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Abstract—Convolutional neural network (CNN) has made sig-
nificant progress in image superresolution (SR), which could thrash
the limits of image spatial resolution. Recently, abundant CNN-
based methods have been proposed for the remote sensing image
SR; however, the usages of complex structures and coarse manners
could introduce excessive learnable parameters and ignorance of
heterogeneous image details, respectively. In this article, we pro-
pose a recurrently complicated lightweight network (RCL-Net) for
SR image recovery, through procedures of recurrent fluctuated
complexity. We design a serial of the progressive complicated block
(PC-Block) in the RCL-Net, and each PC-Block is composed of
three complicated lightweight branches (CL-Branches) with in-
creasing complexities in order, for recovering heterogeneous image
details. Meanwhile, the CL-Branch is integrated with a multirecep-
tive field module (MRF-Module) to more efficiently recover intact
images through forward propagation paths of heterogeneous routes
and lengths, where the excessive interactive calculations between
feature subparts are constrained to reduce learnable parameters.
In this manner, the proposed RCL-Net achieves a tradeoff between
model complexities of traditional powerful structures, such as
coarse-to-fine manners, and SR performances. Plentiful experi-
ments with excellent results grounded on popular datasets exactly
demonstrate the superiority of our proposed network, which even
surpasses the advanced large SR model with less than 3% learnable
parameters, compared to the state-of-the-art lightweight methods.

Index Terms—Lightweight network, recurrent complicated
structures, remote sensing, superresolution (SR).
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I. INTRODUCTION

A S A long-standing low-level computer vision problem,
single-image superresolution (SISR) [1], [2], [3], [4] refers

to reconstructing the high-resolution (HR) image from its low-
resolution (LR) counterpart, which has been widely utilized
to assist advanced computer vision tasks, such as person re-
identification [5], [6], medical imaging [7], remote sensing
investigations [8], [9], etc. In the research on remote sensing
images, the acquisition of high-quality HR images is essential
for subsequent studies, such as object detection [10], urban
planning [11], semantic labeling [12], etc. However, the methods
with complicated structures would be dramatically constrained
by high model complexities in real-world applications. There-
fore, studying how to effectively improve the remote sensing
image spatial resolution through lightweight models is of great
significance.

In the early stage, SISR mainly concentrated on natural im-
ages, among which the interpolation-based SR methods [13],
[14] and reconstruction-based SR methods were successively
proposed [15], [16]. However, the oversmoothing results and
poor reconstruction accuracy began to disturb the researchers.
Recently, ResDiff [17] combined convolutional neural network
(CNN) and diffusion probabilistic models (DPM), where the
CNN is utilized to restore primary low-frequency components
and the DPM is utilized to predict the residual information. In
addition, ESRGAN [18] and Real ESRGAN [19] have been
proposed to utilize synthetic data for SR. Meanwhile, deep-
learning-based SR methods [1], [2], [3], [4], [20], [21], [22] have
gradually become popular due to the remarkable performances.
For instance, VDSR [23] deepened the architecture to obtain
promising results while RCAN [24] introduced attention mech-
anisms [25] for better performances. Afterward, SwinIR [26] in-
troduced transformer structures [27] to fully excavate the feature
information, while HAT [28] combined channel attention and
window-based self-attention to introduce more global context
into the transformer. Moreover, to overcome the shortcomings
of transformer-based SISR methods, a novel transformer archi-
tecture HIPA [29] that progressively recovers the HR image
using a hierarchical patch partition has been designed. Neverthe-
less, the aforementioned methods mainly employed complicated
structures to restore SR images, which would greatly increase
the model parameters. To solve the excessive parameter issue,
several lightweight networks [30], [31] introduced recursive
learning to accomplish reconstructions while still accompanying
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high computations. Meanwhile, CARN [32] further introduced
the cascading mechanism to exploit hierarchical features. More-
over, IDN [33] and IMDN [34] employed distillation strategies
to decrease model complexities while ECDP [35] designed a
continuous time conditional diffusion model for image super-
resolution (SR) to enable the use of probability flow sampling
for reducing the time consumption of DPM.

Besides the natural image SR research, remote sensing image
SR has drawn increasing attractions among the community at-
tributing to the significantly wide applications. In the beginning,
sparse-representation-based methods with few parameters were
the leading techniques, which could recover remote sensing
SR images with seriously built overcomplete dictionaries. For
example, Song et al. [36] combined the global dictionary and
sparse coding to restore LR Landsat images. Meanwhile, for
the complicated imaging conditions of remote sensing images,
Shao et al. [37] designed a novel coupled sparse autoencoder
to effectively learn the mapping functions between LR and HR
images. Considering the information scarcity of raw image data,
Li et al. [38] designed two multitemporal dictionary learnings to
restore the image details. However, even though the sparse repre-
sentation is naturally lightweight, the aforementioned methods
could encounter difficulties when recovering image details due
to limited feature representation abilities.

Recently, deep-learning-based SR methods have become the
primary architectures for remote sensing image SR and achieved
remarkable performances. On one hand, CNN-based networks
mainly designed various flexible structures in an end-to-end
manner. For instance, LGCNet [39] first designed the CNN-
based network to reconstruct remote sensing SR images while
HSENet [40] exploited the internal recurrences within images
to obtain powerful features. On the other hand, GAN-based
networks mainly employed adversarial relationships between
the generator and discriminator to improve the subjective effects
of SR images. Specifically, EEGAN [41] and CDGANs [42]
employed the adversarial learning strategy to reconstruct real-
istic SR images. Moreover, considering the scale diversity and
redundant token representation in challenging remote sensing
scenarios, TTST [43] has been designed to select the most
critical tokens to make the long-range modeling more effective
and proposed the MFL to aggregate more multiscale cues.
However, the aforementioned methods mainly exploit com-
plicated structures, where dramatic model complexities could
limit the applications in real-world environments. Therefore,
the community has drawn attention on lightweight structures to
reduce the model complexity. Specifically, CTN [44] designed
the contextual transformation layer to decrease the network
complexity. Similarly, ReFDN [45] employed the reparame-
terization and distillation strategies to compose a lightweight
network. Meanwhile, addressing the poor visual quality, ED-
iffSR [46] introduced the DPM for efficient remote sensing
image SR, which designed ESAnet to achieve favorable noise
prediction performance with low computation costs. However,
although existing lightweight structures could reduce the model
parameters and accomplish image SR with low computation
costs, the employed coarse-grained manners could ignore di-
verse image details, when the optimal tradeoff between powerful

Fig. 1. Brief displaying features from the PC-Block in RCL-Net, which
recover diverse image details ignored by the intuitively designed dense coarse-
to-fine structures. Meanwhile, RCL-Net retains powerful performances of com-
plicated structures and greatly reduces learnable parameters simultaneously by
separating image features and constraining excessive calculations between each
subpart.

performances of complicated structures, such as coarse-to-fine
manners, and low model complexities is hard to be achieved.

To solve the aforementioned problem, we propose a recur-
rently complicated lightweight network (RCL-Net) to efficiently
implement remote sensing image reconstructions through pro-
cedures of recurrent fluctuated complexity. Specifically, we de-
sign a serial of progressive complicated blocks (PC-Blocks) to
recover image details little by little, where the recurrent usages
of structure from simple to complicated help to recover image
details in deeper layers that may be ignored by shallow layers.
In each PC-Block, three complicated lightweight branches (CL-
Branches) presenting increasing complexities in order are suc-
cessively exploited, where designed multireceptive field modules
(MRF-Modules) are integrated for providing diverse forward
paths to be adapted to heterogeneous image details during
the training procedure. Importantly, in each CL-Branch, we
separate features into several subparts and constrain excessive
interactive calculations between each subpart to greatly reduce
learnable parameters, which reaches the tradeoff between model
complexities of traditional powerful structures, such as coarse-
to-fine manners, and SR performances. As illustrated in Fig. 1,
compared to intuitively designed coarse-to-fine structures, the
special progressive complicated structures, i.e., PC-Block, in
RCL-Net help to better recover image details with more simple
designs. The major contributions of this article are as follows.

1) To efficiently reconstruct pleasuring remote sensing SR
images with diverse details, we propose a novel image
SR lightweight network RCL-Net with recurrent usages
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of designed progressive complicated structures to recover
image details ignored by shallow layers.

2) To obtain powerful features, we delicately design PC-
Blocks with three CL-Branch of increasing complexities
in order, where the MRF-Module is incorporated to obtain
heterogeneous forward propagation paths for recovering
diverse details with heterogeneous contents.

3) To reduce learnable parameters, we separate features in the
CL-Branch along the channel dimension and constrain ex-
cessive interactive calculations between distinct subparts,
by which we greatly reduce the learnable parameters and
retain powerful performances simultaneously.

II. RELATED WORK

A. CNN-Based SR Methods

Due to the excellent performances, deep-learning-based SR
methods have gradually become the prevalent approaches to
address SISR problems. Specifically, SRCNN [21] first designed
the three-layer CNNs to reconstruct SR images, while ES-
PCN [22] designed subpixel convolution to reduce computation
costs with postupscaling. Afterward, RDN [47] and RCAN [24]
introduced more complex structures to further improve the
model performance. However, although the aforementioned
methods have achieved excellent performances, the model com-
plexities caused by complicated structures still limit the practi-
cal applications. To solve the problem, DRCN [30] employed
recursive strategies to greatly reduce the model parameters. Af-
terward, to better balance the model performances and complex-
ities, DRRN [31] further introduced recursive-supervision and
skip-connection to alleviate the training difficulties of DRCN
while still accompanying high computation costs. Although
the recursive manner did reduce the model parameters, it also
increased the model depth to trade off the model performance.
Inspired by the distillation methods, IDN [33] and IMDN [34]
leveraged distillation approaches to implement reconstructions
with low computation costs, which processed deep features by
information distillation to reduce the model computation costs
simultaneously. To further improve the efficiency of IMDN,
RFDN designed the FDC operation [48] to obtain distilled
features and achieved promising results. Further to simplify the
network structure of RFDN, BSRN [49] introduced a BSConv
to process features with fewer parameters.

B. SR for Remote Sensing Images

Compared to natural images, remote sensing images usually
accompany larger scenes with diverse details [50]. In the early
stage, sparse-representation-based methods were the predomi-
nant remote sensing image SR solutions with few parameters.
For instance, Pan et al. [51] first introduced the sparse repre-
sentation to reconstruct HR remote sensing images while Hou
et al. [52] further designed a global joint dictionary model to
acquire the internal relationships among given image patches.
Recently, owing to excellent performances, deep learning meth-
ods have become mainstream approaches for remote sensing
image SR tasks. As the pioneering method, LGCNet [39] first

designed the CNN-based SR network to learn multilevel repre-
sentations while DCM [53] further combined residual units and
skip connections to enhance the deep features. Afterward, to
improve SR image qualities, TransENet [54] designed the mul-
tistage enhancement structures. TTST [43] has been designed to
select the most critical tokens to model long-range information
more effectively. Besides, a self-supervised degradation-guided
adaptive network [55] has been proposed to mitigate the domain
gap between simulation and reality while a DDRN [56] has
been designed to compensate for the high-frequency details lost
during information propagation. However, excessive parame-
ters and computation costs of the aforementioned methods still
limit the applications in real-world environments. To reduce
model parameters, CTN designed the contextual transformation
layer [44] to yield efficient contextual features with few parame-
ters. Correspondingly, ReFDN [45] designed a ReFDB module
to extract stronger features, which could greatly decrease the
model complexities and enhance the SR image qualities. Nev-
ertheless, although the CTN and ReFDN designed lightweight
networks with distillation and reparameterization approaches
to reduce the model complexities, the heterogeneity of diverse
details in remote sensing images could still be ignored, which
might limit the model performances.

C. Coarse-to-Fine Manners

In order to obtain powerful features for recovering image de-
tails of distinct characteristics, several researchers have designed
coarse-to-fine structures, where the coarse-level information can
be gradually refined into a fine level for enhancing model results.
In particular, as for semantic segmentation tasks during the
cross-domain segmentation stage, coarse-level categories could
be refined into finer categories in a coarse-to-fine manner [57].
For example, CCDA [58] introduced a novel coarse-to-fine
knowledge distillation constraint to solve the semantic seg-
mentation tasks. Ma et al. [59] proposed a novel coarse-to-fine
domain adaptive semantic segmentation pipeline that seamlessly
combines coarse image-level alignment with finer category-level
feature distribution regularization. Furthermore, as for the image
SR, CFSRCNN [60] designed a feature refinement block to
refine the obtained coarse features for reconstructing the HR
image in the final stage, which might ignore the intermediate
rich features and degrade the model performance. Although
coarse-to-fine manners have achieved promising results, the high
complexities caused by fine model parts can limit the practical
applications.

Grounded on the thorough analyses of image SR models
and coarse-to-fine structures, we design a lightweight RCL-
Net to recover diverse image details of heterogeneous contents
by recurrently exploiting progressively complicated structures.
Meanwhile, we separate features and constrain the excessive
interactive calculations between distinct subparts to reduce
learnable parameters and retain powerful performances simul-
taneously. As we shall see, plentiful experiments with excellent
results would display the superiority of RCL-Net, which even
dramatically surpasses powerful dense SR models.
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Fig. 2. Overview architecture of RCL-Net. CL-Branch-3 denotes the CL-Branch with eight branches, which is represented in ellipsis. Each designed PC-Block
in RCL-Net consists of three CL-Branches of increasing complexities in order. We recurrently exploit PC-Blocks with structures from simple to complicated for
recovering diverse image details. Lines of different colors denote skip connections in cascade structures to provide abundant propagation paths. Importantly, we
separate features in the CL-Branch to greatly reduce parameters while powerful performances can be retained simultaneously. Particulars of CL-Branch will be
detailed in the following sections.

III. PROPOSED METHOD

Although intuitively designed coarse-to-fine structures can
capture heterogeneous image details, the excessive calculations
can be raised. Motivated by such observations, we build an
RCL-Net for the remote sensing image SR to recover image
details little by little in recurrent coarse-to-fine manners, where
we reform the multibranch module by constraining excessive
interaction calculations between distinctly separated feature
subparts.

A. Overview of RCL-Net

To restore remote sensing SR images with diverse image
details, we build an RCL-Net with designed serial PC-Blocks,
where the usages of structures recurrently from simple to compli-
cated can recover diverse image details. During the model train-
ing, structures with increasing complexities in each PC-Block
of RCL-Net can be automatically adapted to image details of
diverse characteristics. The overview structure of RCL-Net is
shown in Fig. 2. For simplicity, we denote the input and restored
SR image as I and Ī respectively. Given the LR image I , we
have

F0 = hconv(I) (1)

where hconv indicates the function induced by a concise 3 × 3
convolution, and F0 denotes the obtained low-level features.

Then, to enhance the feature representation abilities,F0 would
be further processed through successive CL-Branch modules

of distinct complexities, which compose recurrently exploited
PC-Blocks with coarse-to-fine designs. Specifically in each PC-
Block, the intermediate features among CL-Branch-1 would be
separated into two subparts to obtain the coarse features, which
would then be integrated and again separated into four subparts
to be processed among CL-Branch-2. Finally, the output features
of CL-Branch-2 would be separated into eight subparts to be
processed among CL-Branch-3. Consequently, each PC-Block
is of coarse-to-fine structures, where rich information could be
obtained little by little. By recurrently exploiting PC-Blocks, we
obtain powerful deep features to recover heterogeneous image
details. The backbone could be formulated as

Fi = hi
PC-Block(Fi−1)

= hi,3
CL(h

i,2
CL(h

i,1
CL(Fi−1))), i = 1, . . . , N

FRec = hCCA(F1 + F2 + · · ·+ FN ) + F0 (2)

where the ith PC-Block is denoted as hi
PC-Block. Meanwhile,

{hi,j
CL}i=1,2,...,N

j=1,2,3 denotes successive CL-Branch-j modules in
the ith PC-Block. Besides Fi denotes the obtained intermediate
features translated from the PC-Block, hCCA denotes the CCA
module [34], and N represents the number of PC-Block. All the
intermediate features of PC-Block output will be integrated with
elementwise addition to obtain powerful features FRec through
hCCA. Further particulars of CL-Branch will be detailed in the
next section.
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Fig. 3. Overview structures of designed CL-Branch-2 while CL-Branch-1 and CL-Branch-3 are designed in similar frameworks with two and eight branches,
respectively. Designed cascade structures in CL-Branch incorporated with simple MRF-Module can provide diverse propagation paths, which can be automatically
adapted to heterogeneous image details during the model training. We only allow summations with no extra parameters and eliminate all excessive interactive
calculations between distinct subparts to reduce learnable parameters.

Finally, to efficiently reconstruct the realistic SR image Ī ,FRec

would be upscaled by the nonparametric subpixel convolution
followed by several simple residual blocks (RBs) to further
improve the SR image quality in HR space with few computation
costs. We have

Ī = hRec(FRec, I)

= hRB(· · · (hRB(hu1(FRec)))) + hu2(I) (3)

where hu1 and hu2 denote the subpixel convolution and bicubic
interpolation, respectively. Besides, hRB denotes the residual
block. We employ the simple interpolation operation to directly
recover the coarse SR image, which makes our model focus on
learning the residual features.

For a fair comparison, we also employL1 loss to optimize our
model by minimizing it following previous works [40], [54].
Specifically, for the given paired HR and LR images with M

pairs, which are referred by {I(q), I(q)HR }
M

q=1, the loss function
can be obtained as

L1(δ) =
1

M

M∑

q=1

∥∥∥I(q)HR − RCL-Net(I(q))
∥∥∥
1

(4)

where δ denotes the corresponding learnable parameter sets of
our proposed network RCL-Net. Meanwhile, RCL-Net(I(q))
is the qth SR image Ī(q) and M is the number of training
images. And then, I and IHR refer to the given LR image and
corresponding HR reference, respectively.

B. Complicated Lightweight Branch

To obtain powerful features, we carefully design the CL-
Branch, which incorporates cascade designs with simple MRF-
Module to provide various propagation paths for recovering
heterogeneous image contents. Suitable calculation processes
provided by distinct propagation paths could be automatically
adapted to diverse image details during the model training.

As illustrated in Fig. 3, deep features in each CL-Branch
would be separated into several subparts and compose cascade
structures, which would then be processed with the MRF-
Module. Specifically, outputs of all previous branches are re-
garded as the inputs of current branch followed by MRF-Module
structures, which could generate heterogeneous forward propa-
gation paths for diverse image details. Formally, given the input
features Fi−1 of CL-Branch-1 in ith PC-Block for instance, we
first averagely separate Fi−1 into two subparts, which would be
processed with the counterpart MRF-Module. Considering in
various sizes of objects among large coverage areas in remote
sensing images, we employ three depthwise separable convo-
lutions (DWconv) with distinct convolutional kernel sizes to
capture diverse image details in MRF-Module. For excavat-
ing relationships between each subpart, we introduce branch-
by-branch addition operations with no parameters. Afterward,
separated deep features derived from the MRF-Module in each
branch would be fused with concatenation and channel shuffle
operations, where a general fusion module is introduced for
the feature integration. Meanwhile, we introduce local residual
learning to stabilize the network training. Afterward, similar
frameworks are employed to process the separated four and eight
subparts among CL-Branch-2 and CL-Branch-3, respectively.
In summary, the CL-Branch-j in ith PC-Block hi,j

CL could be
formulated as

Hi−1
j,1 , Hi−1

j,2 , . . . , Hi−1
j,2j = hsplit(F

j
i−1)

Di−1
j = fcat({mi−1

j,k (H
i−1
j,k + · · ·+mi−1

j,1 (H
i−1
j,1 ))}1≤k≤2j )

Si−1
j = fcs(D

i−1
j )

F j+1
i−1 = f i−1

Fus (S
i−1
1 + Si−1

2 + · · ·+ Si−1
j ) + F j

i−1

(5)
where index {j = 1, 2, 3} indicate the jth CL-Branch-j and
index i indicates the ith PC-Block. Meanwhile,F j

i−1 denotes the
input of CL-Branch-j (especially F 1

i−1 = Fi−1) as illustrated in
Figs. 2 and 3. Besides, index {k = 2, . . . , 2j} indicate distinct
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branches in CL-Branch-j corresponding to each feature subpart
while hsplit denotes the separating operation to generate several
subparts Hi−1

j,1 , Hi−1
j,2 , . . . , Hi−1

j,2j
. Then, mi−1

j,k represents MRF-
Module, fcs denotes the channel shuffle operation to enhance
subpart relationships without extra parameters and fcat denotes
the concatenation operation along channel dimensions. Mean-
while, f i−1

Fus refers to a general fusion module and finally F j+1
i−1

denotes powerful fused features generated by CL-Branch-j,
which would be regarded as the input of following CL-Branch.

Specifically, we employ the efficient PATM [61] as the general
fusion module f i−1

Fus to assist feature fusions. Moreover, we set
the largest convolution kernel size in the MRF-Module as 7 × 7
to make the half-side length of receptive fields boosted by 42 in
each PC-Block for covering almost the whole spatial dimension
of features (default size of 48 × 48). Furthermore, as shown in
Fig. 2, we design three DWconv operations with 3 × 3, 5 × 5,
and 7 × 7 kernel sizes in the MRF-Module to obtain various
receptive fields and heterogeneous forward propagation paths,
where the smallest kernel size is set as 3 × 3 to avoid the
constraint within local information. With the help of multiscale
settings in MRF-Module, the designed procedures of recurrent
fluctuated complexity consisting of CL-Branch can assign more
various receptive fields to different feature subparts and thus
improve the model performance.

C. Reconstruction Processes

Direct upscale of LR features to obtain SR images would
ignore image details and degrade model performances [60].
Inspired by CFSRCNN [60], we propose the feature refinement
module to further improve remote sensing image qualities with
simpler structures compared to CFSRCNN. Specifically, we first
employ a subpixel convolution to upscale LR features. Then, we
adopt four simpler residual blocks (only a 3 × 3 convolution and
a GELU [62] activation function) and a plain 3 × 3 convolution
to refine HR features, which could improve the SR image quality
with few computation costs. Given arbitrary deep feature F , the
residual block hRB could be formulated as

hRB(F ) = hgelu(hconv(F )) + F (6)

where hRB denotes the residual block in (3). Besides, hgelu and
hconv denote the GELU function and 3 × 3 convolution.

D. Analyses of Parameter Quantities

To illustrate the superiority of separation operations in CL-
Branch, we provide detailed analyses of learnable parameters
taking CL-Branch-2 as the instance, whose input and output con-
tain the same channel number C. With the feature separating in
CL-Branch, we constrain the excessive interactive calculations
between distinct subparts Hi−1

j,k with distinct index k except
for elementwise summation, which greatly reduces learnable
parameters compared to instinctively designed coarse-to-fine
structures. Specifically, we list the following four types of
parallel convolution structures with MRF-Module:

I) The structure with standard convolutions in MRF-
Module to generate deep features with C channels in all

TABLE I
ANALYSIS OF NETWORK PARAMETERS

branches, where output features of each branch would be
directly added to obtain the module output.

II) The structure with standard convolutions in MRF-
Module to generate deep features with 0.25C channels
in each branch, where output features of each branch
would be concatenated to maintain the equivalent repre-
sentation abilities.

III) The standard convolutions in type-(II) structure are re-
placed with counterpart DWConv to generate deep fea-
tures, while other settings are the same as type-(II) struc-
ture.

IV) The input of type-(III) structure is directly separated into
four subparts to generate deep features for four branches,
respectively, while other settings are the same as type-
(III) structure.

As shown in Table I, our method greatly reduces the learnable
parameters. For example, when C = 32, our reformed multi-
branch structure with MRF-Module only has 1%, 4%, and 26%
parameters compared to the type-(I), type-(II), and type-(III)
structures; similarly, when C = 64, our reformed multibranch
structure with MRF-Module only has 0.6%, 2.5%, and 25.4%
parameters compared to the type-(I), type-(II), and type-(III)
structures.

IV. EXPERIMENTS

In this section, we will provide abundant experiments to
make in-depth studies of our model and illustrate the superiority
of our conscientiously designed module. Specifically, we first
describe the relevant experimental datasets and then exhibit the
effectiveness of the proposed RCL-Net. Afterward, we compare
our results with several classical representative state-of-the-art
(SOTA) methods together with advanced powerful large SR
models to demonstrate the superiority of RCL-Net. Finally, we
present several ablation studies to give throughout analyses.

A. Experimental Datasets and Settings

For fair comparisons, following previous works [39], [53],
[54] for remote sensing image SR, we employ two popular
benchmark datasets: 1) UCMerced [63] and 2) AID [64], to eval-
uate our model performance. Specifically, the UCMerced dataset
totally contains 21 classes of remote sensing scenes, such as
river, runway, etc. On the other hand, the AID dataset with 10 000
images totally contains 30 classes of remote sensing scenes, such
as school, square, stadium, viaduct, etc. Specifically, following
the work in [54], we employ the same strategy to construct and
split the train, test, and validation sets from UCMerced and AID
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datasets. Meanwhile, we employ the peak signal-to-noise ratio
(PSNR) and structural similarity index measure (SSIM) [65] as
metrics to evaluate the model performances.

B. Implementation Details

As for the remote sensing image SR, in this article, we draw
attentions to improving SR image qualities with ×2, ×3, and
×4 upscaling factors. In the training phase, following the work
in [54], the input LR image of our network will be randomly
cropped into 48 × 48 image patches, and corresponding ref-
erence patches from counterpart HR images will be obtained.
Besides, to further improve the model robustness, we introduce
data augmentations for training samples, such as random rota-
tion with 90◦, 180◦, 270◦, and horizontal flipping. Additionally,
the number of PC-Block is set to 10 and the global residual
learning is introduced with bicubic interpolation operation to
stabilize our network training.

In order to efficiently optimize our network, we adopt Adam
optimizer [66] with β1 = 0.9, β2 = 0.999, and ε = 1 × 10−8

to optimize our proposed RCL-Net. Specifically, we train the
RCL-Net with 2000 epochs and the initial learning rate 1 × 10−3

will be multiplied by 0.5 at the 1500th epoch. Besides, the
minibatch size is set to 16 and our earnestly designed network
is implemented by PyTorch without any postprocessing. In
addition, all the experiments are accomplished on an NVIDIA
GeForce RTX 3090.

C. Effectiveness Analyses

In this section, we directly provide visualizations of deep
features to analyze the effectiveness of our proposed RCL-Net.
Specifically, grounded on the UCMerced test dataset with ×4
upscaling factor, we visualize features to study the recurrent
usages of coarse-to-fine structures. Specifically, the first two
rows of Fig. 4 display features of a given image from the first and
third PC-Blocks, respectively. As we can see, output features
from the third PC-Block recover more image details, such as
shadows, compared to the ones from first PC-Block, which
illustrates the merits of the recurrent usages of coarse-to-fine
structures. Moreover, the last two rows show the features of a
given image from the first PC-Block, CCA module, and recon-
struction procedures. As we can see, with all features derived
from recurrent coarse-to-fine structures integrated in the CCA
module and reconstruction procedures, image details can be
distilled. In summary, visualized features exactly illustrate the
effectiveness of our designed RCL-Net with structures recur-
rently from simple to complicated.

D. Comparison With SOTA Methods

In order to demonstrate the effectiveness of RCL-Net, we
compare our method with several representative lightweight
models, such as VDSR [23], LGCNet [39] together with
CTN [44], and SOTA lightweight networks, such as DCM [53]
and ReFDN [45]. Further to illustrate the superiority of our
method, we also compare our results with the advanced pow-
erful large models, such as TransENet [54], HSENet [40],

Fig. 4. Visualization of intermediate features in the PC-Block. Among the first
three columns, the first two rows display features in the CL-Branch from first and
third PC-Blocks, respectively. Meanwhile, the last two rows display features in
the first PC-Block, CCA module, and reconstruction procedures. The last column
displays recovered SR images and ground-truth images. We can conclude that
RCL-Net is able to recover image details through serial PC-Block structures,
which are recurrently from simple to complicated.

SwinIR [26], and TTST [43]. All the algorithms are trained on
the same dataset settings.

1) Results on UCMerced Test Dataset: Table II displays the
average PSNR and SSIM values of recovered SR images on ×2,
×3, and ×4 upscale factors of the aforementioned methods.
As we can see from Table II, our method performs better than
not only the classical methods but also SOTA lightweight net-
works. Specifically, when the upscale factor is set to 2, designed
RCL-Net outperforms SOTA lightweight networks DCM and
ReFDN by 0.76 and 0.35 in PSNR, respectively, while our
results are also superior to DCM and ReFDN by 0.0066 and
0.0036 in SSIM. Meanwhile, RCL-Net obviously outperforms
classical lightweight networks, such as LGCNet and CTN, with
at least 0.82 in PSNR and 0.0085 in SSIM, which displays the
superiority of the designed RCL-Net. Especially compared to
DCM, our proposed RCL-Net only consumes 57% parameters
and 34% FLOPs, attributing to feature separations in the CL-
Branch. Furthermore, to illustrate the effectiveness of RCL-Net,
we compare the results with advanced powerful large models.
It could be found that RCL-Net outperforms TransENet and
HSENet by 0.38 and 0.19 in PSNR while the improvements
are 0.0039 and 0.0013 in SSIM. It is worth mentioning that
RCL-Net only consumes 3% and 23% parameters compared to
TransENet and HSENet while the FLOPs ratios are 57% and
23%, respectively. Meanwhile, our proposed RCL-Net achieves
comparative results compared to powerful large models, such
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TABLE II
AVERAGE PSNR (DB) AND SSIM OVER THE UCMERCED TEST DATASET

TABLE III
AVERAGE PSNR (DB) OF EACH CLASS FOR ×3 UPSCALING FACTOR ON THE UCMERCED TEST DATASET, WHICH TOTALLY CONTAINS 21 CLASSES1

as SwinIR and TTST, with less than 12% parameters. Similar
improvements raised by our designed RCL-Net could also be
seen when the upscale factor is set to 3 and 4, where we can
conclude that RCL-Net outperforms both classical and SOTA
lightweight models. More importantly, the RCL-Net is the only
lightweight network that surpasses advanced powerful large
models TransENet and HSENet with all upscale settings, which
demonstrates that RCL-Net can retain powerful performances
of complicated structures and reduce learnable parameters si-
multaneously.

Following the work in [54], we further provide detailed results
about each class of the UCMerecd dataset with ×3 upsampling
factor, where 21 classes are totally involved. As shown in
Table III, the PSNR value of our network greatly exceeds other
methods except for SwinIR and TTST among 14 scenes, such as
beach, forest, overpass, river, etc. Meanwhile, our average PSNR
value for all classes is beyond advanced large model TransENet
while RCL-Net still obtains comparative results compared to
SwinIR and TTST with less than 12% parameters. The abun-
dant quantitative results exactly demonstrate the superiority of
our model. Moreover, for the visual comparison, we list SR
images obtained by the current best methods in Fig. 5, where
the superiority of RCL-Net could be found. Specifically, the
first row in Fig. 5 demonstrates that the results of RCL-Net

are with less blur and clear textures compared to large models
TransENet and HSENet. Additionally, the last row in Fig. 5 also
illustrates that the proposed RCL-Net could obtain recovered
results with fewer jaggies and accurately reconstruct the object
edges. Meanwhile, RCL-Net achieves comparative results with
less than 7% parameters compared to TTST.

2) Results on AID Test Dataset: To demonstrate the robust-
ness of proposed RCL-Net, we perform abundant extra exper-
iments on the AID dataset, where we provide quantitative and
qualitative comparisons with other methods. As illustrated in
Table IV, when the upscale factor is set to 4, designed RCL-Net
outperforms SOTA lightweight networks DCM and ReFDN
by 0.29 and 0.26 in PSNR, respectively, while our results are
also superior to DCM and ReFDN by 0.0096 and 0.0085 in
SSIM. Meanwhile, RCL-Net obviously outperforms classical
lightweight networks, such as VDSR and CTN, at least 0.28 in
PSNR and 0.0092 in SSIM. For the validation, we also compare
the results with the advanced powerful large model TransENet
on the AID dataset. It could be found that RCL-Net outperforms
TransENet by 0.08 in PSNR and 0.0011 in SSIM with only 3%
parameters and 57% FLOPs. Meanwhile, our proposed RCL-Net
achieves comparative results compared to powerful large mod-
els, such as SwinIR and TTST, with less than 12% parameters.
Similar improvements raised by our designed RCL-Net could
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Fig. 5. Visual comparisons of RCL-Net with some representative methods on the UCMerced test dataset for ×4 upscaling factor.

TABLE IV
AVERAGE PSNR (DB) AND SSIM OVER THE AID TEST DATASET

be seen when the upscale factor is set to 2 and 3, where we can
conclude that RCL-Net outperforms both classical and SOTA
lightweight models. More importantly, the proposed RCL-Net is
the only lightweight network that surpasses advanced powerful
large model TransENet with all upscale settings. Following
the work in [54], to further demonstrate the effectiveness of
our proposed method, we also provide detailed results about
each class of the AID dataset with ×4 upscaling, where 30
classes are totally involved. As shown in Table V, the PSNR
value of our network obviously exceeds other methods except
for SwinIR and TTST among all scenes while RCL-Net still
achieves comparative results compared to SwinIR and TTST
with less than 12% parameters. The abundant quantitative re-
sults exactly demonstrate the superiority of our model, which
reaches the tradeoff between powerful performances and low
model complexities.

In addition to quantitative comparisons on the AID dataset,
the qualitative visual results are also provided for subjective
comparisons. As shown in Fig. 6, RCL-Net could better re-
cover the remote sensing image textures. For instance, as for
the second row in Fig. 6, the bicubic interpolation operation,
VDSR, and TransENet networks hardly recover the precise

roof textures, which accompany terrible distortions and blurs.
However, our method could exactly restore the roof textures with
few distortions and insignificant blurs, which clearly implies the
superiority of RCL-Net. Similarly, as for the last row in Fig. 6,
the proposed RCL-Net could accurately reconstruct the boarding
bridge while TransENet, VDSR, and the bicubic interpolation
operation fail to generate accurate structures. Meanwhile, RCL-
Net achieves comparative results with less than 7% parame-
ters compared to TTST. In sum, the excellent quantitative and
qualitative results on the AID dataset properly demonstrate the
effectiveness and robustness of our method.

E. Ablation Study

In this section, to illustrate the effectiveness of our pro-
posed method, we would make plentiful ablation experiments
grounded on the UCMerced dataset with ×4 upscaling factor.
Specifically, we first analyze the influence of PC-Block numbers
and provide the corresponding qualitative and quantitative com-
parisons. Besides, we seriously study the designs of the proposed
PC-Block and demonstrate the superiority with subjective and
objective results.
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TABLE V
AVERAGE PSNR (DB) OF EACH CLASS FOR ×4 UPSCALING FACTOR ON THE AID TEST DATASET, WHICH TOTALLY CONTAINS 30 CLASSES2

Fig. 6. Visual comparisons of RCL-Net with some representative methods on the AID dataset for ×4 upscaling factor.
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Fig. 7. Visual comparisons of RCL-Net with different numbers of PC-Block on the UCMerced dataset for ×4 upscaling factor. Each column represents the
network with the counterpart number PC-Block, where the last column denotes the ground-truth images.

TABLE VI
PSNR (DB) AND SSIM VALUES OF RCL-NET WITH DIFFERENT NUMBERS OF

PC-BLOCK

1) Number of PC-Block: In order to balance the model com-
plexity and reconstruction accuracy, we provide a deep analysis
of our network with different numbers of PC-Block. As shown
in Table VI, when we increase the number of PC-Block from
8 to 10 with enlarged model complexity, the reconstruction
accuracy will be further promoted. However, when the number of
PC-Block is increased from 10 to 12, the reconstruction accuracy
is slipped. Through the exact exploitation, we conclude that
RCL-Net would be somehow overfitting with twelve PC-Blocks.
Specifically, the PSNR/SSIM values of 10 PC-Blocks are higher
than 8 and 12 blocks by 0.01/0.0014 and 0.05/0.0013, respec-
tively.

Additionally, the qualitative visual comparisons are provided
in Fig. 7, which apparently illustrates that the network with 10
PC-Blocks could exactly recover remote sensing SR image de-
tails. Specifically, the third row in Fig. 7 shows that our network
with 10 PC-Blocks can clearly restore the zebra crossing at the
intersection while the images restored by the networks with 8 and
12 PC-Blocks contain blurry artifacts. Similarly, for the tennis
court in the second-row images in Fig. 7, the recovered results
of our network are almost without any distortions while the
networks with 8 and 12 PC-Blocks recover images with blurry
artifacts on the edge. Therefore, considering the quantitative
and qualitative results, we can conclude that 10 times the usages
of PC-Block structures from simple to complicated can better
recover image details. Consequently, we employ 10 PC-Blocks
as the default setting in our experiments.

2) Structure of PC-Block: To obtain realistic SR remote
sensing images, the structures of PC-Block are progressively
complicated as the network deepens, where deep features are
gradually separated into two, four, and eight subparts, to recover
images in structures from simple to complicated. In order to
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Fig. 8. Visual comparisons of RCL-Net with different CL-Branch structures on the UCMerced dataset for ×4 upscaling factor. Each column represents the
network with corresponding CL-Branch structures, where the last column refers to ground-truth images.

TABLE VII
PSNR (DB) AND SSIM VALUES OF RCL-NET WITH DIFFERENT CL-BRANCH

STRUCTURES

analyze the effectiveness of PC-Block, we first replace the
four and eight branches with the same two branch structures
in PC-Block, respectively, which is denoted as RCL-Net-2.
Meanwhile, we build the network RCL-Net-4, where the two
and eight branches of PC-Block are replaced with the same four
branch structures. Similarly, RCL-Net-8 is also built only with
eight branch structures to replace the two and four branches in
PC-Block. Afterward, we provide quantitative and qualitative
results for the comparisons. As we can conclude from Table VII,
the increasingly complicated designs of PC-Block to recover
image details through structures recurrently from simple to
complicated would promote the model results, where RCL-Net
obtains the best PSNR value and the SSIM result is beyond other
designs simultaneously.

Several qualitative results are also given in Fig. 8, which
illustrates that RCL-Net could accurately recover image details.
For example, RCL-Net could more clearly restore the footpath

in the field in the second row of Fig. 8. Meanwhile, as for
the tennis court contour in the third row of Fig. 8, RCL-Net
reconstructs more accurate textures compared to RCL-Net-2,
RCL-Net-4, and RCL-Net-8. Although RCL-Net-8 with eight
branches in all CL-Branch contains more complicated struc-
tures, our designed RCL-Net with the simpler framework still
obtains better reconstruction performances. Therefore, the quan-
titative and qualitative results clearly demonstrate the superiority
of designed RCL-Net with structures recurrently from simple to
complicated.

3) MultiScale Settings of MRF-Module: In order to further
explore the designed procedures of recurrent fluctuated com-
plexity in RCL-Net, we replace the multiscale designs in MRF-
Module with different single-scale designs to analyze model
results. As we can conclude from Table VIII, RCL-Net with 5
× 5 and 7 × 7 scale settings perform slightly worse than the one
with 3 × 3 scale setting, where the ignorance of small recep-
tive fields could cause model performance losses. Furthermore,
model results with 3× 3 scale setting achieve the PSNR as 27.75
and the SSIM as 0.7639, which are better than HSENet and
comparative to TransENet with less than 3% parameters. Such
phenomenon indicates the effectiveness of designed procedures
of recurrent fluctuated complexity even without multiscale de-
signs. To further explore the effectiveness of multiscale designs
in MRF-Module, we fix the MRF-Module with 3 × 3 scale
setting in different CL-Branch, where the receptive fields are
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Fig. 9. Comparison of visual results of the recovered SR images corresponding to RCL-Net with single-scale settings in MRF-Module. RCL-Net followed by
different numbers indicate the visual results corresponding to different single-scale settings.

TABLE VIII
PSNR (DB) AND SSIM VALUES OF RCL-NET WITH DIFFERENT SCALE

SETTINGS IN MRF-MODULE

constrained to different degrees in the designed procedures of
recurrent fluctuated complexity. As it is shown in Table VIII,
with the fixed scale setting in CL-Branch-1, RCL-Net suffers
slight performance losses of 0.01 in PSNR and 0.0013 in SSIM
while 0.04 drops in PSNR and 0.0026 declines in SSIM can
be caused by the absence of multiscale setting in CL-Branch-3.
Consequently, we can conclude that the multiscale setting in
MRF-Module can help to improve the effectiveness of designed
procedures of recurrent fluctuated complexity in RCL-Net.

Several qualitative results can be seen in Fig. 9. We can
find out in the first two rows that RCL-Net with single-scale
settings can still recover image details such as straight lines
while the intact one with multiscale settings in MRF-Module
obtains the best results. Moreover, in the third row of Fig. 9,
RCL-Net with 3 × 3 scale setting achieves comparative results

in recovering square objects while the intact one still performs
better in recovering object edges. Furthermore, in Fig. 10, the
effectiveness of multiscale setting to improve the performance
of designed procedures of recurrent fluctuated complexity can
be observed. Therefore, the quantitative and qualitative results
clearly demonstrate the effectiveness of both multiscale designs
in MRF-Module and designed procedures of recurrent fluctuated
complexity in RCL-Net.

F. Robustness Experiment

Furthermore, to demonstrate the superiority and robustness
of our network, we perform robustness experiments on the
UCMerced dataset with ×4 upscaling factor compared to ad-
vanced powerful large models. Specifically, we inject Gaussian
noises with different variances and default mean values 0 on the
UCMerced test dataset, which would then serve for the evalua-
tions over the trained models. As shown in Table IX, where the
bold represents the best results, our designed lightweight RCL-
Net still evidently exceeds the advanced large models HSENet
and TransENet when the noise increases. For instance, with
variances of 0.0002, the PSNR/SSIM values of RCL-Net sur-
pass TransENet and HSENet by 0.39/0.0279 and 0.61/0.0308,
respectively. Furthermore, with variances increasing to 0.001,
the designed RCL-Net also significantly outperforms TransENet
and HSENet by 0.97/0.22 in PSNR and 0.0704/0.0172 in SSIM,
respectively.
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Fig. 10. Comparison of visual results of the recovered SR images corresponding to RCL-Net with fixed 3 × 3 scale setting of MRF-Module in particular
CL-Branch. The numbers following RCL-Net indicate which CL-Branch to be with a fixed-scale setting.

TABLE IX
AVERAGE PSNR (DB) AND SSIM OVER THE ROBUSTNESS EXPERIMENTS ON THE UCMERCED TEST DATASET, WHICH IS INJECTED DIVERSE GAUSSIAN NOISES

WITH DIFFERENT VARIANCES

Besides, the qualitative comparisons are also provided in
Fig. 11, where each row represents the recovered images derived
from counterpart methods with different noise settings denoted
at the bottom. Specifically, with variances as 0.0002, RCL-Net
could clearly recover the guidepost with sharper edges compared
to results restored by large models HSENet and TransENet.
Even with the injected noises increasing to 0.001, RCL-Net
could still reconstruct the guidepost. In summary, the superiority
of our designed lightweight RCL-Net compared to advanced
large models HSENet and TransENet could be steadily observed
with excellent quantitative and qualitative robust results, which
demonstrate the tradeoff between powerful performances and
low model complexities achieved by RCL-Net.

G. Visual Quality on Real-World Scenes

In addition to PSNR and SSIM, we further apply TransENet,
TTST, and RCL-Net on the real-world scene, where natural

image quality evaluator (NIQE) [67] is exploited as the evalua-
tion metric to assess the visual quality of recovered images de-
rived from each method. As a reference-free image quality eval-
uation method, NIQE aims to measure whether the model result
looks like natural scenes by measuring the difference between
built multivariate normal distributions. Quantitative and visual
comparisons are listed in Fig. 12, where we can conclude the
effectiveness of the proposed RCL-Net. Specifically, RCL-Net
achieves at least 1.42 performance gain compared to TransENet
and TTST on the first row, where RCL-Net recovers a more
straight harbor line on the top of the image. As for the second
row, at least 0.04 performance gain can be raised by RCL-Net,
where the border of recovered traffic markings is more straight
in the middle of the image. Finally, as for the third row, RCL-
Net performs better by at least 1.16 in terms of NIQE, where
RCL-Net obtains more natural results on the top of buildings in
the marked red rectangle. In summary, RCL-Net can also obtain
better results in terms of visual comparison on real-world scenes.



HUA et al.: RCL-NET FOR SUPERRESOLUTION OF REMOTE SENSING IMAGES 11737

Fig. 11. Visualization of the recovered SR images, which are initially inserted Gaussian noises with different variances represented in the bottom row. Besides,
each column image represents the reconstructed results of corresponding methods with different noises.

Fig. 12. Quantitative and visual comparison on the real-world scenes, where NIQE is applied as the evaluation metric.
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V. CONCLUSION

In this article, we design an RCL-Net for remote sensing
image SR in structures recurrently from simple to complicated.
Specifically, we design a serial of PC-Blocks in RCL-Net,
where each PC-Block is composed of three CL-Branches with
progressive complexities in order to recover image details little
by little. Meanwhile, we design a cascade structure in each
CL-Branch integrated with MRF-Module to obtain distinct for-
ward paths for recovering heterogeneous image details, where
constrained calculations between feature subparts help to reform
the multibranch structures for reducing learnable parameters.
We implement abundant experiments on the popular UCMerced
dataset and AID dataset. The experimental results demonstrate
that RCL-Net is superior to both classical and SOTA lightweight
networks while RCL-Net even surpasses the advanced powerful
large model with less than 3% parameters. Meanwhile, the abla-
tion studies and feature visualizations validate the effectiveness
of designed structures in our proposed RCL-Net. However, the
employed multiscale modeling and coarse-to-fine strategy can
still increase the parameter quantities and model complexities
when aiming to improve the model performance. More effi-
cient procedures, such as dictionary-based methods with less
employed parameters, can be explored more deeply in the future.
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