)

FCAM = Mc(FFuse) ∗ FFuse. (7)

C. Cross-Temporal Semantic Attention Module

Unlike low-level feature fusion, the fusion for high-level
features should prioritize the integration of global semantic
information rather than the spatial details information, due to the
richer semantic context present in deeper layers and ambiguous
spatial context representation. Therefore, we propose the CSAM
for the fusion of high-level features, as illustrate in Fig. 4. In the
CSAM, we employ three steps to fuse and constrain the features
to focus on the semantic aspect.

First, bitemporal features FT1, FT2 ∈ RC×H×W are per-
formed feature clustering with a weight-shared network, respec-
tively. We use three MLP layers to form this network. After
passing the features through this network, Queries q1, q2 ∈
R

C
r ×N , Keys k1, k2 ∈ R

C
2r×N , and Values v1, v2 ∈ R

C
2 ×N of

bitemporal features are generated, where N = H ×W , and r
represent the dimensional reduction rate, which is set to 8 in our
case. Each Query, Key, and Value pair is clustered with the same
MLP layers in the weight-shared network. Subsequently, Keys
and Values from both temporal images are concatenated to form
a change dictionary, while Queries remain separate. Finally, we
obtain two Queries (q1, q2), one change dictionary (K,V ) for the
following cross-temporal semantic attention mechanism. These
processes can be represented as the following equations:

q1 = MLP query(FT1), q2 = MLP query(FT2) (8)

k1 = MLP key(FT1), k2 = MLP key(FT2) (9)

v1 = MLP value(FT1), v2 = MLP value(FT2) (10)

K = k1⊕ k2, V = v1⊕ v2. (11)

The change dictionary consists of key-value pairs containing
semantic information that reflects the differences between the

bitemporal images. Next, we separately use q1 and q2 to compute
the multihead attention with the change dictionary (K,V ).

The multihead attention mechanism (MHA) enables the
model to distribute varying degrees of attention to different input
regions. It processes different representation subspaces of the
input in parallel and merges them at the end. This allows the
model to gain the capacity to concentrate on information from
different positions. Previous CD methods often apply MHA on
single-temporal or concatenated bitemporal features [24], [25],
[54]. They tend to suppress the differences between bitempo-
ral features by learning the correlation of unchanged regions
between bitemporal features, enhancing the changed features
indirectly. In our case, the MHA mechanism computes attention
between each Query (q1, q2) and the change dictionary (K,V ).
By directly comparing single-temporal features with “change”
features, it can more intuitively identify regions in each temporal
feature that are relevant to “change,” thereby enhancing the
representation of change semantics. The computation of MHA
can be represented by the following equations:

MHA(Q,K, V ) = (head1 ⊕ . . .⊕ (head)h) ·WO (12)

headi = Attention(Q ·WQ
i ,K ·WK

i , V ·WV
i ) (13)

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (14)

here, Q represent Queries, K represent Keys, and V represent
Values. The Keys have a dimensionality of dk. WQ

i , WK
i , WV

i ,
and WO are the parameter matrixes need learned by the model.

Finally, we reshape and concatenate the two obtained MHA
outputs for each temporal back to the size of input features
RC×H×W , resulting in Fcat with the size of Fcat ∈ R2C×H×W .
Afterward, we apply a 3× 3 convolution with batch normaliza-
tion (BN) and ReLU activation to obtain the final fused feature of
CSAM (FCSAM ∈ RC×H×W ). The formulation can be expressed
as follows:

FCSAM = ReLU(BN(Conv1(Fcat))) (15)

Fcat = MHA(q1,K, V )⊕MHA(q2,K, V )). (16)
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Fig. 5. Multilevel interactive fusion decoder.

D. Multilevel Interactive Fusion Decoder

Due to the success of UNet [18], change detection networks
frequently use skip connections in decoding modules to decode
multilevel features jointly. This method effectively preserves
the detailed spatial information of the low-level features, while
using the semantic cues of high-level features to guide the
classification of pixels whose object categories are not clearly
identified in the shallow layers [18], [19], [57]. As a result, it
improves the change detection result. However, these methods
often rely on simple upsampling operations for fusing high-level
and low-level features during decoding. This may lead to the
loss of precise information and confusion during the upsampling
process, resulting in the blurring of low-level features’ spatial
context detail and a decrease in high-level features’ semantic
accuracy. In light of the differences in the representation of fea-
tures at different levels, it is essential to consider their respective
characteristics not only during the feature fusion stage but also
during the feature decoding stage.

Based on the abovementioned issues, we propose the MLIFD,
the detail structure illustrate in Fig. 5. Each decoding unit
of this decoder simultaneously receives a high-level feature
Fhl ∈ R2C×H

2 ×W
2 and a low-level featureFll ∈ RC×H×W . The

high-level feature is passed to three streams: the first stream starts
with performing the channel dimension reduction and upsam-
pling operation through a transposed convolution layer, resulting
inFT

hl ∈ RC×H×W . Then, the two sets of different level features
FT
hl, Fll are convolved separately and added together to obtain

the preliminary aggregated feature Fsum ∈ RC×H×W , which is
used to generate the spatial attention map of size R1×H×W

through the SAM to refine the convolved low-level feature F ′
ll.

After elementwise multiplying the F ′
ll with the attention map,

the first fused feature Fsa can be obtained. The formulation for
the first stream of high-level features is as follows:

Fsa = Ms(Fsum) · Conv1(Fll) (17)

Fsum = Conv1(Conv3(Fhl)) + Conv1(Fll). (18)

The second stream starts with the channel reduction operation
through a CAM and a 1× 1 convolution layer, obtaining a
channel attention weight map of size RC×1×1. The second fused
feature Fca is obtained by elementwise multiplication of this
channel weight attention map and the first fused feature Fsa to
allocate the same channel information weights across all pixel

positions. The formulation for the second stream is as follows:

Fca = Conv0(Mc(Fhl)) · Fsa. (19)

Through the first and second streams, the features at different
levels are progressively fused. Note that the fused feature is
produced in a gentle and gradual process, where the high-level
feature acts as a guide for the low-level feature, rather than
being directly added or concatenated with it. This approach
preserves the detailed spatial context of the low-level features
while leveraging the rich semantic information of high-level
features. It effectively avoids information interference caused
by the low-resolution spatial context representation of high-level
features and addresses potential decreases in spatial resolution
during feature fusion. The third stream of high-level features
aims to avoid information loss. We concatenate the upsampled
high-level feature FT

hl obtained through transposed convolution
with the fused featureFca based on the guidance of the high-level
features and perform fusion through convolution to obtain the
final result FMLIFD ∈ RC×H×W . The expression for the final
output of this module is as follows:

FMLIFD = ReLU(BN(Conv1(Conv3(Fhl)⊕ Fca))). (20)

E. Deep Supervision and Loss Function

The difficulty of classifying whether a pixel belongs to a
change category in remote sensing change detection tasks is
closely related to its spatial position within its cluster. In a
complex bitemporal image pair, pixels near the edges of change
clusters are more likely to be misclassified, while those closer
to the center of clusters tend to have higher classification ac-
curacy owing to their higher intraclass consistency. Therefore,
during network training, rather than treating all pixels equally,
we need to pay more attention to the edge pixels. Therefore,
we deconstruct the original GTs into binary change GTs and
edge change GTs to apply multitask learning with level-specific
constraints. For binary change GTs, we categorize all change
classes as change, represented by 1 in the GT, while 0 indicates
unchanged land cover. Edge change GTs are further derived by
extracting the edges from the binary change GTs. In the GT
edge change, 1 denotes the edges of the changed areas, while 0
represents all the other regions.

We compute loss functions for the network’s final output
with the semantic change GTs: if they are not provided, binary
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change GTs are employed. Binary and edge change GTs are used
through deep supervision to calculate their respective losses.
As illustrated in Fig. 2, MLCNet adopts four deep supervision
branches. Each branch upsamples the fused bitemporal features
to the original image size. These upsampled features are then
passed to their respective classifiers to generate prediction re-
sults. EDPM-linked classifiers compute losses with edge change
GTs, while CSAM-linked classifiers utilize binary change GTs
for loss calculation. Therefore, three different GTs are used to
calculate the final training loss L, which can be defined as the
combination of the following three loss functions:

L = α1Lsemantic + α2

2∑
i=1

Li
binary + α3

2∑
i=1

Li
edge (21)

here, the final loss L is the combination of semantic (Lsemantic),
binary (Lbinary), and edge (Ledge) loss functions. α1, α2, α3

are the corresponding weights that control the tradeoff between
three loss functions. We set {α1, α2, α3} to {1.0, 0.2, 0.2} for
training MLCNet.

Since there are considerable differences in the foreground and
background quantities between the binary and edge change GTs,
the binary cross entropy loss and the Dice loss are used for the
computation of Lbinary and Ledge. The formulas are as follows:

LCE(P,G) = wposG log(P ) + wneg(1−G) log(1− P )
(22)

wpos = npos/nsum (23)

wneg = nneg/nsum (24)

LDice(P,G) =
2 · P ·G
P 2 +G2

(25)

here P represents the predicted map generated by the classifiers
of the four deep supervision branches, and G is the correspond-
ing GT. In addition, to consider the global context as much
as possible when calculating the final loss, the cross-entropy
loss and the Lovász-softmax loss [58] are used to compute the
corresponding loss in Lsemantic.

IV. EXPERIMENTS

To validate the performance of our proposed method, exper-
iments were conducted on three public CD datasets: LEVIR
building change detection (LEVIR-CD) dataset [21], side-
looking change detection dataset (S2Looking) [59], and the sim-
ulated multimodal aerial remote sensing dataset (SMARS) [60].
This section first introduces the datasets and comparison meth-
ods, followed by the evaluation metrics used in the experiments,
and finally showcases the experiments and the analysis.

A. Dataset Introduction

LEVIR-CD [21]: LEVIR-CD is a dataset consisting of 637
pairs of VHR Google Earth image patches. Each patch measures
1024 × 1024 pixels and was captured over a period of 5 to 14
years. These bitemporal images show significant changes in land

use, especially in construction expansion. The dataset contains
a wide range of building types, including villa residences, tall
apartments, small garages, and large warehouses. LEVIR-CD is
fully annotated, containing a total of 31 333 individual instances
of changed buildings. We employed the original partitioning of
the LEVIR-CD dataset for training and testing. The data are
divided using a nonoverlapping approach with a resolution of
512×512. In the end, we obtain 1780 pairs of data for network
training, 128 pairs for validation, and 512 pairs for testing.

S2Looking [59]: The S2Looking dataset is a comprehensive
bitemporal dataset for building change detection, comprising
large-scale side-looking satellite images. These images are cap-
tured from varying off-nadir angles and cover rural areas world-
wide. The dataset contains 5000 registered pairs of bitemporal
images, each sized 1024*1024 pixels with a resolution ranging
from 0.5 to 0.8 m per pixel. Annotated with over 65 920 instances
of change, the dataset includes label maps indicating regions of
newly constructed and demolished buildings for each bitemporal
image pair. In the S2Looking dataset, we follow the original data
partitioning, applying nonoverlapping 512×512 cropping to
each image set. This yields 14 000 training pairs, 2000 validation
pairs, and 4000 testing pairs. For ground truth (GT) processing,
we explore two scenarios. The first scenario only uses binary
change information, the second scenario adds specific seman-
tic change information, where the change category in binary
change GT is further split into newly constructed buildings and
demolished buildings. This dual approach allows for a detailed
analysis of both binary and semantic changes.

SMARS [60]: SMARS is a synthetic dataset featuring scenario
pairs from simulated Paris and Venice urban changes, named
SParis and SVenice, for training change detection applications.
It includes ortho-images and digital surface models (DSMs)
showcasing changes like increased buildings and reduced green
spaces. Rendered at 30 and 50 cm ground sampling distances
(GSDs), the 30 cm GSD is primarily used by our experiment. The
dataset offers binary and ternary change GT for detection tasks;
the categories of ternary change GT further split the change
category in binary change GT into newly constructed buildings
and demolished buildings. We use the original partition and
the data are cropped into 256×256 patches, resulting in 1584
training pairs, 924 validation pairs, and 1474 testing pairs below
30 cm GSD.

B. Comparison Methods

To comprehensively evaluate our method, we compare it with
the following state-of-the-art networks, including three classic
fully CNNs: FC-EF [18], FC-Siam-conc [18], and FC-Siam-
diff [18], three attention based networks: STANet-PAM [21],
SNUNet [19], HANet [57], and five transformer-based net-
works: ChangeFormer [25], BIT [24], RSP-BIT [61], AMT-
Net [53], and Changer [54] as comparison methods for our
network.

C. Evaluation Metrics

To evaluate the congruence between predictions and the GT
in remote sensing change detection applications, we employ six
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TABLE II
PERFORMANCE OF MODELS IN BINARY CHANGE DETECTION

well-established metrics that have been widely utilized, encom-
pass precision (Pre.), recall (Rec.), F1-score (F1), intersection
over union (IoU), Cohen’s Kappa (Kappa), and overall accuracy
(OA). Each metric can be defined as follows:

Precision =
TP

TP + FP
(26)

Recall =
TP

TP + FN
(27)

F1 =
2 · Precision · Recall
Precision + Recall

(28)

IoU =
TP

TP + FP + FN
(29)

Kappa =
po − pe
1− pe

(30)

OA =
TP + TN

TP + TN + FP + FN
(31)

where TP, TN, FP, and FN represent the pixel number of true
positive, true negative, false positive, and false negative, respec-
tively. po, pe are defined as follows:

⎧⎨
⎩
po = TP+TN

TP+TN+FP+FN

pe = (TP+FP )(TP+FN)+(TN+FN)(TN+FP )
(TP+TN+FP+FN)2 .

(32)

All six metrics indicate better model performance as they in-
crease.

D. Training Details

Our models were developed using PyTorch 1.8.1 (CUDA
11.1) and were trained on four NVIDIA GeForce GPUs with
24 GB of memory. During training, we used the AdamW opti-
mizer with a weight decay of 5e−4 and a learning rate of 1e−3,
with a cosine annealing strategy for updating the learning rate,
the annealing epoch and maximum training epoch are set to 20
and 80 separately, to minimize the loss. All models converged
before reaching the maximum training epoch. For each model,
we repeated the training process at least five times with a batch
size of 32. The final comparison was based on the average of the
top three highest accuracies achieved by each model.

E. Comparative Experiments

1) Binary Change Detection Experiment: During the binary
change detection experiments, the LEVIR-CD [21], S2Looking,
and SMARS datasets are used solely with binary change GT for
supervising the network training. Table II summarizes the quan-
titative metric results of different methods. Data comparison
from the table indicates that MLCNet generally outperforms
most of the compared methods across a range of metrics and
scenarios.

Taking the LEVIR-CD dataset as an example, MLCNet ex-
hibits a 0.42% improvement in the F1 score over the second-best
HANet. Notably, compared to other methods, the improvements
are more significant, with increments of 2.50% (over FC-EF),
1.48% (over FC-Siam-conc), 1.82% (over FC-Siam-diff), 2.49%
(over STANet), 1.24% (over SNUNet), 1.36% (over Change-
Former), 2.24% (over BIT), 1.54% (over RSP-BIT), 0.86% (over
AMTNet), and 1.17% (over Changer).

The significant improvements seen in MLCNet can be at-
tributed to several factors. First, the network employs differ-
ent specifically designed modules for high-level and low-level
features’ fusion. This approach effectively constrains the net-
work to appropriately prioritize the strengths associated with
features at different levels. Second, the MLIFD decoding unit
effectively preserves the respective advantages of multilevel
features when decoding, avoiding mutual interference between
information from different level features. As a result, it can
simultaneously utilize the semantic information of high-level
features and the spatial detail information of low-level features to
generate detection results with both high intraclass consistency
and well-defined edges. Furthermore, the network’s training
process uses multitask learning with level-specific constraint
strategies, which further enhances the network’s utilization of
the advantages of features at different levels through rigorous
constraints. These advantages of the network are demonstrated
in subsequent ablation experiments.

In addition to the basic results for binary change detection,
we also separately calculate the F1 and IoU scores for the
edge precision of each network, as shown in Table III. Our
MLCNet demonstrates a notable advantage in edge precision
compared to other models. By comparing the differences be-
tween CNN-based and transformer-based methods in binary
change detection accuracy and edge precision in Tables II and III,
we find that although transformer-based methods generally have
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Fig. 6. Visualization result of our proposed methods and the comparative SOTA methods on LEVIR-CD. (a) T1 images. (b) T2 images. (c) GT. (d) FC-EF.
(e) FC-conc. (f) FC-diff. (g) STANet. (h) SNUNet. (i) HANet. (j) BIT. (k) ChangeFormer. (l) RSP-BIT. (m) AMTNet. (n) Changer. (o) MLCNet. Black, white, red,
and blue regions indicate the true negative, true positive, false negative, and false positive, respectively.

TABLE III
PERFORMANCE OF MODELS IN EDGE CHANGE DETECTION

certain advantages in binary accuracy compared to CNN-based
methods, CNN-based methods perform better in edge precision.
This is because while transformer-based methods possess better
global information interaction, they also tend to blur edge details,
whereas CNNs excel in extracting and preserving edge details.
Our proposed MLCNet effectively integrates the spatial detail
preservation capability of CNNs with the global information
interaction capability of attention mechanisms, resulting in sig-
nificant improvements in both binary detection accuracy and
edge precision.

Figs. 6– 8 illustrate the visualization results for our methods
and the comparative methods across the three datasets. To show
how our model maintains the semantic consistency of change
categories and edge detection, we chose some samples from
the more complicated environments in our test set. To make
our detection results easier to understand, we use blue and red
to represent false positives and false negatives, respectively.
Meanwhile, black represents true negatives and white represents
true positives. It can be observed that transformer-based meth-
ods (BIT, ChangeFormer, RSP-BIT, AMTNet, Changer) exhibit
fewer false negative regions in change regions and generally
produce better visual results in detected changes when compared
to CNN-based methods (FC-EF, FC-Siam-conc, FC-Siam-diff).

However, methods based on attention (SNUNet, HANet) and
CNN demonstrate certain advantages in the accuracy of change
edge. In addition, our proposed MLCNet not only exhibits lower
void rates within change categories but also performs well
at change category boundaries, yielding results closest to GT
overall. Taking the second row of visualization results in Fig. 6
as an example, compared to other transformer-based methods,
MLCNet not only better preserves overall structural changes
in buildings, but also accurately identifies small nonchanging
areas within significant change regions. This allows for precise
change edges to be established. Furthermore, as illustrated in the
first and third rows of Fig. 6, MLCNet consistently outperforms
other comparative methods in accurately delineating complex
building edge regions. Overall, our proposed MLCNet architec-
ture design shows strong effectiveness by presenting lower void
rates within change categories and generating results closest to
the GT. The results clearly indicate the efficiency of the MLCNet
architecture design that we proposed.

2) Semantic Change Detection Experiment: To further ex-
plore MLCNet’s detection capabilities in semantic change de-
tection environments, we train and test our network with three
classes of semantic labels from the S2Looking and SMARS
datasets. As mentioned in Section IV-A, for the three semantic
labels (unchanged, newly constructed, demolished buildings),
we further deconstruct them into edge change labels and binary
change labels. A schematic diagram of the refined dataset is
shown in Fig. 9. In Fig. 9(d), the red and cyan regions indicate the
areas where buildings were demolished or newly constructed,
respectively.

For comparison, we choose classification-based methods
from the aforementioned techniques. Adjustments are applied
exclusively to the final layer outputs of these comparison meth-
ods, originally single-channel or dual-channel outputs, which
are transformed into three-channel outputs corresponding to the
categories of unchanged objects, newly constructed buildings,
and demolished buildings. The training approach for MLCNet
remains consistent with the earlier description. Table IV presents
the accuracies of different categories and the mean accuracy
on the S2Looking and SMARS datasets. The four metrics in



LIU et al.: MLCNet: MULTITASK LEVEL-SPECIFIC CONSTRAINT NETWORK FOR BUILDING CHANGE DETECTION 11833

Fig. 7. Visualization result of our proposed methods and the comparative SOTA methods on S2Looking. (a) T1 images. (b) T2 images. (c) GT. (d) FC-EF.
(e) FC-conc. (f) FC-diff. (g) STANet. (h) SNUNet. (i) HANet. (j) BIT. (k) ChangeFormer. (l) RSP-BIT. (m) AMTNet. (n) Changer. (o) MLCNet. Black, white, red,
and blue regions indicate the true negative, true positive, false negative, and false positive, respectively.

Fig. 8. Visualization result of our proposed methods and the comparative SOTA methods on SMARS. (a) T1 images. (b) T2 images. (c) GT. (d) FC-EF.
(e) FC-conc. (f) FC-diff. (g) STANet. (h) SNUNet. (i) HANet. (j) BIT. (k) ChangeFormer. (l) RSP-BIT. (m) AMTNet. (n) Changer. (o) MLCNet. Black, white, red,
and blue regions indicate the true negative, true positive, false negative, and false positive, respectively.

TABLE IV
PERFORMANCE OF MODELS IN SEMANTIC CHANGE DETECTION
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Fig. 9. Examples of two refined datasets. (a) T1 images. (b) T2 images. (c)
Edge change GT. (d) Binary change GT. (e) Semantic change GT. Edge GT:
White = changed edges, black = other areas. Binary GT: White = changed
regions, black = unchanged regions. Semantic GT: Cyan = newly constructed
buildings, Red = demolished buildings, black = unchanged regions.

the table represent the F1 scores for unchanged areas, newly
constructed buildings, demolished buildings, and the average
F1 score, respectively. It can be observed that in the scenario
of using semantic labels, our model exhibits significantly better
accuracy compared to other methods. The visualization result
is shown in Fig. 10. Red, cyan, and black, respectively, rep-
resent newly constructed buildings, demolished buildings, and
unchanged areas. Through visualization results, we can observe
that MLCNet demonstrates significant advantages over other
methods, especially in the aspect of keeping intra-class consis-
tency and edge delineation. In the semantic change detection
task, distinguishing similar categories becomes more challeng-
ing. Therefore, it can be observed that while some other methods
may yield acceptable results from a binary change detection
perspective, they produce unclear boundaries for various change
categories and exhibit low intraclass consistency in semantic
change detection scenarios. This further underscores the unique
advantage of MLCNet’s design in maintaining boundary clarity
and intraclass consistency.

3) Model Complexity and Efficiency Analysis: To evaluate
the complexity and efficiency of our proposed MLCNet, we
present the number of trainable parameters, the number of arith-
metic operations [i.e., floating point operations (FLOPs)], and
the frames per second (FPS) of MLCNet and other comparative
methods on the LEVIR-CD [21] dataset in Table V. We report
the speed (FPS) with an input size of 512× 512 on a single
NVIDIA GTX 3090 GPU. According to Table V, MLCNet has
the highest number of learnable parameters, reaching 30.328 M,
indicating a higher model complexity of our MLCNet. However,
it is important to note that despite the higher model complexity,
our model’s FLOPs remain at a moderate level compared to
all the comparative methods. Although MLCNet has a larger
number of parameters, its computational efficiency is still higher

TABLE V
MODEL PARAMETER COUNT AND COMPUTATIONAL EFFICIENCY STATISTICS

(FLOPs lower) than some models with fewer parameters, such
as Changer [54], AMTNet [53], and HANet [57]. In addition,
MLCNet’s FPS also remains at a moderate level, indicating good
computational efficiency that can meet practical application
needs.

F. Ablation Studies

The excellent performance of MLCNet on the three datasets
demonstrates the rationality of our design approach, which
emphasizes the different advantages of multilevel features by
applying different constraints and different modules to them. To
further validate the effectiveness of MLCNet’s module design
and training strategies, we conducted the following ablation
experiments.

1) Ablation Study of Fusion Modules: To further explore the
optimal ratio of EDPM to CSAM, we conducted the following
experiments: Dynamically adjusting the numbers of EDPM and
CSAM modules within the range of 0 to 4 (the total sum is
always equal to 4) in the network and testing the final accuracy.
The results are presented in Table VI, where the col of “EDPM
num” and “CSAM num” indicates the number of EDPM and
CSAM used in the model separately. In all tested networks, the
EDPM modules are consistently positioned above the CSAM
modules, intended for processing lower level features. We denote
the network with the ratio of EDPM number to CSAM number
equal to 4:0 as “EDPNet” and the network with the ratio equal
to 0:4 as “CSANet.” According to Table VI, networks that
apply different fusion modules for features at different levels
demonstrate higher accuracy compared to those using a single
fusion module. Moreover, when the EDPM and CSAM modules
are evenly distributed with a ratio of 2:2, the overall model
accuracy reaches its optimum. Networks with more EDPM
modules in the same ratio (1:3 versus 3:1, or 0:4 versus 4:0)
demonstrate a certain advantage in edge accuracy. This further
validates their ability to preserve spatial details and enhance
edge accuracy. Although CSAM has more parameters, networks
with more CSAM modules in the same ratio demonstrate lower
accuracy in the SMARS dataset. The reason probably is that
the illumination of buildings in the SMARS is more uniform
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Fig. 10. Visual comparisons of the proposed method and the SOTA approaches on the semantic change detection scenario. (a) T1 images. (b) T2 images. (c) GT.
(d) FC-EF. (e) FC-conc. (f) FC-diff. (g) SNUNet. (h) HANet. (i) BIT. (j) ChangeFormer. (k) RSPBIT. (l) AMTNet. (m) Changer. (n) MLCNet.

TABLE VI
ABLATION STUDY OF THE MODEL WITH DIFFERENT FUSION MODULES

and stable, and the background is less complex, in this situation,
edge accuracy is more important since the intraclass consistency
is high enough. Meanwhile, in the more complex S2Looking
dataset, the network with more CSAM modules in the same
ratio demonstrates higher accuracy.

To investigate the feature extraction ability of these models,
three pairs of bitemporal RS images are randomly selected from
SMARS, and the final feature maps of MLCNet, EDPNet, and
CSANet are visualized in Fig. 11. By comparing the feature
maps, it can be observed that EDPNet exhibits richer spatial
details but lacks intraclass consistency among different objects,
whereas CSANet shows the opposite characteristics. As shown
in Fig. 11(d), it can be observed that the EDPNet based solely
on the EDPM exhibits high-intensity features at change edges.
However, its semantic consistency within change categories is
low, leading to issues such as holes shown in Fig. 11’s third
row. Moreover, the variance in features across various change
categories is minimal, potentially causing semantic ambiguity.
While this may not be prominent in binary change scenarios,
it becomes particularly evident in semantic change tasks. The
CSAM based CSANet produces relatively high semantic con-
sistency but generates rounded edges for changed buildings
and lower intensity boundary features. In contrast, MLCNet
effectively preserves both rich spatial details and intraclass

Fig. 11. Feature maps visualization result obtained by MLCNet and its vari-
ants. (a) T1 image. (b) T2 image. (c) Semantic GT. (d) EDPNet. (e) CSANet.
(f) MLCNet.

consistency among change regions. The visualization result of
features maps, along with the accuracy metrics presented in
Table VI, collectively demonstrates the effectiveness of our
proposed approach.

2) Ablation Study of Auxiliary Loss: The second ablation
experiment further validates the effectiveness of employing edge
change labels and binary change labels for deep supervision in
MLCNet. The tested models include:
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TABLE VII
ABLATION STUDY OF THE MODEL WITH DIFFERENT AUXILIARY LOSS

Fig. 12. Ablation study of weights setting to loss functions.

1) Base: The MLCNet is trained without deep supervision.
2) + Edge GT: The MLCNet’s four deep supervision

branches all use edge labels for training.
3) + Binary GT: The MLCNet’s four deep supervision

branches all use binary labels for training.
4) + E/B GT: The MLCNet is trained with edge labels and

binary labels on the deep supervision branches connected
to EDPM and CSAM, respectively.

Table VII shows the accuracy of these models. It can be ob-
served that using edge GT and binary GT separately for auxiliary
loss calculation leads to a certain improvement in the network’s
accuracy. However, the improvement in accuracy by solely
using edge GT is relatively insignificant, with only a 0.04%,
0.33%, and 0.1% increase on the three datasets, respectively.
Conversely, the F1 accuracy improvement by solely adding
binary GT is 0.36%, 0.66%, and 0.48%, respectively. Moreover,
with targeted supervision using edge labels for shallow layers
and binary labels for deep layers, the accuracy improvement be-
comes more pronounced, reaching 0.82%, 1.63%, and 0.83% on
the three datasets, respectively. This demonstrates the feasibility
of the multitask level-specific constraint strategy.

3) Ablation Study of Joint Loss Function: As illustrated in
(21), our loss function L is made up of three components:
semantic loss Lsemantic, binary loss

∑2
i=1 Li

binary, and edge loss∑2
i=1 Li

edge. Corresponding to the three loss functions, we set
three weights α1, α2, α3 to control the tradeoff. In this experi-
ment, we setα1 as 1, and separately change theα2,α3 for model
training. The result is shown in Fig. 12. It can be observed that
max accuracy is achieved at α2 = 0.2, and α3 = 0.2. Mean-
while, we find that increasing α2 and α3 beyond 0.2 results
in a slight decrease in accuracy. This suggests that giving more

TABLE VIII
ABLATION STUDY OF THE MODEL WITH DIFFERENT COMPOUND MODE OF

SAM AND CAM

weight to binary and edge losses may lead to overfitting or model
instability. Conversely, decreasing α2 and α3 below 0.2 also
leads to a decrease in accuracy, indicating the importance of
balancing the contributions of semantic, binary, and edge losses
in the overall optimization process.

4) Ablation Study of Different Compound Mode of SAM and
CAM: In our EDPM module, we utilize two attention modules,
the SAM and the CAM, to enhance the sparse hierarchical repre-
sentation created through various dilation parallel convolution.
These modules can be combined in two serial ways and one
parallel way. In EDPM, a serial approach is employed, first using
CAM followed by SAM. The mathematical expressions for this
can be referenced in (6) and (7). Two other combinations of
modules are expressed as follows:

Fsc = Mc(Ms(F ) ∗ F ) ∗Ms(F ) ∗ F (33)

Fparallel = Ms(F ) ∗ F +Mc(F ) ∗ F (34)

here, Mc(·) and Ms(·) represent CAM and SAM, respectively.
F denotes the input feature, Fsc is the output feature of the serial
combined mode (SAM followed by CAM), and Fparallel is the
output feature of the parallel combined mode. We evaluated the
other two combination modes on the LEVIR-CD dataset [21] and
present the final accuracy in Table VIII. It can be observed that
the original configuration of MLCNet, using CAM first followed
by SAM, achieves the best performance. Since we have already
captured constructed sparse representation features through the
different dilation rate parallel convolution operations, using
CAM first to guide the model to learn “what” is important is
probably more suitable than using SAM first to tell the model
“where” to focus. After the model learns “what” we want it to
focus on, SAM can better refine the attention of features on
spatial dimension. About the parallel mode, when spatial and
channel attention are applied in parallel, the combined effect
might dilute the individual contributions of each attention mech-
anism. The additive approach might lead to an averaging effect,
where the specific benefits of focusing on important channels
and spatial regions are not fully realized, leading to a slight drop
in accuracy [62].



LIU et al.: MLCNet: MULTITASK LEVEL-SPECIFIC CONSTRAINT NETWORK FOR BUILDING CHANGE DETECTION 11837

V. CONCLUSION

Our study focuses on the development of a change detec-
tion network for high-resolution remote sensing imagery that
effectively leverages the different strengths aspect of features
at different levels. To achieve this, we have designed distinct
operations for different level features. Two different fusion mod-
ules are utilized to merge features from two different temporal
phases at the same level, each module tailored to enhance the
advantage aspect and decrease the influence of the disadvantage
aspect of corresponding level features. Besides, three different
supervision strategies for low level, high level, and final output
features are designed to optimize the network. Our experimen-
tal findings suggest that our proposed approach surpasses the
current SOTA methods. Comprehensive ablation experiments
have been conducted, affirming the efficacy of our proposed
multitask level-specific constraint strategy. While our method
demonstrates effectiveness in applying different fusion methods
to low-level and high-level features, the rigid partitioning of
multilevel features remains a limitation. Future research could
explore the development of a more automated module, akin
to LSTM’s gate control mechanism, to adaptively select focus
directions for different feature levels. This would maximize the
utilization of each level’s strengths.
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