IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

12811

Land Remote Sensing Applications Using
Spaceborne GNSS Reflectometry: A
Comprehensive Overview

Jinwei Bu

Abstract—The refracted, reflected, and scattered signals from
global navigation satellite systems (GNSSs) have been successfully
used for remote sensing (RS) of the Earth’s surface and atmosphere,
demonstrating their potential for sensing the atmosphere, oceans,
land surface and cryosphere. As an emerging RS technology, space-
borne GNSS reflectometry (GNSS-R) has been widely used in the
field of land RS, with unique advantages such as high spatial and
temporal resolution, low observation cost, wide coverage, and all-
weather operation. In recent years, the successful launch of several
spaceborne GNSS-R satellites has opened new opportunities in
this field. The aim of this article is to provide a comprehensive
overview of the breakthrough applications of spaceborne GNSS-R
technology in the key areas of soil moisture, soil salinity, vegetation
monitoring, soil freezing and thawing, flood detection, inland water
bodies, wetland dynamics, forest fire disturbances, and land topog-
raphy measurements, as well as possible future research directions.
In addition, this article also emphasizes the contribution and role of
China’s recently launched Tianmu-1 constellation (as of 5 January
2024, 23 satellites have been in stable operation in orbit) in the
development of spaceborne GNSS-R technology and explores the
future development direction and prospects of this technology.
By comprehensively analyzing the latest progress and innovative
achievements of relevant research, the significant impact of this
technology on land RS applications in environmental monitoring,
resource management, and disaster warning has been highlighted.
Through a comprehensive summary of these fields, the enormous
potential of spaceborne GNSS-R technology in promoting sustain-
able development and ecological protection has been revealed.

Index Terms—Disaster warning, ecological protection, env-
ironmental monitoring, land remote sensing (RS), resource
management, spaceborne GNSS reflectometry (GNSS-R), Tianmu-
1 (TM-1).

1. INTRODUCTION

LOBAL navigation satellite system reflectometry (GNSS-
R), as an emerging remote sensing (RS) technology,
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has been a popular technology in the fields of ocean, land,
atmosphere, and cryosphere RS in recent years. GNSS-R has
shown enormous potential due to its advantages such as short
revisit cycles and low observation costs. In 1988, Hall and
Cordey [1] proposed the concept of GNSS bistatic radar. In
1993, Martin-Neira [2] first proposed the idea of using GNSS
reflection signals for ocean altimetry. In 2003, the U.K. National
Space Center launched the first U.K.-DMC satellite equipped
with a global positioning system reflectometry (GPS-R) re-
ceiver and used it to receive and process GPS L1 C/A code
reflection signals, verifying the feasibility of estimating sea
surface wind speed, detecting sea ice, and retrieving other pa-
rameters on the spaceborne platform [3]. Then, in July 2014,
a technology demonstration GNSS-R satellite TechDemoSat-1
(TDS-1) equipped with a space GPS receiver RS instrument
was launched and operated for 4.5 years, collecting valuable
in orbit data on sea surface wind, sea surface height, inland
soil moisture (SM), and sea ice. The results of TDS-1 provide
strong support for the future application of GNSS-R in global
sea surface wind speed retrieval and sea ice detection [4], [5].
In December 2016, the National Aeronautics and Space Ad-
ministration (NASA) launched the Cyclone GNSS (CYGNSS)
mission [6], [7], [8], which consisted of eight microsatellites
for observing tropical cyclones at high spatial and temporal
resolutions. The CYGNSS mission successfully demonstrated
the ability of GNSS-R technology to perceive tropical cyclone
eyes at high temporal resolution, optimize tropical cyclone fore-
casts, provide monthly high-resolution SM products, and map
inland water bodies. In the same year, the Universitat Politécnica
de Catalunya launched their advanced spaceborne CubeSats
with GNSS-R instruments called 3Cat-2 mission [9]. In 2020,
an improved version of 3Cat-2 was developed and launched
by the FSSCat mission (*Cat-5/A and *Cat-5/B) sponsored by
the European Space Agency (ESA) [10]. Spire CubeSats have
also been successfully launched since 2019 [11], [12], [13]. In
addition, the Chinese spaceborne GNSS-R era began with the
BuFeng-1 (BF-1) mission in 2019, which was developed by
the China Aerospace Science and Technology Corporation and
launched by the Chinese first-time sea platform [14], [15], [16].
Since July 2021, China has also launched FengYun-3E/3F/3G
(FY-3E/3F/3G) and Tianmu-1 (TM-1) GNSS-R constellations
for Earth surface observation [17], [18], [19], [20]. The ESA
Passive REflecTomeTry and dosimetrY (PRETTY) satellite (for
GNSS-R altimetry) was launched in October 2023 [21], and
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the NASA Signals of Opportunity P-band Investigation mis-
sion (first reflectometry mission at P-band) is expected to be
launched in 2024. The hydrological global navigation satellite
system (HydroGNSS) is planned to be launched in 2025 by
ESA and targets to collect data on the hydrological climate
variables [22].

GNSS-R technology applications in the field of Earth ob-
servation are rapidly growing. Jin et al. [23], [24] reviewed the
potential of GNSS refraction, reflection, and scattering signals in
RS of the atmosphere, oceans, land, hydrology, and cryosphere,
and pointed out that they play a key role in the prediction of
strong winds, hazardous sea states, flood risk, ocean eddies, and
storm surges. Camps et al. [25] summarized the main techniques
for land monitoring using opportunity signals from GNSS [both
reflection (GNSS-R) and transmission (GNSS-T)], which can
be used to measure parameters such as SM, surface topography
and water level, vegetation, and snow height. They have the
advantages of low cost, strong anti-interference ability, and
high spatial resolution. GNSS RS techniques also show great
potential for atmospheric sensing and detection of geophysical
parameters. Yu et al. [26] stated that GNSS radio occultation can
be used to measure parameters such as water vapor, temperature,
pressure, and humidity in the atmosphere, while GNSS-R can be
used to monitor geophysical parameters such as sea surface wind
speed, sea surface height, SM, biomass, snow/ice depth, and so
on. Wu et al. [27], [28] highlighted that GNSS-R has a potential
for SM monitoring and vegetation monitoring, respectively, but
currently faces some challenges. In SM monitoring, issues such
as coherent and incoherent component extraction, multiangle
observation, vegetation, and roughness influence removal, as
well as equivalent isotropic radiated power (EIRP) calibration
and radio frequency interference (RFI) suppression, need to
be addressed to improve retrieval accuracy and data quality.
In terms of vegetation monitoring, it is still in the exploratory
research stage, with a focus on qualitative analysis and analysis
based on satellite observation data. Future research directions
include mining observation geometry and polarization infor-
mation to determine the optimal observation combination and
develop quantitative retrieval methods. Making full use of the
scattering properties at different angles and polarizations is
the key challenge, but research in these directions will offer
more promise and potential for improving vegetation retrieval.
Carreno-Luengo et al. [29] provided an overview of the appli-
cations of GNSS-R in different areas such as marine, terrestrial,
and cryosphere. Pierdiccaetal. [30] focused on the application of
GNSS-R to land, with special attention to SM, biomass, and soil
freeze-thaw monitoring. By analyzing GNSS-R data collected
by experimental satellites, the study identified retrieval algo-
rithms for SM and biomass and proposed three objectives for fur-
ther research: confirmation of simulator prediction capabilities,
understanding of signal fluctuation behavior, and extended use of
neural network-based retrieval techniques. Future enhancements
to datasets and tasks will help improve the accuracy and qual-
ity of biogeophysical parameters retrieval. Rodriguez-Alvarez
etal. [31], on the other hand, gave an overview of the wide range
of applications of GNSS-R in several application areas, such as
marine, terrestrial, and cryosphere. However, the review focuses
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only on selected applications in different areas and is not a
comprehensive overview document. Recently, a comprehensive
review study by Yang et al. [32] shows that spaceborne GNSS-R
SM retrieval needs to address the influence of nontarget pa-
rameters, introduce transfer learning and spatial feature fusion,
and promote downscaling. Future development should focus on
improving the retrieval accuracy and generalization capability
for practical applications in areas such as environmental resource
monitoring and agricultural production.

In summary, there is a great potential for the application of
spaceborne GNSS-R technology in the field of land RS. It can
measure important parameters, such as SM, surface topography
and water level, vegetation, and soil freeze-thaw status, and has
the advantages of low cost, high interference immunity, and high
spatial resolution. However, there are still some challenges, such
as the influence of nontarget parameters, retrieval accuracy im-
provement, data quality improvement, and modeling algorithm
improvement. Although there have been several review articles
covering some of the application areas, there is a lack of a
comprehensive review document covering research results in the
various application areas and problem areas. A comprehensive
review document will help provide a comprehensive perspective
and an in-depth analysis, promoting further research and promo-
tion of applications in this field. Therefore, one of the main con-
tributions of this review is to focus on reviewing the applications
of spaceborne GNSS-R technology in various aspects of land RS
and potential innovative applications in the future, including but
not limited to SM, vegetation, and flood monitoring, etc. The sec-
ond contribution is the first comprehensive review of the China’s
first Tianmu-1 (TM-1) GNSS-R constellation that is compatible
with the four major navigation satellite systems of BeiDou,
GPS, GLONASS, and Galileo. The review outlines the overview,
advantages, and future application prospects of the Tianmu-1
GNSS-R constellation in various fields. This review article will
provide valuable insights into the various applications of space-
borne GNSS-R technology in monitoring and studying land
surfaces.

The rest of the article is organized as follows. Section II
describes the status of spaceborne GNSS-R constellation de-
velopment and land application areas. Section III focuses on
the application of spaceborne GNSS-R technology in SM mon-
itoring, exploring its importance in agriculture, water resource
management, and environmental protection. At the same time,
the methodology and significance of soil salinity monitoring
will be explored, as well as the potential application of space-
borne GNSS-R technology in this field. Sections IV and V
will also cover research progress and future directions in areas
such as vegetation monitoring and soil freeze-thaw monitor-
ing. In Section VI, on flood detection, the role of spaceborne
GNSS-R technology in flood monitoring and early warning
systems will be presented and its potential for reducing dam-
age from natural disasters will be explored. Sections VII-IX
will also discuss the application of spaceborne GNSS-R tech-
nology to inland water monitoring, wetland dynamics, for-
est fire disturbance monitoring, and land topography change.
Section X gives some future applications. Finally, Section XI
provides a discussion and summary of the article.
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Fig. 1.

Typical applications of spaceborne GNSS-R land surface RS. (a) SM, (b) soil salinity, (c) vegetation, (d) soil freeze-thaw, (e) flood detection, (f) inland

water bodies, (g) wetland dynamics, (h) forest fire disturbance, and (i) land topographic measurement.

II. CURRENT DEVELOPMENT STATUS AND LAND APPLICATION
FIELDS OF SPACEBORNE GNSS-R CONSTELLATIONS

Over the past two decades, spaceborne GNSS-R technology
has made significant breakthroughs in various fields, such as
SM, soil salinity, vegetation monitoring, soil freeze-thaw, flood
detection, inland water bodies, wetland dynamics, forest fire
disturbance, and land terrain measurement, etc.

Fig. 1 shows typical application examples of past and cur-
rent spaceborne GNSS-R land surface RS. Table I presents the
current development status of spaceborne GNSS-R constella-
tions and the application directions in the terrestrial field. The
spaceborne GNSS-R technology has breakthrough value in these
areas. The application of this technology provides important
data support in the fields of environmental monitoring, resource
management, and disaster early warning, and is of great sig-
nificance in promoting sustainable development and ecological
protection. Of course, the terrestrial applications of spaceborne
GNSS-R technology are not limited to this, and future research
should further explore in depth the potential of this technology
in different areas.

In addition to the GNSS-R mission mentioned above, there
are also other spaceborne missions that use reflected GNSS
signals and other opportunity signals for different geophysical
applications. For example, on July 5, 2019, DOT-1 satellite
was launched, which is the third satellite designed by Sur-
rey Satellite Technology Limited and used for GNSS-R re-
search. The payloads carried on the DoT-1 satellites are de-
signed to test advanced electronic equipment, such as antenna

technology, which could be used in future spaceborne technolo-
gies [39]. On 3 July 2021, the first commercial satellite with a
GNSS-R payload (Jilin-01B) was launched, with the GNSS-R
payload on board the Jilin-01B satellite developed by Chang-
guang Satellite Technology, Co., Ltd., to detect a range of ocean
parameters [40].

Since July 2021, China’s launch of the FY-3E satellite has
been followed by the launch of the FY-3F/3G satellite and
the TM-1 GNSS-R constellation [41]. Among them, the TM-1
meteorological satellite was developed and operated by China
Aerospace Science and Industry Corporation Limited (CASIC),
in a sun-synchronous orbit at an altitude of 520 km. As of
March 2024, China has successfully launched 23 TM-1 satel-
lites and their operation is stable [the launch status of China’s
TM-1 constellation satellites is given in Table II (Information is
sourced from Aerospace Tianmu (Chongqing) Satellite Science
and Technology Co., Ltd. and Aerospace Science and Industry
(Beijing) Spatial Information Application Co., Ltd.)] . The latest
four satellites, launched on 5 January 2024, have been put into
operational use, forming a sun-synchronous orbit operational
subconstellation with other satellites in orbit.

This satellite constellation is the first and only commercial
satellite in China that meets the operational needs of numerical
forecasting in terms of accuracy and timeliness. We plan to
construct an occultation meteorological exploration constella-
tion consisting of a sun-synchronous orbit and a low inclination
orbit, focusing on the demand for high-quality atmospheric
and oceanic RS data from global numerical weather forecasts,
catastrophic weather forecasts, and space weather forecasts.
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TABLE I

DEVELOPMENT STATUS AND LAND APPLICATION FIELDS OF SPACEBORNE GNSS-R CONSTELLATIONS

Launch country

Missions (Arca) Satellite launch time GNSS system Application directions in the land field
rea
UK-DMC [33] Britain 2003-12 GPS _
L. SM, vegetation, flood, wetland, soil freezing
UK-TDS-1 [4, 5] Britain 2014-07 GPS . .
and thawing, inland water
Soil salinity, SM, vegetation, flood, wetland,
soil freezing and thawing, inland water, fire
CYGNSS [6][7, 8] America 2016-12 GPS disturbance, land topographic, inland (lake)
water body surface height, river slope, river
width, lake ice, reservoir water level, etc.
GPS
5 . GLONASS
Cat-2 [9] Spain 2016-08 . _
Galileo
BeiDou
. SM, vegetation, soil freezing and thawing
SMAP GNSS-R [34] America 2015-01 GPS
state
. GPS
BF-1 A/B [14], China 2019-06 . SM
[15], [16] BeiDou
GPS
Galileo
Spire [11], [12], [13] America 2019-01 BeiDou SM, inland (lake) water body surface height
Quasi-Zenith Satellite
System (QZSS)
2021-07/2023-04/2023 GPS
FY-3E/3G/3F [17], [18], China Galileo soil freezing and thawing, SM (FY-3E)
[19], [20] 08 .
BeiDou
. GPS
3Cat-5 A/B (FSSCat) [10] Spain 2020-09 . SM
Galileo
. GPS
3Cat-4 [35, 36] Spain Summer 2024 (expected) . _
Galileo
GPS
PRETTY [21] ESA 2022 _ B
Galileo
GPS
TRITON (FORMOSAT- . R .
Taiwan, China 2022 Galileo _
7R) [37, 38]
QZSS
GPS SM, biomass, flood, wetland, soil freezing
HydroGNSS [22] ESA In the future . .
Galileo and thawing state

This

will form a global all-weather, all-time, and integrated

three-dimensional operational detection capability for the ocean,
atmosphere, and ionosphere, with global coverage and increased
density in mid and low latitudes. Compared with BF-1 A/B and
FY-3E/3G, TM-1 has four significant advantages.

1)

2)

3)

Complementary with FY, the data processing algorithms
are consistent with FY satellites, and the constellation
configuration is complementary and collaborative with FY
satellites.

Four-system compatibility, it is China’s first detection
constellation that is compatible with the four naviga-
tion satellite systems of Beidou, GPS, GLONASS, and
Galileo.

Integrated detection, which can simultaneously achieve in-
tegrated three-dimensional detection of GNSS occultation
and GNSS-R, is the first commercial constellation in the
world to achieve multicircle and multielement detection of

4)

“sea antiatmospheric occultation ionization occultation.”
It can obtain real-time information on sea surface wind
field, sea ice, SM, as well as environmental factors, such
as atmospheric temperature, humidity, pressure, and iono-
spheric electron density profiles. In addition, it is expected
that in the near future, TM-1 GNSS-R (including BeiDou-
R, GPS-R, GLONASS-R, and Galileo-R) data can be used
for wind speed retrieval, typhoon monitoring, real-time
monitoring of shipping routes, dynamic regulation of
marine fisheries, and ecological RS monitoring (such as
soil moisture, water identification, flood monitoring, water
eutrophication monitoring (such as blue-green algae)),
among other areas.

High spatiotemporal resolution, which can achieve a three-
dimensional atmospheric and oceanic detection capability
that covers the global sea surface in 3 h, with a grid spacing
of 6 h and 200 km.
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TABLE II
LAUNCH STATUS OF CHINA’S TM-1 CONSTELLATION SATELLITES

Satellite number R&D institutions Date of launch

Tianmu-1 00 CASIC 14 October 2021
Tianmu-1 01 CASIC 9 January 2023
Tianmu-1 02 CASIC 9 January 2023
Tianmu-1 03 CASIC 22 March 2023
Tianmu-1 04 CASIC 22 March 2023
Tianmu-1 05 CASIC 22 March 2023
Tianmu-1 06 CASIC 22 March 2023
Tianmu-1 07 CASIC 20 July 2023
Tianmu-1 08 CASIC 20 July 2023
Tianmu-1 09 CASIC 20 July 2023
Tianmu-1 10 CASIC 20 July 2023
Tianmu-1 11 CASIC 25 December 2023
Tianmu-1 12 CASIC 25 December 2023
Tianmu-1 13 CASIC 25 December 2023
Tianmu-1 14 CASIC 25 December 2023
Tianmu-1 15 CASIC 5 January 2024
Tianmu-1 16 CASIC 5 January 2024
Tianmu-1 17 CASIC 5 January 2024
Tianmu-1 18 CASIC 5 January 2024
Tianmu-1 19 CASIC 27 December 2023
Tianmu-1 20 CASIC 27 December 2023
Tianmu-1 21 CASIC 27 December 2023
Tianmu-1 22 CASIC 27 December 2023

Currently, there is no literature reporting on related work
based on TM-1 data, one of the main reasons being that the
data are not publicly available for free. However, the data can be
used for free among participating members and some research
institutions after being approved and authorized by Aerospace
Tianmu (Chongqing) Satellite Science and Technology Co.,
Ltd. and Aerospace Science and Industry (Beijing) Spatial
Information Application Co., Ltd. The authors of the article
have also been approved and authorized by this company to
use TM-1 data, which includes three levels: LO, L1, and L2.
Among them, LO level includes the raw intermediate frequency
signals of GPS, BeiDou, Galileo, and GLONASS. L1 level
includes delay Doppler maps (DDMs), GNSS reflection event
occurrence time and location, reflected GNSS satellite number,
reflected GNSS satellite position and velocity, the position and
velocity of the TM-1 satellite, the normalized bistatic radar
scattering cross-section (NBRCS) at specular points (SPs), and
leading edge slope (LES). L2 level includes the sea surface wind
speed products and land surface SM products obtained from the
reflection signals of GPS, BeiDou, Galileo, and GLONASS.

Fig. 2 shows the satellite trajectory and SP trajectory of the
TM-102 subsatellite in 24 h. As shown in the figure, the TM-102
subsatellite can observe the Earth’s surface in the latitude range
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of 90° N and 90° S with high spatial and temporal resolution.
Therefore, it has a wider coverage range than the CYGNSS satel-
lite, which will expand the innovative application of spaceborne
GNSS-R technology in polar regions.

Fig. 3 shows the four DDM raw counts of BeiDou, GPS,
Galileo, and GLONASS over the (a)-(d) ocean, (i) and (j)
land, and (k) and (1) sea ice on June 29, 2023, along with
their delay waveforms (DWs) with a Doppler of 0 Hz. As
shown in the figure, the DDM raw counts delay and Doppler
range of the TM-1 constellation satellite are different from
that of FY-3E, CYGNSS, BF-1, and TDS-1, with a delay and
Doppler size of 61 x 20 (i.e., 61 x 20 array of DDM bin
raw counts). Under incoherent scattering, all DDMs exhibit a
similar “horseshoe shape.” The second peak can be observed
in the delay dimension of Galileo DDM, which is related to
the relevant characteristics of BOC modulation. Under coherent
scattering, the signal-to-noise ratio (SNR) is very high, and the
power values of each DDM are concentrated near the SP. The
Galileo DDM presents a unique shape of triple peaks due to its
BOC modulation.

Fig. 4 shows an example of the effective scattering area of
BeiDou, GPS, Galileo, and GLONASS signals collected by TM-
1. As can be seen from the figure, the delay and Doppler range
of the TM-1 constellation satellite are consistent with that of
FY-3E, with a delay and Doppler size of 20 x 9, that is, the delay
range is [-0.875:0.125:1.5] chips, and the Doppler frequency
range is [-1000:250:1000] Hz. Figs. 3 and 4, respectively, show
the DDM bin raw counts and integral DW extracted from DDM
bin raw counts of BeiDou, GPS, Galileo, and GLONASS signals
collected by TM-1.

The authors of the article are currently conducting research
on spaceborne GNSS-R based on TM-1 data, and the research
results of related applications based on this data will be reported
in subsequent articles. At present, the TM-1 constellation data
have been pushed in real time to the China Meteorological
Administration, completing the business access of the China
Meteorological Administration’s meteorological data products,
and applied in the numerical weather forecast business system.
Subsequently, Aerospace Systems Corporation will also deploy
low inclination subconstellations to strengthen key area explo-
ration and form a comprehensive three-dimensional detection
capability for global coverage, mid-low latitude encrypted at-
mosphere, and ocean.

III. RETRIEVING SOIL MOISTURE AND SOIL SALINITY USING
SPACEBORNE GNSS-R

A. Soil Moisture Retrieval

SM is an important factor in researching the interaction of
water, energy, and biogeochemical fluxes between the Earth’s
near-surface land and the atmosphere. Currently, the main spe-
cialized satellites used to obtain SM information are: SM active
passive (SMAP), SM and ocean salinity (SMOS), CYGNSS,
and so on. Early satellites used for SM retrieval were: the ME-
Teorological Operational Satellite (METOP) and the European
RS Satellite (ERS-1 and ERS-2).
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SM retrieval can be measured using L-band microwave ra-
diation, Radar, or SAR. Although the spatial resolution of the
L-band microwave radiometer on the satellite is poor (around
tens of kilometers), the radar system is more affected by surface
roughness effects. Rodriguez-Alvarez et al. [42] proposed a new
technique for retrieving SM using GNSS signals reflected on
the soil surface. This technique exploited the power fluctuations
of the signal generated by the interference between the direct
GPS signal and the reflected signal from the soil surface. Camps
etal. [43] used the GNSS-R data of TDS-1 to study the sensitivity
of SM and normalized difference vegetation index (NDVI) of
different surface types, and the results showed that the GNSS-R
reflected signal was more sensitive to SM when the NDVI was
low, and the sensitivity decreased but was still significant with
the increase of NDVI. Chew et al. [44] used TDS-1 data to study
the ability of the bistatic radar system to sense SM changes and
found that the sensitivity of the reflected signal to SM change
was 7 dB and discussed that the spatial resolution of the space-
borne GNSS-R SM retrieval can be improved by quantifying
the influence of ground roughness degree and vegetation on the
reflected signal. However, since the TDS-1 sensor only operates
for two days in an eight-day cycle, its data acquisition is severely
limited in terms of spatial and temporal coverage, making it
impossible to estimate daily SM. Kim and Lakshmi [45] inves-
tigated the limitations and capabilities of CYGNSS observations
for SM estimation and introduced relative signal-to-noise ratio
(SNR) values from CYGNSS DDMs to improve the temporal
resolution of SMs derived from SMAP data. Chew and Small
[46] compared the CYGNSS observations with the SMAP SM
retrieval and with the in situ SM observations, and the results
showed a consistent linear relationship between the CYGNSS
observations and the SMAP retrieval.

SPs and receiver subsatellite (TM-1 02) points; the observation date is 29 June 2023.

At present, several new spaceborne GNSS-R missions have
also demonstrated the potential for SM retrieval. BF-1 satellite
is a pilot mission for the GNSS-R constellation in China. Wan
et al. [16] preliminarily demonstrated that this mission can pro-
vide a new spaceborne GNSS-R data source for SM estimation
using a three-month sample of BF-1 A/B. FY-3E is the fifth satel-
lite in China’s series of polar-orbiting meteorological satellites.
Yang et al. [47] proposed an effective SM retrieval method for the
FY-3E GNSS occultation sounder II-reflectometer (GNOS-R).
However, GNSS-R research has focused on GPS consisting only
of medium-Earth orbit satellites, while the use of geostationary
orbit (GEO) satellites (such as those in the BeiDou Navigation
Satellite System) has received little attention. Ban et al. [48]
proposed two methods for estimating SM using GEO signals,
namely GEO Interferometric Reflectometer (GEO-IR) and GEO
Reflectometer (GEO-R), and the results showed that the pro-
posed GEO-IR and GEO-R can reliably monitor SM under bare
soil conditions, enhancing GNSS-R by significantly reducing
treatment complexity and increasing time coverage. Due to
the uncertainty of the physical characteristics of the site, the
complexity of the retrieval process, and the nonlinearity of the
GNSS-R SM retrieval, there are still some challenges in the
accurate retrieval of SM. Machine learning (ML) methods are
flexible and able to handle nonlinear problems. Eroglu et al. [49]
proposed a physically aware ML method by obtaining the non-
linear dependence of CYGNSS observables with SM values
and geophysical parameters representing vegetation and ground
effects. Jiaetal. [50] tested and analyzed the SM retrieval perfor-
mance of the dual base GNSS-R using ML-assisted methods. In
addition, Jiaetal. [51] also proposed using two typical ML meth-
ods, random forest (RF) and support vector machine (SVM), to
perform SM retrieval from GNSS-R data from self-designed
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DDMs and corresponding DWs in raw counts from BeiDou, GPS, Galileo, and GLONASS, respectively, over (a)—(h) ocean and (i), (j), (m), (n) land, and

(k), (1), (0), (p) sea ice. Data were collected on 29 June 2023. The SNRs of (a), (b), (c), and (d) are 0.50 dB, -0.29 dB, -4.01 dB, and 7.22 dB, respectively. The
incidence angles of (a), (b), (c), and (d) are 10.18°, 15.91°, 22.23°, and 28.40°, respectively. The SNRs of (i), (j), (k), and (1) are 1.85 dB, 18.05 dB, 7.86 dB, and
8.25 dB, respectively. The incidence angles of (i), (j), (k), and (1) are 20.57°, 16.52°, 46.86°, and 38.83°, respectively.

experiments (in-situ and airborne). Yan et al. [52] established
an effective schematic for SM estimation based on CYGNSS
data, and the use of CYGNSS SM significantly improved the
pantropical coverage of SMAP, with an average increase of about
22%. Senyurek et al. [53] proposed an ML-based framework
for estimating SM using CYGNSS observations of International
Soil Moisture Network (ISMN) sites in the Continental United
States (CONUS). Santi et al. [54] developed an algorithm based

on artificial neural networks (ANNs) for retrieving SM and forest
aboveground biomass (AGB) from GNSS-R observations. The
CYGNSS generates DDMs containing important Earth surface
information through GNSS reflection measurements. Because
the peak value of DDM is not only affected by SM but also
by complex topography, inundation, and overlying conditions,
there is significant uncertainty. The application of deep learning
(DL)-based techniques may extract additional information from



12818

(a) BeiDou (b) GPS
-

20 pm 20
80 80
15 15
> 70 > 70
< t 3 €
[
310 o £ 810 60 &
5 5
50 50
2 4 6 8 2 4 6 8
Doppler Doppler
(c) Galileo (d) GLONASS
20 pm 20 i
o0 TN,
15 15
& ", 7 ~
g 10 o £ 210 80 E
5 5
50 75
2 4 6 8 2 4 6 8
Doppler Doppler

Fig. 4.  Effective scattering area of (a) BeiDou, (b) GPS, (c¢) Galileo, and (d)
GLONASS signals collected by TM-1.

the entire DDM, which has advantages over existing ML-based
analyses. Roberts et al. [55] investigated the data-driven ap-
proach of convolutional neural networks (CNNs) to determine
the complex relationship between reflection measurements and
surface parameters, providing a basis for achieving improved
mechanisms for global SM estimation. Nabi et al. [56] conducted
a comprehensive evaluation of DL models and publicly avail-
able CYGNSS-based SM products at a quasi-global scale. Hu
et al. [57] used massive monitoring data from multiple GNSS
observation stations, combined with GNSS-R technology and
DL algorithms, to study the SM retrieval method for river slope
in the study area. However, the global SM retrieved by GNSS-R
is significantly affected by the presence of water bodies. Yang
et al. [58] proposed a water removal method for global space-
borne GNSS-R SM retrieval, which can maximize the retention
of water surface area and effectively remove the impact of water
on SM. Wang et al. [59] addressed the significant impact of
water on the surface reflectance (SR) of CYGNSS and improved
the removal method of water influence based on the spatial
resolution of CYGNSS data. In the future, the GNSS-R SM
retrieval model of DL can be optimized to obtain more realistic
and reliable SM, and this retrieval model can be used to solve
practical application problems.

To sum up, SM is estimated based on the sensitivity of
GNSS-R reflectivity to SM, but noise in the observations can
significantly affect the SM estimation results. For this reason,
the existing literature has done a lot of research work to address
the above-mentioned problem and considered the effects of
roughness and vegetation on the effective GNSS-R reflectivity.
Assuming that the reflected signal on land is mainly determined
by coherent reflection, the reflectivity under coherent reflection
can be calculated as follows [60]:

(4m)? (P, — N) (R, + Ry)?
A\2P,GLG,

T(9) = (1)
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where @ is the angle of incidence; P, is the peak power of the
DDM; Nis the background noise; R; and R, are the distances
from the transmitter and receiver to the specular reflection point,
respectively; PG is the transmitter EIRP; G, is the reflective
antenna gain; A is the GNSS signal wavelength.

Reflectance is related to several physical properties of the
surface. First, SM has a major influence on the reflectance of
sparsely vegetated (<5 kg/m?) and flat terrain due to the surface
soil dielectric constant. Second, vegetation attenuation plays an
important role in densely vegetated areas (e.g., tropical forests).
Third, surface roughness also has an effect on reflectance due to
diffuse scattering. It is worth noting that for spaceborne observa-
tions, the effect of topography is greater than that of small-scale
roughness [61]. Therefore, it is important to correct reflectance
for vegetation attenuation and terrain roughness attenuation.

As the GNSS reflection signal is absorbed by the vegetation
canopy, the observed reflectance can be corrected to that of the
soil surface

where T'(6) is the observed reflectance calculated from (1);
Tsoit(0) is the reflectance at the soil surface; 6 is the angle
of incidence; 7y is the two-way attenuation of biomass canopy
derived as

v =exp(—2-b-vwc/cos(6)) (3)

where vwec is the vegetation moisture content obtained from the
SMAP data product; b is a constant parameter depending on
signal wavelength, polarization, and vegetation classification.
For a wavelength of about 20 cm, the parameter b ranges from
0.09 to 0.15 for different land cover classifications [62]. The
International Geosphere-Biosphere Programme (IGBP) lookup
table is usually used for IGBP classification and a value of b is
set for each IGBP category according to the SMAP algorithm
theoretical basis documents.

For spaceborne GNSS-R observations, the effect of large-
scale roughness on DDM observations is even greater. The
terrain roughness attenuation effect can be expressed as follows:

Attroughness = Fsoil/FfresneL (4)

The reflectivity of the soil surface I'soil could be calculated
with (1) and (2), and the Fresnel reflectivity ['geqner s dependent
on the surface soil dielectric constant € and the incidence angle
0, defined as follows:

Cfresnel = |er (9)|2
(¢ — 1)*cos?0 (¢ — sin0)

ccosf + /e — sin?f ’ cosf 4+ /e — sin’0 ’
)

where R,.; denotes the Fresnel reflection coefficient. For GNSS-
R measurements, the transmitted signal is in right-hand circular
polarization, and the reflected signal is in left-hand circular
polarization (LHCP).

Typically, SM retrieval using spaceborne GNSS-R makes the
algorithmic assumption that, given a particular location, the only
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Fig. 5. Schematic diagram of the spaceborne GNSS-R SM retrieval process.

variables that change over time are SM and biomass, while soil
surface roughness (topography) and soil texture remain constant.
In this case, GNSS-R reflectivity may be linearly related to the
reference SM (e.g., SMAP data) for each terrain grid cell

sm=a-Dlyn+0b (6)

where sm denotes the soil moisture reference data; the parame-
ters a and b are polynomial fit coefficients, I'yy; represents the
observed reflectivity with vegetation correction, which could be
derived from (1) to (3).

Currently, the primary approach involves utilizing surface
roughness and vegetation index RS data as auxiliary factors to
mitigate the influence. Once the reflectivity is obtained, it can
construct an SM retrieval model using empirical models or ML
methods based on surface reflectivity. The schematic diagram of
the spaceborne GNSS-R SM retrieval process is shown in Fig. 5.

ML is a powerful data-driven approach for environmental
monitoring of rapidly growing RS data. Compared with tradi-
tional physical and empirical models, ML methods have better
scalability. According to the complexity of the model, ML
methods can be divided into two categories: traditional ML
methods and DL methods. Traditional ML methods include
linear models, shallow neural networks (NNs), SVMs, decision
tree-based learning methods, and ensemble learning methods.
These methods are suitable for situations with limited sample
datasets. However, they may have difficulty in capturing the
periodicity and continuity of time series data. DL models are
neural network (NN) models with complex network structures,
typically composed of multiple layers. The GNSS-R SM re-
trieval method is the process of solving regression problems,
and traditional regression equation fitting may have errors. ML
methods can continuously approximate real relationships, typi-
cally including data preprocessing, feature extraction, dataset
splitting, model training, and model testing. The schematic
diagram of constructing a GNSS-R SM retrieval model using
ML method is shown in Fig. 6.

As given in Table III, the summary and comparison are mainly
from several aspects, including observation satellites, GNSS-R
observations, main components of the reflected signal, spatial
coverage, spatial resolution, reference data, auxiliary data, val-
idation data, retrieval models, and specific details of the main
results.

B. Soil Salinity Retrieval

In recent years, the problem of soil salinization, which has
degraded the destruction of soil structure and the reduction
of microbial populations, has become increasingly prominent,
seriously affecting global food security. Furthermore, soil salin-
ization will have serious impacts on global infrastructure secu-
rity and geological hazards in the coastal zone. Currently, soil
salinization is predominantly found in arid and coastal areas;
soil salinity monitoring is of great significance for agricultural
production management, soil improvement and restoration, en-
vironmental protection, and ecological restoration, as well as
land planning and decision support.

The rapid development of GNSS-R technology provides a
new approach for large-scale soil salinity retrieval. This tech-
nique is based on the interaction between the microwave sig-
nals emitted by GNSS satellites and the signals reflected back
from the ground surface, and by analyzing the characteristic
parameters of the reflected signals, such as phase, amplitude, and
polarization, information such as soil salinity and water content
can be deduced, thus realizing the monitoring and assessment
of soil salinization [73]. The CYGNSS is a satellite mission of
NASA of the United States of America designed to monitor and
predict hurricanes and storm surges using an observing system
of small satellites. The CYGNSS satellite crew consists of eight
microsatellites, each carrying four reflectometry channels to
receive GPS L1-C/A coded scattering signals from the Earth’s
surface. These satellites orbit the Earth near the equator and
acquire data from the ocean surface by reflecting microwave
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signals. These data can be used to generate high-resolution
information on the path and intensity of storm surges and hurri-
canes, contributing to improved early warning and response to
natural disasters. The minimum spatial footprint of CYGNSS
is about 3 x 0.5 km when the scattered signal is dominated by
the coherent part, and it is larger when the surface around the
signal reflection point is rougher [74]. The temporal resolution of
CYGNSS is quite high with an average revisit time of 7.2 h [75].
Currently, CYGNSS has demonstrated a powerful measurement
capability not only for ocean surface geophysical parameters,
such as ocean surface wind speed [8], ocean altimetry [76], trop-
ical hurricane energy estimation [77], and sea surface salinity
[78], but also for a wide range of land-based RS applications,
such as soil humidity [52], soil freezing and thawing [107],
and flood inundation [79]. CYGNSS is an attractive method
for large-scale soil salinity measurements because the L-band
of GNSS signals collected by CYGNSS is well suited for
soil condition monitoring [46]. Compared with optical satellite
RS satellites, CYGNSS can provide high temporal resolution
surface observations in real-time. Strong correlations between
GNSS-R signal reflectivity and soil salinity have been found
for specific polarization and angle combinations, demonstrating
the feasibility of using GNSS-R signals to retrieve soil salinity
[73], [80]. In 2023, Wang et al. [80] demonstrated the possibility
of using CYGNSS data to retrieve soil salinity based on a soil
dielectric model by constructing a soil salinity retrieval model
using the imaginary part of the improved Dobson-S model as a
basis. However, it remains a challenge to quantify the complex
nonlinear relationship between Fresnel reflectance and soil salin-
ity. For this reason, Wang et al. [81] proposed a CYGNSS-based
model for soil electrical conductivity retrieval (CIG), which
is different from previous studies in that it is corrected for

___________ I \

Schematic diagram of constructing an GNSS-R SM retrieval model using ML method.

surface characteristics, such as vegetation attenuation and sur-
face roughness. The use of geometrical-optical models instead
of the two-base radar equations is more applicable to CYGNSS.
In addition, the mean square slope parameters were introduced to
effectively describe the surface roughness. The gradient boost re-
gression tree algorithm was used to combine Fresnel reflectance
and auxiliary variables to make the model more adaptable to
complex nonlinear relationships. Using CYGNSS data provides
better sensitivity to soil salinity compared to traditional ML
methods. The results showed a correlation coefficient of 0.730, a
root-mean-square error (RMSE) of 1.318 mS/cm, and an average
absolute error of 0.570 mS/cm. The proposed soil salinity model
based on CYGNSS data can provide a promising method for
monitoring land salinity on a large scale. However, the strong
spatial heterogeneity of soil salinity and the occurrence of data
defects or outliers on the long time series due to the influence
of weather, instrumentation, and other reasons lead to certain
difficulties in the validation process.

In summary, there is an urgent need to develop the best
methodology for monitoring soil salinity using spaceborne
GNSS-R data.

IV. VEGETATION MONITORING USING SPACEBORNE GNSS-R

Vegetation is an important part of the Earth’s ecosystem,
and the vegetation types in each region are influenced by local
climate, soil, and other environmental factors. Vegetation plays a
crucial role in maintaining biodiversity, soil conservation, water
cycling, and climate regulation.

Spaceborne GNSS-R is a popular vegetation monitoring
method at present, which can measure key parameters of land
vegetation through GNSS reflection signals. With the launch of
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TABLE III
RETRIEVAL APPROACH AND ACCURACY OF CURRENTLY PUBLISHED SPACEBORNE GNSS-R SM RETRIEVAL STUDIES

Reference Validation
Source Satellites GNSS-R Main Spatial Temporal Spaua_l SM @Fa for Auxiliary Data SM da_la for Retrieval Models Main Results (cm*/cm?)
Observables  Components Coverage Resolution training testing
models models
Chew and SMAP. in
small CYGNSS Reflectivity Coherent Quasi-Global 36 km x 36 km SMAP LAI sit‘u’ Linear regression median ubRMSE = 0.045
[46]
Kim and Regional GPM, VWC For different observation
Lal[jl;im CYGNSS Reflectivity Coherent (CONUS) 9 km x 9 km SMAP landcover types SMAP Linear regression conditions: R = 0.67/0.68/0.77
Al-Khaldi et . . . .
al. [63] CYGNSS BRCS Incoherent Quasi-Global 25 km x 25 km SMAP SMAP Time-Series technique R =0.82, RMSE = 0.04
Reflectivity,
Munoz- SNR. Regional FMPL-2 MWR R=0.79
Marﬁ){:ﬁet al FSSCat incidence Coherent (above 45°N) 36 km x 36 km SMOS radiometry data SMOs ANN STD (error) = 0.063
angle
Reflectivity,
Santi et al. SNR, . _ _
CYGNSS e — Quasi-Global — SMAP VOD SMAP ANN R =0.85, RMSE = 0.069
[65] incidence
angle
Reflectivity
(maximum,
Y"E‘S;‘] al. CYGNss T Coherent Quasi-Global 36 km x 36 km SMAP VoD SMAP Linear regression R =0.80, RMSE = 0.07
skewness,
kurtosis)
. ubRMSE = 0.052, R = 0.86 (vs
. . XGBoost with ’
Jia et al. .. . VOD, roughness SMAP, in . N SMAP)
166] CYGNSS Reflectivity Coherent Quasi-Global 36 km x 36 km SMAP coefficient situ prcclz::;léicalmn WbRMSE = 0.049, R =
d 0.753 (vs in-situ)
Reflectivity,
Yia et al. cYGnss  diclectric Coherent Quasi-Global 9 km x 9 km SMAP Land type SMAP XGBoostwithan LT p _ 71 pmsE = 0.063
[67] constant, digitization strategy
incidence
angle
Clarizia et al. . . . SMAP, o . _
[60] CYGNSS Reflectivity Coherent Quasi-global 36 km x 36 km SMAP SMAP SMOS Trilinear Regression RMSE = 0.07 (vs SMAP)
Reflectivity, ﬁg@:m\?i;]c"p}i’
Erogluetal. -y ngg  TES,LES, Both Sites 9 km x 9 km ISMN Sites parameter ISMN Sites ANN RMSE =0.0544, R = 0.9009 (vs
[49] incidence in-situ)
(surface
angle
roughness)
Senyurek et Reflectivity, Elevation, NDVI,
al. cvonss . IES: Coherent Sites Okmx9km  ISMNSites VWO SOl gy ires RF ubRMSD =0.044, R = 0.66
[68] incidence ratio, and soil silt (vs SMAP)
angle ratio
Reflectivity, Elevation data, ubRMSD = 0.0395, R = 0.4006 (vs
Lei et al. TES, . Global Surface SMAP)
[69] CYGNSS 4 idence Coherent Quasi-global 9 km > 9 km SMAP Water Dataset, SMAP RF WbRMSE = 0.0543, R = 0.4623 (vs
angle MODIS NDVI in-situ)
and Land Cover
Type
R =0.929, RMSE = 0.043
Zhu et al. .. . SMAP, in . . (vs. SMAP)
170] CYGNSS Reflectivity Coherent Quasi-Global _ SMAP VOD, SST situ Linear regression R = 0.927, RMSE = 0,042
(vs. in situ)
?;S:‘Cr:m? R =0.815, RMSE = 0.066
Zhang et al. ’ Regional SMAP, in . . (vs. SMAP)
711 CYGNSS V;x:izannc,e Coherent (CONUS) 36 km x 36 km SMAP VOD, SST situ Linea regression R = 0.549, RMSE = 0.078
X (vs. in situ)
skewness,
R =10.676/0.798,
ubRMSE = 0.060/0.062,
Elevation, slope, MAE = 0.052/0.040
Yang et al. TDS-1, o Regional NDVI, VWC, SMAP, in (TDS-1/CYGNSS vs. SMAP)
72] cyGnsg  Reflectivity - Coherent (China) 36 km > 36 km SMAP roughness data, situ BP-ANN R = 0.687/0.724,
precipitation ubRMSE = 0.056/0.053,
MAE = 0.066/0.052
(TDS-1/CYGNSS vs. in situ)
R =0.94, RMSE = 0.029 (vs.
Wan et al. .. . SMAP, in . . SMAP)
[16] BF-1 A/B Reflectivity Both Quasi-Global 36 km x 36 km SMAP — situ Linear regression R =0.77, RMSE = 0.049 (vs. in
situ)
R =0.83/0.85/0.86,
. Reflectivity . RMSE = 0.0503/0.0497/0.0482
Y“[‘ﬁez‘]"‘]' FY-3E (GPS/BDS/  Coherent Global 36 km x 36 km SMAP Z;”ssfﬁigiz SMs?rE’ mn Linear regression (GPS/BDS/GAL vs. SMAP)
GAL) Mean RMSE = 0.054
(GPS/BDS/GAL vs. in situ)
Regional R = 0.85, median ubRMSE =
Setti. et al. . Reflectivity . SMAP, in . . 0.062 (Spire-multi vs. SMAP)
[13] Spire (GPS/mult) Coherent (Southegst SMAP — situ Linear regression median ubRMSE = 0,057
Australia N Lo
(Spire-multi vs. in situ)
"BRCS: bistatic radar scattering cross-section; SNR: signal-to-noise ratio; TES: trailing edge slope; LES: leading edge slope; LAI: leaf area index; GPM: global VWC: water content; NDVI: normalized difference vegetation index; VOD:

vegetation optical depth; SST: soil surface RMSE: root square error; R:

the TDS-1 satellite by the U.K. in 2014, it has brought new
opportunities for land vegetation monitoring. Camps et al. [43]
used TDS-1 GNSS-R data to study the sensitivity of SM on
different types of surfaces, as well as extensive SM and NDVI
values. SMAP, SMOS, and CYGNSS can also provide informa-
tion on vegetation indices. Carreno-Luengo et al. [34] conducted
the first GNSS-R global scale assessment experiment on SMAP
satellite to study SM and biomass retrieval. Piles et al. [82]

rrelation coefficient; ubRMSE: unbiased root-mean-square error; ubRMSD: unbiased root-mean-square difference; MAE: mean absolute error.

utilized SMAP vegetation optical depth and optical vegetation
index, combined with RS technology, to provide a more accurate
and comprehensive method for monitoring and predicting vege-
tation dynamics in agricultural ecosystems. Rodriguez-Alvarez
etal. [83] analyzed the sensitivity of SMAP-R signals to growth-
related characteristics of maize belt crops in the United States,
studied the effects of crop type, vegetation water content (VWC),
crop height, and vegetation opacity (VOP) on the signals, and
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TABLE IV
CURRENT STATUS AND SUMMARY OF SPACEBORNE GNSS-R TECHNOLOGY VEGETATION PARAMETERS MONITORING RELATED WORK!

Vegetation

Parameters Literature Satellites Spatial Coverage GNSS-R Observables Reference Data Auxiliary Data Retrieval Models Retrieval Accuracy
Reflected DWs There is a certain sensitivity to
(WE_..). et AGB up to ~350 and 250 ton/ha,
Carreno-Luengo, et al. [84] CYGNSS Congroizrfldr/\?lazon o m‘_ ICESat-1/GLAS AGB VSO%A:]de;geS%A order polynomial “O” fit  respectively, over Congo and
ainforests trailing edge width (TE >t a Amazon target areas, without an
), reflectivity (I ) apparent saturation.
Incidence angle,
Santi, et al. [65] CYGNSS reflectivity and antenna SMAP VOD _ ANNs R =0.924, RMSE=0.1
gain
) TDS-1, -,
Santi, et al. [90] CYGNSS Reflectivity, SNR ALOS2, SMAP VOD _ ANN R>0.8, RMSE<0.2
Brazil (Manaus) R =0.8,37 t/ha < RMSE < 76 t/ha
AGBadcH TDS-1 Uruguay (Algorta),  p oo civiey, SNR, | SMAP VOD, AGB fz:ﬁevlzlcsal(Aér}‘ad in glll(:: arlamg[:Go[i
Santi, etal. [85] CYGNSS A!aska (Falrbanl.(s), Incidence angle, lon, lat Map. ICEiGLAS Tree ALOS-2 ANN 400 t/ha), and 3.1 m<RMSE <6.5
Finland, Argentina Heights f heigh ieval (H in th
(Asuncion) m for tree height retrieval (H in the
range 045 m)
- Longitude: (-90°, -30°) Max DDM, Mean DDM, . - -
Pilikos, et al. [89] CYGNSS Latitude: (:30°, 15°)  Max I, mean ', SNR ESA CCI biomass map _ DL R =0.962, RMSE = 25.650 t/ha
Traditional Reflectivity ( For AGB retrievals, RMSE =
surrface )» Correction  AGB map derived from 64.84 Mg/ha, R = 0.80 in the range
Chen, et al. [86] CYGNSS Quasi-Global Reﬂectivity ( LUCID, ICESat/GLAS SMAP SM ANN of 0 to 550 Mg/ha. For CH
CH retrievals, RMSE = 5.97 m, R=
coh
FLR(SS"QI)/O_O ) 0.83 in the range of 0 to 45 m
Brazil (Manaus),
. . Uruguay (Algorta), o
Vegz‘a:}‘]"(“vgll’;‘)cal Pierdicca et al. [30] CYGNSS  Alaska (Fairbanks), Reﬂec‘”“ye’aSkNR’ DDM sniap vOD MODIS NDVI ANN RMSE =0.1, R = 0.924
P Finland, and Argentina P
(Asuncion)
img‘:ﬁ;f:gi‘:e“ézfse J SMPS SM, The land RMSE = 2.155 kg/m’, R = 0.795
) . ; N ) ) cover and NDVI s . (The linear model); RMSE = 1.392
VWC Chen, et al. [91] CYGNSS Quasi-Global mir(;rr; t}l:ntcilu-(i,m:%:t SMAP VWC derived from Linear model and ANN kg/m2, R - 0940 (The ANN
odel, fand cover, fat, MODIS model)

lon

TvoD: vegetation optical depth, PI: polarization Index, NDVI: normalized difference vegetation index. o';m is the peak point of BRCS,FLR (6‘3 .0,

discussed the possibility of correcting VWC and SM effects
in electromagnetic signals using retrieval algorithms combined
with GNSS-R measurements. Carreno-Luengo et al. [84] pro-
posed a new GNSS-R method that combines CYGNSS data to
study AGB detection in tropical rainforests, coniferous forests,
arid forests, and humid forests. By analyzing the relationship
between multiple observables of DDMs and AGB, the AGB of
dense forest canopies was detected from a spaceborne platform.
Santi et al. [85] pioneered the use of TDS-1 data to assess
the sensitivity of GNSS-R observables to different forest pa-
rameters at the local scale, and then extended to the global
scale using CYGNSS data, which confirmed the good sensitivity
of GNSS-R data to target forest parameters (i.e., AGB, tree
height, and VOD), and demonstrated the potential of GNSS-R
in forest biomass monitoring. Chen et al. [86] proposed an
improved retrieval method for AGB and canopy height (CH)
based on CYGNSS observation data, SMAP data, and location.
In spaceborne GNSS-R technology, there are differences in
the polarization mode of receiver antennas among different
satellites. The radar receivers in SMAP satellites use V and H
linear polarization, while TDS-1 and CYGNSS satellites use
LHCP antennas to receive reflected signals from the ground.
Therefore, it is necessary to study the polarization application of
GNSS-R in vegetation. The SMAP GNSS-R dataset is currently
the most widely used GNSS-R dataset and the only dataset that
provides GNSS-R polarization measurement data. Rodriguez-
Alvarez et al. [87] demonstrated that the SMAP polarimetric
GNSS-R reflectance derived from the mathematical formulation
of Stokes parameters could enhance the radiometric datain dense
vegetation areas, and pioneered the first polarimetric GNSS-R
mission. Munoz-Martin et al. [88] used polarized GNSS-R data
to analyze the correlation between Stokes parameters on land

/ ) represents the surface Fresnel reflectivity.

surface and SM, vegetation optical depth, and global forest CH,
and estimated SM and vegetation optical depth using linear
regression methods. This study provides a valuable dataset for
future GNSS-R task design and explores the differences in
polarization characteristics under different incidence angles and
polarization directions. However, due to the complexity and di-
versity of vegetation, the use of spaceborne GNSS-R technology
to retrieve vegetation indices is still in the exploratory research
stage. Accurately understanding the microwave scattering mech-
anism of rough surfaces and vegetation parameters is the key
theoretical basis for GNSS-R surface parameters RS. In future
research, it is necessary to strengthen the research on GNSS-R
RS theory modeling.

Table IV summarizes the work related to monitoring veg-
etation parameters using spaceborne GNSS-R technology in
terms of observation satellites, spatial coverage, GNSS-R ob-
servations, reference data, validation data, retrieval models,
and retrieval accuracy. These studies highlight the potential of
spaceborne GNSS-R technology in retrieving forest biomass
and related parameters. The analysis results also indicate that
GNSS-R technology has better sensitivity compared to L-band
radar, especially when dealing with high biomass values. The
retrieval of forest parameters has been achieved using ANN
combined with auxiliary data whenever possible. Specifically,
SNR and incidence angle have been proven to be very helpful
in improving retrieval accuracy.

Generally, existing work has confirmed the sensitivity of
GNSS-R data to forest parameters and demonstrated encour-
aging retrieval performance. Considering that this may be the
first attempt to use spaceborne GNSS-R data to retrieve for-
est biomass on a global scale, in the future, more reliable
ground truth data, including the latest reference maps, should be
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considered to evaluate the practical ability of GNSS-R in terms
of spatial resolution. In addition, it is necessary to study the use
of auxiliary information from other surface parameters (such as
SM) to improve retrieval, as well as other observation values
derived from DDM. Finally, more work should be done to
fully utilize the synergistic effect between single base radar and
GNSS-R.

Compared with marine applications, the research on space-
borne GNSS-R in the field of land RS is relatively lagging
behind. Although spaceborne GNSS-R technology is feasible
in vegetation monitoring [30], the research on vegetation pa-
rameters using spaceborne GNSS-R technology is still in the
exploratory research stage, and currently mainly focuses on us-
ing spaceborne GNSS-R observation data to establish sensitivity
analysis with vegetation parameters [43], [84], [85]. It is not
only in the qualitative analysis research stage but also lacks the
discovery of its underlying physical mechanisms, and there is
still a certain gap from the quantitative retrieval of vegetation
parameters. Therefore, the development and use of efficient and
convenient retrieval algorithms will make this technology truly
practical in vegetation RS, which is an inevitable development
trend in the future [28]. There is a complex nonlinear relation-
ship between spaceborne GNSS-R observations and vegetation
parameters. Currently, using ML such as NNs to retrieve forest
parameters is relatively easy because ML can simulate nonlinear
relationships well and achieve good retrieval accuracy [65], [89].

It is worth noting that regarding the limitations of the current
GNSS-R satellite, TDS-1 as a technical demonstration satellite
has a smaller coverage range (and is currently out of operation),
while the CYGNSS constellation has a wider coverage range,
and is only limited to midlatitude regions. Absolute calibra-
tion issues, low power densities hitting the Earth’s surface,
and high variability of signals are other aspects that require
further research to better utilize the technology on land. In the
future, it is necessary to further explore more complex retrieval
techniques based on NNs to comprehensively evaluate the ac-
tual differences in maturity and integrated product performance
of GNSS-R compared to other Earth observation technologies
(such as microwave radiometers). In the future, with the con-
tinuous improvement of datasets and tasks, we can expect that
the potential and quality of biogeophysical parameters retrieval
will be significantly improved, especially for parameters such as
biomass, which are relatively immature and need to be studied
more accurately.

V. MONITORING FREEZE/THAW SURFACE STATE USING
SPACEBORNE GNSS-R

Soil freeze-thaw (F/T) is the process of repeated freezing and
thawing of water in the soil, which is accompanied by a large
exchange of water and heat that affects the energy and water
balance at the surface, which is critical to the surface water cycle
and is an important indicator of climate change [92]. In addition,
soil F/T can also damage the soil structure, resulting in soil
erosion and loss of soil nutrients, which in turn affects ecological
balance [93]. Therefore, to better monitor climate change and
protect the ecological environment, soil F/T conditions need to
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be monitored to obtain complete and detailed information on
soil F/T.

Traditional single-point measurements of the F/T state of the
soil, including temperature profile measurements and freezing
tube measurements, often consume a lot of manpower and
material resources, making it difficult for them to be widely
applied. Optical RS, while allowing for wide-area observations,
is susceptible to the limitations of cloud cover and weather
conditions. Active microwave RS can provide high spatial res-
olution data but has a long revisit period and cannot update the
changes in soil F/T status in a timely manner, while passive
microwave RS, although it can provide all-weather monitoring
capability, has a low spatial resolution of its products, which
makes it difficult to clearly observe the changes in soil F/T.
In recent years, with the rapid development of GNSS-R, it has
been widely used in the ocean and land because the GNSS-R
reflection signal is extremely sensitive to the water changes
in the soil, and has the remarkable features of all-weather,
near real-time, high-resolution (compared to passive microwave
systems), which makes it possible to use GNSS-R reflection
signal to observe soil freezing and thawing on a large scale. Due
to the fact that GNSS-R reflection signal is extremely sensitive
to SM changes and has the remarkable features of all-weather,
near real-time, high-resolution, etc., which makes it possible to
observe soil F/T on a large scale by using GNSS-R reflection
signal, based on the above reasons, scholars in and out of China
and abroad have carried out the research of observing soil F/T by
using GNSS-R and have made a certain amount of progress in the
research.

In 2014, Wu and Jin [94] used the wave synthesis technique
to transform the soil F/T dielectric constant model into the
Fresnel reflectivity model to obtain the linearly and circularly
polarized reflectivity, and combined it with the GPS signal and
the antenna’s polarization information to obtain a fully forward
multipath GPS simulator, and then observed the soil F/T changes
in the observed values from the GPS simulator confirmed the
viability of monitoring soil F/T via GNSS-R reflection signals.
However, it should be noted that these results were solely
based on simulations and lacked field verification. To verify
whether SMAP data can be used for soil F/T observation, Chew
et al. [95] analyzed the observation results of GPS reflection
signals received by SMAP in high latitude areas in 2017 and
compared them with on-site soil temperature data to quantify
the changes in reflection signals during soil F/T. The seasonal
changes in reflection signals proved the feasibility of using
GNSS-R reflection signals to observe soil F/T conditions.

To further explore the sensitivity of GNSS reflection signals
to soil F/T, Rodriguez-Alvarez et al. [96] used SMAP data in
2019 to classify the state of soil F/T in Alaska, and seasonally
analyzed the state of F/T by considering different landscape
categories and analyzed the effects of peak SNR, LES, trailing
edge slope (TES), delay Doppler map average (DDMA), and
polarization ratio (PR) corrected for vertical (V) and horizontal
(H) polarizations on the soil freezing and thawing state, and
the results show that the SMAP reflection signal is sensitive to
the soil F/T state of different landscapes, and the most sensitive
one is the peak SNR corrected by the V polarization; however,
the experiment has deficiencies in data calibration and does
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not take into account the satellite transmit power differences
between them.

To study the effect of soil F/T state on DDMs and multipath
information, in 2019, Wu et al. [73] extended the existing
DDM simulation and analysis model and forward GPS multipath
model to soil F/T monitoring, and simulated and analyzed the
changes of DDM and multipath information when the soil F/T
state transitions, and the results showed that the change of the
surface dielectric constant would lead to a significant change of
DDM as well as multipath information when soil freezing and
thawing transition occurs. The results show that during soil F/T
transition, the change of surface dielectric constant will lead to
an obvious change of DDM and multipath information, so this
change can be used to achieve the purpose of soil F/T monitoring,
but the experiment only considered the case of bare land and did
not consider the case of snow and vegetation cover.

Changes in the soil F/T status led to changes in the surface
dielectric constant, which in turn affects the SR, and several
scholars have carried out research based on this feature. For
example, in 2020, Comite et al. [97] calibrated and analyzed
the SR of TDS-1, and then observed the soil F/T state and
compared the results with the SMAP data and the in situ soil
data, showing that the height of the GNSS-R SR was related to
the seasonal change, thus proving the feasibility of observing the
soil F/T state by using SR, but the influence of the vegetation
and water bodies caused anomalies in the SR of some areas,
which affected the accuracy of detecting the soil F/T state.
However, due to the influence of vegetation and water bodies,
the SR in some areas is abnormal, which affects the accuracy of
detecting the F/T status of soil. In 2021, Rautiainen et al. [98]
conducted soil F/T observations in high latitude areas using
calibrated TDS-1 SR data. This study was conducted at two
scales:1) the land area of the Northern Hemisphere on a global
scale, located between 55° and 80° north latitude; 2) the local
scale at the FMI Sodankylé calibration and validation (cal/val)
site. The observations were compared with the SMOS soil F/T
data. The comparison of the two showed good agreement. This
study confirms the sensitivity of GNSS reflections to soil F/T
conditions and proposes a seasonal threshold detection method,
which may pave the way for future operational products of
the GNSS-R mission. However, challenges include insufficient
data, measurement discontinuities, poor revisit times, and lim-
itations in accurate calibration performance. In addition, the
data are highly discrete and sensitive to vegetation cover and
topography. Spaceborne GNSS-R sensors do not return to the
same location on a regular basis and may produce variable
reflections. In addition, incoherent reflections introduce speckle
noise, which needs to be mitigated by an appropriate averaging
strategy.

In order to further evaluate the capability of GNSS-R reflec-
tion signals to monitor soil F/T at high latitudes, Carreno-Luengo
and Ruf [99] conducted soil F/T observations of the Andes
and the Pampas grasslands based on the Seasonal Thresholding
Algorithm (STA) using CYGNSS in 2022 and compared the
results with the European Centre for Medium-Range Weather
Forecasts (ECMWEF). The results show that the soil F/T data
detected based on this method matches well with ECMWF
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ERAS5-Land and SMAP data, which confirms the feasibility of
the algorithm for detecting soil F/T. However, only CYGNSS
data are used to validate the algorithm, and there is a lack of
other spaceborne GNSS-R data to further validate its algorithm.

The Tibetan Plateau is known as the “Roof of the World,”
and one of the most striking physical features is the freezing
and thawing process of the soil. To study the feasibility of using
CYGNSS to observe soil F/T in the Qinghai Tibet Plateau, Wu
et al. compared and analyzed the F/T characteristics of SMAP
with CYGNSS data from 2018 to 2020. The results showed that
when F/T conversion occurs on the surface, changes in SR will
lead to changes in the peak waveform of DDM. The relationship
between CYGNSS SR and SMAP SM within the time series was
also analyzed, and the results showed that the effect of SM on
reflectance was small and negligible, and the F/T transition was
the main factor affecting CYGNSS reflectance, proving that it
is feasible to use the CYGNSS data for surface F/T monitoring
on the Tibetan Plateau. It is worth noting that CYGNSS data
quality is relatively poor in the Tibetan Plateau region due to the
reduced certainty of mirror point capture at high altitudes [92].
In 2022, Carreno-Luengo and Ruf [100], [101] conducted soil
F/T observations on the Tibetan Plateau based on STA using
CYGNSS and compared the observations with data from the
topography roughness index (TRI) and ECMWF ERAS5-Land,
and the comparisons showed good correlation. However, further
exploration is needed to determine whether the STA algorithm
can be applied to polar regions using data from the new GNSS-R
high-inclination satellites. In the future, monitoring of polar
regions can utilize GNSS-R data from the new generation of
high-inclination satellites. Compared to traditional RS technol-
ogy, GNSS-R has a higher spatiotemporal sampling rate, which
can provide new insights and perspectives for monitoring highly
dynamic F/T surface processes.

Current GNSS-R F/T studies are limited to a regional context,
with time resolutions typically on a monthly scale and a lack
of long-term F/T records. In addition, during the warm and
cold transition seasons, the soil F/T state changes rapidly and
the F/T cycle shows high heterogeneity, even switching several
times in a short period of time. Accurate observation of the
soil F/T cycle requires high spatial and temporal resolution.
Therefore, there is a need to further explore spaceborne GNSS-R
F/T detection capabilities. For this reason, as a complement to
previous studies, in 2023, Yang et al. [102] used CYGNSS
to make daily observations of soil F/T state on the Tibetan
Plateau, which was different from previous studies in that the
temporal resolution of the GNSS-R F/T study was successfully
improved to the daily scale by introducing an ML (RF) method,
whereas previous studies were often limited to seasonal or
monthly scales. To demonstrate the reliability of the retrieval
results, near-surface in-situ data were added for comparison.
The results showed that compared with SMAP F/T data and
in-situ data, the detection accuracy of CYGNSS reached 75.1%
and 81.4%, respectively. The improved CYGNSS F/T retrieval
results enable us to understand the spatial and temporal distri-
bution and evolution of soil F/T in the Tibetan Plateau region
in more detail, thus providing more information on tempo-
ral variability phenomena for short-term hydrological climate
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TABLE V
RETRIEVAL APPROACH AND ACCURACY OF CURRENTLY PUBLISHED SPACEBORNE GNSS-R SOIL FREEZE-THAW DETECTION STUDIES!

GNSS-R Temporal Reference

Validation Retrieval Models

Source Satellites Observables Spatial Coverage Resolution Data Auxiliary Data Data (Methods) Main Results
The characteristics of decreasing
reflectivity of frozen soil and
Comite et al. increasing reflectivity of thawed
[971; - . . MODIS land In Situ soil, with a dynamic range of up to
Pierdicca et TDS-1 Reflectivity high latitude areas Monthly scale SMAP F/T cover classes Data - 10 dB and high spatial resolution
al. [30] (in the case of mainly coherent
scattering, the spatial resolution is
about a few kilometers)
Proved the feasibility of using
Wuetal. [92]  CYGNSS  Reflectivity Qinghai-Tibet Daily scale SMAP F/T MODIS land SMAP F/T B CYGNSS for surface F/T
Plateau cover classes monitoring on the Qinghai Tibet
Plateau
Lat = [-35, -28]°
and Lon =[-71,
—67]°%includes a
region of the
Andes; The Tibet
Carreno- Plateaou (Lat: [25 The CYGNSS F/T map of the
Luengo and . 37.51° Lon = [70 ERA&Lan,d SM Seasonal-Threshold target area shows consistency
Ruf CYGNSS Reflectivity 102]°), the Andes Monthly scale SMAP F/T and soil SMAP F/T N
uf [99], . _ Algorithm (STA) compared to the F/T product of the
[101] ['\f;;";“i‘;;]gfo; temperature SMAP radiometer
=[~75-65]°), and
the Rocky
Mountains (Lat =
[35.537.5]°, Lon =
[-109 —103]1°)
SMAP surface The F/T retrieval accuracy of
Yang et al. L. Qinghai-Tibet . roughness CYGNSS was 75.1% and 81.4%
[102] CYGNSS Reflectivity Plateau Daily scale SMAP F/T coefficient, and SMAP F/T RE (vs. SMAP data and data from
vopP independent in situ stations)
ISMN and The F/T retrieval accuracy of
Yang et al. .. . . SMAP soil SMAP VOP NCDC CYGNSS was 95.5% and 82.0%
[103] CYGNSS Reflectivity Quasi-Global Daily scale F/T cycle hourly RF (vs. SMAP data and data from
dataset independent in situ stations)
SMAP SM, soil
texture, soil There is strong consistency
Wuetal FY-3E o o temperature, soil between the SR ratio factor
[104] . Reflectivity Arctic Circle Seasonal scale SMAP F/T bulk density, SMAP F/T STA and the SMAP F/T value, and
MODIS land the accuracy of the F/T
cover and land use retrieval algorithm exceeds 60%
map

'[SMN: International SM Network. NCDC: National Climatic Data Center.

studies. However, the poor resolution of gridded data makes
it difficult to accurately detect changes in soil freezing and
thawing within the grid. In 2024, Yang et al. [103] proposed a
daily F/T detection scheme combining GNSS-R reflectivity and
minimal ancillary data for quasi-global daily F/T retrieval. By
selecting the minimum amount of auxiliary data, the dependence
on other external data is reduced. In addition, the performance
of the F/T retrieval results was assessed using SMAP data and
independent in situ data. The results showed that the F/T retrieval
accuracy of CYGNSS was 95.5% and 82.0%, respectively,
when comparing SMAP data and independent field site data.
Considering the high spatiotemporal coverage of CYGNSS F/T
results, compared with actual SMAP observations, its coverage
on the daily scale has increased by 23.3%. In addition, by filling
the gaps in SMAP data, CYGNSS data effectively improved the
SMAP F/T sample interval and increased accuracy by 26.0%. Of
particular note is the monthly performance-based F/T accuracy
of 85.1% for the combination of CYGNSS and SMAP, and a
20.5% improvement over the existing SMAP daily F/T product.
Overall, the quasi-global daily F/T results obtained based on
CYGNSS and SMAP measurements can provide a meaningful
addition to existing databases with clearly defined accuracy.
This demonstrates that high precision and time-resolved F/T
products can be generated from spaceborne GNSS-R and SMAP
radiometer measurements. As given in Table V, several main
aspects are summarized and compared, including the obser-
vation satellites, the GNSS-R observations, the main compo-
nents of the reflected signal, the spatial coverage, the spatial

resolution, the reference data, the ancillary data, the validation
data, the retrieval model, and the specific details of the main
results.

Recently, Wu et al. [104] demonstrated for the first time
the potential of the FY-3E GNOS-R payload to detect the
freeze/thaw (F/T) state of near-surface soils at high latitudes
(especially the Arctic Circle), using GNSS-R observations from
DOY179 in 2021 to DOY?270 in 2022 data and using SR ratio
factors to distinguish F/T changes. Comparison with SMAP F/T
products shows strong consistency between the SR ratio factor
and SMAP F/T values, with the accuracy of the F/T retrieval
algorithm exceeding 60%. The use of GNSS-R reflection signals
to monitor the F/T state of soil is a promising technique, but it
also faces many challenges. Wet snow cover makes detection
of soil thawing difficult, low reflectance is often misinterpreted
as a frozen condition, and increased reflectance during thaw can
indicate that the snow cover is subsiding, with the aid of ancillary
data. Further research needs to consider the footprint areas and
scattering properties of different target surfaces, including the
effect of incidence angle changes, and consider ML methods to
compensate for disturbances. Given the inherent limitations of
the dependent dataset, especially considering that discontinuous
data can only be obtained from a single satellite platform, exist-
ing research analysis shows that using aircraft with appropriate
orbital inclinations, based on GNSS-R missions that only receive
small satellite constellations, can provide the required coverage
and modification time. In this context, the currently launched
Chinese BF-1 A/B, FY-3E/3F/3G, and TM-1, as well as the
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HydroGNSS mission under development, will help to overcome
most of the existing limitations and provide larger and more
reliable datasets.

VI. FLOOD DETECTION USING SPACEBORNE GNSS-R

A clear and intuitive understanding of flood events is im-
portant for the stable development of societies, and despite
the myriad of RS technologies available for mapping surface
floods, there are still gaps in the ability to rapidly map flood
inundation at the required temporal resolution for understanding
how floods evolve. Although traditional manual flood measure-
ment methods have high accuracy, they are time-consuming,
labor-intensive, and costly. Moreover, if the flood is relatively
turbulent, this method also poses certain risks. Although optical
RS can map flood inundation areas on a large scale, it is only
suitable for open and unobstructed areas and has certain limita-
tions in mapping floods with vegetation cover. Active microwave
RS offers high spatial resolution, yet its long revisit period
and the inability to update flooding dynamics of flooding in
a timely manner means that it is fortuitous in capturing flood
events. Consequently, it is deficient in observing changes in
the extent of flood inundation. Whereas passive microwave RS
can provide all-weather monitoring capability, its products have
low resolution and do not provide a clear understanding of the
detailed aspects of flood events [105], [106]. As anew RS detec-
tion technology, GNSS-R has unique advantages such as global
coverage, low power consumption, abundant signal sources, and
low cost, and GNSS reflection signals are highly sensitive to
water bodies [107], [108], which makes it possible to monitor
large-scale floods using GNSS-R reflection signals. Currently,
domestic and foreign scholars have conducted research on using
GNSS-R reflection signals to detect floods and have achieved
certain research results.

To better detect flood-related information, many scholars
retrieve floods by constructing models. In 2012, Beckheinrich
et al. constructed a phase model using GPS reflection signals
to calculate the average water level height. They combined
coherent observations and then used the least squares method
to extract the minimum slope to calculate the water level height.
The experimental results showed that the average water level
height reached the level of decimeters but only GPS signals
were used, resulting in a single signal source and low retrieval
accuracy of the model, making it difficult to describe flood
events in detail [107], [109]. In 2020, Chew and Small [110]
proposed a forward model to describe how the SR of CYGNSS
varies with different types of floods. The results showed that the
relationship between SR and flood range heavily depends on the
surface roughness of land and water. The rougher the surface, the
easier it is to detect flood inundation range. However, this model
is only applicable to areas with high surface roughness and
has poor performance in areas with smooth surfaces. In 2022,
Wilson-Downs et al. [111] used a coherent scattering model to
measure the range of surface water. This model can simulate the
complex shape of water bodies and the coherent power of surface
roughness, accurately detecting the inundation range of surface
water. However, it did not consider the situation of water bodies
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with vegetation coverage, so it has certain limitations in detect-
ing water bodies in complex situations. In the same year, Song
et al. [112] proposed the dual-branch NN model, comprising
two components: CNN and backpropagation NN. This model
combines the physical features of GNSS-R with the abstract
features mined by the CNN for better flood retrieval. However,
this model is not very accurate in flat areas because it does not
take into account the effect of land topography. The models
proposed by the above-mentioned scholars have all improved
the accuracy of flood retrieval to a certain extent and expanded
the methods of flood retrieval. However, due to the centralized
use of GPS reflection signals received by the CYGNSS satellite,
the signal source is relatively single, and the model itself has
certain shortcomings, which have not considered flood detection
in complex situations. Therefore, it is unable to retrieve more
information about floods, such as flood depth, flood velocity,
and flood flow rate [31]. It is necessary for follow-up studies
to consider the use of multiple data fusion methods to construct
flood retrieval models and to improve model retrieval algorithms
to improve flood retrieval.

To further improve the accuracy of flood detection, many
scholars carry out research on flood detection using relevant
algorithms. In 2019, Rodriguez-Alvarez et al. [113] used the
multidecision tree randomization (MDTR) algorithm combined
with GNSS-R signals to classify tropical wetland floods. The
experimental results showed that the algorithm can detect floods
under dense vegetation cover, which can be extended to char-
acterize biological communities. Due to the algorithm mainly
combining CYGNSS data and the relatively single training
samples, the accuracy of detecting floods under vegetation cover
is not high. In 2020, Ghasemigoudarzi et al. [114] used the
Random Under Sampling Boost (RUSBoost) classification al-
gorithm based on CYGNSS to detect mountain floods. They
observed floods by extracting LES, TES, and SNR data and
compared the detection results with those of SVMs. The results
showed that the flood detection accuracy based on the RUSBoost
algorithm was higher but it was only suitable for large-scale
mountain floods, and the effect was not good for small-scale
mountain floods. In 2022, De Tarso Setti et al. [115] proposed
a trajectory-based algorithm that uses CYGNSS data to plot the
seasonal inundation range of the Pantanal wetland. The detection
results were compared with the global surface water detector
(GSWE) products and surface water microwave product series
(SWAMPS), and the results showed that the algorithm has higher
accuracy in detecting water bodies. However, the algorithm only
takes into account the effect of signal power and angle of inci-
dence, whereas the factors affecting flood detection are diverse,
and thus the algorithm itself is not perfect. In 2023, Chew et
al. [116] proposed a flood inundation detection algorithm based
on CYGNSS data, which first parameterizes the data on soil
surface, water body roughness, and SM, and then retrieves the
extent of flood inundation using a dielectric model combined
with reflectance. The algorithm cannot be applied to a wide
range of areas due to the uncertainty of the data on which the
parameterization is performed. Although the above algorithm
can detect the range of floods, the algorithm itself has poor
generalization ability, which makes it difficult to be applied to the
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detection of floods in complex situations, so the improvement
of the algorithm is an urgent problem that needs to be solved
before the application of this technology to flood monitoring.

Previous studies have confirmed that spaceborne GNSS-R
reflection signals are highly sensitive to floods, and changes in
floods can lead to changes in GNSS-R SR [115]. Therefore,
many scholars have flood detection based on the correlation
between floods and SR (i.e., the SR observation threshold ap-
proach). In 2018, Chew et al. [79] utilized CYGNSS SR data
and then used the SR thresholding method to map the extent of
flood inundation and compared the results to SMAP data, which
showed that CYGNSS was able to observe higher resolution
flood data than SMAP. Although the flood inundation range was
detected based on the SR data, different thresholds yielded dif-
ferent inundation ranges, so the thresholds had to be determined
according to the actual needs. In 2020, Rajabi et al. [117] used
a two-base radar equation formulation to calculate the SR and
then retrieved the flood areas based on the SR and compared the
results with the MODIS data, which showed that the flood data
retrieved based on the SR had a high correlation with the MODIS
data, and that the flood data detected based on the SR could be
used as a supplement to the existing flood products. In 2021,
Zhang and Yang used CYGNSS SR to observe floods in Henan
Province and compared the results with SMAP data. The results
showed that flood observation based on SR had higher resolution
[118], [119]. In 2023, Downs et al. [120] quantified CYGNSS
flood observations using a simple thresholding approach and
compared them with VIIRS, MODIS, and Sentinel-1 data, which
showed that CYGNSS has a higher accuracy in detecting floods
and can be used as a supplement to existing flood products. In
the same year, Yang et al. [121] proposed the Annual Threshold
Flood Inundation Index (ATFII) to implement flood inundation
rate retrieval based on CYGNSS data and validated the results
using VIIRS and GPM data. The results indicate that ATFII
cannot only perform flood inundation retrieval but also quantify
flood inundation levels. However, the imperfect matching of the
VIIRS grid and CYGNSS data at the spatial scale resulted in
reducing the accuracy of the ATFII retrieval of floods. Subse-
quently, Wei et al. [122] also confirmed the feasibility of the
method when using CYGNSS SR to detect floods in Guangdong
Province, and the detected flood data had higher accuracy com-
pared to SMAP data. The above-mentioned scholars utilized the
SR threshold method, although it was successful in detecting
surface flooding. However, the choice of threshold may vary
depending on parameters such as topography, roughness, and
vegetation. Therefore, there may be differences in the choice
of thresholds under different environmental conditions [123],
[124].

The SR measured by spaceborne GNSS-R can be calculated
using the following formula. The total scattering power P,; of
the bistatic radar can be determined as follows:

P = PS5+ P}, (7)
where P¢ and P?; can be expressed as
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where PS5 and P,; represent coherent reflection power and
incoherent scattering power, respectively;Pf. is the transmission
power of the GPS satellite antenna;G? is the gain of GPS satellite
antenna; G is the gain of the CYGNSS antenna;R; is the
distance from the GPS satellite to the mirror reflection point; R,
is the distance from the mirror reflection point to the CYGNSS
receiver; 7,; represents SR; o, is the bistatic radar cross section

(m?). A is GNSS signal wavelength.

When using the CYGNSS reflection signal to draw water
bodies, it can be assumed that the reflection signal is mainly
coherent reflection, and formula (8) can be converted into the
form

10log PS5 = 101log P! + 101log G* + 101log G + 20 log A
+ 10log 7,y — 20log (Rys + Rs;) — 20log(4m)  (10)
then SR is
SR = 10log 7,; = 10log PS5, — 10log P! — 10log G*

— 10log G" — 201og A + 20log (Rys + Rsy) + 201log(4n).
(1D

Since DDM is affected by the angle of incidence, the correc-
tion for the angle of incidence is

SR = SR — 10log cos™0 (12)

where 0 is the incidence angle, and n is the correction coefficient,
which is generally taken as 1.

In addition to the above-mentioned methods, many scholars
have carried out studies on flood detection using SNR, LES,
TES, and coherent signals. In 2018, Jensen et al. [126] used
SNR, LES, and TES observations from CYGNSS DDM to detect
floods and compared them with synthetic aperture radar (SAR)
detection results. The results showed that SNR observations
had higher sensitivity to surface water compared to SAR, but
due to the rough signal analysis and processing, it was not
possible to accurately quantify the surface water range [125].
In 2021, Zeiger et al. [127] used CYGNSS SNR to detect
changes inriver water levels and compared the results with ocean
sensor data. The results showed that SNR-based detection had
higher accuracy, but due to the use of only CYGNSS data, it
was not effective for large rivers. In 2022, Wang et al. [128]
applied a power ratio to identify changes in DDM coherence
in inland water bodies and compared the results with the DDM
power-spread detector (DPSD). The results showed that using a
power ratio to detect water bodies had higher accuracy, but due to
the generation of incoherent scattering signals on rough surface
water surfaces, it was not effective in detecting large lakes. In
2023, Wang et al. [129] used the L2P/L2W reflection signals
of GPS to detect the water level, and the observation results
can reach centimeter-level accuracy on the calm water surface,
while the accuracy is poor for the fluctuating water surface due
to the imperfect processing of the signals. The above-mentioned
analyses show that these methods have certain limitations and are
difficult to widely apply to flood monitoring, so it is necessary to
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TABLE VI

RETRIEVAL APPROACH AND ACCURACY OF CURRENTLY PUBLISHED SPACEBORNE GNSS-R FLOOD DETECTION STUDIES!

. . Retrieval
Source Satellites ~ ONSSR - Spatial Temporal Temporal Reference s iliary Data Validation Data Models Main Results
Observables Coverage Resolution Data
(Methods)
Threshold Compared with SMAP radiometers.
Chew et al. The southeastern : . S
[79] CYGNSS  Reflectivity  United States and -3 days SMAP B SMAP method based - CYGNSS data provides clear signals of land
Caribbean on SR surface saturation and inundation with higher
observations spatiotemporal resolution.
SMAP/SMOS- Threshold
Wan et al Derived method based CYGNSS has the ability to monitor flood
[123] } CYGNSS Reflectivity China Daily scale SMAP Brightness SMAP on SR inundation dynamics and obtain flood
Temperature; bservations inundation areas.
GPM precipitation observations
SRTM90m DEM: For Hurricane Harve.y and Hurricane Inna,"
Ghasemigoud Eleven . Wetland V3 data the selected method is ablg to detect 89.00%
y different Hurricane Harvey DFO flood . and 85.00% of flooded points, respectively,
arzi et al. CYGNSS . _ provided by the DFO flood maps RUSBoost . .
observables  and Hurricane Irma maps with a resolution of 500m x 500m, and the
[114] 2 CIFOR; GSW d . @ flooded land
Occurrence data etection accuracy for non-flooded lan
points is 97.20% and 71.00%, respectively.
Amazon Basin and Modeling The sensitivity of reflectivity to inundation is
Chew and CYGNSS Reflectivity Lake Eyre, Every two weeks Landsat § SMAP roughness Landsat 8 MNDWI heterogeneous  greatest for rough surfaces; SM confounds
Small [110] . MNDWI values and SM . . P
Australia footprints the inundation signal for smooth surfaces.
The estimated area of the flooded area is
Lo Sistan and Three days (13 MODIS approximately 19644 km2, accounting for
Ra]?ll); % al. CYGNSS SNR Baluchestan January to 15 false-color - MODIifngalZ:-colm SNR Threshold  10.8% of the province's total area. The flood
province January 2020) images & risk is higher near depressions, lakes, and
coastal areas.
DEM; SMAP SM;
GPM and
meteorological The flood range retrieved by CYGNSS is
Zhane, et al. stations consistent with the range retrieved by the
[lglz)] . Henan Province precipitation; RS Threshold SMAP and MODIS, as well as the
[132]; Yang, et CYGNSS Reflectivity and Guangdong, five day?; daily SMAP r]nomtonrfg data of SMAP; MODIS method based  precipitation data rlem.ev:ed an.d measured by
al. [118]; Wei. China scale land use in Henan on SB GPM and meteoro! ogical stations. quever,
ét al [1’22] ’ Province in 2020; observations due to the low spatiotemporal resolution of
B CLDAS-v2.0 SM in SMAP, some detailed information
daily precipitation about the inundation range may be lost.
data; Sentinel-2
L2A data
surface water data Inundation maps produced with CYGNSS
lobal surface including data correspond well to validation maps.
g ater Aalascl SWAMPS, However, the differences stem from
Chew et al Interpolated Amazon, :erived from PALSAR-2, Reflectivit calibration errors, inaccuracies in models and
[16] } CYGNSS reflectivity Mozambique, Mali, three days _ Landsat data, a Dartmouth Flood ‘model Y auxiliary data, among which parameterization
observations and Australia . y Observatory, of SM and water surface roughness often
static dataset of P . .
AGB. SMAP SM MODIS, and the leads to underestimation of inundation scores
i Global Surface relative to other surface water products,
‘Water Explorer especially in areas with higher surface water
ranges.
Compared to Sentinel-1 data, CYGNSS
measurement provides improved performance
Threshold and the ability to detect floods caused by
Downs et al. normalized VIIRS flood MODIS, and method based  optical technology failures. The proposed
[120] CYGNSS SNR South Sudan Month scale product - Sentinel-1 onNSNR  method detected 35.4% more surface water
observations than Sentinel-1, while products based on
VIIRS and MODIS underestimated 4.8% and
83.7%, respectively.
For monthly results, the R value between
VIIRS flood products and ATFII varies
Surface between 0.51 and 0.64, with an acceptable
. level of significance (p<0.05); ATFII can
Yang et al c:(l:ﬂ)ii?e\g!l)), VIIRS SMAP brightness V“R?":LO(O]?)EZOd“C( ATFII retrieve flood inundation and quantify flood
& : CYGNSS a5y southeast China Daily scale floodwater (TB) 9 km gridded L change levels on a fast time scale; ATFII is
[121] vegetation . precipitation data, b . s .
fraction data data consistent in quality with VIIRS flood
and surface SMAP SM . A
roughness products, GPM - derived precipitation, fil’}d
SMAP SM, and can provide high-precision
spatiotemporal distribution of flood
inundation.
High . N -
sampling The reflection measurement of Beidou-3
Li et rate complex Coherent shows the potential for detecting surface
g CYGNSS P Mississippi River _ Sentinel-2 _ _ ) . water under thick vegetation canopy (up to
al. [133] DDM Coefficient . N
reflected by 300 Mg/ha), which can supplement the
Beidou-3 existing observation network.
Rcﬂccllvlly Tb and SM Sentinel-1 GFM surface water The average overall retrieval accuracy of
calibrated by MODIS data; . T i o
Maet al. CYGNSS hysics Pakistan Three days data for GPM precipitation observed water fraction (Wf) ~ CYGNSS was approximately 64.44% and the
[130] prSC d ) Y’ SMAP and ma s'pLang cover | Cxtent (OWE) data; Retrieval average overall commission error was
algorithms SMOS ps; v SMAP/SMOS Wf Method approximately 17.78%.

'GPM: global precipitation measurement, RUSBoost: random under-sampling boosted classification algorithm; SRTM90m DEM: shuttle radar topography mission digital clevation model; CIFOR: Center for International Forestry Rescarch; GSW: global surface water; MNDWI
- modified normalized difference water index; DFO: Dartmouth flood observatory; VIIRS: visible infrared imaging radiometer suite; GFM: global flood monitoring.

*Atotal of 11 different observables including corrected signal to noise ratio (SNR), trailing edge slope (TES), leading-cdge slope (LES), delay-Doppler map average (DDMA), the width of the waveform (Wave-width), the first generalized linear observable (GLO).kurtosis,
‘maximum, mean, skewness, and variance are extracted for cach SP.

deepen the research on the analysis and processing of reflection
signals to seek a more perfect reflection signal analysis and
processing method to improve the accuracy of flood detection.
As given in Table VI, summaries and comparisons are made in
several main areas, including observing satellites, GNSS-R ob-
servables, spatial coverage, temporal resolution, reference data,
ancillary data, validation data, retrieval models (or methods),
and specific details of the specific results.

In summary, spaceborne GNSS-R technology has demon-
strated great potential and unique advantages in flood monitoring

and has achieved some remarkable results. However, this tech-
nology is still immature in flood monitoring. At present, there
are mainly the following problems.
1) The spaceborne GNSS-R observation data used are mostly
GPS reflection signals received by the CYGNSS satellite.
Due to the relatively single data source, flood information
cannot be detected in complex situations, such as flood
coverage, flood intensity and depth, water body character-
istics and hydrodynamics, and surface characteristics and
coverage factors.
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2) Although recent work by Maetal. [130] has considered the
impact of factors such as topography, surface roughness,
and vegetation coverage on flood monitoring accuracy,
the uncertainty of modeling parameters and auxiliary data
errors will also limit flood monitoring accuracy.

3) The quasi-randomly distributed nature of CYGNSS sam-
pling leads to gaps in the daily observations. Although
the previously observed behavior interpolation (POBI)
method has been used to address this well-known problem,
this similar interpolation inevitably leads to some errors
in the results. Another limitation is the availability of the
surface water fraction (Wf) reference dataset. Although
there are some RS-based inland water dataset, most pro-
vide static inland water data from historical observations.
Due to the limitations of RS satellite working mecha-
nisms (band, spatiotemporal resolution) and observation
conditions (clouds, rain, vegetation), there is currently no
globally available, spatiotemporal continuous, and high-
frequency updated dataset for inland water bodies. Al-
though existing studies use the high-resolution Sentinel-1
spaceborne water body dataset global flow monitoring
(GFM) as validation data, the weakness of GFM to provide
only open water soundings leads to overestimation of
CYGNSS Wt retrieval results in some areas. However,
the long revisit period limits the application of GFM in
monitoring highly dynamic flood events.

Currently, The Global Constellation Observing System for
Meteorology, Ionosphere, and Climate (COSMIC) Data Analy-
sis Archive Center website provides free access to the available
CYGNSS GNSS-R dataset covering flood events. Users inter-
ested in this dataset can visit: https://data.cosmic.ucar.edu/gnss-
r/inundation/cygnss/ in order to download the CYGNSS flood
map (3 km EASE-2 grid), these maps are currently available for
the period from March 20, 2017 (DOY: 079) to June 30, 2022
(DOY: 181). However, users should be cautious when using
retrieval results for hydrological analysis and pay attention to
the uncertainty and drawbacks of the current form of retrieval
results [116]. Incorporating several sources of inundation maps
into one’s interpretation of inundation dynamics is likely to be
more informative than using one source of data alone.

In the future, the focus should be on developing flood monitor-
ing algorithms based on multifrequency and multiconstellation
GNSS reflection signals, ultimately obtaining clearer and more
intuitive global high spatiotemporal resolution flood maps, and
providing effective data support for flood control and policy
formulation. In the future, the following aspects should be
focused on: 1) Polarimetric GNSS-R, such as HydroGNSS,
as it is expected to support detection of flooding under veg-
etation; 2) SAR/GNSS-R data fusion/integration in order to
get the advantage of the very different acquisition geometries
(backscattering versus forward-scattering) [131]; 3) develop-
ing flood monitoring algorithms based on multifrequency and
multiconstellation GNSS reflection signals, ultimately obtaining
clearer and more intuitive global high spatiotemporal resolution
flood maps, providing effective data support for flood control
and policy formulation. Meanwhile, the release of more RS data
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focused on surface water detection will provide more datasets
to choose from. The cross validation of CYGNSS retrieval
of inland water bodies with these datasets and the fusion of
multisource RS data to obtain higher spatiotemporal resolution
surface water monitoring results must be the focus of future
research.

VII. DETECTING INLAND WATER AND MONITORING WETLAND
DyNAMICS USING SPACEBORNE GNSS-R

A. Detecting Inland Water

Inland water bodies are those that exist on land, including
lakes, rivers, reservoirs, marshes, and ponds. Compared to the
oceans, inland water bodies are usually smaller in size and are
more susceptible to direct impacts from human activities and
the natural environment. However, due to the impacts of human
activities, such as water pollution, overexploitation of water
resources, and degradation of wetlands, inland water bodies
face many challenges and require conservation and management
measures to maintain their sustainability. The advent of space-
borne GNSS-R provides a method for inland water monitoring
[134].

Measurements made by the GNSS-R instrument show that
the reflected power in inland waters is very strong, which is
attributed to coherent scattering from the first Fresnel zone.
CYGNSS is designed to estimate wind speeds over the oceans,
and it is also highly sensitive to inland waters [135]. Mapping
inland water bodies is a challenging task due to the complex
variations in topography and water surface features [136]. In
inland water scenes, the CYGNSS DDM shows very high peak
reflected power and limited delay and Doppler spread. The SNR
of the actual CYGNSS-measured reflected signals varies greatly
because the CYGNSS signal on land is affected by surface type
and roughness, soil and VWC, and vegetation density. Therefore,
itis very difficult to capture global water bodies, especially small
water bodies, using only threshold methods. To address this
problem, Gerlein-Safdi and Ruf [137] proposed an algorithm
to remove and process CYGNSS SNR data and generate reli-
able global water masks over the latitudinal range of CYGNSS
coverage from approximately 40° N to 40° S to identify to map
and resolve the location of inland bodies of water, such as lakes
and rivers, with respect to the changes. Loria et al. [74] presented
the development of a forward model for coherent scattering
over inland waters with the aim of evaluating the accuracy of
a wetland-wide retrieval algorithm applied to CYGNSS data
over land. GNSS-R reflectometry over inland waters shows
strong coherent scattering. Strong reflection signals generated
over smaller spatial scales (several kilometers) are sensitive to
surface wave height. This sensitivity can be used to estimate
wave height profiles in inland waters. In combination with wind
and wave modeling, wind vector retrieval can be performed
using forward modeling methods. Loriaetal. [138] pioneered the
retrieval of wind vectors and wave heights in inland waters using
spaceborne GNSS-R. This study used a passive bidirectional
radar receiver on CYGNSS to estimate the surface wave profiles
and wave heights in inland waters. The study used a passive


https://data.cosmic.ucar.edu/gnss-r/inundation/cygnss/
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12830

bidirectional radar receiver on CYGNSS to estimate the surface
wave profiles and wind vectors of inland water bodies. The
results showed that the coherent signal is highly sensitive to
surface roughness and the total reflected power is also sensitive
to the wave height profile. When considering large water bodies,
the number of data points collected for water content is much
less than the number of data points acquired from land, resulting
in an unbalanced dataset. Integrated classifiers are combinations
of basic classifiers, and various balancing methods can be ap-
plied to the integrated approach and different algorithms have
been developed based on them. Ghasemigoudarzi et al. [139]
implemented a high-resolution ML method for detecting inland
water content using CYGNSS data by means of the RUSBoost
algorithm. Kossieris et al. [140] detected inland water bodies
using unsupervised ML algorithms. In 2023, Carreno-Luengo
et al. [141] used CYGNSS Raw IF data to study the detection
of inland water bodies, and the results showed that the use of
CYGNSS Raw IF data is promising for detecting small inland
water bodies. A new CYGNSS data product that accurately
detects fully and partially coherent scattering and provides infor-
mation on the intensity of the scattering signal for better applica-
tion in application areas such as surface water monitoring is also
provided. However, wind may increase the roughness of inland
water bodies, such as large lakes [142]. When the roughness
of a surface increases, its reflections become more incoherent.
Distinguishing between water and land in such situations is more
challenging and requires further research. The detection of future
changes in water level dynamics is also worth investigating. As
given in Table VII, it is mainly summarized and compared from
several aspects, including observation satellite data, GNSS-R
observables, spatial coverage (resolution), reference data, re-
trieval models (or methods), and specific details of the main
results. In the table, NBRCS represents normalized BRCS.

B. Monitoring Wetland Dynamics

Wetlands are areas of land that are covered or saturated with
water for a certain period or continuously, including marshes,
rivers, lakes, coastal wetlands, and artificial wetlands. Wetlands
are unique and rich environments in ecosystems with important
ecological functions and values. Wetlands are one of the major
sources of atmospheric methane, and methane emissions from
wetlands are influenced by a variety of factors, including wetland
type, water level, temperature, vegetation type, and human activ-
ities. Therefore, accurate assessment and monitoring of wetland
methane emissions is critical to understanding the atmospheric
methane cycle and the impacts of climate change.

At L-band frequencies, the roughness of typical ocean and
land surfaces can cause diffuse reflection of GNSS signals.
Howeyver, the surface of wetlands and other inland water bodies
is usually very smooth, which allows them to generate coherent
reflections [108]. Nghiem et al. [157] proposed that GNSS-
R can identify flooded wetlands even under dense vegetation
cover. GNSS reflectometers are sensitive to wetland changes,
but quantitatively formulating the geophysical products of wet-
land reflections remains a challenge. Zuffada et al. [158] used
reflection datasets from SMAP radar receivers to demonstrate
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the sensitivity of reflections to small surface features and their
seasonal variations, and proposed an algorithm for wetland
type classification. Jensen et al. [126] assessed the ability of
spaceborne GNSS-R to characterize surface inundation dynam-
ics in a tropical wetland complex with a combined analysis
of contemporaneous L-band SAR, GNSS-R, and ground-based
measurements. The potential of spaceborne GNSS-R technol-
ogy in inland water and wetland monitoring has been demon-
strated in previous studies by analyzing data from TDS-1 and
CYGNSS missions [79], [157], [159], [160]. Rodriguez-Alvarez
et al. [113] proposed a method for classifying tropical wetland
floods using observable data obtained from GNSS-R measure-
ments and auxiliary data and demonstrated the utility of GNSS-R
observable values from CYGNSS data and auxiliary datasets in
describing wetland inundation. Morris et al. [161] proposed a
new approach to monitoring wetland dynamics using CYGNSS
and developed a mapping method for wetland inundation using
CYGNSS data by matching Everglades depth estimation net-
work (EDEN) bathymetry estimates using Everglades as a case
study. The results show that CYGNSS is capable of observing
wetland dynamics in the tropics frequently and with high reso-
lution on short time scales. Arai et al. [162] developed a reliable
method for assessing the spatial and temporal dynamics of
tropical wetland inundation by proposing a new quality control
technique called “accuracy index” using available GNSS-R data.
CYGNSS observations are sensitive to variations in incidence
angle and estimated GNSS transmitter power, which can lead to
errors in the classification algorithm. Setti et al. [115] proposed a
new method for generating inundation maps and estimating the
inundation range using CYGNSS GNSS-R data, which removes
the effects of GNSS transmit power and incidence angle. Zeiger
etal. [163] mapped the watershed extent of tropical wetlands by
weekly time sampling using spaceborne GNSS-R technology
in order to resolve the current uncertainty about the watershed
extent of tropical wetlands and to provide time-series data on the
watershed extent of wetlands globally. Downs et al. [164] pro-
posed an algorithm for predicting water depth and surface water
range based on CYGNSS observation data, and preliminarily
evaluated its ability to observe inland water range, depth, and
daily time-scale depth changes. The results show that the SNR of
CYGNSS is highly correlated with the depth and extent of shal-
low vegetated waters, providing a potential solution to the limi-
tations of traditional RS methods. GNSS-R technology (particu-
larly the CYGNSS) has shown great potential for monitoring sur-
face water under dense vegetation and clouds. Downs etal. [165],
[166] combined CYGNSS data, ancillary information, and mod-
eling to predict inundated areas under vegetation and create
seasonal maps. The ability of CYGNSS to discriminate between
different vegetation types was verified through comparison with
validation data and other RS methods. In situ methods for
wetland monitoring can be supplemented by utilizing the high
observation frequency and undervegetation observation capa-
bility of CYGNSS. Table VIII summarizes and compares sev-
eral main areas, including observational satellite data, GNSS-R
observables, spatial coverage, ancillary data, reference data,
retrieval models (or methods), and specific details of the main
results.
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TABLE VII
RETRIEVAL APPROACH AND ACCURACY OF CURRENTLY PUBLISHED SPACEBORNE GNSS-R INLAND WATER DETECTION STUDIES!
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Source Satellites data GNSS-R Spatial Coyerage Reference Data Retrieval Models (Methods) Main Results
Observables (Resolution)
. . MODIS . . . . .
Gerlein-Safdi and CYGNSS Reflectivity 0.01° x 0.01° watermask An image processing This algont}}m can be used to draw ?hon-tezm maps using monthly or seasonal
Ruf [137] product algorithm data to monitor short-term hydrological phenomena such as seasonal floods.
. TDS-1, CYGNSS raw This study demonstrates the potential of GNS S-R technology in monitoring
Li etal. [143] SNR .
IF data - - - extremely dense wetlands on satellite platforms.
The proposed method can detect 95.4% and 93.3% of water bodies in the Congo
SNR, N .
Ghasemigoudarzi Kurtosis Congo and Amazon Global Surface and Amazon watersheds, respectively. For the Congo and Amazon basins, the
tal. [139] CYGNSS maxim m basins (0.01° x Water data RUSBoost water detection accuracy of the RUSBoost- based classifier has improved by 3.9%
ctal um, 0.01°) © and 14.2% respectively compared to the inland water detection method based on
and variance i i
lmgg_e processing.
Loria et al. [74]; i . . ‘When designing a retrieval algorithm for drawing wetland area maps,
Zavorotny et al. CYGNSS raw IF data SNR Amazon river, Lake MODIS SNR method consideration should be given to the changes in peak reflection power of inland
Tlopango watermask data . :
[142] water bodies caused by scene heterogeneity.
Al-Khaldi et al. CYGNSS Powerratio  Global (from 1 to 3 Landsat water Threshold method based on  Compared to Pekel water masks from Landsat images, the probability of accurately
[144] (PR), SNR km) masks PR and SNR detecting many water bodies of interest exceeds 80%.
Normalized EDEN water The estimation of surface water probability by CYGNSS also has corresponding
Morris et al. [145] CYGNSS Logistic regression model uncertainty, which can be used to integrate CYGNSS data with other observation
SNR - depth product data
. . Binary water This method has the potential to reliably detect changes in the surface water range
Wilson-Downs et Normalized . . mask formed . . . .
CYGNSS Amistad reservoir N SNR method below 4 square kilometers, corresponding to a 3% in-crease over the baseline
al. [111] SNR from landsat oxtont
images .
GSW and Cover When compared with GSW 19 (plus World Cover 2020), the OA was 0.959
Amazon and Congo 20200100 (0.965) and 0.976 (0.981), the mIoU was 0.785 (0.817) and 0.641 (0.728), and the
Yanet al. [146] CYGNSS refletivity River. & watermask GA-LinkNet F1 scores were 0.879 (0.899) and 0.781 (0.843) for the Amazon and Congo
ers rzduc; regions, respectively. The results were in better agreement with the combined
P water masks whose water coverage was higher.
Bhattacharya ct al. Spire Global, Louisiana and ) This study shows potgr}tlal application of GNSS-R datasets along wlth optical and
N . SNR P _ Threshold assignments radar sensors to classify SPs over land and water to generate maps with water extent.
Sentinel-1, Sentinel-2 Mississippi
Africa, East China, An RF water An RF water mapping algorithm is developed with multiple statistical features as
Liuetal. [125] CYGNSS ESR North GSW . N inputs. The presented algorithm outperforms the benchmark across the board.
. mapping algorithm
America(lkm)
Residule By comparing to the GSWE surface water boundaries, the disagreements of the
Spire Global, carrier phase GNSS-R ones based on Spire data are typically less than 0.73 km, with a mean of
Zhang et al. [148]; CYGNSS; Spire amd carrier Lake Okeechobee 0.28 km and a standard deviation of 0.24 km. As for CYGNSS, the differences are
Scottet al. [149] GNSS-R Grazing phase - - mainly less than 0.43 km, with a mean of 0.18 km and a standard deviation of 0.16
Angle Data hereafter, km; There is a positive relationship between the SNR and circular length
SNR; SNR with the amount of water ined in the GNSS-R signal footprint.
Kossieris et al. Amazon River. The Accuracy of the DBCAN algorithm is 90.3%, while Recall is 83.1% thanks to
. CYGNSS SNR L Unsupervised ML algorithms  the lowest number of FN among the clustering algorithms. The Precision is 19.6%.
[140] Congo River - .
Also, Recall is 79.2%.
GNSS-R data from Shape-based alg_onthrns offer similar detection performance, with the Level_»l PR
. . . . and entropy having the best performance. Another advantage of these algorithms
Loria et al. [150] simulations and the SNR SAR images . X
Lo - - over the DDM PMR s the lack of requirement for an accurate DDM power
CYGNSS mission. o S S .
calibration, which is difficult to attain in practice.
Over the Congo
basin; a Surface
Water and Ocean
Topography . .
Carreno-Luengo ct CYGNSS, Raw IF (SWOT) calival The Pekel ) We Qnd lha} GPS slg‘nals'are cohgreml.y reflected from surface water bodles‘ )
SNR S surface water A 2-D Boolean algorithm despite the impact of the intervening biomass cover. Results show the capability to
al. [151] CYGNSS site in the Amazon . . .
. mask detect and image small water bodies under heavy vegetation i.e. 400 ton/ha.
basin; the Pacaya-
Samiria region; and
the Pantanal
wetlands
P The threshold levels (one for each observable) at the optimum operating points of
Carreno-Luengo et CYGNSS raw IF data E;‘Eg;l?’ Full entropy Efull method the ROC curves can be used for coherence detection and, thus, for inland water
al. [141], [152] T - - 124 bodies tracking; Results show that the fast entropy Efast method provides a
SNR
performance comparable to the full entropy Efull.
Lake Victoria The probability of detection (POD) was 90.6%, the false positive rate (FPR)
Chang et al. [153] CYGNSS SNR (0.01° % 0.01°) _ DPSD method reaches 8.5%, while the false negative rate (FNR) for pixels identified as water in
i i GSW but not in CYGNSS accounts for only 0.9%.
SWAF-HR's CYGNSS outperforms SWAF-HR and Chapman in recall, NPV, F1 Score, IoU,
minimum and and MCC. With an NPV of 0.97, it accurately recognizes land grid cells during
Setti and Tabibi - Amazon River maximum : maximum inundation. The IoU of 0.52 indicates a 52% overlap with SWAF-HR in
[154] CYGNSS reflectivity Basin inundation maps, CYGNSS-derived method water cell detection. Compared to SWAF-HR, CYGNSS detects approximately
Chapman 27% more water. Compared to Chapman, it shows a 56% increase at maximum
product extent and 19% at mini extent.
The space-borne GNSS-R
. . PR method, and the The retrieval errors are all smaller than 0.7 km (the spatial resolution distance of
Zhangetal. [155] CYGNSS raw IF data PR, DLR Qinghai Lake - spaceborne GNSS-R DLR high spatiotemporal resolution DDM), which satisfies the retrieval accuracy.
method
the f:omiguous The observation systems collectively classified 2.3% of the study area as inland
United States Landsat water water. Of the pixels classified as inland water, 14.2% were classified by all three
Pavuretal. [156] CYGNSS, MODIS, SNR betw_een mask. MODIS Confusion matrices and observation systems. 30.6% were classified by at least two observation systems:
. Landsat approximate watér mask related statistics 18.2% by Landsat and MODIS, 6.5% by Landsat and CYGNSS, and 5.9% by
latitudes of 24° N : CYGNSS and MODIS. The remaining 55% of inland water pixels were classified
to37° N by only one system: 29% by CYGNSS, 19.4% by Landsat, and 6.8% by MODIS.

1 ESR: cquivalent specific reflection, DLR: effective arca delay distance.

CYGNSS data are complementary to existing observation
platforms, and the cross validation of CYGNSS retrieved wet-
lands with multiple datasets and the fusion of multi-source RS
data to obtain higher spatial and temporal resolution surface
water monitoring results must be the focus of future research.
Meanwhile, the focus should be on the dynamic RS of wetlands
based on multisource spaceborne GNSS-R data to better monitor

the dynamic changes of wetlands.

VIII. DETECTING FIRE DISTURBANCES IN FORESTS USING

SPACEBORNE GNSS-R

In recent years, global climate change has significantly in-
creased the incidence and severity of forest disturbance caused
by fires, leading to significant changes in forest ecosystems and
affecting the ability of forests to provide resources for human

needs.
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TABLE VIIT
RETRIEVAL APPROACH AND ACCURACY OF CURRENTLY PUBLISHED SPACEBORNE GNSS-R WETLAND DETECTION STUDIES!

Source S?S;:; S Of;s]:rsvsa;a‘?es Spatial Coverage Ancillary data Reference Data Retrieval Models (Methods) Main Results
QuikSCAT
Aircraft Mississippi River wet surface Flooded wetlands can be identified under different vegetation
Nghiem et al. Reflected PP extent, conditions, including dense rice forests and dense tall tree forests.
data, TDS- and adjacent _ _ oo N N .
[157] 1 power watersheds MODIS, However, the capabilities provided by optical sensors and single
Landsat station radars are limited
NDVI
Peru’s Ucayali- Ground measurements of high biomass and canopy covered areas
Jensen et al. SNR, LES, Marafion region of confirmed that SAR did not identify submerged areas. The
[126] CYGNSS TES the Western SAR Data - - coordination of GNSS-R and L-band SAR has the potential for wider
Amazon applications
GAP/LANDF
Everglades: a IRE National
natural region of Terrestrial The time sampling added by CYGNSS can supplement mature
Morris et al. tropical wetlands in Ecosystems Pekel surface water technologies that cannot capture dynamic wetland scenes. GNSS
[161] . CYGNSS SNR the southern 2011 z’ialaset' dataset Based on SNR threshold based technologies are less sensitive to vegetation and more sensitive
portion of the EDEN wate; to saturated soil, making them very useful in situations where other
U.S.A. state of technologies are limited.
Florida depth
Reflectivity,
peak SNR, Pacaya-Samiria
. TES, LES, Natural Reserve, a SRTMQO . . o
Rodriguez- width of the tropical wetland DEM; GFW The accuracy of submerged vegetation areas is 69%, the accuracy of
Alvarez et al. CYGNSS waveform. comzlcx located in biomass PALSAR-2 MDTR open water areas is 87%, and the accuracy of non submerged areas is
113 m, ! i D
{13 generalized the Peruvian (Mdjlilj;tr::m 9%
linear Amazon 8 P
observable
The correlation between GNSS-R seasonal products and Landsat
Setti et al Effective GPM Landsat GSWE seasonal GSWE seasonal products is 0.74; The GNSS-R retrieval results have
115 ; CYGNSS surface Brazilian Pantanal precipitation water body product; Based on reflectivity threshold good consistency with the SWAMPS map (correlation of 0.88).
(3] reflectivity data SWAMPS wetland maps Compared with SWAMPS, the total inundation range is usually
overestimated, with an average overestimation rate of 19%.
G/Lo(l;gl;t:a‘ss GIEMS surface water
MODISp, extent; JERS dual-season Compared with the MODIS and GIEMS datasets at the regional scale,
Zeiger et al. - o . wetland classification; S the RMSD of the CYGNSS method is 20% and the correlation is 0.60.
[163] CYGNSS Reflectivity Tropics ];ﬁ\g’sil\gél; MODIS surface water; Linear regression CYGNSS displays a higher level of spatial detail than previously
lar’ld cover PALSAR flood maps; obtained through GIEMS.
v RFW dataset
maps

"EDEN: everglades depth estimation network; MDTR: multiple decision tree randomized algorithm; PALSAR-2: phased-array L-band synthetic aperture radar; SRTM90: Shuttle Radar Topographic Mission 90 m resolution; GFW: global forest watch; GSWE: global surface water
explorer; SWAMPS: surface water microwave product serics, ESA: European Space Agency; CCI: climate change initiative; PALSAR: phased-array type L-band synthetic aperture radar; RFW: regularly flooded wetland; RMSD: root-mean-square deviation.

GNSS-R provides a new observation method for fire monitor-
ing, which complements traditional fire monitoring methods by
increasing the temporal and spatial coverage of burned areas. In
2021, Santietal. [167] assessed the sensitivity of GNSS-R obser-
vations (SNR and equivalent reflectivity) to forest disturbances,
developed an algorithm for identifying burned areas based on
CYGNSS data, and validated it in the fire-affected equatorial
African region of Angola using ten years of fire-affected data
from ESA. CCI burned area maps were validated as reference
data, confirming the potential of detecting fire-induced forest
disturbances based on CYGNSS constellations. Despite the
simplicity of the methodology, the proposed approach demon-
strates the feasibility of using signals of opportunity for forest
disturbance monitoring. To improve the detection algorithms,
subsequently, classifiers based on SVM and RF have subse-
quently been implemented to distinguish burnt/unburned pixels
inimages. In addition, regressors based on ANN, RF, and support
vector regression have been used to estimate the proportion of
burnt areas within pixels [168]. This algorithm takes CYGNSS
observations (i.e., SNR and equivalent reflection) as inputs and
as auxiliary information for incidence angle and forest AGB. All
algorithms are able to classify with an overall accuracy of over
98%, while for the change detection method that exhibits the
worst performance (i.e., the best threshold detection combining
SNR and equivalent reflection), the accuracy of identifying burn
areas is about 40%. For all other methods, the accuracy is
between 70% and 80%. The extremely imbalanced dataset has a
percentage of burned pixels lower than 0.5% of the total dataset,
which poses significant limitations for training. This may have
affected the retrieval to some extent. These machine-learning
algorithms demonstrate the feasibility and potential of using

spaceborne GNSS-R technology for forest disturbance mon-
itoring. Therefore, CYGNSS or other GNSS-R satellites can
serve as valuable supplements to current and future missions
to increase the time coverage of observations of burned areas.
In order to expand the generalization ability of the proposed
algorithm, auxiliary information such as topography and land
cover should be taken into account, and their impact evaluated.
Within this context, future research will focus on other areas
with more complex topography [169].

IX. RETRIEVING LAND TOPOGRAPHY USING SPACEBORNE
GNSS-R

Retrieval of topography parameters based on GNSS-R is
also a new research topic. Carreno-Luengo et al. [170] found
a functional relationship between the DDM of CYGNSS and
several topography parameters of a digital elevation model
(DEM). They used a target area in South Asia to observe the
surface curvature. The results show that the trailing edge and
albedo are closely related to the topographic humidity index.
Meanwhile, Carreno-Luengo et al. [171] investigated the effect
of rough topography on GNSS-R observations. The results show
that the topography ruggedness index and profile curvature have
amoderate to strong effect on the CYGNSS-derived trailing edge
and low elevation reflectivity. Stilla et al. [172] used CYGNSS
GNSS-R observations for the first time for characterizing the
surface properties of the Sahara desert. It was shown that a
strong correlation between roughness parameters and reflectivity
can be used to characterize surface properties. By compari-
son with SAR measurements, reflectance is found to exhibit
a robust correlation with roughness. An empirical relationship
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between reflectance and roughness was established using ground
measurements, and a map of four types of roughness in the
Sahara was proposed. Further research is needed in the future on
the interpretation of dune signals and validation with physical
models. Dente et al. [173] presented an upgraded version of
the soil and vegetation reflection simulator (SAVERS) simulator
for modeling GNSS-R signals received by spaceborne sensors.
The simulator estimates the SR signal from topographic data,
considering parameters such as local elevation, slope and slope
direction, as well as factors such as humidity, roughness, and
vegetation properties. Through validation, it was found that
topographic variations significantly affect the reflectivity, and
the simulation results match the measured results. The simulator
was also used for sensitivity analyses, and the results showed
that SM was insensitive to topography, but biomass showed
different saturation effects in different topographies. Therefore,
it is recommended that the SM and biomass retrieval algorithms
should consider the effects of topography and that the design of
the spaceborne GNSS-R instrument should take into account
the characteristics of signal reception in mountainous areas.
Song et al. [174] explored the effect of topography on spatial
GNSS-R geometry computation and proposed a new strategy
for geometry computation. The strategy is based on the unique
properties of ellipsoids, which, together with a fast empirical
model, significantly improves the computational efficiency. The
methodology is validated by a single trajectory study of the
South West Greenland ice surface, which shows that neglect-
ing slope and orientation leads to significant theoretical point
errors. The study also points out the possible errors associated
with large-scale slopes and the impact that extreme topographic
slopes of the ocean may have on high-precision carrier-phase al-
timetry under grazing angle conditions, which need to be further
considered in future precision altimetry studies. Later, Campbell
et al. [175] developed a model to describe the effect of topog-
raphy on DDMs. Wang and Morton [176] used GNSS-R for
land surface altimetry applications. They processed CYGNSS
raw IF data using adaptive hybrid tracking. They also studied
semicoherent land reflection events over Vietnam and coherent
reflections over the Orinoco River, and the results demonstrated
pseudorange-based land altimetry accuracy to the meter level
and inland water body surface height retrieval accuracy to the
centimeter level. The current study demonstrates the feasibility
of spaceborne GNSS-R land topography retrieval; however,
there are relatively few related studies that are in the exploratory
stage and there is much room for future development.

X. SOME FURTHER APPLICATIONS

In addition to the hot topics of research on spaceborne GNSS-
R land applications reviewed in the previous sections, some
compelling emerging applications are also of great value for
scientific research, such as retrieval of inland water surface
heights [159], [177], [178], [179], river slopes [180], [181],
and river widths [182], [183], monitoring of lake ice [184],
estimation of wind and wave heights over inland waters [185],
[186], and monitoring of reservoir water levels [187]. In 2018,
Li et al. [159] demonstrated the feasibility and performance
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of the carrier phase-delay altimetry method for lake altimetry
with the CYGNSS Raw IF dataset collected on Qinghai Lake.
Zhang and Morton [177] estimated the water levels of five lakes
[Salton Sea (33.3° N, 115.7° W), Lake Okeechobee (26.9° N,
80.9° W), Tonle Sap Lake (12.8° N, 104.1° E), Kainji Lake
(10.2° N, 4.5° E), and Lake Guri (7.3° N, 62.9° W)] using
the coherent reflectance-dominated DDM for the years 2020
to 2022. Compared with the radar altimetry observation results,
the overall deviation of CYGNSS results is about 2.0 m, the
root-mean-square difference is about 3.1 m, and the unbiased
root mean square difference (ubRMSD) is about 2.4 m. This
study demonstrates the feasibility of spaceborne GNSS-R for
measuring inland water levels. Existing work also highlights
the need for dual-frequency receivers to correct for ionospheric
effects to achieve highly accurate altimetry. In 2022, Wang and
Morton used the CYGNSS Raw IF dataset to estimate river
slopes, and the results demonstrated the potential of CYGNSS
to provide high temporal and spatial resolution observations
of river slopes [181]. In 2023, Zhang et al. [155] also used
CYGNSS Raw IF data to study lake boundary detection for the
Qinghai Lake area in 2018, and compared the retrieval detection
results with the Google Earth topography distribution results;
the retrieval results had an error of about 0.5 km, which proved
that the CYGNSS Raw IF data have good application prospects
in lake boundary detection. Warnock and Ruf [182] analyzed
the response of different flow sections of the Pascagoula River
using spaceborne GNSS-R raw IF signals and deduced the signal
widths by analyzing the widths of the peak signals from the
center of the river to either side of the peak. The results show
that the associated GNSS-R width of the river is highly corre-
lated with the observed flow and that there is an approximately
monotonic relationship between the two. This demonstrates the
potential of GNSS-R-based methods as a means of estimating
river flow and width, providing important inputs to remotely
sensed flow retrieval algorithms. However, further research on
a wider range of datasets is needed to validate the robustness of
the method and the limitations of its applicability. More recently,
Warnock et al. [183] described the use of CYGNSS to measure
uncertainty in river widths to advance research on GNSS-R as
a characterization of inland water bodies. The accuracy of the
forward model was demonstrated by comparing the simulated
data with the actual observations, and the relationship between
river width and the measured peak SNR was analyzed. The
results indicate that in simple river scenarios, GNSS-R raw
IF signal data can measure rivers with a width of 160-192 m,
with an error of about 3%. In addition, simulation analysis was
conducted on the lake clutter near the river, and it was found
that about 500 m is the range where the lake has a significant
impact on the SNR of the river. Overall, the study presents a
robust modeling approach to estimate river widths within an
uncertainty of approximately 5 m. However, further research is
required to determine the limitations of retrieving river widths
from GNSS-R data and the effects of unconsidered factors. In
2023, Ghiasi et al. [184] used CYGNSS GNSS-R to monitor
lake ice phenology for the first time on Qinghai Lake on the
Tibetan Plateau. By analyzing GNSS-R SNR data from four ice
seasons, it was possible to detect the formation and melting
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of lake ice. The results of the study are consistent with the
MODIS image record and validate the capability of GNSS-R
for lake ice phenology monitoring. The study also revealed the
sensitivity of GNSS-R to lake melting, explaining the discrep-
ancy between GNSS signals and open water conditions deter-
mined by MODIS. This study demonstrates the potential of
GNSS-R as a platform for monitoring lake ice phenology and
suggests plans for further research, including observations of
other lakes and the use of methods such as ML to improve the
monitoring of lake conditions. In addition, it is expected that
the use of spaceborne GNSS-R technology to monitor lake ice
thickness in the future is also very promising; although there
is no literature report so far, it is also a hot topic worth paying
attention to. Surface wind speed and wave height measurements
of inland water bodies using spaceborne GNSS-R have also
attracted the attention of some scholars. GNSS-R utilizes the
scattering properties of coherent signals to measure the surface
roughness of inland water bodies, especially the height of waves
caused by wind. The method can be used in conjunction with
wind-wave modeling to retrieve wind vectors and wave heights
in inland water bodies and has a wide range of scientific ap-
plications, including studies of nearshore ecosystems, climate
change impacts on inland water bodies, sediment resuspension,
biomass production, and fish habitats. The results show that the
coherent signal is highly sensitive to changes in water surface
roughness and can predict wave height changes for different
wind speeds and directions. The method of retrieving wind speed
was validated using data recorded by CYGNSS satellites and
good results were obtained [185]. However, for inland water
bodies with vegetation, the vegetation will influence the surface
roughness and further research is needed. At present, by com-
bining technologies such as passive GNSS-R, active SAR, and
radar sensors, it is possible to detect and characterize the wind
speed of small and medium-sized inland water bodies, providing
high spatial and temporal resolution wind speed data. These
techniques can use features such as water surface roughness and
dielectric properties to estimate wind speed and provide reli-
able results under different weather conditions and cloud cover.
However, further refinement and validation of the feasibility of
these methods is still required for inland water bodies smaller
than 100 km? [186], [188]. Past studies have demonstrated the
feasibility of using measurements from the NASA CYGNSS
mission to map inland water bodies. However, challenges remain
in monitoring the dynamic characteristics of water bodies, such
as reservoir storage levels. To this end, Brendle et al. [187]
explored alternative sensing methods based on the CYGNSS
Level-1 product, which allows for a finer estimation of reservoir
storage levels. By using data from three example reservoirs for
analysis, it was found that the detected water level is related
to the RMSE of the relative water level, with an error range
of 8%—-20%, depending on the complexity of the observation
scenario. The preliminary results demonstrate the potential of the
spaceborne GNSS-R system in reservoir water level monitoring,
with a correlation of approximately 86% with onsite data. It is
worth noting that the innovative application of using spaceborne
GNSS-R technology to monitor drought has also been reported
in recent works [189], [190]. In addition, utilizing spaceborne
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GNSS-R RS of algal blooms has become an interesting topic
[191], [192]. Lake algal blooms have become a serious environ-
mental problem caused by the excessive growth of plankton in
many water bodies, but current relevant personnel have not paid
enough attention. Further attention and research are still needed
in the future. It is worth mentioning that although spaceborne
GNSS-R is widely used for surface hydrological monitoring, the
research on the spatiotemporal response mechanism of GNSS
reflection signals to precipitation is still of limited attention
[193], which will also be an interesting topic in future research.

In 2023, Wang [194], [195] used Grazing-angle GNSS-R for
the first time to determine the tropospheric delay and water
vapor content by estimating the tropospheric delay using the
dual-frequency GPS signals collected by Grazing-angle from
sea-ice, ocean reflections, and compared it with the Sentinel-3
Ocean and Land Color Instrument measurements (OLCI) and
ERAS products, and showed that the GNSS-R method is in good
agreement with Sentinel-3 OLCI and ERAS. This technique
has good potential to complement existing methods and provide
high-precision and high-resolution observations of tropospheric
water vapor in open water and ice where water vapor measure-
ments are often difficult to obtain. Large inland waters tend to be
more prone to GNSS-R coherent signals; therefore, the author
can infer that the use of spaceborne GNSS-R techniques for
integrated water vapor retrieval over inland waters is expected
to be very promising, and needs to be further analyzed and
quantified.

GNSS-R has great potential for integration with other RS data
sources and ML technologies [196]. Integrating GNSS-R with
other RS data and ML technologies can provide complemen-
tary data sources, multidimensional information fusion, improve
spatial resolution, enhance prediction and early warning capa-
bilities, and achieve real-time monitoring and decision support.
This integrated method will become a focus of future research
and application, providing more comprehensive, accurate, and
timely information support for environmental monitoring, re-
source management, and disaster monitoring.

XI. DISCUSSION AND SUMMARY
A. Discussion

Small and inexpensive spaceborne GNSS-R satellites, such
as the CYGNSS, can be used for land RS because they offer
many benefits, including providing daily and daily-independent
weather measurements. However, these satellites have several
limitations. Compared with conventional RS satellites, the posi-
tions of GNSS transmitters and GNSS-R satellites are constantly
changing, leading to chaotic and random observations from the
Earth’s surface. In addition, these observations have different
spatial resolutions (depending on several factors such as terrain
and roughness) and revisit times. In addition, dense vegetation
can reduce the performance of these observations [43]. A promi-
nent drawback of CYGNSS is that it only scans the area with
an inclination between 38° N and 38° since this mission was
initially designed to monitor ocean and wind in the inner core
of tropical cyclones.
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Traditional radiometers typically provide lower time reso-
lution (two to three days) and are not sensitive to surface
roughness. However, these measurements are highly sensitive
to surface brightness and RFI. At present, the measurements
provided by the SMOS of the ESA and the SMAP of the
NASA are the main sources of large-scale SM monitoring or soil
freeze-thaw monitoring, with a spatial resolution of ~40 km and
a temporal resolution of two to three days [27]. In publications,
authors often take the average of GNSS-R (e.g., CYGNSS)
observation results on predefined 36 or 25 km grids for these
tasks to match them, thereby disrupting the inherent high spatial
sampling resolution of GNSS-R measurements. Compared to the
two, spaceborne GNSS-R can provide high spatial and temporal
resolution measurements.

Compared with other RS technologies (e.g., SAR and multi-
spectral (MS) RS), spaceborne GNSS-R has not yet reached
sufficient maturity in most land applications. Many research
works still focus on analyzing the sensitivity of GNSS-R signals
to geophysical parameters of interest (e.g., vegetation parame-
ters, soil freeze-thaw state, and precipitation). The feasibility
of using spaceborne GNSS-R for some applications has not
been fully evaluated. Therefore, the current research work is still
limited to quantitative analysis. Optical and thermal infrared RS
are limited by weather conditions and cannot work around the
clock. Microwave RS has overcome these limitations. Due to its
long wavelength, it has certain penetrability to rain clouds and
can operate under all weather conditions. L-band satellites such
as Japanese Earth Resources Satellite-1 (JERS-1), Advanced
Land Observing Satellite (ALOS), and ALOS-2 can be used for
vegetation monitoring, but their six-week time resolution still
limits their practical scientific applications. Due to the fact that
spaceborne GNSS-R is essentially a bistatic/multistatic radar
operating in the L-band, the significant advantage of using this
method to observe vegetation parameters compared to tradi-
tional single base radar is that the signal response to biomass is
not as easily saturated as single base radar. Therefore, using this
RS method to monitor vegetation parameters has advantages that
traditional RS methods cannot match. However, observing geo-
metric changes is one of the potential drawbacks of spaceborne
GNSS-R. Therefore, how to use the scattering characteristics un-
der different observation geometries and polarization conditions
to determine the optimal observation combination (observation
geometry and polarization), and develop quantitative retrieval
methods will be a focus of future research [28].

Other sources of uncertainty in the retrieval of land surface
geophysical parameters (such as SM and forest biomass, etc.)
by spaceborne GNSS-R may be related to calibration issues
(such as unknown changes in transmission power and antenna
gain characteristics), which have not been fully resolved in
the current mission [191]. It is necessary to mitigate these
fluctuations in order to achieve reasonable retrieval performance
of the target quantity. Therefore, appropriate calibration, noise
mitigation, and spatial and temporal aggregation strategies must
be implemented to optimize the final resolution of the product.
The existing work also solves the problem of requiring aux-
iliary data to retrieve target parameters to compensate for the
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influence of other features that affect the signal, including small-
scale surface roughness and terrain (which is common in RS).
The dual polarization GNSS-R observation has been proven to
be very useful on low platforms but has not yet been tested on
satellites, except for experiments using SMAP radar as a GNSS
receiver [197], [198], [199], [200]. The polarization application
of spaceborne GNSS-R has not yet been used in areas with
cryosphere and dense vegetation. The integration of all types of
GNSS constellations with new polarization schemes and higher
bandwidth signals will allow for better retrieval to estimate
several highly relevant land surface geophysical parameters,
such as inland water bodies, SM, wetlands, lakes, and vegetation
[201].

Compared with other RS technologies, spaceborne GNSS-
R has certain advantages and characteristics in terms of the
data acquisition cost, spatiotemporal resolution, measurement
parameters, and applications, as well as data processing and
interpretation. However, different RS technologies may be more
applicable in specific application scenarios, so it is important to
comprehensively consider the advantages and disadvantages of
various technologies and choose appropriate RS technologies
for analysis and application. Compared to spaceborne GNSS-R,
SAR and MS RS can provide higher spatial resolution, typi-
cally at the meter level. For retrieval problems with alternative
solutions (such as SM using microwave radiometers such as
SMOS, Aquarius, and SMAP, soil freeze-thaw monitoring using
SMAP or SMOS microwave radiometers, inland water detection
using the GFM data derived from Sentinel-1 radar imaging,
SWAMPS, global surface water (GSW), and global surface
water dynamics), it is worth considering how these systems
benefit from each other, that is, how they complement each
other.

B. Summary

This article provides a comprehensive review of the appli-
cation research progress in the field of spaceborne GNSS-R
land RS, including the current development status of spaceborne
GNSS-R constellations and land application fields, SM and
soil salinity retrieval, vegetation monitoring, soil F/T, flood
detection, inland water bodies, wetland dynamics, forest fire
disturbance detection, land topography measurement, and fu-
ture innovative application directions. In addition, this article
also provides an overview, advantages, and future application
prospects of China’s first TM-1 GNSS-R constellation that
is compatible with four navigation systems: BeiDou, GPS,
GLONASS, and Galileo.

In recent years, spaceborne GNSS-R as an emerging RS
technology has made remarkable progress in the field of land
RS. However, in order to be comparable to conventional RS
techniques, more advanced spaceborne GNSS-R modeling algo-
rithms for different applications need to be developed in the fu-
ture or combined with other techniques to obtain improved prod-
ucts. At the same time, conducting ground-based and airborne
experiments to improve basic theories and models (such as elec-
tromagnetic scattering models for L-band signals), developing
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optimized designs for the next generation of spaceborne GNSS-
R instruments, and conducting in-orbit experiments to achieve
multifrequency/multisystem, multipolarization, and multiobser-
vation modes, thereby improving observation performance in
terms of accuracy, accuracy, and spatiotemporal resolution. In
addition, the current research on land RS applications is focused
on using GNSS-R data from CYGNSS/TDS-1/Spire satellite
missions. In the future, advanced modeling algorithms and new
products can be developed by comprehensively utilizing other
multisource spaceborne GNSS-R (such as FY-3E/3F/3G, BF-1
A/B, TM-1, and HydroGNSS) missions and multisystem GNSS
(such as BeiDou, GPS, GLONASS, Galileo, QZSS) reflection
signals. Combining with the needs of land RS applications,
more valuable information and insights can be provided for
environmental research, resource management, and natural dis-
aster monitoring by developing advanced modeling algorithms
and new products. In addition, innovative application directions
should be the focus of research to explore the potential of
spaceborne GNSS-R in new areas.
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