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Semi-Supervised Change Detection With
Fourier-Based Frequency Transformation

Ze Zhang ¥, Xue Jiang

Abstract—Semisupervised change detection (CD) methods have
garnered increasing attention due to their capacity to alleviate
the dependency of fully-supervised methods on a large number
of pixel-level labels. These methods predominantly leverage gen-
erative adversarial network architecture and consistency regular-
ization technology. However, they encounter challenges associated
with background noise from cross-temporal images. In this arti-
cle, we propose a novel multilevel consistency-regularization-based
semisupervised CD approach that incorporates Fourier-based fre-
quency transformation and a reliable pseudolabel selection scheme.
Specifically, we replace the low-frequency spectrum of one tempo-
ral image with a frequency domain transformation derived from
the corresponding image in the same bitemporal remote sensing
image pair, enhancing the model’s capability to discern meaningful
changes amidst background noise, thereby contributing to more
robust CD. Furthermore, excessively high pseudolabel thresholds
in consistency regularization methods may result in the underuti-
lization of valuable unlabeled data. To address this issue, we design
a straightforward sigmoid-like function to dynamically adjust the
selection threshold for the reliable pseudolabel selection scheme.
This strategy takes into consideration the learning status through-
out the entire training process, ensuring more effective utilization
of unlabeled information. We demonstrate significant performance
improvements across three widely-used public datasets, namely,
LEVIR-CD, WHU-CD, and CDD. Notably, on the three datasets
with only 1% labeled data, our method achieved an IoU“ of 71.29 %,
63.90 %, and 51.00 %, outperforming existing state-of-the-art meth-
ods by 2.84%, 1.21%, and 0.98 %, respectively. These results ro-
bustly substantiate the effectiveness of our approach, showcasing
its potential in scenarios where labeled data is limited.

Index Terms—Change detection (CD), dynamic threshold,
Fourier-based frequency transformation, remote sensing, semi-
supervised learning.

I. INTRODUCTION

HANGE detection (CD) plays a crucial role in remote
C sensing image (RSI) processing, which is the quantitative
analysis of land use changes from RSIs captured at different time
periods. Beyond its fundamental role, CD finds application in
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various real-world scenarios, such as disaster assessment [ 1], [2],
[3],1and cover recognition [4], [5], [6], and forest monitoring [7],
(81, [9].

Over the past decades, the development of deep learning (DL)
has led to significant advancements in the CD community. Many
sophisticated CD methods [10], [11], [12], [13] leverage con-
volutional neural networks (CNNs) [14], [15] and Transform-
ers [16], [17] due to their exceptional capabilities in extracting
discriminative features from dual-temporal RSIs, demonstrat-
ing outstanding performance. Nevertheless, these methods typ-
ically necessitate a substantial collection of manually annotated
change labels, which is both time-consuming and expensive.
On the contrary, unsupervised CD methods [18], [19], [20]
often employ generative models, such as generative adversarial
networks (GANs) [21], to artificially generate a training dataset
for model training within a supervised pipeline. However, the
main drawback of the aforementioned unsupervised CD meth-
ods is that they tend to detect more unchanged areas, as no
relevant information is provided to the model. Consequently, the
practical application in real-world scenarios faces considerable
challenges.

To tackle the above issues, researchers have increas-
ingly turned to adopting semisupervised learning technolo-
gies [22], [23], especially some semisupervised semantic seg-
mentation methods. Semisupervised methods typically require
limited labeled data and exploit the potential of the remaining
unlabeled data. The current state-of-the-art semisupervised CD
methods predominantly rely on GAN architecture and consis-
tency regularization technology. GAN-based methods [24], [25]
employ a segmentation network to modify the generative net-
work, generating initial predictions. However, these methods
encounter difficulties in stabilizing the training process and
achieving convergence in training loss. In contrast, consistency
regularization-based methods [26], [27], [28], [29] harness the
power of unlabeled data by subjecting them to diverse perturba-
tions. By doing so, these methods aim to train a model capable
of maintaining consistency and robustness in the face of such
perturbations.

Despite the significant performance gains achieved by con-
sistency regularization-based methods in semisupervised CD,
several inherent challenges persist, limiting their practical ef-
fectiveness. Specifically, two main issues are identified.

1) Cross-temporal background noise: In the context of the
CD task, a pair of bitemporal images serves as input,
with the model aiming to predict the difference between
them. However, the significant time gap between images
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captured in different temporal periods introduces varia-
tions in seasons, weather conditions, and time, leading
to noticeable changes in color, brightness, and other at-
tributes within the image pair. As a result, the distribution
of land cover samples in these two images appears dis-
similar and irregular in the chromatic space, regardless of
whether changes have occurred or not. This noise poses a
challenge as it can mislead the model by interpreting noise
differences as changes, resulting in erroneous predictions.

2) Underutilization of unlabeled data: Methods utilizing
consistency regularization face challenges with unreliable
pseudolabels, especially in the initial stages of model
training, a phenomenon known as confirmation bias [30].
Current semisupervised learning algorithms [22], [31]
often employ a predefined threshold to generate pseu-
dolabels exclusively for high-confidence unlabeled data.
However, this approach may result in the underutilization
of a significant amount of unlabeled data information,
proving less beneficial for effective model training [32],
particularly in binary classification prediction tasks [33].

To this end, we introduce a novel multilevel consistency

regularization-based semisupervised CD method for RSIs. Our
approach involves training a perturbation-invariant model by
applying perturbations at various levels [34], [35], including the
sample level and feature level. To effectively tackle the identi-
fied issues, we propose two innovative strategies: Fourier-based
frequency transformation and a reliable pseudolabel selection
scheme. Specifically, drawing inspiration from FDA [36], which
suggests that low-level amplitude variations can occur with-
out significantly impacting the perception of high-level seman-
tics, we present a straightforward solution: replacing the low-
frequency amplitude spectrum of one temporal image with that
derived from the corresponding image in the same bitemporal
RSI pair. Furthermore, we devise a straightforward sigmoid-like
function to dynamically adjust threshold, actively integrating
perplexing unlabeled data into model training, thus enabling the
selection of more reliable pseudolabels.

In summary, the main contributions of this article are as

follows.

1) Innovative Fourier-based Frequency Transformation: We
introduce a novel approach by integrating the Fourier-
based transformation strategy into the semisupervised
framework as a form of data augmentation. Specifically,
we selectively replace the low-frequency amplitude infor-
mation of one image in a bitemporal RSI pair with the cor-
responding information from the other image. The key to
this strategy lies in adjusting the background distribution
to align the low-frequency information of the bitemporal
images, effectively reducing the impact of noise on the
CD process.

2) Dynamic Thresholding for Reliable Pseudolabel Selec-
tion: To optimize the effective utilization of unlabeled
data, we propose a sigmoid-like function that dynamically
adjusts the threshold for reliable pseudolabel selection.
This adaptive mechanism considers the learning status
throughout the training process, ensuring a more effective
integration of unlabeled data.
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3) Experimental results indicate that the proposed method
can improve the model performance in comparison to
several state-of-the-art methods on three widely used CD
datasets. Notably, our method introduces these enhance-
ments without necessitating the addition of extra training
parameters.

II. RELATED WORK

In this section, we will provide a concise overview of pertinent
research in CD, semisupervised semantic segmentation, and
semisupervised CD.

A. Change Detection

Traditional CD methods predominantly employ feature dis-
parities and pixel pair ratios as input, identifying changes
through threshold-based strategies. For instance, change vector
analysis [37] performed differencing operations on data from
different periods of images to obtain the variation of each pixel.
Deng et al. [38] employed principal component analysis to en-
hance the change information derived from stacked multisensor
data for the purpose of classification. Tang et al. [39] proposed
an object-oriented CD method grounded in the Kolmogorov—
Smirnov two-sample test.

In recent years, with the advances of DL, DL-based CD meth-
ods have witnessed continuous improvements. Daudt et al. [10]
presented three archetypal CD architectures utilizing fully con-
volutional network [40]. In these architectures, Siamese net-
works are utilized to extract features from RSI pairs, which
are then employed to predict the change maps through feature
fusion. Fang et al. [11] introduced a pioneering general CD
architecture, named MetaChanger, characterized by a set of
alternative interaction layers integrated into the feature extractor.
Recent works [41], [42], [43], [44], [45] also emphasized noise
suppression and boundary optimization. For example, Wang
et al. [44] introduced a two-branch multitask framework of
CD and superpixels to alleviate edge blurring. In addition to
CNN-based approaches, transformer-based methods have been
extensively investigated owing to the potent global attention
mechanism inherent in transformers. Chen et al. [12] introduced
the bitemporal image transformer to proficiently model contex-
tual information in the spatial-temporal domain. TransY-Net,
introduced by Yan et al. [13], aimed to enhance feature extraction
globally and integrate multilevel visual features in a pyramid
structure. Besides, the evolution of diffusion models [46] has
led to the introduction of generative methods into the realm of
CD. A pretrained denoising diffusion probabilistic model on mil-
lion off-the-shelf RSIs was leveraged to employ the multiscale
feature representations in DDPM-CD [47].

While fully supervised CD methods have shown outstanding
performance, their reliance on a large volume of ground-truth
change labels imposes significant time and labor constraints, re-
stricting their practical applicability in real-world settings. As an
alternative approach, researchers have turned to semisupervised
techniques to alleviate the demand for extensive labeled data.
Notably, the application of semisupervised semantic segmen-
tation methods to CD tasks has attracted considerable attention
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due to its potential to enhance efficiency and diminish annotation
requirements.

B. Semi-Supervised Semantic Segmentation

In contrast to the substantial manual annotation demands of
fully-supervised methods, semisupervised semantic segmenta-
tion methods maximize the utilization of unlabeled data. Nu-
merous semisupervised semantic segmentation algorithms have
been proposed, encompassing GAN-like models, pseudolabel-
ing methods, and consistency regularization methods, all of
which have yielded notable results even with limited labeled
data.

For example, GAN-like framework was initially utilized
in [48] to address semisupervised scenarios. This framework
was designed to extract knowledge from a substantial amount of
unlabeled data and generate synthetic images for training. Mittal
et al. [25] introduced s4GAN, which replaced the conventional
generative network in classical GANs with a segmentation
network. It also incorporated an additional processing branch
wherein a classifier is trained to filter the obtained segmentation
maps. Vu et al. [49] employed the entropy-based method known
as AdvEnt, incorporating entropy loss and adversarial loss
for unsupervised domain adaptation in semantic segmentation.
Pseudolabeling methods iteratively generate pseudolabels and
apply self-training process. Yang et al. [50] incorporated strong
data augmentation techniques into the self-training process to
enhance the selection of more accurate pseudolabels. To ad-
dress the distribution change induced by strong augmentation,
distribution-specific batch normalization was proposed in [51].
Built upon the assumption of smoothness [52], consistency
regularization methods excavate the potential of unlabeled data
via incorporating diverse perturbations to them, and training a
perturbation-invariant model. In this context, Chen et al. [53]
enforced consistency on two segmentation networks that shared
the same architecture but were initialized with different random
weights for the same image. Yang et al. [54] proposed a dual-
stream unified perturbations method that exploited both sample-
level and feature-level perturbations to enhance model training.

C. Semisupervised CD

To alleviate high dependence on manual annotations, semisu-
pervised CD methods pay more attention to the effective utiliza-
tion of unlabeled data. Existing semisupervised CD methods
primarily fall into three categories: metric learning-based, GAN
architecture, and consistency regularization-based approaches.
For instance, Bovolo et al. [55] introduced a novel semisu-
pervised CD approach for multispectral RSI. This is achieved
through the utilization of a binary semisupervised support vec-
tor machine (SVM) classifier accomplished by a selective
Bayesian thresholding. Subsequently, Peng et al. [24] introduced
SemiCDNet, a GAN-based method. In this approach, a seg-
mentation network is employed to generate initial predictions,
including entropy maps, and two discriminators are utilized to
ensure the consistency of feature distribution between segmen-
tation maps and entropy maps for both labeled and unlabeled
data.
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Recently, numerous researchers have proposed various
semisupervised CD methods based on consistency regulariza-
tion, achieving state-of-the-art results. Bandara and Patel [26]
introduced RCR, where they devised an unsupervised consis-
tency loss alongside the supervised cross-entropy loss [56].
This is achieved by imposing constraints on the consistency
of the output change probability map for a given unlabeled
bitemporal RSI pair under a few random perturbations applied
to the feature difference map. Inspired by contrastive learning,
Wang et al. [27] introduced the reliable contrastive learning
method for semi-supervised CD. In this approach, they designed
a novel contrastive loss specifically focused on changed areas.
Furthermore, to address confirmation bias [30], they leveraged
the uncertainty of unlabeled data to exclude unreliable pseu-
dolabels. Zhang et al. [28] further introduced a progressive
semisupervised CD method named feature-prediction alignment
(FPA) with physical meanings. In this work, they integrated
class-aware feature alignment (FA) and pixel-aware prediction
alignment (PA) to diminish the feature difference within the
same classes and reduce the prediction uncertainty under differ-
ent image augmentations. Addressing the challenges of rotation
nonequivariance and imbalanced distribution in semisupervised
CD tasks, Zhang et al. [29] simultaneously applied consistency
learning to rotated unlabeled data for reducing rotation incon-
sistency and employed uncertainty-based classwise weighting
to alleviate imbalanced distribution.

III. METHODOLOGY

This section begins with an exploration of the preliminar-
ies and the overarching architecture of the proposed method.
Subsequently, we provide detailed explanations of two innova-
tive strategies: Fourier-based frequency transformation and the
reliable pseudolabel selection scheme. Finally, we unveil the
comprehensive loss function. The overall workflow is illustrated
in Fig. 1.

A. Preliminaries

For a comprehensive overview of our methodology, we begin
by outlining the standard configurations employed in semisu-
pervised CD. The training data consists of two main subsets:
a labeled set and an unlabeled set. The labeled set is denoted
as D' = {(z!}, 2%, ")}, where 2!}’ and 25 represent the
tth pair of bitemporal RSIs capturing the same geographical
area with label yl(’:. Conversely, the unlabeled set is denoted as
D = {(z%", 25"} N, where %" and x%’ represent the ith
unlabeled image pair. Here, x4 and xp denote the prechange
image and the postchange image. N; and N, represent the
corresponding number of samples.

B. Overall Architecture

As illustrated in Fig. 1, we adopt the widely used multiple-
encoder and single-decoder (MESD) structure [10], [57], [58] as
the architecture for our CD network. MESD comprises Siamese
encoders with shared weights and a single decoder dedicated
to CD. The multiple encoders are responsible for extracting
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bitemporal semantic features, which are subsequently fused
at the feature level in the single decoder to identify changed
areas.

Specifically, the entire CD procedure is as follows. For the
encoder, we utilize a pretrained dilated ResNet50 [14]. Initially,
the bitemporal RSI pairs {z 4,25} are fed into the Siamese
encoders, denoted as f,, to extract bitemporal semantic feature
representations. It can be formulated as follows:

Fp= fe(xA)
Fp = f.(zB) (D

where F'4 and F'p denote the feature representations correspond-
ing to the prechange image x 4 and the postchange image = s,
respectively.

Following the extraction of hidden features F4 and F'g from
the encoder, we calculate their absolute difference, denoted as
F;. This disparity is subsequently processed through a pyramid
pooling module (PPM) [59] for an effective exploration of
change areas across various scales. Mathematically, the oper-
ations can be succinctly articulated as follows:

Fy = PPM(|F4 — Fpl). @

Overarching architecture of the proposed method. The encoder and decoder are shared during the supervised and unsupervised phases.

Finally, we employ a simple CNN in the decoder, denoted as
fa, to estimate the output change probability map g from the
hidden feature difference F;. We can formulate the process as
follows:

U= fa(Fa). (3)

Thus, we can express our CD model mathematically as fol-
lows:

fep(za,28) = fa (PPM(|fe(za) = fe(zB)])) . (D)

For supervised learning, we optimize the parameters of our
CD network by leveraging the labeled set D'. The change predic-
tion, represented as ¢!, is directly derived through fcp (2!, 7%).
The corresponding supervised loss can be denoted as follows:

B
_ l 1i »li
@—B;Myw) 5)

where B is the batch size of the labeled data and H refers to the
cross-entropy loss.

Throughout the unsupervised training phase, we leverage the
unlabeled set D" to effectively harness the wealth of off-the-
shelf unlabeled bitemporal images. Specifically, our method
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integrates the multilevel consistency regularization approach
with our proposed Fourier-based frequency transformation and
the reliable pseudolabel selection scheme to facilitate model
training. With regard to multilevel consistency regularization,
our approach incorporates two levels of augmentations: sample-
level and feature-level. At the sample-level perturbation, this
entails generating two distinct perspectives for the original RSI
pair: a weakly augmented view and a strongly augmented view.
Weak data augmentations mainly involves relatively simple
processing, including flipping, rotation, and cropping, whereas
strong data augmentation entails more complicated techniques,
such as ColorlJitter and CutMix [60]. Regarding feature-level
perturbation, the utilization of simple channel dropout has
proven to be effective and yields satisfactory performance.

To be specific, we integrate unlabeled weakly augmented RSI
pairs {z%, 2%} and strongly augmented views {z'}, 2’4} into
the network. The resulting outputs consist of pixelwise change
probability maps, denoted as y* and yg, for the weakly and
strongly augmented cases, respectively. Then, we obtain the
one-hot pseudolabel i* corresponding to the weakly augmented
view. Therefore, the sample-level perturbation consistency loss
is formulated as follows:

1 LB ) o
Ly = B Z L(max(y™*) > 7) - H(y"", 9g")  (©6)
i=1

where the hyperparameter p is an integer, defining the ratio of
unlabeled data to labeled data, and 7 represents a predefined
threshold used to filter out unreliable pseudolabels associated
with low-prediction confidence. The notation 1 denotes the
indicator function employed for confidence-based thresholding.

As to feature-level perturbation consistency loss, we incor-
porate feature dropout into the hidden feature differences of
the weakly augmented view. Following this, we acquire the
pixelwise change probability maps by forwarding the perturbed
features through the decoder, denoted as gg. It can be denoted
as follows:

1 B

Ly =5 > Umax(y") > 1) - HE* g5 ()
i=1

C. Fourier-Based Frequency Transformation

In CD scenarios, images taken at different times may exhibit
significant variations in background areas due to factors such as
inconsistent imaging and weather conditions. These variations
can lead to changes in color, brightness, and other attributes,
often manifesting as low-frequency variations in the frequency
domain, primarily concentrated in the background region. This
challenge is particularly significant as the network struggles to
effectively convey information across diverse low-level statis-
tical data [36]. Consequently, addressing known perturbation
variability from the outset can eliminate the need for complex
training processes.

To address this challenge, we propose a Fourier-based fre-
quency transformation strategy. While Fourier transform has
been applied in various CD studies, the focus has often been
on different objectives. For instance, Chen et al. [61] utilized
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Image A
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Fig. 2. Illustration of the Fourier-based frequency transformation: Mapping
the prechange image to the postchange “style” while preserving its semantic
content.

Fourier transform to analyze structural relationships within mul-
timodal RSIs, whereas Wen et al. [62] focused on noise sup-
pression through Fourier domain transformations. In contrast,
our method targets the mitigation of cross-temporal background
noise to enhance CD accuracy, presenting a distinct approach in
the realm of semisupervised CD methods.

As illustrated in Fig. 2, an unlabeled bitemporal image pair
{z%, z%} is initially subjected to Fourier transform, denoted as
F, transitioning to the frequency domain to derive their respec-
tive amplitude spectra and phase spectra. Let A, P represent the
amplitude and phase components of the Fourier transform of the
initial image. The Fourier transform F can be mathematically
formulated as follows:

H W —j2m (%m+%n>
F(z)(m,n) = Z Z x(h,w)e ®
h=1w=1

Therefore, the amplitude spectrum and phase spectrum of the
original image can be represented as follows:

A(m,n) = |F(z)(m,n)| )
P(m,n) = arg(F(x)(m,n)) (10)

where the computational efficiency of the presented Fourier
transform, as described in [63], is notably enhanced through
the utilization of the fast Fourier transform (FFT) algorithm.
In mathematical terms, the operator F ! corresponds to the
inverse Fourier transform, facilitating the transformation of
spectral signals back into the spatial domain of an image. In
addition, we introduce a mask M, characterized by zero values
across its expanse, with the exception of its central region where
a € (0,1). M, is denoted as follows:

Mo (h,w) = {1, if (h, w) € [—aH : aH,—aW : aWV]
0, otherwise.

an
Subsequently, when provided the dual-temporal RSI pairs
{x 4,2} captured at the same location, we have the capability
to interchange the amplitude information of the low-frequency
region between these images. This exchange allows us to acquire
the amplitude information associated with the other temporal in-
stance. The process is finalized by employing the inverse Fourier
transform, which restores the modified spectral information back
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to the original image domain. Through this method, the primary
semantic content of the image remains unaltered, yet its visual
appearance mirrors that of another image. The process can be
formulated as follows:

tpoa=F Y[ Ma-As+(1—M,)-Ag]-eP5)  (12)

where the amplitude information of the low-frequency region
in the postchange image xp is substituted with that of the
prechange image x 4. Due to the potential disruption of local im-
age details and feature positions by altering phase information, it
is important to note that the phase spectrum remains unchanged.

Building upon this transformation method, we devised the
following training strategy. Over the entire training process,
we introduced an additional branch dedicated to bitemporal
image transformation. A random parameter, denoted as v, is
stochastically sampled from a uniform distribution in the interval
(0,1). If v exceeds the designated threshold of 0.6, the image
pair undergoes transformation from {z 4, zp} to {za 5,25}
Conversely, if v falls below the set threshold of 0.4, the image
pair undergoes transformation from {z 4,25} to {z 4,25 ,4}.
When v is between 0.4 and 0.6, no transformation is applied
to the original image pair. Subsequently, we can derive the pre-
dicted probability of change maps for this additional bitemporal
image transformation, denoted as g. The loss function is com-
puted by calculating the cross entropy between this prediction
and the previously generated one-hot pseudolabels, which is
expressed as follows:

1

Lo = — Z 1(max(y™*) > 7) - H@"", 95").

13
uB 2 13)

D. Reliable Pseudolabel Selection Scheme

To mitigate confirmation bias, prevailing semisupervised CD
methods [26], [28] employing consistency regularization filter
out unreliable pseudolabels by setting a high threshold (e.g.,
0.95) in advance. However, employing a predefined threshold
may lead to minimal utilization of the entire unlabeled set,
particularly at the early stages of the training process when only
a few unlabeled pixels have prediction confidences above the
threshold. Furthermore, the fixed threshold may result in the
selection of more unlabeled examples with wrong pseudolabels,
especially at the later stages of the model training process. In
other words, the fixed threshold may not be sufficiently effective
throughout the training process, potentially degrading the overall
performance.

Therefore, we propose a novel and reliable pseudolabel selec-
tion strategy, achieved by devising a simple sigmoid-like func-
tion to dynamically adjust the threshold. This strategy takes into
consideration the learning status of the entire training process,
as the threshold dynamically adjusts according to the current
training epoch. In theory, we can rewrite the indicator function
1(max(y**) > 7) into an equivalent expression

1(~ log(max(y"")) < — log())

where — log(max(y**)) can be approximated as a cross-entropy
loss for the one-hot label of weakly-augmented images.

(14)
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Intuitively, as the optimization epoch progresses, the loss
function would generally decrease, necessitating an increase
in 7(¢). Specifically, in the initial stages of model training,
due to the lack of prior information, the loss often struggles
to decrease and remains at a high value, necessitating 7(¢) to
increase slowly and remain at a relatively low level. As the model
undergoes gradual training, gaining confidence in its judgment
and enhancing accuracy in pseudolabel assignments, the loss
will decrease rapidly. At this stage, 7(¢) needs to grow rapidly
to ensure the selection of reliable pseudolabels. In the end, as
the model training tends to stabilize and the loss tends to reach
a plateau, 7(¢) remains at a relatively high value to prevent the
introduction of excessive erroneous label information. Hence,
we opt for the sigmoid-like function as the threshold adjustment
mechanism for selecting reliable pseudolabels. The function is
mathematically formulated as follows:

m(T) —7(0)

T(t) = 7(0) + = Ju ey

(15)
where 7 (t) represents the evolving threshold value as a function
of training epochs, 7(0) and 7(T) are the initial threshold and
the final threshold, respectively. The parameter k serves as a
control for the steepness of the sigmoid-like transition and is
experimentally set to be 10.

E. Loss Functions

The comprehensive loss function is a combination of the
supervised loss Ly, the feature-level perturbation consistency
loss Ly, the sample-level perturbation consistency loss Ly, and
the Fourier-based frequency transformation loss L, expressed
as follows:

L= ﬁs + )‘«fp'cfp + )\spﬁsp + )\ft'cft (16)

where Agp, Agp, and Ay serve as weights to balance the individual
components of the loss.

IV. EXPERIMENTAL RESULTS

In this section, we initially provide a detailed illustration of
the experimental settings, including dataset description, eval-
uation metrics, and implementation details. Then, quantitative
comparison results against several state-of-the-art methods are
performed with some visualization samples. Finally, we conduct
several ablation experiments to verify the effectiveness of each
component in our proposed method.

A. Experimental Settings

1) Datasets: To verify the effectiveness of our proposed
method, we employ three publicly available RSI CD datasets,
LEVIR-CD [41], WHU-CD [4], and CDD [64]. Some visualiza-
tion examples of the three aforementioned datasets are shown in
Fig. 3.

LEVIR-CD consists of 637 very high-resolution (0.5 m/pixel)
RSI patch pairs, each measuring 1024 x 1024 pixels. These
bitemporal images span a time span of 5-14 years, ranging
from 2002 to 2018, illustrating significant land use changes,
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Image A

Image B

LEVIR-CD

Fig. 3.
respectively.

particularly in the expansion of the construction industry. The
dataset covers various types of buildings, including villas, high-
rise apartments, small garages, and large warehouses. In line
with recent semisupervised CD methods [26], [27], we subdi-
vided the original images into nonoverlapping patches of size
256 x 256. Following the processing of the original data, we
further partitioned these samples into training, validation, and
test datasets. Ultimately, we obtained 7120, 1024, and 2048 pairs
of patches for training, validation, and testing, respectively.

WHU-CD comprises two-period aerial images captured over
the same area of Christchurch, New Zealand, in 2012 and 2016,
respectively. The original images have a size of 32507 x 15354
pixels with a pixel resolution of 0.075 m. The dataset pre-
dominantly covers the area reconstructed after an earthquake.
Following common processing steps, we cropped these images
into nonoverlapping patches of size 256 x 256 and distributed
them into training (80%), validation (10%), and test (10%) set.
Consequently, we obtained 5947, 743, and 744 pairs of patches
for training, validation, and testing, respectively.

CDD comprises seven pairs of season-varying images, each
measuring 4725 x 2700 pixels, and an additional four pairs of
images with minimal changes, each measuring 1900 x 1000
pixels, all obtained from Google Earth. The dataset is subse-
quently cropped into 16000 real RSI patches, each with dimen-
sions of 256 x 256 pixels and a pixel resolution ranging from
0.03 to 1 m. Specifically, the dataset is divided into 10000, 2998,
and 3000 pairs of patches for training, validation, and testing,
respectively.

2) Evaluate Metrics: Various evaluation metrics are em-
ployed to assess the model performance, including intersection
over union (IoU), F1-Score (F1), Kappa coefficient (Kappa),
true positive rate (TPR), and true negative rate (TNR). Given
our emphasis on changed areas, we specifically utilize the IoU
of the change class, denoted as IoU®, as the primary evaluation
metric in our experiments. For all these metrics, higher values
indicate better CD performance. The formulations for the five
metrics are as follows:

TP

ToU— — —
oV = TP T FP T FN

A7)
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CDD

Some visualization examples of the LEVIR-CD, WHU-CD, and CDD datasets. Image A and B depict the prechange images and the postchange images,

TP

P=— 1
TP + FP (8)
TP
R= TP + FN (9
2x PxR
Fl="_-—"= 20
P+R (20)
TP + TN
OA_TP+FP+TN+FN @D
PRE — (TP 4 FN) x (TP + FP)
~ (TP +FP + TN + FN)?2
(FP + TN) x (TN + FN) )
(TP + FP + TN + FN)?2
OA — PRE
K = 2
appa = ———or (23)
TP
TPR = TP T TN (24)
TN
TNR= ——— 2
R TN + FP (25)

where TP and FP denote the count of correctly identified pixels
and incorrectly classified pixels, respectively, within the changed
areas. Conversely, TN and FN represent the counts for correctly
identified and incorrectly classified pixels, respectively, within
the unchanged areas.

3) Implementation Details: The experiments in the article
are executed on GeForce RTX 3090Ti using the PyTorch frame-
work. To ensure a fair comparison, we maintain all training hy-
perparameters identical to those utilized in RCR [26]. Stochastic
gradient descent with a weight decay of 10~% and a momentum
of 0.9 serves as the optimizer, with an initial learning rate
set to 0.01. All models undergo training for 80 epochs with
a batch size of 8. The backbones of each method are initialized
with the pretrained parameters of dilated ResNet50 [14] using
ImageNet [65]. For the model training loss function, the weight
parameters for each level are set equally. Weak data augmen-
tations, such as flipping, rotation, and cropping, are applied
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TABLE I
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE LEVIR-CD DATASET

Method 1% 5% 10% 20%
IoU¢ F1 Kappa TPR TNR |IoU® Fl Kappa TPR TNR |[IoU¢ FI Kappa TPR TNR |IoU® Fl1 Kappa TPR TNR
Only-sup 43.43 60.56 0.5899 51.53 99.09 | 65.55 79.19 0.7822 75.89 99.23 |72.13 83.81 0.8306 80.60 99.43 |75.97 86.35 0.8571 82.93 99.55
AdvEnt [49] |43.19 60.33 0.5890 48.21 99.43|71.74 83.54 0.8279 79.42 99.48 | 7598 86.35 0.8572 81.97 99.62|78.59 88.01 0.8745 84.53 99.63
s4GAN [25] |26.35 41.71 0.4044 27.06 99.87 | 55.86 71.68 0.7060 59.33 99.69 | 65.20 78.93 0.7794 76.82 99.13|76.16 86.47 0.8586 80.88 99.70
CPS [53] 53.04 69.31 0.6805 60.28 99.34|72.53 84.08 0.8334 79.95 99.50 | 77.34 87.22 0.8663 83.26 99.63|79.29 88.45 0.8790 86.12 99.58
RCR [26] 61.35 76.04 0.7507 65.89 99.64|75.75 86.20 0.8554 85.40 99.38 | 77.97 87.62 0.8703 86.16 99.49 | 80.00 88.89 0.8836 87.18 99.56
Unimatch [54] | 68.45 81.27 0.8032 77.10 99.32 | 74.94 85.67 0.8494 81.65 99.52 |76.76 86.85 0.8619 82.05 99.63|77.18 87.12 0.8237 87.12 99.64
FPA [28] 57.24 7281 0.7169 63.38 99.48|75.82 86.25 0.8562 81.85 99.61 | 78.65 88.05 0.8749 84.71 99.63 | 79.61 88.65 0.8811 87.05 99.55
Ours 71.29 83.24 0.8237 80.40 99.31|78.36 87.87 0.8723 85.96 99.48 | 80.57 89.24 0.8868 87.07 99.57 [ 80.55 89.23 0.8867 86.67 99.59

Bold values indicate the best results.
TABLE II
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE WHU-CD DATASET

Method 1% 5% 10% 20%
IoU® Fl1 Kappa TPR TNR |IoU¢ F1 Kappa TPR TNR |[IoU® F1 Kappa TPR TNR |IoU¢ Fl Kappa TPR TNR
Only-sup 37.14 54.17 0.5288 40.48 99.61 [ 67.81 80.82 0.7998 82.21 99.09 | 74.11 85.13 0.8449 85.67 99.33|76.95 86.97 0.8641 86.99 99.44
AdvEnt [49] |33.93 50.67 0.4663 35.82 99.17 | 76.67 86.80 0.8625 84.12 99.58 | 78.96 88.24 0.8774 87.35 99.54|79.95 88.86 0.8838 88.96 99.52
s4GAN [25] |28.87 44.80 0.4369 29.44 99.91|49.75 66.44 0.6542 51.86 99.82|72.15 83.82 0.8314 83.05 99.35|67.02 80.25 0.7954 69.73 99.83
CPS [53] 39.55 56.68 0.5536 44.25 99.49 | 71.76 83.56 0.8286 82.85 99.34 | 77.30 87.20 0.8666 85.63 99.54 | 82.82 90.61 0.9021 88.96 99.68
RCR [26] 43.25 60.39 0.5911 48.68 99.46|75.26 85.89 0.8525 89.53 99.19|79.94 88.85 0.8838 87.14 99.61 | 81.68 89.92 0.8949 88.38 99.65
Unimatch [54] | 62.35 76.81 0.7598 67.92 99.63 | 78.27 87.81 0.8735 81.82 99.81 | 81.15 89.60 0.8919 85.07 99.80 | 82.78 90.58 0.9021 86.26 99.83
FPA [28] 62.69 77.07 0.7619 69.50 99.53|76.95 86.97 0.8640 89.09 99.32|82.74 90.56 0.9015 90.22 99.61 | 84.00 91.30 0.9093 90.47 99.67
Ours 63.90 77.97 0.7720 68.14 99.73 |79.90 88.82 0.8839 84.26 99.77 | 81.70 89.93 0.8954 85.43 99.81|82.97 90.69 0.9032 87.06 99.80

Bold values indicate the best results.
TABLE III
COMPARISON WITH STATE-OF-THE-ART METHODS ON THE CDD DATASET

Method 1% 5% 10% 20%
IoU¢ FI Kappa TPR TNR |IoU® Fl1 Kappa TPR TNR |IoU¢ Fl Kappa TPR TNR |IoU® Fl1 Kappa TPR TNR
Only-sup 36.05 53.00 0.4820 41.30 97.84|59.28 74.43 0.7105 67.96 97.83 |69.10 81.73 0.7922 76.67 98.38|76.84 86.90 0.8507 82.77 98.85
AdvEnt [49] |33.93 50.67 0.4663 35.82 99.17 | 63.06 77.35 0.7437 70.28 98.30|72.98 84.38 0.8230 77.33 99.11|81.08 89.55 0.8808 85.96 99.11
s4GAN [25] | 3.35 648 0.0540 3.39 99.82|46.10 63.11 0.5905 51.20 98.36 | 67.44 80.55 0.7802 72.77 98.83 | 79.56 88.62 0.8702 84.67 99.05
CPS [53] 38.57 55.67 0.5099 44.11 97.87|62.35 76.81 0.7373 70.36 98.09 | 72.94 84.36 0.8225 77.86 99.00 | 80.63 89.27 0.8775 86.22 98.97
RCR [26] 3431 51.09 0.4654 38.11 98.36|66.67 80.00 0.7739 72.37 98.73 | 74.64 85.48 0.8349 80.21 98.89|80.91 89.45 0.8794 86.47 98.98
Unimatch [54] | 50.02 66.68 0.6340 53.78 98.99 | 69.95 83.32 0.8025 74.02 99.22|76.24 86.52 0.8486 80.71 99.22|84.34 91.50 0.9041 88.49 99.34
FPA [28] 47.18 64.11 0.5925 59.45 96.14 | 67.71 80.75 0.7824 72.88 98.87 | 75.63 86.12 0.8423 80.57 99.03 | 81.21 89.63 0.8818 85.18 99.27
Ours 51.00 67.55 0.6405 57.55 98.28 | 71.14 83.14 0.8110 76.47 99.00 | 77.24 87.16 0.8558 81.56 99.25|86.13 92.55 0.9158 90.30 99.35

Bold values indicate the best results.

to the original RSI pairs. Specifically, for consistency-based
methods, strong data augmentations, including ColorJitter and
CutMix [60], are utilized to perturb the weakly augmented
unlabeled RSI pairs. The size ratio of low-frequency exchange
in the frequency domain is controlled by the parameter .. In the
experiment, we set « to 0.01 for the LEVIR-CD and WHU-CD
datasets, whereas for the CDD dataset, « is 0.09. Furthermore,
we establish the parameters for balancing the loss, setting Ag, to
0.5 and Agp, A to 0.25 each, respectively.

B. Comparison Results

We select supervised baseline and six state-of-the-art
methods for comparison to assess the performance of our
proposed method, including AdvEnt [49], s4GAN [25],
CPS [53], RCR [26], Unimatch [54], and FPA [28]. Here,
the supervised baseline indicates that we exclusively employ

restricted proportions of labeled data for model training. Both
AdvEnt and s4GAN are GAN-based methods adapted from
semisupervised semantic segmentation. The remaining four
methods are consistency-based semisupervised approaches.
Specifically, RCR and FPA are designed explicitly for CD tasks,
whereas CPS and Unimatch are adapted from semisupervised
semantic segmentation. In our experimental setup, four distinct
proportions of labeled data, namely 1%, 5%, 10%, and 20%,
are employed during the supervised phases, with the remaining
unlabeled data utilized in the unsupervised phases.

The experimental results for the three public datasets are
presented in Tables I-1I11, respectively. The experimental results
indicate that our method achieves the best performance when
considering the majority ratios of labeled data across the three
datasets.

1) Results of the LEVIR-CD Dataset: The comparison re-
sults of the LEVIR-CD dataset, as presented in Table I, highlight
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the exceptional performance of our method across all four ratio
settings, ranging from 1% to 20%. Notably, the considerable
temporal span of 5 to 14 years between bi-temporal RSI pairs
introduces a noticeable amount of cross-temporal background
noise in the dataset, alongside the actual changes requiring
detection. Hence, the Only-sup method, trained directly from
labeled data, performs notably poorly, and GAN-based methods
frequently result in model collapse and subpar performance due
to unstable training. In contrast, the method based on the con-
sistency regularization strategy achieved the best performance
relatively. Our proposed method outperforms others, especially
in scenarios with extremely limited labeled data (1% and 5%).
We achieve the impressive 2.84% and 2.54% improvements in
the IoU® metric, which is of utmost concern. In the other two
settings, our method can also achieve improvements of at least
1.92%, and 0.55%, respectively, compared with the current most
advanced semisupervised CD algorithm. On other evaluation
metrics, our method consistently demonstrates impressive re-
sults.

2) Results of the WHU-CD Dataset: In the WHU-CD
dataset, our method and FPA yield comparable results, with our
results being superior at 1% and 5% ratios, whereas FPA per-
forms slightly better than our method in the remaining settings,
as shown in Table II. The primary challenge in the WHU-CD
dataset lies in the intraclass diversity within changing regions,
which includes various types of buildings rather than back-
ground noise. Consequently, the consistency alignment strate-
gies FA and PA proposed in the FPA method significantly reduce
the uncertainty in intraregion prediction. Specifically, under the
ToU® metric, our method demonstrated the significant 1.21%
and 2.95% improvements compared with FPA when trained on
adataset with 1% and 5% labeled data, respectively. However, in
the remaining two settings, our method narrowly trailed behind
the FPA algorithm with differences of —1.04%, and —1.03% at
10%, and 20% ratios of labeled data, respectively. Nevertheless,
compared with other semisupervised CD algorithms, our method
can establish a substantial advantage on most of the evaluation
metrics.

3) Results of the CDD Dataset: Results of the CDD dataset
are shown in Table III. In the CDD dataset, the bitempo-
ral images exhibit a more distinct appearance, attributed to
diverse weather conditions during capture. Therefore, unlike
the above two datasets, we opt for a larger area (o = 0.09)
for low-frequency exchange. Our proposed Fourier-based fre-
quency transformation strategy adeptly alleviates the challenges
posed by the inherent variability introduced by both known
disturbances and changes that necessitate identification. This
approach demands minimal effort, particularly in distinguishing
between noise and genuine changing regions. From the results
in the table, it can be observed that our method significantly out-
performs existing state-of-the-art algorithms comprehensively.
For example, in the metric of IoU®, our method can achieve
improvements of at least 0.98%, 1.19%, 1.00%, and 1.79%,
respectively.

The presented quantitative results affirm the superiority of our
proposed method. In addition, for a more comprehensive visual
comparison between our approach and alternative methods, we
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TABLE IV
COMPONENTS ANALYSIS RESULTS ON THE LEVIR-CD DATASET AT THE
RATIOS OF 5% AND 10%

Ls Lsp+Ly Ly 7(1) 3% 10%

IoU® Fl Kappa |IoU® FI Kappa
v 65.55 79.19 0.7822|72.13 83.81 0.8306
v v 74.45 85.36 0.8461|75.25 85.88 0.8519
v v v 76.30 86.55 0.8586|78.38 87.88 0.8725
v v v v |7836 87.87 0.8723|80.57 89.24 0.8868

have chosen specific visual prediction results showcased in
Fig. 4. The analysis of visual samples demonstrates the superior
accuracy of our method in predicting boundary details compared
with other methods, accompanied by a significant reduction in
the proportion of false positives. This enhancement is credited
to our innovative Fourier-based frequency transformation and
the reliable pseudolabel selection scheme.

C. Ablation Experiment

To comprehensively explore our proposed method, we con-
duct extensive ablation experiments on the LEVIR-CD, WHU-
CD, and CDD datasets. Initially, we discuss the effectiveness
and role of each component within our proposed method. Then,
we examine the influence on model performance of adjusting
the size of the central region where low-frequency amplitude
information is replaced in the Fourier-based frequency transfor-
mation strategy. Subsequently, we assess the impact of different
threshold adjustment functions for selecting reliable pseudola-
bels on the overall performance of the model. In addition, we
analyze the effect of the initial threshold in our strategies. Finally,
we present a detailed analysis of the computational consumption
of our method in comparison to other models.

1) Components Analysis: As illustrated in Section III, the
proposed method comprises three key components: a multilevel
consistency regularization baseline, a Fourier-based frequency
domain transformation branch, and a reliable pseudolabel selec-
tion scheme. To validate the significance of the aforementioned
components within the proposed method, we iteratively train
ablation models with different components on the LEVIR-CD
dataset, considering labeled ratios of 1%, 5%, 10%, and 20%.
Quantitative results are presented in Table IV. Here, L rep-
resents the supervised approach, which utilizes only labeled
data for model training, £, + L, + Ly, denotes the multilevel
consistency regularization baseline, £ + L, + Lgp, + Ly signi-
fies the method that additionally incorporates the Fourier-based
frequency transformation branch, and £, + Ly, + Lg, + L +
7(t) indicates dynamic threshold adjustment function for pseu-
dolabel selection based on the aforementioned methods. Due to
the inherent tradeoff between TPR and TNR, achieving higher
values for both simultaneously is often unattainable. Conse-
quently, we have selected the other three metrics to precisely
characterize the effects of each component.

As observed in Table IV, the multilevel consistency regu-
larization baseline, i.e., L, + Ly, + Lyp, significantly enhances
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Some sample visualizations obtained from various comparison methods, including our method. The first and second rows depict the RSI pairs of

LEVIR-CD, the third and fourth rows show WHU-CD, and the fifth and sixth rows display CDD, all at the 5% labeled ratio.

model performance, exhibiting a notable improvement com-
pared to the supervised method L. For instance, the IoU®
increases from 65.55% to 74.45% by 8.9% at the ratio of 5%.
Furthermore, building upon the baseline, the introduction of
the Fourier-based frequency transformation branch, namely, Lg,
results in a substantial boost in model performance. Specifically,
it improves the IoU® by 1.85% and 3.13%, respectively, under
the two different ratios. This underscores the positive impact of
integrating the Fourier-based frequency transformation branch.
Finally, based on the aforementioned methods, we effectively
select more reliable pseudolabel by dynamically adjusting the
threshold, denoted as 7(¢). The results in the table highlight
that our threshold adjustment strategy significantly improves the
model’s detection capability, with notable increases in IoU® by
2.06% and 2.19% at the ratios of 5% and 10%, respectively.

In summary, the experimental results underscore the pivotal
role of each component in our method during model training.
Integrating these components synergistically yields optimal re-
sults.

2) Choice of a: In (12), the parameter « is a critical factor
governing the Fourier-based frequency transformation. Setting
a to 0 renders the transformed image xp_, 4 identical to the
original postchange image zp, whereas « at 1 replaces the
amplitude of z g with that of x 4. Prior research indicates that for
a > 0.1, the transformed image zp_, 4 tends toward the target
image x4, but noticeable artifacts may be present. Therefore,
in this article, we limit o to < 0.1 for the three datasets. We
provide visualizations of images under four different o values
in Fig. 6. These visualizations illustrate how varying « affects
the image: As « increases, the background of the transformed
image becomes more similar to that of the other image in the pair,

—e— LEVIR-CD
WHU-CD
88

89
—e— LEVIRCD
WHU-CD
—4— DD

0.01 0.05 0.09
a

(b)

Fig.5. Flof(a) 5% and (b) 20% labeled with different «x on the three datasets.

but at the cost of introducing artifacts. The red boxes in the figure
highlight regions where these artifacts are more pronounced as
« increases. Table V shows the effect of various choices of «
for the three datasets at the ratios of 5% and 20%. The F1 scores
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Fig. 6. Impact of varying the size of a on the Fourier-based frequency transformation operation is noteworthy: As « increases, the cross-temporal gap between
bitemporal RSI decreases, yet it also tends to introduce artifacts, as illustrated in the zoomed insets.

TABLE V
CHOICE OF @ FOR THE THREE DATASETS AT THE RATIOS OF 5% AND 20%

5% 20%
IoU® F1 Kappa  TPR TNR | IoU® F1 Kappa  TPR  TNR
0.01 | 7836 87.87 0.8723 8596 9948 | 80.55 89.23 0.8867 86.67 99.59
LEVIR-CD | 0.05 | 7851 8796 0.8733 8571 99.51 | 79.34 8848 0.8788 86.38 99.52
0.09 | 6504 78.82 0.7786 68.85 99.69 | 79.96 88.86 0.8829 8549  99.63
0.01 | 7990 88.82 0.8839 84.26 99.77 | 8297 90.69 0.9032 87.06 99.80
WHU-CD | 0.05 | 7894 88.23 0.8778 82.15 99.83 | 82.69 90.53 0.9015 87.52 99.76
0.09 | 77.30 87.20 0.8672 80.27 99.84 | 8295 90.68 0.9032 86.68  99.81
0.01 | 69.70 82.14 0.8006 7376 99.22 | 85.81 9236 09137 90.02 99.34
CDD 0.05 | 70.79 8290 0.8087 7543 99.12 | 8577 9234 09135 89.83 99.37
0.09 | 71.14 83.14 0.8110 7647 99.00 | 86.13 9255 09158 9030 99.35

Dataset «@

of these three datasets with 5% and 20% labeled data under
different v values are shown in Fig. 5. 0.950
Observing the table, itis evident that selecting e = 0.09 yields
superior results for the CDD dataset. This preference arises 0.945
from the dataset’s seasonal variable nature, necessitating the re-
placement of a larger low-frequency region for a comprehensive 09407
frequency domain conversion. Therefore, in our experiments, we
opted for the value 0.09. In the case of the other two datasets, the
distinctions among these three choices are not substantial, except
for an unfavorable outcome when choosing o = 0.09 for the
LEVIR-CD dataset at the ratio of 5%. However, in comparison 0.925
to other options, opting for o = 0.01 proves to be a relatively
favorable choice for these two datasets. 0.9201
3) Influence of Threshold Adjustment Function: As depicted o 10 20 30 4 50 60
in Fig. 7, we have chosen several threshold adjustment func- Epoch

tions to assess their impact on SeleCt_mg reliable pseu.do!abels Fig. 7. Comparison of fixed threshold and several threshold adjustment func-
and the overall performance. According to the analysis in the tions. Fixed threshold is in the scale of 0.95.
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Fig. 8. Comparison results between various threshold adjustment strategies
and fixed threshold on the LEVIR-CD dataset at the ratio of 5%.

Section III, we are required to propose a reliable pseudolabel
selection strategy, so we have chosen these three threshold
adjustment functions, including linear function, cosine function,
and sigmoid-like function.

The final results of the ablation experiments on the LEVIR-
CD dataset with a 5% ratio of labeled data are illustrated in Fig. 8.
Notably, the fixed threshold yields the poorest results across
the three commonly used metrics. Conversely, our designed
sigmoid-like function demonstrates the best performance. The
other two adjustment strategies achieve intermediate perfor-
mance. This result confirms that our proposed sigmoid-like
threshold adjustment function can better adapt to the training
process of the model, thereby selecting more reliable pseudola-
bels.

Furthermore, throughout the entire training process, we com-
pare the number of correct and incorrect pixels in the pseu-
dolabels selected for changed areas between the fixed threshold
and our dynamic threshold function. As illustrated in Fig. 9, we
verify that the proposed dynamic threshold function selects a
greater number of pixels with correct pseudolabels compared to
the fixed threshold. While the proposed dynamic threshold func-
tion initially preserves more pixels with incorrect pseudolabels,
it gradually eliminates more of these pixels after several epochs,
in contrast to the fixed threshold.

4) Effect of the Initial Threshold 7(0): In our proposed
dynamic threshold adjustment function, we introduce an ini-
tial threshold 7(0) that gradually increases to the previously
established high threshold in the conventional method. This
approach facilitates the assimilation of additional information
from unlabeled data in the early stages of model training, thereby
promoting improved model convergence. We investigate the
effect of configuring this initial threshold on model training
and conduct relevant experiments on the LEVIR-CD dataset,
as detailed in Table VI.

Based on the results presented in the table, it is evident that the
selection of the initial threshold should not be excessively low.
While an excessively high threshold may diminish the utilization
of unlabeled data, a low initial threshold introduces the risk of
confirmation bias, potentially leading to unreliable pseudolabels
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TABLE VI
EFFECT OF THE INITIAL THRESHOLD 7(0) ON THE LEVIR-CD DATASET AT
THE RATIOS OF 5% AND 10%

+0) 5% 10%

IoU® F1 Kappa | IoU€ F1 Kappa
086 | 76.71 86.82 0.8615 | 79.45 8855 0.8795
0.88 | 77.66 87.43 0.8675 | 76.25 86.52 0.8583
090 | 77.89 87.57 0.8692 | 7840 87.89 0.8728
092 | 7836 87.87 0.8723 | 80.57 89.24 0.8868
093 | 7742 8728 0.8661 | 79.05 88.30 0.8769
094 | 7751 87.77 0.8713 | 7894 8823 0.8762

TABLE VII

COMPUTATIONAL ANALYSIS ON THE WHU-CD DATASET AT THE RATIO OF 5%

Method Params(M) | FLOPs(G) | Training Time (min) | IoU*®
Only-sup 46.85 73.23 55.0 67.81
AdvEnt 46.85 73.23 443.0 76.67
s4GAN 46.85 73.23 646.6 49.75
CPS 47.00 73.41 367.5 71.76
Unimatch 46.71 73.05 929.5 78.27
RCR 46.85 73.23 563.6 75.26
FPA 46.85 73.23 485.7 76.95
Ours 46.71 73.05 925.3 79.90

and consistent misalignment of the model’s decision bound-
aries. Striking a balance in this tradeoff, we conducted exten-
sive experiments and determined an optimal initial threshold
of 0.92.

5) Computational Analysis: In this section, we conduct a
comparative analysis between the proposed method and ex-
isting semisupervised CD methods, considering computational
consumption, training time, and CD performance metrics on
the WHU-CD dataset at the ratio of 5%. All comparison
frameworks, as well as our method, are trained on a single
GeForce RTX 3090Ti, employing identical architectures and
training parameters for a fair evaluation. We select the number
of parameters, the floating-point operations (FLOPs), and the
training time as efficiency metrics, where a smaller value for
these metrics indicates higher computational efficiency for the
methods.

As illustrated in Table VII, the enhancements we have made
do not increase the computational complexity of the model.
Our Fourier-based frequency transformation and pseudolabel
selection strategies are computationally lightweight and can
be seamlessly integrated into the training process of existing
models. However, it is important to note that our method requires
additional processing of weakly-augmented data, strongly-
augmented data, and data with Fourier-based frequency transfor-
mation, which results in a longer overall training time compared
to other methods.

Despite the longer training time, our method achieves signifi-
cant improvements in CD performance while maintaining a sim-
ilar or slightly reduced number of parameters and computational
complexity. When compared to methods such as Unimatch,
which also processes three batches of data, our method provides
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Visualization example of the pseudolabels selection quality of changed areas on the LEVIR-CD dataset at the ratio of 5%. (a) Ratio of correctly classified

pixels in the changed areas of the selected pseudolabels to the total number of pixels. (b) Ratio of incorrectly classified pixels in the changed areas of the selected

pseudolabels to the total number of pixels.

superior performance without requiring additional training time.
Overall, our method significantly improves CD performance
with only a marginal increase in training duration.

V. DISCUSSION

Our semisupervised CD method presents a significant ad-
vancement in addressing the pervasive challenges of cross-
temporal background noise and the underutilization of unlabeled
data. In this section, we reflect on the strategic choices made
during the development of our method, discuss the implications
of these strategies, and acknowledge the limitations that require
further attention.

First, the Fourier-based frequency transformation aligns the
background distribution of bitemporal images. This process
mitigates cross-temporal background noise, which could other-
wise mislead the model into generating pseudo changes. The
parameter « in this transformation is crucial; it governs the
extent of amplitude replacement. Through our experiments, we
observed that smaller o values effectively reduce background
noise without introducing artifacts, whereas larger values (be-
yond 0.1) may lead to noticeable artifacts, as shown in Fig. 6.
This necessitates careful tuning of o depending on the dataset
characteristics.

Second, our reliable pseudolabel selection scheme employs
a sigmoid-like function to dynamically adjust the threshold for
pseudolabel selection. The threshold adjustment is critical to
balance the integration of unlabeled data and the accuracy of
pseudolabels. An excessively high threshold reduces the utiliza-
tion of unlabeled data, whereas a low threshold may lead to con-
firmation bias and unreliable pseudolabels. Our dynamic thresh-
olding adapts throughout the training process, as illustrated in
Table VI, ensuring the model’s learning status is appropriately
considered. Despite its effectiveness, this predefined function
might not fully capture the nuanced training status, suggesting
room for further optimization.

‘We recognize that our method is not without limitations. The
reliance on a manually selected o parameter, while essential,
introduces an element of subjectivity that could be mitigated
through more sophisticated hyperparameter optimization tech-
niques. In addition, our dynamic threshold adjustment, though

animprovement over static thresholds, may not fully encapsulate
the complexity of the model’s training dynamics. Future work
will explore self-adaptive thresholding strategies that can evolve
in tandem with the model’s learning progress.

VI. CONCLUSION

In this article, we introduce a novel semisupervised CD
method aimed at tackling two persistent challenges in the field:
cross-temporal background noise and underutilization of ex-
tensive unsupervised data. Our method incorporates a Fourier-
based frequency transformation strategy and a reliable pseudola-
bel selection scheme to address these challenges. Specifically,
the Fourier-based frequency transformation strategy replaces
the amplitude information from the low-frequency region of
one temporal image with that derived from the corresponding
image in the same bitemporal RSI pair. This alignment of
background distribution helps mitigate cross-temporal back-
ground noise. In addition, we devise a simple sigmoid-like
function to dynamically adjust the selection threshold for the
reliable pseudolabel selection scheme. This scheme takes into
consideration the learning status of the entire training process,
ensuring more effective utilization of unlabeled information. Itis
noteworthy that our proposed method does not incur additional
training costs. Extensive experimental results demonstrate that
our proposed method exhibits excellent performance on three
public datasets, LEVIR-CD, WHU-CD, and CDD, surpassing
currently advanced algorithms in the field.
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